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FUNDAMENTAL OPERATOR FUNCTIONS OF
INTEGRO-DIFFERENTIAL OPERATORS UNDER
SPECTRAL OR POLYNOMIAL BOUNDEDNESS

M.V. FALALEEV

Abstract. We study a Cauchy problem for a degenerate higher order integro-differential
equation in Banach spaces. The operator kernel of the integral part of the equation is a
linear combination of the operator coefficients of its differential part, which corresponds to
the physical meaning of some technological processes. The solution is constructed in the
space of generalized functions (distributions) in Banach spaces using the methods of the
theory of fundamental operands. The convolutional representation of the original equation
leads to a further active use of the convolutional technique and its properties. For the
considered equations, the corresponding fundamental operator functions are constructed.
By means of this operator, a unique generalized solution to the original Cauchy problem in
the class of distributions with a left-bounded support is recovered. The analysis of the re-
sulting generalized solution allows us to study the solvability problem in the classical sense.
The fundamental operator function is constructed in terms of the theory of semigroups
of operators with kernels. Abstract results are illustrated by examples of initial-boundary
value problems from visco-elasticity theory.
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1. INTRODUCTION

For correct modeling of some natural or technological processes one needs to take into consid-
eration not only a momentary influence of determining factors, but also an observation history.
Such phenomena arise, for instance, in studying the oscillations of membranes in oil media,
when the perturbation from the membrane spreads to the media and then goes back in some
changed form due to dynamical processes generated by the membrane itself. One of the ways to
describe such models is the theory of integro-partial differential equations of convolution type.
Among latter equations, a special place belongs to the equations with a non-invertible operator
at a higher in time derivative, since the initial boundary value problems for such equations
are solvable in the classes of functions of finite smoothness not for all combinations of initial
and boundary conditions and the free term (right hand side) in the equation. The solutions
in the class of distributions have no such disadvantages and the problem can be formulated
in the most general form and to be solved via a reduction to a degenerate integro-differential
equations in Banach spaces. The most effective approach for constructing generalized solutions
of degenerate integro-differential equations is the theory of fundamental operator functions,
see [§], according to which the sought generalized solution is recovered as a convolution of
a fundamental operator function and a generalized function involving all data of the prob-
lem. Analyzing the generalized solutions constructed in this way, one can make conclusions on
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the existence and uniqueness of the classical smooth solution, its structure, properties and a
possibility of numerical experiments.

In the present work we consider integro-differential equations, in which the operator kernel
of the integral part is a linear combination of operator coefficients in its differential part.
Physically this means that at all times, the same factors influence the system state.

We study the following Cauchy problems:

Bu™M(t) — Au(t) — /(a(t —s)A+ Bt — S)B> u(s)ds = f(t), (1)

u(0) = uy, u'(0) = uy, e u™ND(0) = uy_1, (2)

where B € L(Fy, E5) is non-invertible, A is a closed linear operator from FE; into E,, and E)
and Fy are Banach spaces. The operator A is spectrally relatively bounded with respect to B,
see [, 9];

Bu®M(t) — Aju™(t) — Agul(t)

_ /t(al(t — 8) AL + ag(t — s)Ag + B(t — s)B) u(s)ds = f(t),

u(0) = up, u'(0) = uy, . uND(0) = upn_1. (4)

Here B, Ay, Ay € L(F1, Ey), B is non-invertible, the pair of the operators (A;, Ag) is polyno-
mially relatively bounded with respect to the operator B, see [3].

If in equations and the scalar functions «(t), B(t), ao(t), ay(t) are identically zero,
the solvability theory of Cauchy problems — and — under the mentioned conditions
in the classes of functions of finite smoothness was well-developed in [3], [4], [9].

In the present work we construct solutions in the class K (E;) of distributions with left-
bounded supports. This class is natural due to a series of reasons. First, a solution to the
Cauchy problem is defined on the ray ¢ > 0, second, while constructing the solutions, we use
the convolution of generalized functions, which is always well-defined in this class, and third,
the convolution is associative in this class, which is very needed for all made transformations.

2. FUNDAMENTAL OPERATOR FUNCTIONS UNDER SPECTRAL BOUNDEDNESS

Let Ei, E; be Banach spaces, an operator B € L(FEj, F3) be non-invertible, A be a closed
linear operator acting from FEj into E,. Following works [4], [9], as a B-resolvent set of the
operator A we call the following open set in the complex plane

pP(A)={ueC:(uB— At € L(Ey, E))}.

The operator A is called spectrally relatively bounded with respect to the operator B (or
(B, 0)-bounded) if outside some circle of a radius a > 0 the operator pencil (uB — A) is
continuously invertible, that is, {u € C : |u| > a} C pP(A). We consider a circumference
I'={ueC:|u=r>a}in the complex plane, then, as it was shown in works [4], [9], under
a (B, o)-boundedness, the operators

1 1

P=_ B—A)"'Bd =— ¢ B(uB—A)"d

o PB4 Bdn Q=5 BB - A)
r r

are projectors in F; and FEs, respectively. The projectors P and () give rise to the expansions

of the space into direct sums F; = EY @ E} = Ker P@Im P and Fy = EY® E) = Ker Q®Im Q.

The actions of the operators A and B are naturally split so that they restrictions Aq : EY — E9
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and B : E{ — E} are continuously invertible, A; : El — Ej is bounded, the operators A and
B pseudocommute with the projectors P and @, that is, QB = BP and QA = AP.

In what follows we denote: «f(t),B(t) € C(t > 0), A(t) is the resolvent of the kernel
(—a()0(t)), fa(t) = £==0(t), n € N, 0(t) is the Heaviside function [1], [2], R(t) is the resol-

(n—1)!
vent of the convolution kernel k(¢)0(t) = fn(t) x 5(t)0(t), N is a natural number, fo(t) = 6(t),
[, [2].

and 0(¢) is the Dirac delta-function [1

Theorem 1. If the operator A is spectrally relatively bounded with respect to B, then an
integro-differential operator

BsM (1) — As(t) — (a(t)A + 5(1&)3)9(15) = B(é(N)(t) — B(t)@(t)) — A(é(t) + a(t)&(t))
possesses a fundamental operator function

En(t) = By Un(t)Q — Vn(t)(I - Q)
in the class K' (Ey) of generalized functions with left-bounded supports. Here

Z I )+ ROO()" = (0(t) + a(t)0(t) (A B )
Vn(t) =D (A" Bo) Ag ' (6™)(1) — B(1)6(1))" * (5(t) + A£)6(1)) """

Hereinafter by the kth power of a generalized function we mean its k-multiple convolution
with itself, the zero power of a generalized function is 6(¢).

Proof. According the definition of a fundamental operator function [§], we are going to check
the validity of two convolution identities:

[B (5<N>(t) — 5@)9@)) — A((S(t) + a(t)e(t)ﬂ «En(t) = 15(t) on K (E), (5)
En(t) * [B (5(N)(t) —5(15)9(15)) —A(é(t) +a(t)0(t))} =156(1t) on K'(E). (6)

It is known that the family of functions f, () satisfies the convolution identities [I], [2]

Fl®) % fu(t) = farn(t,  0W(1) = fult) = 6(2).

Hence,

B (6““ (1) - 5@)9@)) « BrU(D)Q
B (W (t) - ﬁ<t>e<t>) « By () + (5(0) + R(DO(1))

3 fagen(8) * (0() + R(0O(1) "+ (3(8) + a®)8(t) (A B ) 'Q
=BB; " (3(t) — k(1)0(t)) * (5(t) + R(£)0(1))

* Z o= (t) % (8(8) + R(O))* " * (6(t) + a(t)0(t) (A1 BT ) 'Q

=Q0(t) + Z fa(t )+ R($)0(t))" * (5(t) + a(t)0(t)" (A1 BT)*Q,
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and
(() o(1)6 <>)*B U ()0
:Z n-( )+ R($)0())" * (5(t) + a(t)0(t)" (A BT *Q,
that is,

{B (5<N> (t) — B(t)@(t)) — A(a(t) + a(t)@(t))] « Bl lUN)Q = Q4(2).

In the same way we find:

B (5(N)(t) — B(t)Q(t)) * Vn(t) (1 — Q)

= Z AG Bo) AG (0N (1) — BHO($) T # (8(t) + A)0() (I — Q),
and

A(é(t) + a(t)e(t)) * V() — Q)

= i Ao(Ag ' Bo) Ag (8™ (8) — B(H)8(1))7 + (8(t) + A(1)0(1)"(] — Q)

)+ ZBO o' Bo)® Ayt (6M(1) — B(1)0(1)T * (3(1) + A(1)6(t)(I — Q)

=(I —Q)o(t) + ZBO (Ay" Bo) "4y (6™)(1) — B(1)0()™ = (3(t) + A1) (I — Q).

Therefore, B
(600 - 5(06(0)) ~ 4(3(0) + ao(0)) |+ V)T - @) = (1 - @)oo
and hence,

[B (5<N> (t) — ﬁ(t)@(t)) - A((S(t) + a(t)@(t))} « En(t) = Q(t) + (I — Q)d(t) = I5(¢).

This completes the proof of the first identity.
We proceed to proving the second identity. First we find that

BriUn()Q * B(5<N>(t) —~ 5@)9@))
=By ey (1) * (1) + R(0B(0)* * (5(8) + a(t)0(1)) (A BT ) By P
* (0(t) — k(£)0(2))

=B Y fraaenft)  (60) + ROPOI « (60) + ap(O) (B BP

=P5(t) + By Z v )+ R(O())* * (3(1) + a(t)0(1)* (A1 B ') BLP

59
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—Po(t) + By Z For(t) = (35(2) + ROO(E) + (3(8) + a(t)0(8))* (A1 By Y~ A, P
Second,

Bi'Un(t)Q * A (5(t) + a(t)e(t))

B me £+ RO » (5(0) + a()0(0) (4 BV AP
Hence,
Bru(Q + | B(°0) - 50900 ) - (50 + atoo) )| = Pt
Therefore,
WO - Q)+ (390 - 50600
f; A BT ™ (1) — BT+ (5(1) + AB(E)T (T — P)
and

and this is why

Yy () (I — Q) * {B (5<N> (t) — B(t)e(t)) — A((S(t) + a(t)e(t))] = —(I—P)s(1).

This implies the second identity:

En(t) * [B (5<N>(t) — B(t)@(t)) — A(é(t) + a(t)e(t))]
= PS(t) + (I — P)3(t) = I8(t).
O

Remark 1. If a(t) = B(t) = 0 in equation (1)), then Theorem 1 coincides completely with
Theorem 3 in work [B]. As corollaries, this implies corresponding statements in [4], [9], see
Theorem 2 and Corollary 2 in work [5].

Remark 2. If 5(t) = 0 in equation , then Theorem 1 becomes one of the main statements
in work [0], namely, Theorem 1 in this paper.

Remark 3. If a(t) = 0 in equation (1)), then Theorem 1 becomes the main statement in
work [7].

Remark 4. Theorem 1 can be generalized for the case, when the operator A is sectorially or
radially relatively bounded with respect to the operator B, see appropriate definitions in [4], [9].
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Remark 5. In terms of generalized functions, Cauchy problem 7(@ 1s written as follows:

{B (5(N> (t) — B(t)@(t)) — A(é(t) + a(t)e(t)ﬂ «0(t) = F(t), (7)
where
F(t) = f()0(t) + Bun_16(t) + Bun_26'(t) + - - - + Bui 6N 2 (t) + BugdV =Y (1).
By identity (%), a generalized function a(t) = En(t) * F(t) solves equation () in the class
K' (Ey) and by identity (@) this solution is unique.

If we assume in addition that oo is a removable singular point of the operator pencil (uB —
A)7 see [], [9], that is, A;' By = 0, then the fundamental operator function Ex(t) casts into
the most compact form

En(t) = By Un(1)Q — Ay (1 — Q)(6(t) + A()O(1)).
In this case the unique solution of Cauchy problem — in the class K’ (E) is a regular
generalized function u(t) = Ey(t) * F(t) satisfying equation . Assuming then that it obeys
also initial conditions , we obtain the solvability conditions of the Cauchy problem —
in the class CN(t > 0, E)). By straightforward calculations, for j = 0,1,..., N — 1 we find

i == AT = Q)[FP(0) + AO) FIV(0) + N (0)FT(0) + ..

) +AUD(0)£/(0) + AY(0) £(0)] + Puy

=u;j — wj,

where
=(I = P)u; + Ag' (I — Q)[f“ (0) + A(0) fU71(0) + A'(0) f972(0) +
+AU72(0) £(0) + AVV(0) £(0)]
=Ag (I = Q)[Au; + fV(0 ) A(0)f97D(0) + A'(0) fU72(0) +
+AU72(0) £(0) + AY=D(0) £(0)]
=A; (I — Q)v;.

This yields that the function @(t) € CN (¢ > 0, E;) solves Cauchy problem (I)-(2) if and only if
wj; = 0 or, by Aal € E(EQ,El), if ([ — Q)Uj =0.
Thus, we have proved the following theorem.

Theorem 2. If the operator A is spectrally relatively bounded with respect to B and oo
1s a removable singular point, then Cauchy problem -(@ 15 uniquely solvable in the class
CN(t > 0, Ey) if and only if the conditions

(1 = Q)[Au; + f9(0) + A(0) fU7V(0) + A'(0 )fﬂ 2(0) + ...
+AUTD(0)£(0) + AUTD(0) £(0)] = j=01,...,N—1,
are satisfied.

Example 1. We consider the following initial boundary value problem of visco-elasticity
theory [10]

t

(= A)ua = (= B)u= [ gt =) (= A)ulr,a)dr = f(t.2), ®)

0
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= UO(i‘>7 Uy
t=0

= uy(Z), T € u =0, t>0, (9)
=0 z€00

u

where g(t), f(t,%) are given functions, u = u(t,z) is a sought function, z € Q@ C R™ is a
bounded domain with an infinitely differentiable boundary 0f), A is the Laplace operator,
u = u(t, ) is defined on a cylinder Ry x Q, A € o(A).
For Dirichlet-Cauchy problem (8)—(9) with p # A, A € o(A), we define the Banach spaces
and operators as follows:
= {v(z) Wk+2 (Q) : v]oo =0}, E, = Wk(Q) B=X-A, A=pu—A, (10)

where Wlf(Q) are Sobolev spaces. Under these notations, the kernel of the integral operator in
equation () is represented as

9(t) (v = A) = a(t)A + 5(t)B

where

the operator A is spectrally relatively bounded with respect to B and oo is a removable singular
point of the operator pencil (uB — A)~!, see [4], [9] of the operator pencil. Then, according
Theorem 2, the following statement holds true.

Theorem 3. Assume that for Dirichlet Cauchy problem (§)—(9) with u # X\, X\ € o(A) the
Banach space Ey, Es, the operators A, B are defined according . Then there exists a unique
solution u(t) € C*(t > 0, Ey) to problem (@)f@ if and only if initial boundary conditions (@
and the function f(t,z) satisfy the conditions

(= MNuo(@) + f(0,2), ¢i(2)) =0,
(=N ur(@) + (= N f(0,2) = (v = N)g(0) f(0, ), pi(7)) =0,  i=1....n
Here ¢;(Z),i=1,...,n, is an orthonormalized basis in the space of solutions to the homogenized

problem \p; = Ap;, vilzcan = 0.

Remark 6. Solvability conditions of Dirichlet Cauchy problem (@7(@ can be rewritten as
follows

<<:u - )‘>u0<f> + f(07 E)? @z('i'» = 07
((h = Nur(@) + (v = Ng(0)uo () + f;(0,7),9:(2)) =0,  i=1....n

3. FUNDAMENTAL OPERATOR FUNCTIONS UNDER POLYNOMIAL BOUNDEDNESS

Let Ey, Ey be Banach spaces, B, Ay, Ay € L(E1, E3), the operator B is non-invertible. Fol-
lowing work [3], we introduce a series of notions: a B-resolvent set of the pair of operators
(A1, Ap) is a following open set in the complex plane:

pB(Al,A()) = {,u eC: Rf(AhAO) = ([,LQB — ,uA1 — Ao)_l € L(E27E1)}

A pair of operators (Aj, Ap) is called polynomially relatively bounded with respect to the
operator B (or polynomially B-bounded) if there exists a number a > 0 such that

{neC: |l >a} Cp®(Ai, Ag).

We consider a circumference I' = {u € C : |u| = r > a}, then under the polynomial B-
boundedness we shall assume the following condition:
A) for each circumference I' of an aforementioned form we have

fRf(Al, Ag)du = 0.

r
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In this case [3], the operators

. 1 -

B B
P= o PUREA ABdn, Q=5 § WBRE(A, Ad)du
r r

are projectors in F; and FEs, respectively, and they give rise to expansions of these spaces into
direct sums: ) )
E,=E}®E =KerP®ImP
and . .
Ey=EYo FE; =KerQ@®ImQ.
The action of the operators B, A;, Ay are split and the restrictions AJ : EY — EY and
B, : Ef — EJ are continuously invertible.
In what follows, we also assume a pseudo-commutation condition:
B) The operators B and A; pseudo-commute with respect to Rf (A1, Ap), that is, for all
w € pP(Aq, Ay) the identity
BRE(AM Ao)Al - A1R5<A1; Ao)B
holds true.
As it was shown in [3], if condition B) is satisfied, then the pairs of operators B and Ay, A;
and Ay also pseudo-commute with respect to R (A, A).

We then assume that ag(t),a1(t), 5(t) € C(t = 0), Ao(t) is the resolvent of the kernel
(—ap(t)8(t)), Ry(t) is the resolvent of the convolution kernel

ki()0(t) = fan(t) x B(1)0(t),
and

g9()0(t) = f(t) * an (t)0(t),

N is a natural number.
We introduce two recurrent families of generalized operator functions:

Ky(t) =1o(t),  Kg(t) = 14(t),

Ki(t) = Ho(t) = (8(t) + Ao(t)0(2)) * (3(t) — k1(£)0(1))(A5) ™ Bo,
Ki(t) = —Hu(t) = —(8(t) + Mo()0(1)) * (3(t) + g(t)0(t)) (A) " AT,
Kla(t) = K20 Holt),  K2,(0) = K1) — K3(0) = Hi(0) (11)
and
Lo(t) = 15(t),  L(t) = I4(t),
Ly (t) = So(t) = (3(t) + Ru(t)0(t)) * (3(t) + ao(t)6(8)) By " Ap,
Li(t) = Si(t) = (3(1) + Ru(1))0(t)) * (3(t) + g(t)0(t)) By ' Ay,

Loy (t) = Ly(t) * So(t), Ly (t) = Ly(t) + Ly(t) * Si(t). (12)
Theorem 4. If condition A) is satisfied, then the following convolution identities hold:
(6(t) = ka(1)0()) B * Kg(t) — (3(t) + g(£)0(1)) Ar  Kg, (t)

— (8(8) + an(1)B(1)) Ao = Ky 5(1) = 0, 13)
(5(0) = W00 B = Lyalt) = (510) + 9(00(0) A Ly 1) "
— (8(t) + ao(t)0 ())AO*L’() 0, i=1,2, qg=0,1,2,
K§+k+2(t> = Kk+1( ) * K(?( )+ Kk+1( ) * K§+1( ),

L§+k+2(t) = Lllc+1(t) * Lg(ﬂ + Li-i-l( ) * L§+1( ), k,q=0,1,2,...
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Proof. We are going to prove these identities by induction in ¢. As ¢ = 0 and ¢ = 1, the
identities can be confirmed by straightforward calculations. Let g > 2, then

(8(t) — By (1)0(t)) B + K (t) — (3(t) + g(1)0(t)) Ar * Kg,1(¢)
— (0(t) + o (£)0(t)) Ao K (1)
=(8(t) — ki (1)0(t)) B = (K (1) — Kg_y (t) = Hi(t))
— (0(t) + g()0(£)) Ar = (K (1) — K(t) = Hy(t))
(

— (3(t) + ao(t)0(t)) Ao * (K (t) — Koyy (1) % Hi(1))
=[(6(t) = k1 ()0(1)) B * K7 5(t) — (6(t) + g(t)0(t)) Ay + K _,(t)
— (0(t) + ao(1)8(1)) Ao * K (t)] * Ho(t)
—[(0(t) = ka(1)8(£)) B * Koy () — (6(t) + g(1)6(1)) Ay * K (t)
— (3(t) + ao(t)0(t)) Ao * Kgyy (1)) Hi(t) =0,

and
K7 o(t) =Ky 0 (t) — K2y (8) * Hy(t)
=Kk (t) % Ho(t) — Kg o (1) % Hi()
= (B (1) % K o(t) + KGy () % Ky () * Ho(t)
= (B (1) % KG_y () + Ky () KG(4)) % H(t)
=Ky (8) % [Kq_o(8) % Ho(t) — Kg_y(t) * H(t)]
+ K13+1<t) * {Kgfl(t) * Ho(t) — Kt?(t) * Hy(t)]
=Ky (8) % [Kg_y(8) = Ky (4) * Hi()] + Ky ()  [Kg (1) — KG(t)  Hi(t)]
:K;H(t) * Kf(t) + K}%ﬂ( ) * Kq2+1< )-
Other relations can be proved in the same way. The proof is complete. O

Theorem 5. If a pair of operators (Aq, Ag) is polynomially B-bounded, conditions A) and
B) are satisfied, then the integro-differential operator

Ba®V(1) = A,5™)() — Agd (1) - (6(25)3 a()Ar + ao(t)AO) o(t)

=B (5<2N> (t) — 5(t)0(t)) — A <5<N> (t) + al(t)e(t)) — A (5(t) + ao(t)e(t)>

has a fundamental operator function

En(t) =Un()Q — Vn(H)(I - Q),
on the class K', (E,). Here

Un(t) = (6() + Rt mew (1B
Vn(t) = (8(t) + Ao(t) ZéqN) £) % K2(£)(A9) .

Proof. We follow the lines of the proof of Theorem 1. First,

B(6<2N><t> - B(t)f)(t)) ()0
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ZB(N“W®—w%wﬂﬂ)*Oﬂﬂ+lh@W@D*hN@>*BHQMﬂ

+(0(2) + Ra(1)6(2)) * Z e (1) * (6B (8) = BO8(1) B + Ly(1) By ' Q
=B(5(t) = k1 (1)6(1)) * (5(t) + Ru(1)0(1)) * By Q(1)

(e o]

+(0() + B (1)6(2)) * qu() (8(t) = ka(1)6(1) B * Lj(t) By 'Q

9=

2@5(t)+(5(t)+R1()()) [ N (1) (8(2) + g()0(1)) A1 By 'Q

D fvglt) % (5(8) = ki(D)0(8)) B = Li(1) B Q.

Second,
A (8900 + ax(00(0) ) s )2
@U+RNWUH§2M@m@ (5(6) + g(1)0(2)) Ay * L2(0)B; 16
(50) + Ra(08(0) » | (0 (60) + 08(0) 4157
£ frtan () # (50) + g(00(0) Ay ¢ L2() BTG
Third,

Ag <5(t) + ao(t)e(t)) * Uy (1)Q
=(0(t) + Ru(t Z In-tar (1) * (6(1) + ao(8)6(1) Ao * LE() By Q.
By identity this implies
[B (5(2N) (t) — ﬁ(t)e(t)) — A (5“\” (t) + oq(t)&(t))
— Ay (5(t) + ao(t)H(t))] * Uy (1)Q
~Q0() + (50) + Rt }:ﬂWMm |60 - o5 - 2200

~(8(0) + g(0)6(0) Ay * L2,y (1) <&w+aawwwwm*xa485@

=Q6(t).
Then, first,

B <5<2N> (t) — B(t)é’(t)) * Vn()(I — Q)

65



66 M.V. FALALEEV
=(6() + Ao(t) Z 3UN(t) x (§#V(t) = B1)O()) B * K3 (1)(Ag) (I = Q)

=(8(t) + Ao(t) Zé @M () % fon(t) * (N (£) — B(1)0(t)) B
« K2(t)(A9) (I Q)
=(3(t) + Ao(t) 25 TN (8) x (8(t) — ka(£)0() B + K2(t)(A)) (I — Q).

Second,

A, (5<N) (t) + al(t)é’(t)) « Vn(t)(I — Q)

=(5(t) 4+ Ao(2) *ZMN J(t) + an (H)0(1) Ay x K2(1)(AD) (I — Q)

=(6(t) + Ao(t) *Zd qH)N) t) x fn(t) * ( )(t)—l—ozl(t)e(t))Al

K20 (- O)

—(5(6) + Aolt) *[Zw“““ (5(8) + g(1)0(8)) Ay » K2(1

() % (5(6) + g<t>e<t>>Aﬂ (A1 - Q).
And third,

4g (5<t> i ao<t>9<t>) Dn(O — )

(T~ Q)3(t) + (5() + Ao(t) f; (1) 5 (3(8) + o (1)0(E)) As
« K2(1) (AT
=(I — Q)6(t) + (6(t) + Ao(t)B(1)) * [ > Mt )+ ao(t)0(t)) Ao x K2 (t)

(1)« (5(1) + g()0(1))A ]AS 1

By identity this yields:
[B (5<2N) (t) — 5(t)0(t)) — A, <5<N) (t) + al(t)é(t))
~a(8(0) + aa(9(0)) | V(07 - )

o0

= — (I = Q)5(t) + (8(t) + Ag(1)8(8)) » Y _ 8N (8) x [(8(t) — k1(1)6(1)) B K (1)

q=0

= (8(t) + g(0)O() Ar * K41 (1) — (3(t) + ao(1)8(1)) Ao * K5 (D)](AD (I — Q)
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= (1 - Q)s(t).

Hence,

B(§(2N)(t) _ 5@)9(,5)) — A <6(N)(t) + al(t)ﬁ(t)) — Ay (6(t) -+ ao(t)e(t)>] x En(t)
= Q5(t) + (I - Q)8(t) = I5(t).

By similar arguing we find that, first,

()0 + B (6<2N><t> - 5(t)9(t))

—(5(t) + Ry(t Z Fng(t) ki (£)0(t)) = L2(t) P

f: ) * L2(t)P = Po(t) +

t) % L3(t +Zqu t) « L2(t)

Second,
Un()Q * Ay (5““(1&) - oq(t)@(t))
=(0(t) + Ru(t ZfN i) () % (6(t) + g(1)0(t)) * Li(t) By AL P
V-(g+1) (¢ ) * S (t )
[fN t)* Li(t +ZfN (q+1)(t )*Sl()
And third,
()0 Ao (5( )+ alt ZfN i (1) = L2(0) # So(1) P.

By recurrent relations this implies:
U (1)Q * {B (5(2N) (t) — 5(t)0(t)> — 4 <5<N) (t) + al(t)G(t))
— A, (5@) + ozo(t)é(t))}

B +sz2 o (E20lt) = B2 5000 1200+ 5000 ) P

_Pi +ZfN wel0) s (B2t = L5100 - L (1)) P

=P5(1).
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In order to complete the proof, it remains to obtain the following three relations. The first
reads as

Put)(I — O) + B (6(”) ()~ sl00))

=(8(t) + No(£)0(2)) * Z (¢ (5(” (t) - 5(25)9(75)) * K (t)(AQ) ™' Bo(I - P)

o0

=(8(t) + Ao(t) *Z(s D)) % (5(t) — ka (£)0(2)) = K2(£)(AD) ™" By(I — P)

[Z SN2 (1) 5 K2 (t) Ho(t)] (I — P).
The second relation is

Vn(t) (I — Q) % Ay (5““ (t) + 041(t)«9(t))

—(5() + Mo(D6() + 35N (1) 5 (6<N><t> n a1<t>e<t>) « K2()(A9) AT — P)

q=0

— iéw'(q“))(t) * K2(t) *Hl(t)] (I-P)

= [0W)(t)  Hy(t +Z§<N(q+1 *KQ()*Hl(t)](]—P).

And the third identity is as follows

D (0)(1 Q)*Ao< <>+ao<>e<t>)
=(8(t) + Ao(t) Z(S(N ( +ao(t)9(t))*K§(t)(I—J5)

ia )« K2(t)(I — P)

q

=(I — P)o(t) + |6W™)(t) « K2(t +Z<5Nq> t)* K2(t) ](1—13)

=(I — P)o(t) + | —6™(t) » Hy(t +Z§N‘1) t) % K2(t ]([—P).

According recurrent relations (T1)) we have:
V() (I — Q) * [B <5<2N> (t) — 5@)9@)) — 4 (6(N)(t) -+ ozl(t)e(t))
—Ag (6(t) + ao(t)H(t))}
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=3 s ) « K20 < Hlt) = K20 Hi(0) ~ K2,o(0)| (1 = P

=S 1,0~ Ky ()2 Hu(0) — Ko 1 = P) (1= PI3C)

Remark 7. If
ag(t) = au(t) = B(t) =0
m equation (@, our Theorem 5 coincides with Theorem 5 in work [5], and if
ai(t) = B(t) =0,
then it coincides with Theorem 5 in work [6]. The conclusions formulated in Remark 5 on
Cauchy problem f@) are also true for Cauchy problem @f.

If co is a removable singular point of the pair of operators (A;, Ag) polynomially relatively
bounded with respect to B, see [3], that is, K] =0, K? =0 or (A})"'By =0, (A3)71A? =0,
then the fundamental operator function in Theorem 5 reads as

En(t) = Un()Q — (5(t) + Mo(1)0()) (A) (I — Q).
Then the unique solution to Cauchy problem f is a regular generalized function

a(t) = En(t) * (f(t)e(t) + Bugn_16(t) + Bugn_28'(t) + - - - + Bu 6N 2 (t) + Bu05(2N_1)(t)> :

which turns equation into identity and belongs to the class C*V(t > 0, Ey). The conditions,
under which this function satisfies initial condition (4], are exactly the solvability conditions
for Cauchy problem (3)—(4) in the class C?V(¢t > 0, F;). By straightforward calculations we
find:

()

I~g1

=u; — Qj, j=0,1,2,...,2N — 1,
t=0

where
@; =(A5) "I = @) [Aou; + [V(0) + Ao (0)SU71(0) + AG(0) FU7(0) + ..
+ A (0)£(0) + ATV (0) £(0)]
=(A9) (I - Q)1;.
Since (AJ)~' € L(Fs, E), then @; = 0 as (I — Q)9; = 0.

Theorem 6. If under the assumptions of Theorem 5 oo is a removable singular point, then
Cauchy problem (@f is uniquely solvable in the class C*N(t > 0, E)) if and only if the
conditions hold:

(I —Q)[Aou; + f9(0) + Ag(0) £971(0) + A5 (0) £9721(0) + . ..
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AT S0)+ AFTVO) (O] =0, j=0.1,2 2N -1,

Example 2. For an integro-differential analogue of equation of visco-elasticity theory [10]
we consider the Dirichlet Cauchy problem:

t

(A= A)uy — B — A)uy — APu + /g(t —7) (7 — Az) u(r,z)dr = f(t,z), (15)

ul = up(x), wy
=0

= uy(7), z e Q; u
t=0

=0, t>0, (16)
TEIN

where ¢(t), f(t,z) are given functions, u = (¢, ) is a sought function, z € Q@ C R™ is a
bounded domain with an infinitely smooth boundary 02, A is the Laplace operator, u = u(t, T)
is defined on the cylinder Ry x Q, A € a(A).

For Dirichlet Cauchy problem (15))-(16]), where A € o(A), A # u, we define Banach spaces
Ey and E5 and operators as follows:

= {v(Z) € W (Q) 1 v]on =0}, By = W) (), (17)
B:)\_A> Alzﬂ(ﬂ_A)a A0:A2>
Then the kernel of the integral operator in equation ((15)) is expanded into the sum
—g(t) (v =A%) = BH)(A = A) + ar (1) B — A) + ao(t) A%,

where

50) = 5 Z00, a0 = grsa®), aolt) = g(0)

Arguing as in 3, Lm. 4.2.1], we confirm that the chosen pair of the operators (Aj, Ag) is poly-
nomially relatively bounded with respect to B and oo is a removable singular point. According
Theorem 6 we obtain.

Theorem 7. Let for Dirichlet Cauchy problem (13))-(16) with X € o(A), X # p the Banach
spaces Ey and FEy and the operators B, Ay, Ag be defined as in . Then there exists the
unique solution u(t) € C?*N(t > 0, Ey) to problem 7(@ if and only if initial boundary
conditions (16) and the function f(t,Z) satisfy the relations

(Nuo(Z) + £(0,7),¢:(T)) =0,
(Nui (Z) + f/(0,2) = g(0) (0, 2), ps(Z)) =0,  i=1,...,n
Here p;(z), i =1,...,n, is an orthonormalized basis in the space of solutions to a homogenized

problem Ap; = Ag;, ¥i|zean = 0.

Remark 8. As in Theorem 3, see Remark 6, the solvability condition of Dirichlet Cauchy
problem 7(@ can be equivalently rewritten as

(Nuo(T) + f(0,7),¢i(T)) =0,
(N (Z) + Ng(0)uo(Z) + f1(0,7), ¢s(T)) = 0, i=1,...,n.
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