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SOLVABILITY AND SMOOTHNESS OF SOLUTION TO
VARIATIONAL DIRICHLET PROBLEM IN ENTIRE SPACE
ASSOCIATED WITH A NON-COERCIVE FORM

S.A. ISKHOKOV, B.A. RAKHMONOV

Abstract. In the work we study the solvability of the variational Dirichlet problem for one
class of higher order degenerate elliptic operators in an entire n-dimensional Euclidean space.
The coefficients of the operator have a power-law degeneracy at the infinity. The formulation
of the problem is related with integro-differential sesquilinear form, which may not satisfy
the coercivity condition. Earlier, the variational Dirichlet problem for degenerate elliptic
operators associated with noncoercive forms was studied mostly for a bounded domain by
means of a method based on a finite partition of unity of the domain. In contrast to this, we
employ a special infinite partition of unity of the entire Euclidean space of finite multiplicity.

The method used is based on techniques from the theory of spaces of differentiable func-
tions of many real variables with a power weight. The boundary conditions in the problem
are homogeneous in the sense that a solution to the problem is sought in a functional space
in which the set of infinitely differentiable compactly supported functions is dense.

The differential operator depends on the complex parameter A, and the existence and
uniqueness of a solution of the variational Dirichlet problem is proved in the case as A
belongs to a certain angular sector with a vertex at zero that contains the negative part
of the real axis. Under additional conditions on the smoothness of the coefficients and the
right-hand side of the equation, the differential properties of the solution are studied.

Keywords: variational Dirichlet problem, elliptic operator, power degeneration, noncoer-
cive form, smoothness of a solution.
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1. INTRODUCTION

The solvability of a variational Dirichlet problem for various classes of degenere elliptic op-
erators is well studied in the case, when the sesquilinear forms associated with the considered
operators satisfy the coercitivity condition, see [1]-|8] and the references therein. The case of
elliptic operators associated with non-coercive sesquilinear forms is technically complicated and
is studied rather poor. This case was considered first by K.Kh. Boimatov in work [9] and later
in works [I0]-[18]. Except for works [13], [I8], in the other cited works there were studied the
operators defined in a bounded domain. while the operators considered in works [13], [18], were
defined in unbounded domains very close to bounded ones; these were a limiting-cylindrical
domain with a zero diameter at infinity and some of its generalizations.

In contrast to the above mentioned works, here we first consider degenerate elliptic operators
defined on an entire n-dimensional Euclidean space R"™ and associated non-coercive sesquilinear
forms. Similar exterior Dirichlet problem for degenerate elliptic operators in the case of the
associated coercive forms were studied earlier in works [2], [3]. The method we apply is based

S.A. IskHOKOV, B.A. RAKHMONOV, SOLVABILITY AND SMOOTHNESS OF SOLUTION TO VARIATIONAL
DIRICHLET PROBLEM IN ENTIRE SPACE ASSOCIATED WITH A NON-COERCIVE FORM.

©IskHOKOV S.A., RAKHMONOV B.A. 2020.

Submitted September 2, 2019.

13


https://doi.org/10.13108/2020-12-1-13

14 S.A. ISKHOKOV, B.A. RAKHMONOV

on employing the theory of weighted functional spaces. This is why in the second section
we provide necessary definitions of functional spaces with weights and formulate their main
properties. In the third section we prove the unique solvability of the homogeneous variational
Dirichlet problem. Here the homogeneous boundary condition are treated in the sense that the
solution to the considered problem is sought in a functional space, in which the set of compactly
supported infinitely differentiable functions is dense. In the fourth section we formulate the
result on smoothness of a solution of the considered problem.

The technique developed in our work allows us to study similar issues for other types of un-
bounded domains like the exterior of an unbounded domain, a half-space, an infinite cylindrical
domain, etc.

2. FUNCTIONAL SPACES

Let R™ be an n-dimensional Euclidean space of points =z = (z1, 29, ..., z,), k =
(k1, k2, -+, k,) be a multi-index and |k| = ky + ko + - -+ + k,, be the length of k. We denote by
u® () a generalized derivative in the Sobolev sense of the function u(z). Let d(z) = (1+]|z|?) "2,
r be a natural number, a, §, p be real numbers and 1 < p < co. By the symbol W}, 5(R") we
denote the space of the functions u(z) defined on the entire space R™ and having all generalized
derivative in the Sobolev sense of order r with a finite norm

1
w; Wy o, s(RM)|| = {[Jus L, o B + [lus Ly, s(R™)[7}7

where

s 1 J®D | =4 S0 / 0P () |u® (z) Pd

|k|=r

s Ly a8 = { [ dpa(m(x”%}?

Hereinafter in the integral over the entire space R"™ we omit the symbol R"™. Together with the
space W), s(R") we define also spaces W ,(R"), V,,(R") respectively with the norms

| |u(a:)|pdx}p : (2.1)

i W8] = { s o (RO)+ [

R

S =

s V7o) =4 S0 / 4TIk () [ 8) (2 P b (2.2)

|k|<r

Here Ky is a ball of radius R > 0 centered at the origin.
By V, . (R"), where ¢ = p/(p — 1), we denote the space of antilinear continuous functionals
F' over the space Vp’:a(]R”) equipped with the norm of dual space.

If B is some of the spaces W, s(R"), W (R"), the symbol B stands for the closure of the
set C5°(R™) in the norm of this space.
Let us formulate the main properties of the space V, (R") implied by the corresponding

results of works [4], [19], [20].

Theorem 2.1. For allr € N, a € (—o0, +0), p € (1, +00) the following statements hold:
1) the set Cg°(R") is dense in the space V;  (R");
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2) norm in the space V' (R") is equivalent to the following quantity:

3 =

Vi) = S [ @ @pds+ [ @D @ueras s s (23

|k|=r
3) for each natural number m the embeddings hold:
Voalm(R) = Vi (R"), Vo3, (R) — V2 (RY).

q,

4) Let n/p—a ¢ {1, 2, ...,r}. Then the identity holds:
Wy a(R") = V7, (R").
The space W] (R") was introduced by L.D. Kudryavtsev and it was studied in details in
works [21], [22], see also [3].
In the next section, while estimating some auxiliary forms, we shall make use of Lemma 2.2

in [6]. Below we formulate this lemma in a convenient for us form for the spaces of differentiable
functions of many variables in the entire space R"™ with a power weight.

Lemma 2.1. Let m € [0,r) be an integer number, p > 1, 1 < ¢1 < qo, and a number qq

satisfies the conditions
1 r—m 1
- — < —, as n—(r—m)p>0;
p n do
qo s an arbitrary finite number, as n—(r—m)p<0.

Then for each ¢ >0 and all v €V, (R") the inequality

. m n
U3 qu, sz%Jr%Jrrfm(R )

p 05<Rn)||* + Cog_

< 8{ a U3 qu,a—%+ﬁ+r(Rn>

holds true, where

¢ —q ' +mn!

o o mn

M:

3. SOLVABILITY OF HOMOGENEOUS VARIATIONAL DIRICHLET PROBLEM

In this section we assume that r is natural, o, 0 are real numbers satisfying the condition
0 < a+r, and in order to simplify the writing, by ﬁ+ we denote the closure of the class C3°(R")
in the norm of the space H; = Wy , ;(R"), while the symbol H_ stands for the completion of
the space Hy = Lo s(R") with respect to the norm

f; u)s

£l = sup 1odel,
0£ueH [Jull+

Hereinafter | - || is the norm in the space H, and

(f. w)s = / () f (2)u(z)dz,

is the scalar product in Hy. The norm in the space Hy is denoted by || - ||s. The elements of the
space H_ are identified with the corresponding antilinear continuous functionals over H+ The
action of the functional F € H_ on a function u € H+ is denoted < F, u >. Thus, we obtain
a triple of densely embedded spaces [;h — Hy — H_. This triple is called a rigged Hilbert
space, while ]—ihr and H_ are called respectively positive and negative spaces [23, Ch. 1]).

We note that

s Vi B < s Wy s(BY) s 5<r+a
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and by the equivalence of norms (2.2) and (2.3) as 0 < a + r, the inequalities
/d2a+2r2|k|(x) ‘u(k) (@‘2 dr < M ||ul| 4 (3.1)

hold for all u € H, and |k| < r; the number M; > 0 is independent of u.
In what follows by M, Mjs, ... we denote various positive inessential constants.
On functions u, v € C3°(R"™) we consider a sesquilinear form

Blu,v] = Z (d_‘k‘aklu(’“), d—\l\v(l))

‘k‘7|l|<r

(3.2)

a+r’

whose coefficients ay,(z) are bounded complex-valued measurable functions. In what follows we
study the solvability of the following variational Dirichlet problem associated with form (3.2]).
Problem D,. Given a functional ' € H_, find a solution v € H, to the equation

Ba[u, v] & Blu, v] + A (u, v); =< F,v > forall ve C&(R"). (3.3)

We note that each solution of equation (3.3]) is called a generalized solution of the differential
equation

3 () (@ e () g () (2) Y+ AP (2)ulz) = F,  x € R™

\leKT‘

Together with form (3.2), we introduce the function
Az, Q)= D an(@)GG

|kl U] <r
defined for all € R™ and each set of complex numbers ¢ = {(x} <,
Assume that for all x € R™ and each set of complex numbers ¢ = {Ck}\k\gr the conditions

larg Az, Q)| < ¢, (3.4)
> 1GkI* < MaRe {y(z) Az, ()}, (3.5)

|k|=r
hold, where ¢ is some number in the interval (7/2, ), y(x) is everywhere continuous non-
vanishing function with the following property: for each number v > 0 there exists a number
R, > 0 such that

(z) = ()| <v (3.6)
for all z, y € R” such that |z| > R,, |y| > R,. Hereinafter we assume that the function arg z
ranges in (—m, 7.

We note that the study of the solvability of the variational Dirichlet problem associated
with a non-coercive form made in works [9]-[17] for a bounded domain was based on a finite
partition of the unity in the considered domain. In contrast to that case, here we employ an
infinite partition of the unity of the space R™ constructed in the following lemma.

Lemma 3.1. Let a function y(x), x € R", satisfies condition and let v be a sufficiently
small positive number. Then there exist non-negative functions ¢, € C*(R"™), n, € CP(R"),
m=1, 2, ..., such that

a) the system of functions {@2,(x)},~_, forms the partition of the unity in the space R"™ with
a finite multiplicity, that is,

Z 02 (z) =1, z € R", (3.7)
m=1
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and if Xm(x) is a characteristic function of the set supp y,,, then there ezists a finite number
A, depending on n only such that

1< xm(x) <Ay forall z€RY

b) the function n,, is identically equal to one in some neighbourhood of the set supp @, (z)
and 0 < np(x) < 1 for all x € R™;
¢) the derivatives of the functions om, Mm, m =1, 2, ..., obey the inequalities

oW ()] < Crd¥(z), |0 (a |<O d*(z), k| <, (3.8)

where positive numbers Cy, Cy are independent of m and r;
d) [v(z) —v(y)| <v for all z, y € suppn,, m=1,2, ...

Proof. Proceeding as in the proof of Lemma 7.1 of work [24], we construct the partition of the
unity

> tmx)=1, zeR"
=1

of multiplicity A,, < (10)°", where non-negative functions 1, ¥, ..., in C§°(R™) satisfy the
inequalities

) ()| <C’dlk|( ), reR, m=1,2,...,

|z — yld(z) < X,y €ESupp iy, m=1,2, ...
We let

[SIE

¢m<x>=wm<x>(2¢§<x>> , nm<x>=2’soj<x>(zw<x>> . om=L2

where Y~ denotes the summation over indices j such that ,,(z)p;(x) # 0. These functions
possess properties a) — d). Since a non-vanishing complex-valued function y(z) is everywhere
continuous and for each number v > 0, thanks to , there exists a number R, > 0 such
that |y(z) —v(y)| < v for all z, y € R™ obeying |z| > R,, |y| > R,, statement d) can fail
for finitely many indices m. In this case, for the indices m, for which statement d) fails, we
represent the functions ¢,,, 1, as finite sums of similar functions and we achieve in this way
that statement d) holds for allm =1, 2, ... O

In what follows we shall employ Lemma 2.2 from [25]. We formulate this lemma in a conve-
nient for us form.

Lemma 3.2. Let A, xm, m =1, 2, ..., be same as in Lemma|3.1. Let the operator T reads

as
+00
T = Z XmeXm7
m=1
where Ty, Ts, ... is a sequence of continuous operators in L,(R"™) such that

A= sup ||T,], < +oo,

m=1,2, ...

where p € (1, +00) is some number. Then T is a bounded operator and the inequality holds:

I, < AZA.
Here ||T||, stands for the norm of a continuous operator T : L,(R™) — L,(R™).



18 S.A. ISKHOKOV, B.A. RAKHMONOV

Now we are in position to formulate the main result of the present work.

Theorem 3.1. Let § < o+ r and conditions f hold. Then there erists a sector
ScC{zeC: |largz| <7 — p}U{0} with the vertex at zero and a positive number oy such that
if A €S and |\| = 09, then for each given functional F € ]fl_, Problem D)y is uniquely solvable
and the estimate

[ull . < Ms[[F|_ (3.9)
holds true, where a number Ms > 0 is independent of X\ € S and the functional F.
Proof. Let ¢, Nm, m = 1,2, ... be the same functions as in Lemma [3.1] In each set
supp m, m =1, 2, ..., we fix a point z,, and we consider the form

B0 uv] = > (4 Mol u®, ato®) g (u, 0);,
’ a+r
[kl <r

where

a) () = (1 = (@)Y (@) are(20) + 1 ()7 (2) g ().

The boundedness of the coefficients ay(x), |k, |l| < r, implies the boundedness of the coeffi-
cients agl)zn. This is why, applying Cauchy-Bunyakovsky inequality and 1} we get

’Bi?il[uav]‘ <M4/ ST @ () [u® ()| [o0 ()| da
ol J1l <r (3.10)

+ Al /d25IU(I)|Iv(x)Idw < My(My+ A [lulls - flofl+

for all u,v € fh.
If follows from condition (3.5 that

Re Z a,(c%(a:)CiC_j = c Z |Cel?

LANUISE |ke|=r
for all m = 1,2, 3, ..., 2 € R", ( = {G} <, C C. Substituting ¢, = d**" " (z)u™® (z) into
this inequality and integrating over R", we get:
Re BY) [u,u] > Collul?,  ReA>1, (3.11)

forallm=1,2,3,...,uc H,.
Now we consider a sesquilinear form

B [uv] = 3 (d Magu®, d1o®)

I, |[<r

air T A (W, V)5,
where
Ui (1) = [(1 = 1 (%)) @t (2 ) + 0 (€)@ (2)]7 (2.
Since
A (2) = bt (2) = 0 (2) (7 () = () ara(),
and the coefficients ay(x) are bounded, we proceed as in the proof of inequality to obtain

1B [u,v] — B [u, v]| < Ms Alful|+ - [Jo]|+

for all u,v € H,. Here A = sup | (2)(7(x) — ¥(2m))|, where the supremum is taken over all
re€R,and allm=1,2 3, ...
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Applying this inequality, by (3.11) we find
Collul? <Re (Bg?jn[u, ] — B [, u]) +Re BY [u, u]

A O (3.12)
éReBE\%[u,u] + Ms A ||ul%, u€ H,.
Since
[ () (v () — Y(20))| < T ESUpPPN,, m=12...,

and v is a sufficiently small positive number, it follows from (3.12)) that

collull: < ReBE\?T)n[u,u], ReA>1,ue H,. (3.13)
We introduce the following sesquilinear form

B, v] = Z (M aggmu® d_'llv(l))a+r + A (u, v);, (3.14)

LIRUESE
where
i (1) = (1 = (@) gy (2) + N (2) agy ().

We note that y(x,,)Bm[u, v] = BY [u,v], where A,, = A\y(x,,). This is why it follows from

Am;m
inequality (3.13) that as Rey(x,,)\ > 1,
collull> < Re {(1(zn) B}, we H. (3.15)

By (33.4), inequality (3.5) holds also in the case, when we replace v(x) by exp(if(x)), where

() = min {0 = 7. Jarg ()] } (sign arg 1(x)).

By S we denote a closed angular sector with the vertex at the origin on the complex plane
such that |0(x) 4+ arg z| < 7/2 for all z € R", z € S. We note that

SCc{zeC: |Jargz| <m— ¢ <m/2} U{0}.
Thus, inequality (3.15) implies that
collullz < Re {exp(ib,,)Bam[u, ul} AeS, [N = oo, (3.16)

for all u € POLF. Hereinafter o is some positive number and 0, = 0(x,,), m =1, 2,...
Proceeding as in the proof of inequality (3.10)), we find that

B[, v]| < Mo(Ma + Al - ffoll,  w, v € Hy. (3.17)

Inequalities (3.16]), (3.17) allow us to apply the generalized Lax-Milgram theorem [I, Thm
2.0.1]. According this theorem, there exists an operator

Ron(N) - H_ — H,
such that
exp(i0,m) Bam [Rm (A F,v] = (F,v) (3.18)
forall F € H_ and all v € H_;
R (M F 4 < Mz [|F| (3.19)
for all F € H_. Here a number M; is independent of F and A € S, |A| > oy.

The operator of multiplication by a function ¢,, is denoted by the same symbol. We introduce
one more operator

R(A) =Y exp(i6n) omRn(N) o (3.20)

acting from H_ into ﬁ+.
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Employing inequality (3.11)) and the boundedness of the coefficients ay, |k|, |I| < 7, it is easy
to confirm that the operator R(\) defined by the identity
(R(NF,v) = B\[R(\F,v], wveH,, (3.21)

acts from H_ into H_.
The functions @2, m = 1, 2, ..., form the partition of the unity in R", see (3.7). This is
why for all ' € Hy and all v € H,, the following identities hold:

(o) = (o)=Y [ @E@F@i@de = 3 (e, gnt)s. (322

We recall that (-, -)s is a scalar product in Hy = Ly 5(R") and as above, all integrals are taken
over R"™.

Since agim () = (1 = nm(x))ag (Tm) + Mm(x)ar (x), and the function 7, is identically equal to
one in some neighbourhood of the set supp ¢,,, the functions ay;,, and ay; coincide on the set

supp @m. This is why it follows from identities (3.2)), (3.20)) and (3.21)) that

(RN F,v) = i exp(z’ﬁm){ Z (d_lklaklka(‘PmRm(/\)SOmF)a d_ulv(l))aw +

" Ll (3.23)
+ A (RN F, omv)s }
Hereinafter the symbol D¥ denotes the differentiation with a multi-index k.
Let F' € Hy. In identity (3.18]), we replace F' by ¢, F and v is replaced by ¢,,v:
exp(i10m) Bain [Rin (N @m F, omv] = (@mF, ©mv)s.
In view of identity (3.14)) this implies that
(omF, omv)s :exp(i@m){ Z (dflklaklka (Rin(N)om F) d*\ZIDl(wmv))aH
|kl <r
Summing up this identity over m from 1 to oo, by (3.22)) we have:
(F,v) = (F, v)s = exp(z‘em){ > (@ MapmD* (Ru(NemF), dMD (p0)) .,
m=1 ki<
By ({3.23)) this yields:
(ROF,v) = (F, v) =Y _exp(ib,) Y { (@7 Ak DX (0 Ron (N o ), 70D
m=1 k| 1<
- (d_‘k‘aklka (Rm()‘)gme) ’ d_le (@mv))aﬂn }
(3.24)

We introduce the notation

Upr=Ru(NpnF, m=1,2,... (3.25)
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and we write (3.24]) as

(RN F,v) — (F, v) = K\[F, v] + L,\[F, v], (3.26)
where
> 1 " / //
V] = Z exp(i6,,) Z( )Ck/ (d*|k|aklmg0$ffb U k o d 1y ) , (3.27)
a-+r
Z exp(it) 3 CF (4 W arnl d—vlgogg;wa%) S (329)
” a+r

Hereinafter the symbol Z( ) denotes the summation over the multi-indices k, I, k', k" such
that k = k' + k", k' # 0, |k|, || < r, while the symbol - denotes the summation over the
multi-indices k, I, I', I” such that [ ="+ 1", ' A0, |k|, |I| <r

We are going to estimate the absolute values of the right hand sides in (3.27), (3.28). First
let us prove that for all F' € I—OI_, v E I—O[+ the inequality holds:

RALE, o] Sar(ADIEN- - loll, A e S, |Al = oo, (3.29)

where a positive function wy(t), ¢ > 0, is such that w(t) — 0 as t — oc.
We consider a symmetric form

gA;m[u, v = % {exp(i@m)BAm[u, v] + exp(—i@m)m} : (3.30)
It follows from that
collull2 < Bamlu,u],  we Hy. (3.31)
Hence, ]
collull? < BAm[u ul, uwe H,. (3.32)

Then by a well-known theorem in the functional analysis, see, for instance, [26], there exists a
self-adjoint operator B,,()\) acting in the space Hy = Ly 5(R™) such that

1B (V)2 = <B§n()\)u, B,i(x)u)é = B[, u] = Re {exp(if) Baon[u, 1} , (3.33)
D(Bym) = H,.
By this implies that
IBAO\ulls = collulls,  AES, [N =00, ueH,. (3.34)
Employing (3.1]), we get
dor=Hu® | < Myl|BENulls, [kl <7

_1
Therefore, as A € S, || > o9, |k| <7, the operators detr=Ik=0 Dk B2 (\) are bounded:

Let multi-indices k, k” be such that 0 # |k”| < |k| < 7. As k' = k — k", we employ (3.8) to
() o (")

obtain
‘ Pm ’0 <G ‘

Since |k < |k| < r and 6 < r+ a, by means of Lemma [2.1] we prove that

dotr=H ph g H < Mg][uls. (3.35)

da+r—|k|

da+r_|kll‘u(k:/l) H

d“”_lk”‘u(kﬂ)u < ellull+ + K(e) [[ulls, u e ]er' (3.36)
0
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Here € > 0 is a sufficiently small positive number and a quantity K (¢) is such that
K(e) - 400 as e — +0. (3.37)

In the following proof, instead of M K(g), where M is some positive number, we shall write
again K (e).

By ({3.34)), it follows from (3.36) that

|

In view of identity (3.33]) we have

Employing (3.14)), we estimate the right hand side of this inequality:
e’Re {exp(i6,,) Bam[u, u]} + K(¢)? Hd‘suHi

" 1 2 L
JoH— 1K (K < | Ba(Nul)? 4+ K (e)? ||ull; .

" ! 2
a6 < PR fexp(it,0) Bl )} + K () .

=c’Re [ exp(if,,) Z (d_‘k‘aklmu(k), d_mu(l))oﬂﬂ, + A Hddqu + K(e)?||ull;

LINUES,

<Re [ exp(ibn) [ D (dMapmu®, dMu®) AN, ) [Jull} | ]

LINUES
where A(])\|, €) is a continuous positive function satisfying the condition
IN 4+ K ()%™ < cos (p — 7/2)A(]A], €).

By (3.37)), without loss of generality we can assume that K(g)’c? — +oo as ¢ — +0. Hence,
the above obtained inequality with |A\| = 1/e implies that

||da+r—\k"|u(k") (2)

(3.38)
<eRe | exp(ifn) | D (d Mapuu®, dMu®) 4+ p(e) |lull ] |

\kHlK?‘

where p(e) = A(1/e, €). We note that p(e) — oo as ¢ — 0. We denote by ¢(-) the inverse
function for p(g). Then as e = ¢(|)|), that is, |\| = p(e), it follows from (3.38)) that

Here ¢(t) is a positive continuous function defined for ¢ > 0 such that ¢(t) — 0 as t — co. By
(3.14)), (3.33) and the above obtained inequality we obtain that

| < alADIBAVulls, w e Iy (3.39)

We have proved this inequality for 0 # |k”| < |k|. In what follows we shall prove that it holds
also in the case |k”| = 0.

Let A € S and |\ > oy, where o9 > 0 is the same number as in (3.34). Then employing
(13.30) we get

1 1" 2
do+r=Ik \u<k>HO<q(A>2Re exp(ifn) | S (@ Mapguu®, du®) X ful?
K],)l|<r

da+r_|k/l‘u(k//)

B} =Re {exp(i6,0)Basalu o]} = [ BA(Ma)ul} + Re {exp(i,0) (% - o)} [ul3
>Re {exp(i6,,) (A — o0)} ||ull3-
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Therefore,
1

Il < s tapra ooy Rl (3.40)

Denoting
1

q(A) = .
Vv Re {exp(i6,,) (A — 09)}
and taking into consideration the inequality d"**(z) < d°(z), * € R™, by (3.40) we arrive at

(8-39) for [K’| = 0.
According inequalities (3.16)), (3.17), the form exp(i6,,)Bxm[u,v] is closed and sectorial in
the space Hy. This is why, by Statement i) of Theorem 2.1 in |27, Ch. 6], there exists an

m-sectorial operator A,,(A) such that
exp (i) B[t v] = (Am(Nu,v)s,  uwe D(An(N) C Hy, ve H,. (3.41)
Let f € Hy. Then R,(\)f € H, and in view of identity we have:
exXp(ilm) Brim [Rm (M) f,v] = {f, v) = (f, v)s

for all v € H,. According Statement iii) of Theorem 2.1 in [27, Ch. 6], if for u € H,, w € Hy
the identity holds

xp(ifh)Brgm 1, 0] = (w,0)5 Vo € A,
then u € D(A,,(N\)) and A,,(AN)u = w. This is why

(AN Rm(N) f, 0)5 = (f,0) = (f, v)s Yo € H,.
This yields that
An MR (N f = f forall f e H,y,
and therefore,
RN f =AY\ f forall fe€ H,. (3.42)
Let B,,(\) be a self-adjoint operator associated with form . It follows from inequality

(3.34) that

HB,%(A)UH >eollulls  forall we Hy,, AeS, |\
1)

1
This implies the invertibility of the operator B2 (\) as A € S, |A| > 0g. Applying Theorem 3.2
from |27, Ch. 6], we obtain the representation

AN = B2 (M) Xn(NBRi(\),  AES, [N =0, (3.43)

m

where X, () is some bounded operator in Hy and its norm || X,,(A)|| does not exceed a number
M, > 0 independent of A € S, || > 0.
We proceed to proving estimate (3.29). We rewrite identity (3.27) as

o0

. (1) 7" _ k‘”) _
K\F, v| = exp(i6,, cr (d Ikl g COlIA ,d |l|v(l)> . 3.44
ALF, v m§1 p(ibm) > K kimPrm U - (3.44)
Let F' € Hy. Employing identities (3.41)—(3.44), we get:
(1) / 1
ALF V] CF'e (160 (d"k‘a o) DR AT\ mk, d"”v(l)>
ZZ wr exp(ib,y,) kim®Pm m (A oty

(1) " _ / " 1 1 _
_ZZ CF exp (0, ) (™™ gm0 *) D¥ B (A X (A) B2 (AN o F d™ 0O (2)) g
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Employing Lemma and Cauchy-Bunyakovsky inequality, we obtain:

() / // _
Ka[F.0]| < M sup > HTM Hm'Hd O (), (3.45)
where
TER () = d W W18 0, DY Bt V), Vs = XA B (Ngn F (3.46)

and the symbol - denotes the summation over multi-indices &', k¥ such that |¥'| + [K| < r
and k' # 0.

By inequality (3.1)), it follows from (3.45) that

(3) ! 11
KalFoll < Muollolls - sup S| TEA Vo | (3.47)

r4+o

Let oy be the same positive number as in (3.43). Then for |[A\| > oy, by identity (3.33) we

have
2

HB%(A)UHE = Re{exp(ify) Byt 1]} > Redexp (i) Bogn [, u]} = HB,%(%)u

(3.48)

Therefore,
1 1
| Baf e, < Mt || B (o) o (3.49)
In what follows we shall make us of the identity:

1flls = sup|(f,v)sl, (3.50)

where the supremum is taken over all v € Cg°(R™), such that ||v||s = 1.
As X\ = 0y, by identity (3.33) we have:

1 1
(Bfn(ao)u, B%(Uo)v>§ = Bogm [, ]
On the other hand,
gffo;m[uvu] > ClHUH%,-a

Bougmlt, ]| < My(My + 00) Jul - o]+ (3.51)

for all u,v € ﬁ[+. Hence, according Lax-Milgram theorem, equation
Boyon[u, 0] = (w,0)s for all 7 e CF(R™)
is solvable for each w € Hy = Ly 5(R"). Therefore, the function v € C§°(R™) in (3.50) can be

1
represented as v = B2 (0g)w, that is,

I£1ls = sup (£ Bi(oow)

Y

1
where the supremum is taken over all w € C5°(R") such that HB%<UO)U)H5 = 1.

On the other hand, on the class C§°(R"), the norms ||v||; and ”B%(ao)vH are equivalent.
5
This is why

1

s, = | (5 o)

—sup‘( UO)‘PmF B ( ) )5‘ (3.52)
<Mz sup [(0m F,0) | < Mus [ F|| - < Mug||F| -,
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where the first supremum in this chain is taken over all w € C§°(R™) with the unit norm in H,,
1
the second supremum is taken over all v € C§°(R™) obeying the condition HB,%(JO)UH =1,
5

while the third supremum is taken over all v € C§°(R™) with the unit norm in H,.

By (3.49)), (3.52) we have the inequality

Vinalls < MI[E]-, (3.53)

which is valid as A € S, |A\| = 0¢, where 0¢ > 1 is some finite number.
By the above proven inequality (3.39), it follows from identity (3.46) that

lim || T%* (\)]| = 0. (3.54)
A—00

Then by (3.47), (3.52)), (3.53)) we get

KalFool| < Mis swp sup Tt )| [ Vimalls ol <cr(ADIIFI-Ilolls
m=1,2, .. |K|+|k"|<2r; K0

for all F € Hy, v € H,, and w(t) — 0 as t — co. And since Hy is dense in H_, this implies

estimate ((3.29).

We proceed to estimating the absolute value of the right hand side in the identity (3.30]). Let
us prove that for all F' € H_, v € H,, the inequality holds:

[LALE, o]] S ws(oo)[[Fll- - [loll+, A€ S, [A[ = oo, (3.55)

where a positive function wo(t), t > 0y, is such that wo(t) — 0 as t — oo.
We represent the sesquilinear form Ly[F, v], see (3.28), as

Zexp (0, Z Cl//]Il/\,l,:m v, (3.56)

where
]Il)i l’;’m[F’ ’U] — (d_lklaklmUx))\, d_‘l/‘_llulgpg)v(lﬁ)>OH—T’
U\(@) = DY Ru(NgnF)(@),  m=1,2, ..,

and the symbol 2(2) denotes the summation over the multi-indices k, [, I, I” such that [ = I'+1",
U0, k|, |l <.
Employing (3.42)), (3.43), (3.46)), we write the form ]Il/\/,’l,;/m[F, v] as

g —l / 1 ’ "
B IE o] = (4 Hagn DB ) Vi, d V116000

a—+r
Hence, in view of the self-adjointness of the operator B,,(0y), we get:
]Il)i;l’;m[F’ U] _ (B;LE (O'O)Dlugo%)d_w_‘l/‘_‘l/"aklkaB;?()\)Vm)" B%(O‘O)U>T+a. (357)
According ([3.46) and (3.54),
g * —l " / ’ 1"
(Tin’l (UO)) = Bp*(00) D" ol d 11 gy,

lim H <T£;;l”(00)> '

opg—r00
as |I'| +|I"| < r; I # 0. Taking this into consideration, we write identity (3.57) as
enlF vl = (T4 (00)) d ™MD B (\Vinr, Bi(o0)o)

We introduce the notation

=0 (3.58)

a+r

Py x(00) = d~ ¥ D¥ B (00)
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and we write the obtained identity as

Il ol = ((T0(00)) Brkl00) Bi(00) B? (NVin, Bir(on)v) (3.59)

1 _1

It follows (3.48)) that as A € S, |A| = 0y, the operator B (0¢)Bm?(A) is a bounded operator
and its norm does not exceed one. On the other hand, according inequality (3.35)), the operator
Py, k(00) is bounded. This is why by (3.59)) we have

I, o] < Mg | (T4 (00)) || 1Vinal 1 B3 o),
for all A € S, |A| = 0o. By (3.51)), (3.53) it follows that

Bl 0| < e [ (T3 (00)) | NI Dol

for all A € S, |A| > 0g and for all F € Hy, v € H,. Introducing the notation

(o0

w*(Uo) = M17

Y

we obtain:

Il F, vl] < waloo) IFI- vl + (3.60)

forall A€ S, |A\| = 00 and all F € Hy, v € H,.

It follows from (3.58)) that w.(og) — 0 as op — 0. This is why by choosing the number oq
large enough, by (3.60), (3.56) and Lemma [3.2] we obtain (3.55)) for F € Hy. By the continuity
this estimate is extended to all F' € H_. This completes the proof of inequality 1}

Applying inequalities (3.29)), (3.55)), by (3.26) we obtain

[(RA)F,v) — (F, v)| < (wi1(|A]) + walo0)) | Fl[-lv]|+
foral FeH ,ve POL. Since limy_,oo w;(t) = 0, i = 1, 2,, there exists a number oy > 1 such
that

[(ROA)F,v) = (F, v)] < %HFHHUIM (3.61)

foreach A€ S, [\ > opand all Fe H_, v e H,.

It follows from estimate that as A € S, |\| > oy, the operator G(A\) = R(\) — E
acting from H_ into H_ is bounded and its norm does not exceed % This is why the operator
R(\) : H. — H_ is continuously invertible and R™*(\) = (E + G()\)) L.

The operator R,,(\) defined by identity acts from H_ into H,. This is why it follows
from that the operator R()) also acts from H_ into H,. Therefore, for each functional
F € H_, the function U(z) defined by the identity

U=RMNRNF, AES, |\ = oo, (3.62)

belongs to the space I%Lr.

In what follows we suppose that A € S, |\| > 0¢ and oy is some sufficiently large number.
Then it follows from identity that By[R(A)R™(A)F,v] = (F,v) for all v € C§°(R™). This
is why for A € S, |A\| > 0y, the function U(z) defined by identity solves the equation

By[U,v] = (F,v) forall ve CR"),

that is, it is a solution to problem D,. Since as A € S, |A\| > o the operator R™1()) is bounded,
it follows from (3.19)) and (3.20)) that the function satisfies estimate of Theorem [3.1]

We proceed to proving the uniqueness of the solution of problem D). It is clear that it
is sufficient to prove that homogeneous problem D), that is, as F' = 0, has only the trivial
solution.
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We consider the adjoint problem: given a functional F &€ IEL, find a function U; € }OLF
satisfying the identity

Ba[o,Uy] = (F,v) forall ve H,. (3.63)

Since the coefficients of the form B [v, U;] satisfy the assumptions of Theorem we proceed
as above and we construct the operators R.(\), R.()) such that the function

U =RNRNE,  AeS, |\ =o

belongs to the space }OI+ and satisfies equation (3.63)).
Let a function u € H, solves the equation

By[u,v] =0 forall ve I, (3.64)

where A € S, [\ > o} = max{o{,00}. Let F be an arbitrary element in the space H_.
Since U; = R.(A)R,(A)"LF belongs to the space [, we let v = Uy in (3.64) and we obtain
B,\[u, Ul] = O, that iS, B)\[U, Ul] =0.

On the other hand, the function Uy = R.(A)R.(A)~ LF satisfies (3.63). This is why (F,u) =0
for all F' € H+ In view of the embedding H+ — H_ and lettlng F = u, we have (u,u) =0,
that is, u = 0. O

4. SMOOTHNESS OF SOLUTION TO HOMOGENEOUS VARIATIONAL DIRICHLET PROBLEM

If the coefficients ay; of form and the right hand side in equation (3.3)), the functional
I, possess certain smoothness, the smoothness of the solution of problem D,\ improves as well.

Let m be a natural number and m < r. We introduce the notations Hm ngxmm s(R™),

| - ||4m is the norm in Wi+™ (R™). By H-™ we denote the completion of the space Hy =

sa—m, 6

Ly s(R™) with respect to the norm
[fll=m = sup[(f; w)s],

where the supremum is taken over all u € C3°(R")
that H_T — POLF, H-™ — H_ for each natural m < r.

2a+m5]R” H—l We note

Theorem 4.1. Let all assumptions of Theorem are satisfied and there exists a natural
number mqo < r such that

a,(:l)(x)‘ < Md¥(z), zeR"

for each multi-index s, |s| < my.

Then there exists a sector S C {z € C: |argz| < w/2}U{0} with the vertex at the origin and
a positive number oy such that as A € S and |\| > oo, for each given F' € I—O]_m, where a natural
number m obeys the inequality m < myg, there exists a unique solution u € H+ of Problem D).
This solution belongs to the space H_T and the estimate

[l e < MAIF]|,,
holds, where a number M > 0 is independent of A € S, |\| = 0o, and the functional F.

The proof is based on an improvement of the technique employed in the proof of Theorem 8
of work [I2] on the smoothness of a solution to the variational Dirichlet problem in a bounded
domain associated with a non-coercive form, see also [28].
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