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EQUIVALENCE CRITERION

FOR TWO ASYMPTOTIC FORMULAE

Kh.K. ISHKIN, R.I. MARVANOV

Abstract. We study the equivalence conditions of two asymptotic formulae for an arbi-
trary non-decreasing unbounded sequence {𝜆𝑛}. We show that if 𝑔 is a non-decreasing and
unbounded at infinity function, {𝑓𝑛} is a non-decreasing sequence asymptotically inverse
to the function 𝑔, then for each sequence of real numbers 𝜆𝑛 satisfying an asymptotic es-
timate 𝜆𝑛 ∼ 𝑓𝑛, 𝑛 → +∞, the estimate 𝑁(𝜆) ∼ 𝑔(𝜆), 𝜆 → +∞, holds if and only if 𝑔
is a pseudo-regularly varying function (PRV-function). We find a necessary and sufficient
condition for the non-decreasing sequence {𝑓𝑛} and the function 𝑔, under which the sec-
ond formula implies the first one. Employing this criterion, we find a non-trivial class of
perturbations preserving the asymptotics of the spectrum of an arbitrary closed densely
defined in a separable Hilbert space operator possessing at least one ray of the best decay
of the resolvent. This result is the first generalization of the a known Keldysh theorem to
the case of operators not close to self-adjoint or normal, whose spectra can strongly vary
under small perturbations. We also obtain sufficient conditions for a potential ensuring
that the spectrum of the Strum-Liouville operator on a curve has the same asymptotics as
for the potential with finitely many poles in a convex hull of the curve obeying the trivial
monodromy condition. These sufficient conditions are close to necessary ones.

Keywords: asymptotic equivalence, functions preserving equivalence, pseudo-regularly
varying (PRV) functions, non-self-adjoint operators, Keldysh theorem, spectrum localiza-
tion, potentials with trivial monodromy.
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1. Introduction

To find an asymptotics of some sequence {𝜆𝑛}∞𝑛=1 means to find a sequence {𝑓𝑛} with prop-
erties known according the context such that the relation

𝜆𝑛 ∼ 𝑓𝑛, 𝑛 → +∞, (1)

holds. Hereinafter the writing 𝑓(𝑥) ∼ 𝑔(𝑥), 𝑥 → 𝑥0, 𝑥 ∈ 𝐷, is treated as an asymptotic
identity, equivalence, for the functions 𝑔 and 𝑓 defined on the set 𝐷 with a limiting point 𝑥0:

𝑔(𝑥) = 𝑓(𝑥)(1 + 𝛼(𝑥)), 𝑥 ∈ 𝐷, lim
𝑥→𝑥0

𝛼(𝑥) = 0.

Sometimes formula (1) can be specified. For instance, let 𝐿 be an operator in 𝐿2(0, 𝜋) generated
by the differential expression −𝑦′′ + 𝑞𝑦, where 𝑞 ∈ 𝑊𝑚

2 [0, 𝜋], and by the boundary conditions
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𝑦(0) = 𝑦(𝜋) = 0. Let {𝜆𝑛} be the eigenvalues of 𝐿 taken counting algebraic multiplicities in
the order of ascending absolute values. Then [2, Ch. I, Sect. 5]):

𝜆𝑛 −

⎛⎝𝑛2 +

[𝑚+1/2]∑︁
𝑗=1

𝑐𝑗𝑛
−2𝑗

⎞⎠ = 𝑛−𝑚𝛼𝑛, 𝑐𝑗 = const, {𝛼𝑛} ∈ 𝑙2.

However, in the problems, in which one has to deal with the sequences, one employs the formula

𝑁(𝜆) ∼ 𝑔(𝜆), 𝜆 → +∞, (2)

where
𝑁(𝜆) =

∑︁
𝜆𝑛<𝜆

1

is the counting function of {𝜆𝑛}. The motivation for this can be various; sometimes the choice
of formula (2) is not because of employed methods and approaches, but due to deeper reasons
coming from the matter of the studied problem. As a demonstration, we consider the following
example.

Example 1. Let 𝐺 be a bounded domain in R𝑚, −∆𝐺
𝐷 be the Dirichlet Laplacian in the

domain 𝐺, which is the self-adjoint operator in 𝐿2 (𝐺, 𝑑𝑥) associated with the quadratic form
being the closure of the form

𝑞(𝑓, 𝑔) =

∫︁
𝐺

∇ 𝑓∇ 𝑔𝑑𝑥, 𝑓, 𝑔 ∈ 𝐶∞
0 (𝐺).

Let {𝜆𝑛} be the eigenvalues of the operator 𝐴 taken in the ascending order counting the multi-
plicities. If 𝐺 has a Jordan volume, then [3, Ch. XIII, Sect. 15]

𝑁(𝜆) ∼ (2𝜋)−𝑚𝜏𝑚𝑊𝑚(𝐺)𝜆
𝑚
2 , 𝜆 → +∞, (3)

where 𝑊𝑘 is a 𝑘-dimensional Jordan volume. Under additional assumptions on the domain 𝐺
and its boundary Γ, formula (3) can be specified and the next-to-leading term can be found [4,
Sects. 17.5, 24.7], [5]. This term is expressed via the (𝑚− 1)-dimensional measure of Γ.
We also note that formula (3) goes back to a known work by G. Weyl [6], which confirmed

the Lorentz and Jeans conjecture on determining the volume of the domain 𝐺 by the spectrum
of the Laplacian −∆𝐺. Later there was found a series of other geometric characteristics of the
domain 𝐺 determined by the asymptotics of 𝑁(𝜆) [7].

Example 1 shows how natural can be the choice of formula (2). Of course, at that one
assumes that the information on the values of the function 𝑔 gives some information on the
sequence {𝑓𝑛}. This assumption is justified, for instance, in the case, when the sequence {𝜆𝑛}
is strictly monotone and the function 𝑔 preserves the asymptotic equivalence of sequences, that
is, for all infinitely large sequences {𝑥𝑛} and {𝑦𝑛} the relation

𝑥𝑛 ∼ 𝑦𝑛, 𝑛 → +∞ ⇒ 𝑔(𝑥𝑛) ∼ 𝑔(𝑦𝑛), 𝑛 → +∞, (4)

holds true. Indeed, if {𝜆𝑛} is increasing, then 𝑁(𝜆𝑛) = 𝑛− 1, and by formulae (2) and (4) we
have

𝑔(𝑓𝑛) ∼ 𝑛, 𝑛 → ∞. (5)

If we also assume that the function 𝑔 is continuous and increases on [𝐴,+∞) and the inverse
function 𝑔−1 also preserves the asymptotics, then by relation (5) we obtain 𝑓𝑛 ∼ 𝑔−1(𝑛) as
𝑛 → +∞.

In what follows, in Lemma 1, we shall show that if the sequence {𝑓𝑛} and the function 𝑔
are non-decreasing, then condition (5) is necessary (but is not sufficient!) in order to for each
non-decreasing sequence {𝜆𝑛} obeying estimate (1), estimate (2) is to be satisfied.
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The aim of the present note is to find necessary and sufficient condition for the function 𝑔 or
sequence {𝑓𝑛} ensuring that for each non-decreasing sequence {𝜆𝑛} obeying one of formulae (1)
and (2), the other formula holds true.

Before we formulate the results, we mention that the class of the functions preserving asymp-
totic equivalence (4) is well-known. For further purposes, it is convenient for us to formulate a
criterion obtained by V. V. Buldygin, O. I. Klesov, J. G. Steinebach in [8].

Theorem BKS. Let a function 𝑔 be measurable on [𝐴,+∞) and lim
𝑥→+∞

𝑔(𝑥) = +∞. Then

the following statements are equivalent:

1) The function 𝑔 preserves an asymptotic equivalence of sequences.
2) The function 𝑔 preserves asymptotic equivalence of continuous functions, that is, 𝑔(𝑢(𝑡)) ∼

𝑔(𝑣(𝑡)), 𝑡 → +∞, for all functions 𝑢, 𝑣 continuous on some interval (𝐵,+∞), asymptot-
ically equivalent on +∞ and satisfying the condition

lim
𝑡→+∞

𝑢(𝑡) = lim
𝑡→+∞

𝑣(𝑡) = +∞.

3) The function 𝑔 satisfies the condition

lim
𝛿→1+0

lim sup
𝑥→+∞

𝑔(𝛿𝑥)

𝑔(𝑥)
= 1. (6)

It follows from this theorem that if the function 𝑔 is continuous on [𝐴,+∞), increases, is
unbounded, and 𝑓𝑛 = 𝑔−1(𝑛), then condition (6) is sufficient to ensure that each increasing
sequence {𝜆𝑛} with asymptotics (1) satisfies also (2). Indeed, under the maid assumption,

𝑁(𝜆) = 𝑛, 𝑔(𝜆𝑛) < 𝑔(𝜆) < 𝑔(𝜆𝑛+1) on (𝜆𝑛, 𝜆𝑛+1]

and 𝑔(𝜆𝑛) ∼ 𝑛, 𝑛 → +∞ by (1) and Statement 1) of the theorem. This implies (2).

Remark 1. The functions obeying condition (6) are called PRV-functions (pseudo-regularly
varying). In view of numerous applications, especially in the theory of probability, the PRV-
functions are studied quite well, see [9] and the references therein. PRV-functions are natural
generalizations of RV-class of regularly varying functions introduced in 1930 by Karamata in
his fundamental work [10]. The results by Karamata together with further extensions and gen-
eralization turned out to be very fruitful for various fields in mathematics, see [11], [12].

2. Formulation of main results

Hereafter {𝜆𝑛}∞𝑛=1 stands for an arbitrary real non-decreasing sequence, 𝑆∞ is the set of non-
decreasing unbounded sequences, 𝐹∞ is the set of functions defined on some interval (𝐴,+∞)
depending on the choice of the function; these functions are finite, non-decreasing and un-
bounded.

We begin with a simple statement.

Lemma 1. Let {𝑓𝑛} ∈ 𝑆∞, 𝑔 ∈ 𝐹∞ be such that for each sequence {𝜆𝑛} obeying (1),
estimate (2) is satisfied as well. Then (5) holds true.

The main result of the paper is formulated in the following two theorems.

Theorem 1. Let {𝑓𝑛} ∈ 𝑆∞, 𝑔 ∈ 𝐹∞. If conditions (5) and (6) are satisfied, then for each
sequence {𝜆𝑛} satisfying (1) estimate (2) holds true.

And vice versa, if for each sequence {𝜆𝑛} satisfying (1) estimate (2), then {𝑓𝑛} and 𝑔 sat-
isfy (5) and (6).
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The next theorem is about the conditions, under which for each sequence in 𝑆∞ the impli-
cation holds: (2) ⇒ (1). But before we should check the existence of at least one sequence in
𝑆∞ satisfying (2). We observe that under the assumptions of Theorem 1 such issue does not
arise. The following lemma holds true.

Lemma 2. There exists at least one sequence {𝜆𝑛} ∈ 𝑆∞ satisfying (2) if and only if

𝑔(𝜆− 0) ∼ 𝑔(𝜆), 𝜆 → +∞. (7)

Theorem 2. Let {𝑓𝑛} ∈ 𝑆∞ and 𝑔 be a function in the class 𝐹∞ satisfying condition (7).
If

(i) 𝑓[𝑔(𝜆)] ∼ 𝜆, 𝜆 → +∞,

(ii) lim
𝛿→1+0

lim sup
𝑛→+∞

𝑓[𝑛(1+𝛿)]

𝑓𝑛
= 1,

then for each sequence {𝜆𝑛} satisfying (2), estimate (1) holds true.
And vice versa, if for each sequence {𝜆𝑛} satisfying (2) estimate (1) holds, then {𝑓𝑛} and 𝑔

satisfy conditions (i) and (ii).

3. Proof of Statements of Section 2

3.1. Proof of Lemma 1. Since {𝑓𝑛} does not decrease, there exists a sequence of indices
{𝑛𝑘} and an increasing sequence of {𝜈𝑘} such that

𝑓𝑖 = 𝜈𝑘, 𝑖 = 𝑛𝑘−1 + 1, 𝑛𝑘.

We let 𝜆𝑖 = 𝑓𝑖, 𝑖 ∈ N. We have 𝑁(𝜆) = 𝑛𝑘−1 as 𝜆 ∈ (𝜈𝑘−1, 𝜈𝑘]. According (2), for each 𝜀 > 0
there exists 𝐾𝜀 ∈ N such that

𝑛𝑘−1(1 − 𝜀) < 𝑔(𝜆) < 𝑛𝑘−1(1 + 𝜀), 𝜆 ∈ (𝜈𝑘−1, 𝜈𝑘], 𝑘 > 𝐾𝜀.

Hence, since 𝑔(𝑓𝑖) = 𝑔(𝜈𝑘) as 𝑖 = 𝑛𝑘−1 + 1, 𝑛𝑘, then

𝑔(𝑓𝑖) < 𝑖(1 + 𝜀), 𝑖 = 𝑛𝑘−1 + 1, 𝑛𝑘. (8)

We take another sequence satisfying (1): 𝜆𝑖 = 𝑓𝑖−1. Then 𝑁(𝜆) = 𝑛𝑘 as 𝜆 ∈ (𝜈𝑘−1, 𝜈𝑘] and
therefore, by (2), for each 𝜀 > 0 there exists a number 𝐾𝜀 ∈ N such that

𝑛𝑘(1 − 𝜀) < 𝑔(𝜆) < 𝑛𝑘(1 + 𝜀), 𝜆 ∈ (𝜈𝑘−1, 𝜈𝑘], 𝑘 > 𝐾𝜀.

Hence, since

𝑓𝑖 = 𝜈𝑘, 𝑖 = 𝑛𝑘−1 + 1, 𝑛𝑘,

then

𝑔(𝑓𝑖) > 𝑛𝑘(1 − 𝜀) for all 𝑖 = 𝑛𝑘−1 + 1, 𝑛𝑘, 𝑘 > 𝐾𝜀.

Together with (8), this imples (5). The proof is complete.

3.2. Proof of Theorem 1. Sufficience of (5) and (6). Assume that (5) and (6) hold and {𝜆𝑛}
is a non-decreasing sequence with asymptotics (1). According Theorem BKS, 𝑔(𝜆𝑛) ∼ 𝑔(𝑓𝑛),
𝑛 → ∞, and by (5) this implies

𝑔(𝜆𝑛) ∼ 𝑛, 𝑛 → ∞. (9)

Let {𝑛𝑘} and {𝜇𝑘} be increasing sequences such that 𝜆𝑖 = 𝜇𝑘, 𝑘 = 𝑛𝑘−1 + 1, 𝑛𝑘, 𝑛0 = 0. Then
𝑁(𝜆) = 𝑛𝑘 as 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1]. It follows from (9) that for each 𝜀 > 0 there exists 𝐾𝜀 ∈ N such
that for all 𝑘 > 𝐾𝜀 the inequalities

𝑛𝑘(1 − 𝜀) 6 𝑔(𝜇𝑘), 𝑔(𝜇𝑘+1) 6 (𝑛𝑘 + 1)(1 + 𝜀)
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hold true. Hence, for all 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1] we get:

𝑛𝑘(1 − 𝜀) 6 𝑔(𝜆) 6 (𝑛𝑘 + 1)(1 + 𝜀),

and this is why

1 − 𝜀 6
𝑔(𝜆)

𝑁(𝜆)
6

(︂
1 +

1

𝑛𝑘

)︂
(1 + 𝜀), 𝜆 > 𝜇𝑘, 𝑘 > 𝐾𝜀.

This proves (2).
Necessity. Let for each sequence {𝜆𝑛} satisfying (1), relation (2) holds. Then condition (5)

follows Lemma 1.
Let us prove (6). We assume the opposite and we are going to construct a non-decreasing

sequence {𝜆𝑛} satisfying (1) but not satisfying (2).
By Theorem BKS, there exists two asymptotically equivalent sequences {𝑥𝑛} and {𝑦𝑛} tend-

ing to infinity, for which at least one of the inequalities hold:

lim sup
𝑛→∞

𝑔(𝑦𝑛)

𝑔(𝑥𝑛)
> 1 or lim sup

𝑛→∞

𝑔(𝑦𝑛)

𝑔(𝑥𝑛)
< 1.

Suppose that the first inequality holds; the case, when the second inequality holds can be
considered in the same way. Then there exist a sequence {𝑛𝑖} and numbers 𝛼 > 0 and 𝐼1 ∈ N,
such that

𝑔(𝑦𝑛𝑖
) > (1 + 𝛼)𝑔 (𝑥𝑛𝑖

) , 𝑖 > 𝐼1. (10)

Let 𝑦𝑛𝑖
= 𝑥𝑛𝑖

(1 + 𝜀𝑖). We have 𝜀𝑖 → +0, 𝑖 → ∞. Let also

𝜎𝑖 = max
𝑘>𝑖

{𝜀𝑘}, 𝑚𝑖 = min{𝑘 : 𝑓𝑘 > 𝑥𝑛𝑖
}.

Then

𝑓𝑚𝑖−1 < 𝑥𝑛𝑖
6 𝑓𝑚𝑖

(11)

and according (5),

𝑔 (𝑥𝑛𝑖
) ∼ 𝑚𝑖, 𝑖 → ∞. (12)

We let

𝜆𝑚𝑖
= 𝑓𝑚𝑖

(1 + 𝜎𝑖). (13)

We can assume that the sequence 𝜆𝑚𝑖
increases since we can choose a subsequence if it is

needed.
According (12), there exists 𝐼2 ∈ N such that

𝑔 (𝑥𝑛𝑖
) >

𝑚𝑖

(︀
1 + 𝛼

2

)︀
1 + 𝛼

, 𝑖 > 𝐼2.

Then, since 𝑔 (𝑥𝑛𝑖
(1 + 𝜎𝑖)) > 𝑔 (𝑦𝑛𝑖

), by (10) and (11) we get

𝑔 (𝜆𝑚𝑖
) >

(︁
1 +

𝛼

2

)︁
𝑚𝑖, 𝑖 > 𝐼3, (14)

where 𝐼3 = max{𝐼1, 𝐼2}.
Let us define 𝜆𝑘 for other 𝑘. Assume that 𝑚𝑖+1 > 𝑚𝑖 + 1 and denote

𝑑𝑖 = max

{︂
𝑘 ∈ [𝑚𝑖,𝑚𝑖+1) : 𝑓𝑘 <

𝑓𝑚𝑖
(1 + 𝜎𝑖)

1 + 𝜎𝑖+1

}︂
.

It is clear that 𝑚𝑖 6 𝑑𝑖 < 𝑚𝑖+1. We define

𝜆𝑘 =

{︃
𝑓𝑚𝑖

(1 + 𝜎𝑖), 𝑚𝑖 6 𝑘 6 𝑑𝑖,

𝑓𝑘(1 + 𝜎𝑖+1), 𝑑𝑖 + 1 6 𝑘 6 𝑚𝑖+1.
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Then

𝜆𝑘 ∼ 𝑓𝑘, 𝑑𝑖 + 1 6 𝑘 6 𝑚𝑖+1, 𝑖 → ∞. (15)

Let us prove that estimate (15) holds also for 𝑚𝑖 6 𝑘 6 𝑑𝑖, 𝑖 → ∞. For such 𝑘 we have

𝜆𝑘 = 𝑓𝑚𝑖
(1 + 𝜎𝑖) 6 𝑓𝑘 (1 + 𝜎𝑖) . (16)

If 𝑘 6 𝑑𝑖, then

𝑓𝑘 <
𝜆𝑘

(1 + 𝜎𝑖+1)
,

and this implies

𝜆𝑘 > 𝑓𝑘 (1 + 𝜎𝑖+1) . (17)

It follows from (16) and (17) that (15) as 𝑚𝑖 6 𝑘 6 𝑑𝑖, 𝑖 → ∞.
Thus, we have constructed a sequence {𝜆𝑘} satisfying (1). Let us show that estimate (2) fails

for this sequence.
It follows from the definition of 𝑁(𝜆) that 𝑁 (𝜆𝑚𝑖

) 6 𝑚𝑖 − 1 and this is why by (14) we get

𝑔 (𝜆𝑚𝑖
) >

(︁
1 +

𝛼

2

)︁
𝑁 (𝜆𝑚𝑖

) .

This implies that sequence {𝜆𝑘} does not satisfy (2). The proof is complete.

3.3. Proof of Lemma 2. Sufficiency of (7). We let

𝑠𝑖 = sup{𝜆 : 𝑔(𝜆) < 𝑖}. (18)

Since 𝑔 ∈ 𝐹∞, then {𝑠𝑛} ∈ 𝑆∞. Moreover, if 𝑠𝑖 < 𝑠𝑖+1, then

𝑖 6 𝑔(𝜆) < 𝑖 + 1 for all 𝜆 ∈ (𝑠𝑖, 𝑠𝑖+1) . (19)

Let {𝑛𝑘} and {𝜇𝑘} be increasing sequences such that

𝑠𝑖 = 𝜇𝑘, 𝑖 = 𝑛𝑘−1, 𝑛𝑘 − 1. (20)

By (19), for 𝑖 = 𝑛𝑘 − 1 we have:

𝑛𝑘 − 1 6 𝑔(𝜆) < 𝑛𝑘, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1) . (21)

Employing again (19) with 𝑖 = 𝑛𝑘, we obtain:

𝑔(𝜇𝑘+1) < 𝑛𝑘 + 1. (22)

Hence, since

𝑁𝑠(𝜆) := max{𝑖 : 𝑠𝑖 < 𝜆} = 𝑛𝑘 − 1, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1] , (23)

we get

1 6
𝑔(𝜆)

𝑁𝑠(𝜆)
< 1 +

1

𝑛𝑘 − 1
, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1) . (24)

By (21) we have 𝑔 (𝜇𝑘+1 − 0) 6 𝑛𝑘. According (7), this implies

𝑔 (𝜇𝑘+1) 6 𝑛𝑘 (1 + 𝛼𝑘) , 𝛼𝑘 → +0, 𝑘 → ∞.

Therefore,

1 <
𝑔 (𝜇𝑘+1)

𝑁𝑠 (𝜇𝑘+1)
6 1 +

1 + 𝛼𝑘

𝑛𝑘 − 1
.

By (24), this allows us to conclude that the sequence {𝑠𝑛} satisfies (2).
Necessity. We assume the opposite, namely, let for some 𝛿 > 0 and some increasing sequence

{𝜆𝑛} ∈ 𝑆∞ the inequalities

𝑔(𝜆𝑛 − 0) < (1 − 𝛿)𝑔(𝜆𝑛) (25)
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hold. Since the function 𝑁(𝜆) is left continuous, for each 𝑛 there exists a point 𝜇𝑛 < 𝜆𝑛 such
that

𝑁(𝜇𝑛) > 𝑁(𝜆𝑛) − 1

𝑛
. (26)

On the other hand, by (2) we get

𝑁(𝜇𝑛) = 𝑔(𝜇𝑛)(1 + 𝑜(1)), 𝑛 → ∞. (27)

Combining estimates (25)–(27), we obtain

lim sup
𝑛→∞

𝑁(𝜆𝑛)

𝑔(𝜆𝑛)
6 1 − 𝛿,

which contradicts (2). The proof is complete.

3.4. Proof of Theorem 2. Sufficiency of (i) and (ii). Let Conditions (i) and (ii) hold, that
is, for each 𝜀 > 0 there exist Λ1(𝜀) > 0, 𝛿(𝜀) > 0 and 𝑛(𝜀) ∈ N, obeying the condition

(1 − 𝜀)𝑓[𝑔(𝜆)] < 𝜆 < 𝑓[𝑔(𝜆)](1 + 𝜀), 𝜆 > Λ1(𝜀), (28)

𝑓[𝑛(1+𝛿)] < (1 + 𝜀)𝑓𝑛, 0 < 𝛿 < 𝛿(𝜀), 𝑛 > 𝑛(𝜀). (29)

Let {𝜆𝑛} be an arbitrary non-decreasing sequence satisfying condition (2), that is, for each
𝜎 > 0 there exists Λ2(𝜎) > 0 such that

𝑔(𝜆)(1 − 𝜎) < 𝑁(𝜆) < 𝑔(𝜆)(1 + 𝜎) for all 𝜆 > Λ2(𝜎). (30)

Let {𝑛𝑘} and {𝜇𝑘} be increasing sequences defined by formula (20) such that 𝜆𝑖 = 𝜇𝑘, 𝑖 =
𝑛𝑘−1, 𝑛𝑘, 𝑛0 = 0. Then 𝑁(𝜆) = 𝑛𝑘, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1], 𝑘 ∈ N.

Given an arbitrary 𝜀 > 0 we choose 𝛿𝜀 ∈ (0, 𝛿(𝜀)), where 𝛿(𝜀) is determined by(29), and we
let

Λ3(𝜀) = max{Λ1(𝜀),Λ2(𝜎𝜀)}, 𝜎𝜀 =
𝛿𝜀

1 + 𝛿𝜀
.

Let 𝑛(𝜀) satisfies (29) and 𝐾1(𝜀), 𝐾2(𝜀) ∈ N be such that

𝜇𝑘 > Λ3(𝜀), 𝑘 > 𝐾1(𝜀),

𝑛𝑘 > max

{︂
𝑛(𝜀) (1 + 𝛿𝜀) ,

(1 + 𝛿𝜀)
2

𝛿2𝜀

}︂
, 𝑘 > 𝐾2(𝜀).

We let 𝐾(𝜀) = max{𝐾1(𝜀), 𝐾2(𝜀)} and let us show that

𝑓𝑛𝑘
(1 − 2𝜀) 6 𝜇𝑘+1 < 𝑓𝑛𝑘

(1 + 𝜀)2 (31)

for all 𝑘 > 𝐾(𝜀).
Let 𝑘 > 𝐾(𝜀). We choose 𝜆 = 𝜇𝑘+1 in (30) and in view of (23) we get:

𝑔 (𝜇𝑘+1) < 𝑛𝑘 (1 + 𝛿𝜀) .

According (28) and (29) this yields

𝜇𝑘+1 < 𝑓[𝑛𝑘(1+𝛿𝜀)](1 + 𝜀) < 𝑓𝑛𝑘
(1 + 𝜀)2.

We are going to prove the first inequality in (31). Let 𝜆 ∈ (𝜇𝑘+1, 𝜇𝑘+2]. Then 𝜆 > Λ1(𝜀) and
according (28) we have

𝜆 > (1 − 𝜀)𝑓[𝑔(𝜆)]. (32)

On the other hand, since

𝜆 > Λ2(𝜎𝜀),
1

1 + 𝜎𝜀

>
1

1 + 𝛿𝜀
,
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by (30) and (23) the inequality

𝑔(𝜆) >
𝑛𝑘+1 − 1

1 + 𝜎𝜀

>
𝑛𝑘

1 + 𝜎𝜀

holds and therefore,

[𝑔(𝜆)] >
𝑛𝑘

1 + 𝜎𝜀

− 1.

We have
𝑛𝑘

1 + 𝜎𝜀

=
𝑛𝑘

1 + 𝛿𝜀

(︂
1 +

𝛿2𝜀
1 + 2𝛿𝜀

)︂
>

𝑛𝑘

1 + 𝛿𝜀

(︂
1 +

𝛿2𝜀
(1 + 𝛿𝜀)2

)︂
,

and taking into consideration that 𝑘 > 𝐾2(𝜀) and hence 𝑛𝑘 >
(1 + 𝛿𝜀)

3

𝛿2𝜀
, we obtain

[𝑔(𝜆)] >
𝑛𝑘

1 + 𝛿𝜀
. (33)

Hence, employing the definition of 𝐾2(𝜀) once again, we conclude that [𝑔(𝜆)] > 𝑛(𝜀) and we
can use (29) with 𝑛 = [𝑔(𝜆)]. Taking also into consideration (33), we obtain

𝑓[𝑔(𝜆)] >
𝑓𝑛𝑘

1 + 𝜀
.

By inequalities (32) and
1 − 𝜀

1 + 𝜀
> 1 − 2𝜀

we conclude that
𝜆 > (1 − 2𝜀)𝑓𝑛𝑘

for all 𝜆 ∈ (𝜇𝑘+1, 𝜇𝑘+2].

This completes the proof of the first inequality in (31).
Necessity. Let us prove (i). Since the sequence {𝑠𝑛} constructed in the proof of Lemma 2

satisfies estimate (2), estimate (1) holds for this sequence as well:

𝑓𝑛 = 𝑠𝑛(1 + 𝜎𝑛), where 𝜎𝑛 → 0, 𝑛 → ∞.

According (21), the identity [𝑔(𝜆)] = 𝑛𝑘 − 1 holds for all 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1). Since 𝑠𝑛𝑘−1 = 𝜇𝑘, we
have

𝑓[𝑔(𝜆)] = 𝜇𝑘 (1 + 𝛽𝑘) , 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1),

where 𝛽𝑘 = 𝜎𝑛𝑘−1 → 0, 𝑘 → ∞. Hence,

𝑓[𝑔(𝜆)]
𝜆

< 1 + 𝛽𝑘, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1). (34)

It follows from (22) that [𝑔(𝜇𝑘+1)] 6 𝑛𝑘 and therefore

𝑓[𝑔(𝜇𝑘+1)] 6 𝑓𝑛𝑘
= 𝑠𝑛𝑘

(1 + 𝜎𝑛𝑘
) .

According (23), the identity holds 𝑠𝑛𝑘
= 𝜇𝑘+1, and this is why the latter identity with (34) give

𝑓[𝑔(𝜆)]
𝜆

6 1 + 𝛾𝑘, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1], (35)

where 𝛾𝑘 → 0, 𝑘 → ∞.
Let us prove that

𝑓[𝑔(𝜆)]
𝜆

> 1 + 𝛿𝑘, 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1], (36)

where 𝛿𝑘 → 0, 𝑘 → ∞.
We introduce the sequence

𝜈𝑖 = sup{𝜆 : 𝑔(𝜆) < 𝑖 + 1}, 𝑁𝜈(𝜆) =
∑︁
𝜈𝑖<𝜆

1.
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Since 𝜈𝑖 = 𝑠𝑖+1, where {𝑠𝑖} is defined in (18), then 𝑁𝜈(𝜆) = 𝑁𝑠(𝜆)−1, and hence, 𝑁𝜈(𝜆) ∼ 𝑔(𝜆),
𝜆 → +∞. Therefore, estimate (1) holds also for sequence {𝜈𝑖}, that is,

𝑓𝑛 = 𝜈𝑛 (1 + 𝜀𝑛) , 𝜀𝑛 → 0, 𝑛 → ∞. (37)

According (23), we have 𝜈𝑖 = 𝜇𝑘, 𝑖 = 𝑛𝑘−1 − 1, 𝑛𝑘 − 2, where {𝜇𝑘} and {𝑛𝑘} are the same
as in (20). Therefore, since 𝜈𝑛𝑘−1 = 𝜇𝑘+1, taking into consideration (21) and (37), for all
𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1) we get

𝑓[𝑔(𝜆)] = 𝑓𝑛𝑘−1 = 𝜇𝑘+1 (1 + 𝛿𝑘) > 𝜆 (1 + 𝛿𝑘) ,

where 𝛿𝑘 = 𝜀𝑛𝑘−1 → 0, 𝑘 → ∞. This implies (36) as 𝜆 ∈ (𝜇𝑘, 𝜇𝑘+1).
In order to prove (36) as 𝜆 = 𝜇𝑘+1 we observe that by the first inequality in (21), we have

𝑔(𝜇𝑘+1) > 𝑛𝑘 − 1 and therefore

𝑓[𝑔(𝜇𝑘+1)] > 𝑓𝑛𝑘−1 = 𝜇𝑘+1(1 + 𝛿𝑘).

Relations (35) and (36) imply (i).
Let us prove (ii). We assume the opposite and we are going to construct a sequence satisfy-

ing (2) and not satisfying (1).
Assume that there exist two increasing sequences of natural numbers {𝜈𝑘} and {𝑚𝑘} and a

positive number 𝛼 such that

𝜈𝑘 = 𝑚𝑘 (1 + 𝛿𝑘) , 𝛿𝑘 → +0, 𝑘 → +∞, (38)

𝑓𝜈𝑘 = (1 + 𝛼)𝑓𝑚𝑘
. (39)

Choosing a subsequence if it is needed, we can suppose that

𝑔
(︀
𝑠𝑚𝑘+1

)︀
> 𝑔 (𝑠𝜈𝑘)

for each 𝑘, where 𝑠𝑖 were defined by formula (18).
We introduce a sequence {𝑝𝑖}: 𝑝𝑖 = 0 as 1 6 𝑖 < 𝑚1 and

𝑝𝑖 =

{︂
𝑠𝜈𝑘 , 𝑚𝑘 6 𝑖 < 𝜈𝑘,

𝑠𝑖, 𝜈𝑘 6 𝑖 < 𝑚𝑘+1,
𝑘 = 1, 2, . . . (40)

By Statement (i)

𝑓[𝑔(𝜆)] = 𝜆(1 + 𝛿(𝜆)), 𝛿(𝜆) → 0, 𝜆 → +∞,

and according (19), for each 𝜀 > 0 the inequality 𝑔 (𝑠𝜈𝑘 + 𝜀) > 𝜈𝑘 holds and hence

𝑓𝜈𝑘 6 𝑓[𝑔(𝑠𝜈𝑘+𝜀)] = (𝑠𝜈𝑘 + 𝜀) (1 + 𝛿(𝑠𝜈𝑘 + 𝜀)) = 𝜆𝑚𝑘
(1 + 𝑜(1)) , 𝑘 → +∞.

In view of (39), for some sufficiently large 𝐾0 we have

𝑝𝑚𝑘
>

(︁
1 +

𝛼

2

)︁
𝑓𝑚𝑘

, 𝑘 > 𝐾0.

This implies estimate (1) for sequence {𝑝𝑖}.
We are going to prove that the function 𝑁𝑝(𝜆) = max{𝑖 : 𝑝𝑖 < 𝜆} satisfies estimate (2).

Since according (40), 𝑁𝑝(𝜆) = 𝑁𝑠(𝜆) on (𝑠𝜈𝑘 , 𝑠𝑚𝑘
] for each 𝑘 ∈ N and as it was shown in the

proof of Lemma 2, the function 𝑁𝑠(·) satisfies estimate (2), it is sufficient to check that

𝑁𝑝(𝜆) ∼ 𝑔(𝜆), 𝜆 ∈ (𝑠𝑚𝑘
, 𝑠𝜈𝑘 ] (41)

as 𝑘 → +∞. In view of the definition {𝑝𝑖} we have

𝑁𝑝(𝜆) = 𝜈𝑘 as 𝜆 ∈ (𝑠𝑚𝑘
, 𝑠𝜈𝑘 ] . (42)

On the other hand, according (19),

𝑚𝑘 6 𝑔(𝜆) < 𝜈𝑘 (43)



EQUIVALENCE CRITERION FOR TWO ASYMPTOTIC FORMULAE 39

for all 𝜆 ∈ (𝑠𝑚𝑘
, 𝑠𝜈𝑘). Hence, in view of (38), we conclude that

1 <
𝑁𝑝(𝜆)

𝑔(𝜆)
< 1 + 𝛿𝑘, 𝜆 ∈ (𝑠𝑚𝑘

, 𝑠𝜈𝑘) , (44)

where 𝛿𝑘 → +0, 𝑘 → +∞.
Since by (43) the inequality

𝑚𝑘 6 𝑔(𝑠𝜈𝑘 − 0) 6 𝜈𝑘

holds, we employ condition (18) and we get:

𝑚𝑘 6 𝑔(𝑠𝜈𝑘) 6 𝜈𝑘 (1 + 𝛼𝑘) , 𝛼𝑘 → +0, 𝑘 → +∞.

Together with (42) this gives
1

1 + 𝛼𝑘

6
𝑁𝑝(𝜆)

𝑔(𝜆)
6 1 + 𝛿𝑘.

By estimate (44) this implies (41). The proof is complete.

4. Example: Sturm-Liouville operator on a curve

Let 𝛾 be a curve with the parametrization:

𝑧 = 𝛾(𝑥) =

∫︁ 𝑥

0

𝜌(𝑡)𝑒𝑖𝛼(𝑡)𝑑𝑡, 𝑥 ∈ [0, 1],

∫︁ 1

0

𝜌(𝑡)𝑒𝑖𝛼(𝑡)𝑑𝑡 = 1,

where 𝑟 and 𝛼 are piecewise continuous functions, 𝜌 > 𝜌0, 𝜌0 = const > 0, 𝛼 is non-decreasing
and numbers 𝛼0 = 𝛼(0), 𝛼1 = 𝛼(1) satisfy the inequalities:

−𝜋

2
< 𝛼0 < 0 < 𝛼1 <

𝜋

2
.

Let 𝐴𝐶(𝛾) and 𝐿𝑝(𝛾) be respectively the sets of the absolutely continuous functions and of
𝑝-summable functions with respect to the arc measure |𝑑𝑧| on 𝛾. Let 𝑞 ∈ 𝐿1(𝛾). We denote by
𝐿 an operator on the domain

𝐷(𝐿) =
{︀
𝑦 ∈ 𝐿2(𝛾) : 𝑦′ ∈ 𝐴𝐶(𝛾), −𝑦′′ + 𝑞𝑦 ∈ 𝐿2(𝛾), 𝑦(0) = 𝑦(1) = 0

}︀
acting in the Hilbert space 𝐿2 (𝛾) by the rule

𝐿𝑦 = −𝑦′′ + 𝑞𝑦.

As in the case 𝛾 = [0, 1] [13, S 17], one can confirm that 𝐿 is a closed domain with a dense
domain. It is known [28, Lm. 2] that the spectrum of the domain 𝐿 is discrete and except for
finitely many points, it is located in the angle {𝜇 ∈ C : −2𝛼1 6 arg 𝜆 6 −2𝛼0}. We denote by
{𝜆2

𝑘}∞𝑘=1, −𝜋
2
< arg (𝜆𝑘) 6 𝜋

2
, the eigenvalues of 𝐿 taken counting their algebraic multiplicities

in the order of ascending absolute values. Then 𝜆𝑘 are the zeroes of the function Φ(𝜆) = 𝜙(1, 𝜆),
where 𝜙(𝑧, 𝜆) is the solution of the equation

− 𝑦′′ + 𝑞𝑦 = 𝜆2𝑦, (45)

satisfying the conditions 𝜙(0, 𝜆) = 0, 𝜙′(0, 𝜆) = 1. This implies that if Ω is a domain enveloped
by the curve 𝛾 and the segment [0, 1], 𝑞(𝑧) = 𝑄(𝑧), 𝑧 ∈ 𝛾, where 𝑄 is a function holomorphic
in the domain Ω and continuous on its closure, then the spectrum of the operator 𝐿 has an
asymptotics

𝜆𝑘 ∼ 𝜋𝑘, 𝑘 → ∞. (46)

In fact, estimate (46) is ensured by the existence of a function 𝑝 ∈ 𝐿1(0, 1) such that the
function

̃︀𝑞(𝑧) =

{︃
𝑞(𝑧), 𝑧 ∈ 𝛾,

𝑝(𝑧), 𝑧 ∈ (0, 1),
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satisfies a trivial monodromy condition on a closed curve Γ = 𝛾 ∪ [0, 1]: for all values of the
parameter 𝜆, each solution to (45) is single-valued on Γ. As it was shown in [29], the trivial
monodromy condition on Γ is equivalent to the vanishing 𝑞 = 𝑄 almost everywhere on Γ,
where 𝑄 is a function meromorphic in the domain Ω, having finitely many poles 𝑧1, . . . , 𝑧𝑛, and
obeying the conditions:

A)𝑛 For some 𝑚𝑖 ∈ N, 𝛿𝑖 > 0, 𝑖 = 1, 𝑛, the identity holds:

𝑄(𝑧) =
𝑚𝑖(𝑚𝑖 − 1)

(𝑧 − 𝑧𝑖)2
+

𝑚𝑖−1∑︁
𝑘=0

𝑐𝑘(𝑧 − 𝑧𝑖)
2𝑘 + 𝑂

(︀
(𝑧 − 𝑧𝑖)

2𝑚𝑖−1
)︀
, |𝑧 − 𝑧𝑖| < 𝛿𝑖, (47)

B)𝑛 The function ̃︀𝑄(𝑧) = 𝑄(𝑧) −
𝑛∑︁

𝑖=1

𝑚𝑖(𝑚𝑖 − 1)

(𝑧 − 𝑧𝑖)2
(48)

belongs to the Smirnov space 𝐸1(Ω) [30, Ch. III, Sect. 7].

The aim of this section is to show, by means of Theorem 2, that estimate (46) holds also in
case, when the function 𝑄 has infinitely many poles {𝑧𝑖}∞𝑖=1 in Ω, which can accumulate only
to the segment [0, 1], and that apart of natural conditions of form (47) and b), the satisfy also
some additional condition on the behavior in the vicinities of the points 0 and 1.

Theorem 3. Let 𝑞 = 𝑄 almost everywhere on Γ, where 𝑄 is a function meromorphic in the
domain Ω and having poles {𝑧𝑖}∞𝑖=1 satisfying the conditions

A)∞ There exist sequences {𝑚𝑖}, {𝛿𝑖}, 𝑚𝑖 ∈ N, 𝛿𝑖 > 0, 𝑖 ∈ N such that estimate (47) is valid
for each 𝑖;

B)∞ For each piece-wise smooth curve 𝛾𝑛 containing no poles of 𝑄 and enveloping several first
of them, function (48) belongs to 𝐸1(Ω𝑛), where Ω𝑛 is the domain enveloped by 𝛾𝑛;

C)∞ If

𝑧𝑘 = |𝑧𝑘|𝑒𝑖𝛽0𝑘 = 1 + |𝑧𝑘 − 1|𝑒𝑖𝛽1𝑘 , where − 𝜋

2
< 𝛽0𝑘 < 0, −𝜋 < 𝛽0𝑘 < −𝜋

2
,

then 𝛽0𝑘 → 0, 𝛽1𝑘 → −𝜋, 𝑘 → ∞.

Then estimate (46) holds for the eigenvalues of the operator 𝐿.

Proof. We denote by 𝑛(𝑟, 𝜁, 𝜃) the number of the eigenvalues 𝜆𝑘 in the sector {𝜆 : |𝜆| < 𝑟, 𝜁 <
arg 𝜇 6 𝜃}. According Theorem 3 in [23], under Conditions A)∞ and B)∞, the function

∆(𝜃) = lim
𝑟→+∞

𝑛(𝑟,−𝜋/2, 𝜃)

𝑟

reads as

∆(𝜃) =

⎧⎪⎨⎪⎩
0, 𝜃 ∈

(︁
−𝜋

2
, 0
)︁
,

1

𝜋
, 𝜃 ∈

(︁
0,

𝜋

2

]︁
.

(49)

By Condition C)∞, there exists a sequence of positive numbers {𝜀𝑛} such that lim
𝑛→∞

𝜀𝑛 = 0 and

a polyline 𝛾𝑛 with vertices at the points 0, 1
2(1−𝑖 tan 𝜀𝑛)

and 1 contains no poles of 𝑄, and the

number of the poles of 𝑄 below 𝛾𝑛 is finite. Then it follows from Theorem 1 in [29] that the
spectrum of the operator 𝐿 coincides with spectrum of the operator 𝐿𝑛 obtained from 𝐿 via
replacing 𝛾 by 𝛾𝑛. But according [28, Lm. 2], except for finitely many points, the spectrum of
the operator 𝐿𝑛 is located inside the angle | arg 𝑧| < 2𝜀𝑛. Arguing as in the proof of Theorem 1
in [20], we construct a continuous on [0;∞) function 𝜎 satisfying the conditions:

a) 𝜎(𝑥) → 0, 𝑥 → ∞,



EQUIVALENCE CRITERION FOR TWO ASYMPTOTIC FORMULAE 41

b) the domain

𝐷𝜎 = {𝜆 = 𝑥 + 𝑖𝑦 : 𝑥 > 0, |𝑦| 6 𝑥𝜎(𝑥)}
contains all eigenvalues 𝜆𝑘.
Therefore, arg 𝜆𝑘 → 0, 𝑘 → ∞. This is why, to prove estimate (46), it is sufficient to make sure
that

𝑟𝑘 := |𝜆𝑘| ∼ 𝜋𝑘, 𝑘 → ∞. (50)

Let 𝑁(𝑟) =
∑︀
𝑟𝑘<𝑟

1. We have 𝑁(𝑟) = 𝑛
(︀
−𝜋

2
, 𝜋
2

)︀
. According (49), this implies that

𝑁(𝑟) ∼ 𝑟

𝜋
, 𝑟 → +∞.

Applying Theorem 2 to the sequence {𝑟𝑘} with 𝑔(𝑟) = 𝜋
𝑟

and 𝑓𝑘 = 𝜋𝑘, we obtain (50).
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