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ON PRESERVATION OF GLOBAL SOLVABILITY OF

CONTROLLED SECOND KIND OPERATOR EQUATION

A.V. CHERNOV

Abstract. For a controlled evolution second kind operator equation in a Banach space con-
sidered on a finite time segment, we obtain sufficient conditions for the preservation of global
solvability under small (with respect to the right-hand side increment with a fixed state)
control variations. In addition, we establish an estimate for the global solution increment
under a control variation and conditions for uniqueness of the solution corresponding to an
arbitrary fixed control. Most essential differences from former results on the preservation of
global solvability of controlled distributed systems are as follows. A solution to the abstract
equation representing an evolution controlled distributed system can be sought in arbitrary
space 𝑊 [0;𝑇 ] of time functions with values in a Banach space 𝑋 and not necessarily in the
space of continuous functions with values in 𝑋 or in a Lebesgue space. An estimate for the
solution increment under a control variation is also obtained with respect to the norm of the
space𝑊 [0;𝑇 ]. Moreover, the right hand sides of the partial differential equations associated
with a controlled distributed system may include not only the function of state but also its
generalized derivatives. As examples, we study the preservation of global solvability for the
nonlinear Navier–Stokes system, the Benjamin–Bona–Mahony–Burgers equation, and also
for certain strongly nonlinear pseudo-parabolic equations.
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1. Introduction

Let 𝑋 be a Banach space. Following [1, Ch. IV, Sect. 1], we shall employ the following
notations for Banach spaces of functions defined on the segment [0;𝑇 ] with values in the space
𝑋.
𝐶𝑘

(︀
[0;𝑇 ];𝑋

)︀
for 𝑘 = 0, 1, . . . is the set of all functions 𝜙 : [0;𝑇 ] → 𝑋 possessing continuous

derivatives up to order 𝑘 equipped with the norm ‖𝜙‖
𝐶𝑘
(︀
[0;𝑇 ];𝑋

)︀ =
𝑘∑︀
𝑗=0

max
𝑡∈[0;𝑇 ]

⃦⃦
𝜙(𝑗)(𝑡)

⃦⃦
𝑋
.

𝐿𝑞
(︀
[0;𝑇 ];𝑋

)︀
for 𝑞 ∈ [1;∞) is the set of all functions 𝜙 : [0;𝑇 ] → 𝑋 measurable in the Bochner

sense, for which the integral
𝑇∫︀
0

⃦⃦
𝜙(𝑡)

⃦⃦𝑞
𝑋
𝑑𝑡 is finite; for the measurability in the Bochner sense

see, for instance, [1, Ch. IV, Sect. 1]. The norm is defined as follows:

‖𝜙‖
𝐿𝑞

(︀
[0;𝑇 ];𝑋

)︀ =

⎛⎝ 𝑇∫︁
0

⃦⃦
𝜙(𝑡)

⃦⃦𝑞
𝑋
𝑑𝑡

⎞⎠
1
𝑞

.
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𝐿∞
(︀
[0;𝑇 ];𝑋

)︀
is the set of all essentially bounded functions 𝜙 : [0;𝑇 ] → 𝑋 measurable in the

Bochner sense. The norm is introduced as ‖𝜙‖
𝐿∞

(︀
[0;𝑇 ];𝑋

)︀ = vrai sup
𝑡∈[0;𝑇 ]

⃦⃦
𝜙(𝑡)

⃦⃦
𝑋
.

We also adopt the following convention. In a phrase like «𝑣 ∈ 𝑉 is an object», the word
«object» concerns each element 𝑣 in a set 𝑉 .
In the present paper we consider a controlled evolution operator equation of second kind in

the Banach space 𝑋

𝜙 = ℱ
[︀
𝑓 [𝑢](𝜙)

]︀
, 𝜙 ∈ 𝑊 [0;𝑇 ] ⊂ 𝐿𝑞

(︀
[0;𝑇 ];𝑋

)︀
,

on a finite time interval [0;𝑇 ], where 𝑢 is control. For this equation we obtain conditions
ensuring stability of existence of global solutions (SEGS). In other words, these conditions
ensure preservation of global solvability under variations of control small with respect to a
variation of the right hand side for a fixed state. In particular, given an operator differential
equations in the Banach space 𝑋 like in [1, Ch. V, Sect. 1], with a fixed right hand side
𝑓 ∈ 𝐿2

(︀
[0;𝑇 ];𝑋

)︀
, then as the operator ℱ , a mapping serves, which maps the right hand side 𝑓

into the solution 𝜙 of this equation for a fixed initial condition. If we consider a similar operator
differential equation with a right hand side depending on a phase variable and control, then we
can represent it as the studied operator equation.
SEGS issue is topical in obtaining necessary conditions of optimality in problems of optimal

control, calculating the gradients of functionals in such problems and justifying corresponding
numerical optimization methods. If there is no information about SEGS while varying the
optimal control, in particular, in obtaining necessary conditions of optimality, one usually
proceeds to considering the pairs «control-state», see, for instance, [2], [3, Ch. 2]. As a result,
one has to treat the state equation as a phase restriction of a special type. This gives rise to
certain technical difficulties; we can mention, for instance, an adapted penalty method proposed
in [2].
In [2], a series of unsolved problems was formulated, namely, a series of controlled distributed

systems was described, for which we failed to obtain necessary optimality conditions by means
of the adapted penalty method. Meanwhile, in [4, Ch. 5, Sect. 2, Subsect. 2], [5, Ch. 3, Sect.
1], some problems from this series were presented, in which the necessary optimality conditions
were obtained by employing SEGS theory. The matter is that if an information on SEGS is
present, one can employ an alternative approach based on considering the functionals in the op-
timization problem as functions depending on control only. While studying here various issues,
corresponding theorems and their generalizations in the functional analysis are to be used, see,
for instance, [6], [7]. In particular, one can employ the technique of control parametrization for
distributed control systems, see [7]. Thus, the presence of SEGS gives additional opportunities
for obtaining necessary optimality conditions in optimal control problems and their numerical
solving.
We observe that the fail of the global solvability of an evolution controlled system associated

with a differential or integro-differential equation is very likely, when the growth order of the
right hand side in the corresponding equation with respect to the phase variable exceeds the
linear growth, see demonstrative examples in [6], [8], [9, Introduction, Sect. 2]. Once the
differential operator involves a nonlinearity, the situation becomes worse, see, for instance, [10],
[11].
In studying various control problems, apart of a simple postulating the global solvability of a

controlled problem for all admissible controls, various researchers employ usually some general
or specific results on global solvability based on Browder-Minty theorem, Lax-Milgram theorem,
Schauder theorem and others, see, for instance, [12]. These results are usually known in the
theory of differential or integro-differential equations of specific form with a non-controlled
right hand side depending nonlinearly on the state variable. A vast literature is devoted to
the global solvability conditions of equations with a non-controlled right hand side, see, for
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instance, [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. At the same time,
while studying the global solvability of initial-boundary problems with a nonlinear right hand
side depending on the control, it makes sense to employ the information on the presence and
nature of this dependence. In particular, it can turn out that the presence or absence of
the global solvability depends essentially on how large the controlled parameters involved in
the nonlinear right hand side of the equation are varied. In many situations one succeeds to
prove that if, for instance, a system is globally solvable for some fixed control, then it keeps
this property for all sufficiently small in a proper sense variations of this control; at the same
time, for some admissible controls there can be no global solvability. Exactly this property
accompanied by the uniqueness of the solution is called the stability of existence of global
solutions or, more generally, the preservation of unique global solvability, see, for instance, the
surveys in [26], [27], [28], [29].
Earlier, in studying the SEGS for controlled distributed systems, there was employed a

method based on reducing these systems to a Volterra functional-operator (operator) equation
in a Lebesgue (or, more generally, in a Banach ideal) space of measurable functions. Then
corresponding abstract results were applied. More details on the history of developing the
method of Volterra operator for obtaining SEGS conditions for controlled distributed systems
can be found in the above cited surveys [26], [27], [28], [29]. In work [29], there was obtained
an SEGS test for initial-boundary value problem related with a controlled semi-linear equation
of a global electric circuit. Here the same idea on reducing to a Volterra functional-operator
equation was employed; the equation was of Hammerstein type. A principle difference from
former results was that the problem did not admit a reduction to an abstract equation in a
Banach ideal space. The equation was considered in a space 𝐶

(︀
[0, 𝑇 ];𝑋

)︀
with some Banach

space 𝑋 of functions defined on a domain Ω ⊂ R𝑛. At the same time, the technique of [29]
can be applied to semi-linear equations only. In [30], there was proved a condition for total
(over all admissible controls) preservation of global solvability of evolution operator equation
of first kind of general form with a controlled additional nonlinearity in a Banach space. The
technique of [30] can be applied also to essentially nonlinear partial differential equations of
evolution type. The matter of the condition in [30] is the total preservation of global solvability
(TPGS) of the mentioned equation was guaranteed by assuming the global solvability for some
majorizing uniformly in all controls integral equation for an unknown function depending on the
time variable only. At that, the majorizing equation was constructed on the base of postulated
estimates for the controlled additional nonlinearity.
The present paper is a result of an essential revisiting of works [29], [30]. First, the results

of [29], [30] can be reformulated as conditions for SEGS and TPGS, respectively, for an evolution
operator equation of second kind and in fact, such approach is more natural. Second, the space
𝐶([0;𝑇 ];𝑋) serving in the cited works as the space, in which the solution is sought, can be
poorly adapted for satisfying made assumptions. Third, the results of [29], [30] allow one
to estimate the solution only in the norm of the space 𝐶([0;𝑇 ];𝑋). At the same time, in
applications, one can need to estimate in norm of the space 𝑊 [0;𝑇 ] (say, Sobolev space) and
to seek the solution in this space. Fourth, assumed apriori pointwise (as 𝑡 ∈ [0;𝑇 ]) estimates
for the solution of the corresponding equation with a fixed right hand side independent on the
phase variable, can be realized not as an integral with a varying upper limit as it was assumed
but only as estimates in the norm of 𝑊 [0;𝑇 ]. Fifth, in [30], the right hand side of the equation
could not involve the generalized derivatives of the state function, but only this function itself.
Exactly improving of the technique [29], [30] according the above remarks is the main result
of the present paper. As examples we consider a controlled nonlinear non-stationary system of
Navier-Stokes equations, Benjamin-Bona-Mahony-Burgers equation, as well as some strongly
nonlinear pseudo-parabolic equations. The results of works [29], [30] here are not applicable in
view of the above remarks, while this is the case the results of the present paper.
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Nevertheless, as in [29], [30], the theorem on preservation the global solvability is proved
by successive continuation of the solution along the time scale as earlier there was used a
continuation along the Volterra chain of the operator in the right hand side of Hammerstein
type equation representing the studied controlled system. The uniqueness of the solution is
proved by a similar continuation of the difference of two assumed solutions corresponding to
the same control.

2. Formulation of main results

Let 𝑋, 𝑌 be real Banach spaces, 𝑇 > 0, 𝑊0[0;𝑇 ] be a closed set in the Banach space
𝑊 [0;𝑇 ], whose elements are the functions with values in 𝑋; in particular, the embedding
𝑊 [0;𝑇 ] ⊂ 𝐿𝑞

(︀
[0;𝑇 ];𝑋

)︀
can hold. More precisely, we assume that a scale of Banach spaces

𝑊 [0; 𝜏 ] is given and respectively, that of closed subsets 𝑊0[0; 𝜏 ] ⊂ 𝑊 [0; 𝜏 ], 𝜏 ∈ (0;𝑇 ]. In
view of practical applications, 𝑊0[0;𝑇 ] is a set of functions in 𝑊 [0;𝑇 ] satisfying some initial
condition (initial-boundary conditions) written in some given form.
Let ℬ

(︀
[0;𝑇 ];𝑌

)︀
be some linear normed space of measurable in the Bochner sense functions

𝑡 ∈ [0;𝑇 ] → 𝑧(𝑡) ∈ 𝑌 , ℬ
(︀
[𝜏 ; 𝜉];𝑌

)︀
be the corresponding induced space of restrictions on [𝜏 ; 𝜉],

0 6 𝜏 < 𝜉 6 𝑇 , and the following natural assumptions hold true:

‖𝑧‖
ℬ
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 ‖𝑧‖
ℬ
(︀
[0;𝑇 ];𝑌

)︀, ‖𝑧‖
ℬ
(︀
[0;𝜉];𝑌

)︀ 6 ‖𝑧‖
ℬ
(︀
[0;𝜏 ];𝑌

)︀ + ‖𝑧‖
ℬ
(︀
[𝜏 ;𝜉];𝑌

)︀, 𝜏 > 0;⃦⃦
𝑧(·)

⃦⃦
𝑌
∈ ℬ[𝜏 ; 𝜉] = ℬ

(︀
[𝜏 ; 𝜉];R

)︀
, ‖𝑧‖

ℬ
(︀
[𝜏 ;𝜉];𝑌

)︀ =
⃦⃦
‖𝑧‖𝑌

⃦⃦
ℬ[𝜏 ;𝜉],

and the sum and the multiplication by a scalar are defined pointwise. In particular, as ℬ[0;𝑇 ],
the spaces 𝐶[0;𝑇 ], 𝐿𝑝[0;𝑇 ], 𝑝 ∈ [1; +∞] can serve. We assume that we are given a family of the
operators ℱ𝜏 : ℬ

(︀
[0; 𝜏 ];𝑌

)︀
→ 𝑊0[0; 𝜏 ], 𝜏 ∈ (0;𝑇 ], ℱ = ℱ𝑇 , satisfying the following conditions:

G1) (Volterra property). For all 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉, 𝑧𝜏 ∈ ℬ
(︀
[0; 𝜏 ];𝑌

)︀
, 𝑧𝜉 ∈ ℬ

(︀
[0; 𝜉];𝑌

)︀
, and

corresponding images 𝜙𝜏 = ℱ𝜏𝑧𝜏 , 𝜙𝜉 = ℱ𝜉𝑧𝜉, the condition 𝑧𝜉(𝑡) = 𝑧𝜏 (𝑡) for almost each

𝑡 ∈ [0; 𝜏 ], implies the identity 𝜙𝜉

⃒⃒⃒
[0;𝜏 ]

= 𝜙𝜏 in the space 𝑊 [0; 𝜏 ].

Hence, for each 𝑧 ∈ ℬ
(︀
[0;𝑇 ];𝑌

)︀
, the equation of form

𝜙 = ℱ [𝑧] (2.1)

possesses a unique local solution 𝜙𝜏 ∈ 𝑊0[0; 𝜏 ], which is determined as 𝜙𝜏 = ℱ𝜏

[︀
𝑧
⃒⃒⃒
[0;𝜏 ]

]︀
.

This property allows us to construct the solution by continuing it from a small segment
to a bigger one.

G2) For all 𝜏, 𝜉 ∈ [0;𝑇 ], 𝜏 < 𝜉, 𝑧𝑗 ∈ ℬ
(︀
[0; 𝜉];𝑌

)︀
, 𝑧1

⃒⃒⃒
[0;𝜏 ]

= 𝑧2

⃒⃒⃒
[0;𝜏 ]

in the case 𝜏 > 0,

‖𝑧𝑗‖ℬ([0;𝜉];𝑌 ) 6 𝜔, and corresponding 𝜙𝑗 = ℱ𝜉[𝑧𝑗], 𝑗 = 1, 2, the inequality

‖𝜙1 − 𝜙2‖𝑊 [0;𝜉] 6 𝒩 (𝜔)𝛼0(𝜉 − 𝜏)‖𝑧1 − 𝑧2‖ℬ([𝜏 ;𝜉];𝑌 ),

holds, where 𝒩 : R+ → R+ is a non-decreasing function, 𝛼0 : R+ → R+ is a continuous
function, and 𝛼0(𝛿) > 0 as 0 < 𝛿 < 𝛿0.

G3) sup
𝜏∈(0;𝑇 ]

⃦⃦
ℱ𝜏 (0)

⃦⃦
𝑊 [0;𝜏 ]

< +∞.

Now we add a dependence on the phase variable and on the control to the right hand side.
Namely, we consider a controlled analogue of equation (2.1):

𝜙 = ℱ
[︀
𝑓 [𝑢](𝜙)

]︀
, 𝜙 ∈ 𝑊 [0;𝑇 ]. (2.2)

Here 𝑢 ∈ 𝑈 is a control, 𝑈 ⊂ 𝒰 is a given set in some, generally speaking arbitrary, space
𝒰 . We assume that for all 𝑢 ∈ 𝑈 the operator 𝑓 [𝑢] = 𝑓𝑇 [𝑢] is well-defined and this operator
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corresponds to the family of the operators 𝑓𝜏 [𝑢] : 𝑊 [0; 𝜏 ] → ℬ
(︀
[0; 𝜏 ];𝑌

)︀
, 𝜏 ∈ (0;𝑇 ], possessing

the following properties:

F1) For all 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉, and 𝜓𝜉 ∈ 𝑊 [0; 𝜉], 𝜓𝜉

⃒⃒⃒
[0;𝜏 ]

= 𝜓𝜏 ∈ 𝑊 [0; 𝜏 ] the identity

𝑓𝜉[𝑢](𝜓𝜉)(𝑡) = 𝑓𝜏 [𝑢](𝜓𝜏 )(𝑡) holds for almost each 𝑡 ∈ [0; 𝜏 ].
F2) For all 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉, 𝜓1, 𝜓2 ∈ 𝑊0[0; 𝜉], ‖𝜓𝑖‖𝑊 [0;𝜉] 6𝑀 , 𝑖 = 1, 2, the inequality⃦⃦

𝑓𝜉[𝑢](𝜓1) − 𝑓𝜉[𝑢](𝜓2)
⃦⃦
ℬ([𝜏 ;𝜉];𝑌 )

6 𝛼1(𝜉 − 𝜏)𝛽1(𝑀)‖𝜓1 − 𝜓2‖𝑊 [0;𝜉]

holds, where 𝛼1 : R+ → R+ is a continuous function, 𝛽1 : R+ → R+ is a non-decreasing
function.

F3) There exists a non-decreasing function 𝛽0 : R+ → R+ such that for all

𝑢, 𝑢 ∈ 𝑈, 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 < 𝜉, 𝛾 > 0, 𝜙 ∈ 𝑊0[0; 𝜏 ],

𝜙 ∈ 𝑊0[0; 𝜉], ‖𝜙‖𝑊 [0;𝜏 ] 6𝑀, ‖𝜙‖𝑊 [0;𝜉] 6𝑀,

in the case

𝜌𝜏,𝜉(𝑢, 𝑢) =
⃦⃦
𝑓𝜉[𝑢](𝜙) − 𝑓𝜉[𝑢](𝜙)

⃦⃦
ℬ([𝜏 ;𝜉];𝑌 )

6 𝛾

there exists a function ̃︀𝑧 = 𝑍[𝜏, 𝜉, 𝛾, 𝑢, 𝑢, 𝜙, 𝜙] ∈ ℬ
(︀
[0; 𝜉];𝑌

)︀
such that

̃︀𝑧 ⃒⃒⃒
[0;𝜏 ]

= 𝑓𝜏 [𝑢](𝜙),
⃦⃦̃︀𝑧 − 𝑓𝜉[𝑢](𝜙)

⃦⃦
ℬ
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝛽0(𝑀)

{︂
𝛾 +

⃦⃦
𝑓𝜏 [𝑢](𝜙) − 𝑓𝜉[𝑢](𝜙)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀}︂ .
Remark 2.1. At first glance, condition F3) can seem to be too exotic and difficult to check.

In fact, as we shall show below, it holds, for instance, for Lebesgue spaces ℬ = 𝐿𝑝, 𝑝 ∈ [1;∞],
and the space of continuous functions ℬ = 𝐶.

Lemma 2.1. Let the space ℬ
(︀
[0; 𝜉];𝑌

)︀
be such that for the characteristic function 𝜒 = 𝜒(𝜏 ;𝜉],

for all 𝑧1 ∈ ℬ
(︀
[0; 𝜏 ];𝑌

)︀
, 𝑧2 ∈ ℬ

(︀
[0; 𝜉];𝑌

)︀
and for extension 𝑧1,𝜉 by zero of the function 𝑧1 on

[0; 𝜉] we have 𝑧1,𝜉 ∈ ℬ
(︀
[0; 𝜉];𝑌

)︀
, 𝜒𝑧2 ∈ ℬ

(︀
[0; 𝜉];𝑌

)︀
. This property obviously holds for the

Lebesgue spaces 𝐿𝑝
(︀
[0; 𝜉];𝑌

)︀
, 𝑝 ∈ [1;∞]. Then condition F3) is satisfied.

Proof. It is sufficient to let

̃︀𝑧(𝑡) =

{︃
𝑓𝜏 [𝑢](𝜙)(𝑡), 𝑡 ∈ [0; 𝜏 ],

𝑓𝜉[𝑢](𝜙)(𝑡), 𝑡 ∈ (𝜏 ; 𝜉].

It is clear that ̃︀𝑧 = 𝑧1,𝜉 + 𝜒𝑧2 ∈ ℬ
(︀
[0; 𝜉];𝑌

)︀
, where 𝑧1 = 𝑓𝜏 [𝑢](𝜙), 𝑧2 = 𝑓𝜉[𝑢](𝜙). At that,

̃︀𝑧 ⃒⃒⃒
[0;𝜏 ]

= 𝑧1,
⃦⃦̃︀𝑧 − 𝑓𝜉[𝑢](𝜙)

⃦⃦
ℬ
(︀
[𝜏 ;𝜉];𝑌

)︀ =
⃦⃦
𝑓𝜉[𝑢](𝜙) − 𝑓𝜉[𝑢](𝜙)

⃦⃦
ℬ([𝜏 ;𝜉];𝑌 )

6 𝛾.

Lemma 2.2. Let ℬ
(︀
[0; 𝜉];𝑌

)︀
= 𝐶

(︀
[0; 𝜉];𝑌

)︀
. Then condition F3) is satisfied.

Proof. We denote

𝑧 = 𝑓𝜏 [𝑢](𝜙), ̂︀𝑧 = 𝑓𝜉[𝑢](𝜙), 𝑧 = 𝑓𝜉[𝑢](𝜙).

By assumptions,

𝜌𝜏,𝜉(𝑢, 𝑢) = ‖̂︀𝑧 − 𝑧‖
𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝛾, 𝛾 > 0.

Since ̂︀𝑧 ∈ 𝐶
(︀
[0; 𝜉];𝑌

)︀
, there exists 𝜂 ∈ (𝜏 ; 𝜉) such that⃦⃦̂︀𝑧(𝑡) − ̂︀𝑧(𝜏)

⃦⃦
𝑌
6 𝛾 for all 𝑡 ∈ [𝜏 ; 𝜂].
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Let 𝑤 : [𝜏 ; 𝜉] → [0; 1] ⊂ R be a continuous function such that 𝑤(𝜏) = 1, 𝑤(𝑡) = 0 for all
𝑡 ∈ [𝜂; 𝜉]. We let

̃︀𝑧(𝑡) =

{︃
𝑧(𝑡), 𝑡 ∈ [0; 𝜏 ],

𝑤(𝑡)𝑧(𝜏) +
(︀
1 − 𝑤(𝑡)

)︀̂︀𝑧(𝑡), 𝑡 ∈ [𝜏 ; 𝜉].

By construction, ̃︀𝑧 ∈ 𝐶
(︀
[0; 𝜉];𝑌

)︀
. We have

‖̃︀𝑧 − 𝑧‖
𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 ‖̃︀𝑧 − ̂︀𝑧‖
𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀ + ‖̂︀𝑧 − 𝑧‖
𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 ‖̃︀𝑧 − ̂︀𝑧‖
𝐶
(︀
[𝜏 ;𝜂];𝑌

)︀ + 𝛾,

since ̃︀𝑧 ⃒⃒
[𝜂;𝜉]

= ̂︀𝑧 ⃒⃒
[𝜂;𝜉]

for an arbitrary function 𝑤(𝑡). For an arbitrary 𝑡 ∈ [𝜏 ; 𝜂] we estimatẽ⃦⃦︀𝑧(𝑡) − ̂︀𝑧(𝑡)
⃦⃦
𝑌

=𝑤(𝑡)
⃦⃦
𝑧(𝜏) − ̂︀𝑧(𝑡)

⃦⃦
𝑌

6
⃦⃦
𝑧(𝜏) − ̂︀𝑧(𝜏)

⃦⃦
𝑌

+
⃦⃦̂︀𝑧(𝜏) − ̂︀𝑧(𝑡)

⃦⃦
𝑌
6 ‖𝑧 − ̂︀𝑧‖

𝐶
(︀
[0;𝜏 ];𝑌

)︀ + 𝛾.

Hence, we obtain:
‖̃︀𝑧 − 𝑧‖

𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 ‖𝑧 − ̂︀𝑧‖
𝐶
(︀
[0;𝜏 ];𝑌

)︀ + 2𝛾.

Theorem 2.1. Assume that Conditions G1) – G3), F1), F2) and the identity 𝛼0(0)𝛼1(0) = 0
are satisfied. Then, for arbitrary 𝑢 ∈ 𝑈 , equation (2.2) can possess at most one solution.

Theorem 2.2. Assume that Conditions G1) – G3), F1) – F3) and the identity 𝛼0(0)𝛼1(0) =
0 are satisfied. Assume also that a control 𝑢 = 𝑢 ∈ 𝑈 gives rise to a global solution 𝜙 = 𝜙 ∈
𝑊 [0;𝑇 ] of equation (2.2). Then there exist numbers 𝜀 > 0 and 𝐶 > 0 such that for each 𝑢 ∈ 𝑈
obeying the estimate

𝜌(𝑢, 𝑢) =
⃦⃦
𝑓 [𝑢](𝜙) − 𝑓 [𝑢](𝜙)

⃦⃦
ℬ([0;𝑇 ];𝑌 )

6 𝜀

there exists a unique global solution 𝜙 ∈ 𝑊 [0;𝑇 ] of equation (2.2) and moreover,

‖𝜙− 𝜙‖𝑊 [0;𝑇 ] 6 𝐶 𝜌(𝑢, 𝑢).

We prove Theorems 2.1, 2.2 in Section 3.

3. Proof of main results

For all 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉, 𝜙 ∈ 𝑊0[0; 𝜏 ] we define Φ[𝜉, 𝜙] as the set of all 𝜂 ∈ 𝑊0[0; 𝜉] such
that

inf
𝜓

‖𝜓 − 𝜂‖𝑊 [0;𝜉] = 0,

where the infimum is taken over all 𝜓 ∈ 𝑊0[0; 𝜉] such that 𝜓
⃒⃒⃒
[0;𝜏 ]

= 𝜙 in the space 𝑊 [0; 𝜏 ].

Lemma 3.1. For all 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉, 𝜙 ∈ 𝑊0[0; 𝜏 ], the set Φ[𝜉, 𝜙] is closed in the space
𝑊 [0; 𝜉].

Proof. In the case Φ[𝜉, 𝜙] = ∅ and also in the case of a finite set the statement is trivial. In
what follows we assume that the set Φ[𝜉, 𝜙] is infinite.
Let {𝜂𝑚} ⊂ Φ[𝜉, 𝜙], ‖𝜂𝑚 − 𝜂0‖𝑊 [0;𝜉] → 0 as 𝑚 → ∞. Since the set 𝑊0[0; 𝜉] is closed in the

space 𝑊 [0; 𝜉], it is clear that 𝜂0 ∈ 𝑊0[0; 𝜉]. We fix an arbitrary number 𝜀 > 0 and we find a
number 𝑚𝜀 ∈ N such that

‖𝜂𝑚 − 𝜂0‖𝑊 [0;𝜉] <
𝜀

2
for all 𝑚 > 𝑚𝜀.

According the definition of the set Φ[𝜉, 𝜙], there exists 𝜓𝜀 ∈ 𝑊0[0; 𝜉] such that

𝜓𝜀

⃒⃒⃒
[0;𝜏 ]

= 𝜙, ‖𝜓𝜀 − 𝜂𝑚𝜀‖𝑊 [0;𝜉] <
𝜀

2
.
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We estimate:

‖𝜓𝜀 − 𝜂0‖𝑊 [0;𝜉] 6 ‖𝜓𝜀 − 𝜂𝑚𝜀‖𝑊 [0;𝜉] + ‖𝜂𝑚𝜀 − 𝜂0‖𝑊 [0;𝜉] < 𝜀.

Since the number 𝜀 > 0 is arbitrary, this means that 𝜂0 ∈ Φ[𝜉, 𝜙].

Lemma 3.2. Assume that conditions F1), F2) are satisfied. Then for all 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉,
𝜙 ∈ 𝑊0[0; 𝜏 ], and respectively, 𝜓1, 𝜓2 ∈ Φ[𝜉, 𝜙], 𝑢 ∈ 𝑈 , we have:⃦⃦

𝑓𝜉[𝑢](𝜓1) − 𝑓𝜉[𝑢](𝜓2)
⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀ = 0. (3.1)

Moreover, for 𝜙𝜉 ∈ 𝑊0[0; 𝜉], 𝜙𝜉

⃒⃒⃒
[0;𝜏 ]

= 𝜙𝜏 ∈ 𝑊0[0; 𝜏 ] we have⃦⃦
𝑓𝜉[𝑢](𝜓𝑠) − 𝑓𝜉[𝑢](𝜙𝜉)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀ 6
⃦⃦
𝑓𝜏 [𝑢](𝜙) − 𝑓𝜏 [𝑢](𝜙𝜏 )

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀, 𝑠 = 1, 2. (3.2)

Proof. 1. Let us prove formula (3.1). Let ‖𝜓𝑠‖𝑊 [0;𝜉] 6 𝑀 , 𝑠 = 1, 2. We choose an arbitrary

number 𝜀 > 0, and according the definition of the set Φ[𝜉, 𝜙], we find ̃︀𝜓𝑠 ∈ 𝑊0[0; 𝜉] such that

̃︀𝜓𝑠 ⃒⃒⃒
[0;𝜏 ]

= 𝜙, 𝛿𝑠 = ‖ ̃︀𝜓𝑠 − 𝜓𝑠‖𝑊 [0;𝜉] 6 1, 𝛼1(𝜉)𝛽1(𝑀 + 1)𝛿𝑠 6
𝜀

2
, 𝑠 = 1, 2.

It is clear that in this case ‖ ̃︀𝜓𝑠‖𝑊 [0;𝜉] 6 𝑀 + 1, 𝑠 = 1, 2. Employing Conditions F1), F2), we
get:⃦⃦
𝑓𝜉[𝑢](𝜓1) − 𝑓𝜉[𝑢](𝜓2)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀ 6
⃦⃦
𝑓𝜉[𝑢]( ̃︀𝜓1) − 𝑓𝜉[𝑢]( ̃︀𝜓2)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀
+

2∑︁
𝑠=1

⃦⃦
𝑓𝜉[𝑢]( ̃︀𝜓𝑠) − 𝑓𝜉[𝑢](𝜓𝑠)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀
6
⃦⃦
𝑓𝜏 [𝑢](𝜙) − 𝑓𝜏 [𝑢](𝜙)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀ + 𝛼1(𝜉)𝛽1(𝑀 + 1)
2∑︁
𝑠=1

𝛿𝑠 6 𝜀.

Since the number 𝜀 is arbitrary, we obtain identity (3.1).
2. Let 𝑠 ∈ 1, 2, ‖𝜓𝑠‖𝑊 [0;𝜉] 6 𝑀 , ‖𝜙𝜉‖𝑊 [0;𝜉] 6 𝑀 . We are going to prove formula (3.2).

We choose an arbitrary number 𝜀 > 0 and according the definition of the set Φ[𝜉, 𝜙], we find̃︀𝜓𝑠 ∈ 𝑊0[0; 𝜉] such that

̃︀𝜓𝑠 ⃒⃒⃒
[0;𝜏 ]

= 𝜙, 𝛿𝑠 = ‖ ̃︀𝜓𝑠 − 𝜓𝑠‖𝑊 [0;𝜉] 6 1, 𝛼1(𝜉)𝛽1(𝑀 + 1)𝛿𝑠 6 𝜀.

It is clear that in this case ‖ ̃︀𝜓𝑠‖𝑊 [0;𝜉] 6𝑀 + 1. Employing Conditions F1), F2), we have:⃦⃦
𝑓𝜉[𝑢](𝜓𝑠) − 𝑓𝜉[𝑢](𝜙𝜉)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀ 6
⃦⃦
𝑓𝜉[𝑢]( ̃︀𝜓𝑠) − 𝑓𝜉[𝑢](𝜓𝑠)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀
+
⃦⃦
𝑓𝜉[𝑢]( ̃︀𝜓𝑠) − 𝑓𝜉[𝑢](𝜙𝜉)

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀
6𝛼1(𝜉)𝛽1(𝑀 + 1)𝛿𝑠 +

⃦⃦
𝑓𝜏 [𝑢](𝜙) − 𝑓𝜏 [𝑢](𝜙𝜏 )

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀
6𝜀+

⃦⃦
𝑓𝜏 [𝑢](𝜙) − 𝑓𝜏 [𝑢](𝜙𝜏 )

⃦⃦
ℬ
(︀
[0;𝜏 ];𝑌

)︀.
Since the number 𝜀 is arbitrary, we arrive at inequality.

In what follows, to avoid bulky notations, we shall omit the subscript 𝜏 in the notation 𝑓𝜏 [𝑢]
since its value is easily recovered from the context.
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Proof of Theorem 2.1. We argue by contrary assuming that a control 𝑢 ∈ 𝑈 gives rise to two
solutions 𝜙 = 𝜙1 and 𝜙 = 𝜙2 of equation (2.2). We denote

𝑧𝑗 = 𝑓 [𝑢](𝜙𝑗), 𝑗 = 1, 2, 𝜔 = max
𝑗=1,2

‖𝑧𝑗‖ℬ([0;𝑇 ];𝑌 ), ℵ𝑠 = max
𝑡∈[0;𝑇 ]

𝛼𝑠(𝑡), 𝑠 = 0, 1,

𝒩𝜔 = 𝒩 (𝜔), 𝛾0 = sup
𝜏∈(0;𝑇 ]

⃦⃦
ℱ𝜏 (0)

⃦⃦
𝑊 [0;𝜏 ]

, 𝑀0 = 𝛾0 + 𝒩𝜔𝜔ℵ0.

Here 𝛾0 < ∞ by Condition G3). We observe that according Condition G2), for all 𝜏 ∈ (0;𝑇 ]
we have: ⃦⃦

𝜙𝑗
⃒⃒
[0;𝜏 ]

⃦⃦
𝑊 [0;𝜏 ]

6
⃦⃦
ℱ𝜏 (0)

⃦⃦
𝑊 [0;𝜏 ]

+
⃦⃦
ℱ𝜏 [𝑧𝑗

⃒⃒
[0;𝜏 ]

] −ℱ𝜏 (0)
⃦⃦
𝑊 [0;𝜏 ]

6𝛾0 + 𝒩𝜔ℵ0‖𝑧𝑗‖ℬ
(︀
[0;𝑇 ];𝑌

)︀ 6𝑀0, 𝑗 = 1, 2.

By Conditions G2), F2), the function 𝛼 = 𝛼0(·)𝛼1(·) is continuous and by the assumption of
the theorem, it is such that 𝛼(0) = 0. This is why there exists a number 𝛿 ∈ (0; 𝛿0) such that
𝒩𝜔𝛼(𝛿)𝛽1(𝑀0) 6 1

2
. We choose an arbitrary partition of the segment [0;𝑇 ] of the form

0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 = 𝑇, 𝑡𝑖 − 𝑡𝑖−1 6 𝛿, 𝑖 = 1, 𝑘.

According Condition G1), we denote

𝑧𝑗,𝑖 = 𝑧𝑗
⃒⃒
[0;𝑡𝑖]

, 𝜙𝑗,𝑖 = 𝜙𝑗
⃒⃒
[0;𝑡𝑖]

∈ 𝑊 [0; 𝑡𝑖].

We consider the segment [0; 𝑡1]. According Condition G1), the identities 𝜙𝑠,1 = ℱ𝑡1 [𝑧𝑠,1],
𝑠 = 1, 2, hold in the space𝑊 [0; 𝑡1]. We are going to prove that 𝜙1,1 = 𝜙2,1 in the space𝑊 [0; 𝑡1].
We denote 𝜂1 = 𝜙1,1 − 𝜙2,1. According Condition G2),

‖𝜂1‖𝑊 [0;𝑡1] 6 𝒩𝜔𝛼0(𝛿)‖𝑧1,1 − 𝑧2,1‖ℬ([0;𝑡1];𝑌 ),

where by Conditions F1), F2),

‖𝑧1,1 − 𝑧2,1‖ℬ([0;𝑡1];𝑌 ) =
⃦⃦
𝑓 [𝑢](𝜙1,1) − 𝑓 [𝑢](𝜙2,1)

⃦⃦
ℬ([0;𝑡1];𝑌 )

6𝛼1(𝛿)𝛽1(𝑀0)
⃦⃦
𝜙1,1 − 𝜙2,1

⃦⃦
𝑊 [0;𝑡1]

.

Therefore,

‖𝜂1‖𝑊 [0;𝑡1] 6 𝒩𝜔𝛼(𝛿)𝛽1(𝑀0)‖𝜂1‖𝑊 [0;𝑡1] 6
1

2
‖𝜂1‖𝑊 [0;𝑡1].

Thus,
1

2
‖𝜂1‖𝑊 [0;𝑡1] 6 0,

that is, 𝜂1 = 0, or 𝜙1,1 = 𝜙2,1 in the space 𝑊 [0; 𝑡1].
Proceeding by induction, we assume that we have proved the identity 𝜙1,𝑗−1 = 𝜙2,𝑗−1 in the

space 𝑊 [0; 𝑡𝑗−1], 𝑗 ∈ 2, 𝑘. In view of this assumption, we are going to prove that 𝜙1,𝑗 = 𝜙2,𝑗

in the space 𝑊 [0; 𝑡𝑗]. According Condition G1), we have 𝜙𝑠,𝑗 = ℱ𝑡𝑗 [𝑧𝑠,𝑗] in the space 𝑊 [0; 𝑡𝑗],
𝑠 = 1, 2. We denote 𝜂𝑗 = 𝜙1,𝑗 − 𝜙2,𝑗. According the induction assumption and Condition F1),
we have:

‖𝑧1,𝑗 − 𝑧2,𝑗‖ℬ([0;𝑡𝑗−1];𝑌 ) =
⃦⃦
𝑓 [𝑢](𝜙1,𝑗−1) − 𝑓 [𝑢](𝜙2,𝑗−1)

⃦⃦
ℬ([0;𝑡𝑗−1];𝑌 )

= 0.

Then by Condition G2),

‖𝜂𝑗‖𝑊 [0;𝑡𝑗 ] 6 𝒩𝜔𝛼0(𝛿)‖𝑧1,𝑗 − 𝑧2,𝑗‖ℬ([𝑡𝑗−1;𝑡𝑗 ];𝑌 ).

Here Condition F2) yields that

‖𝑧1,𝑗 − 𝑧2,𝑗‖ℬ([𝑡𝑗−1;𝑡𝑗 ];𝑌 ) =
⃦⃦
𝑓 [𝑢](𝜙1,𝑗) − 𝑓 [𝑢](𝜙2,𝑗)

⃦⃦
ℬ([𝑡𝑗−1;𝑡𝑗 ];𝑌 )

6 𝛼1(𝛿)𝛽1(𝑀0)
⃦⃦
𝜙1,𝑗 − 𝜙2,𝑗

⃦⃦
𝑊 [0;𝑡𝑗 ]

.

Therefore,

‖𝜂𝑗‖𝑊 [0;𝑡𝑗 ] 6 𝒩𝜔𝛼(𝛿)𝛽1(𝑀0)‖𝜂𝑗‖𝑊 [0;𝑡𝑗 ] 6
1

2
‖𝜂𝑗‖𝑊 [0;𝑡𝑗 ].
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Thus,
1

2
‖𝜂𝑗‖𝑊 [0;𝑡𝑗 ] 6 0,

that is, 𝜂𝑗 = 0 or 𝜙1,𝑗 = 𝜙2,𝑗 in the space 𝑊 [0; 𝑡𝑗].
By induction we conclude that 𝜙1 = 𝜙2 in the space 𝑊 [0;𝑇 ]. The proof is complete.

Proof of Theorem 2.2. Let a number 𝑀 > 0 be arbitrary and fixed,

𝛾0 = sup
𝜏∈(0;𝑇 ]

⃦⃦
ℱ𝜏 (0)

⃦⃦
𝑊 [0;𝜏 ]

<∞

according Condition G3); ℵ𝑠 = max
𝑡∈[0;𝑇 ]

𝛼𝑠(𝑡), 𝑠 = 0, 1,

𝑧 = 𝑓 [𝑢](𝜙), 𝛾1 = ‖𝑧‖
ℬ
(︀
[0;𝑇 ];𝑌

)︀, 𝑀0 = 𝛾0 + 𝒩 (𝛾1)𝛾1ℵ0.

We observe that according Conditions G2), F1), for all 𝜏 ∈ (0;𝑇 ] we have:⃦⃦
𝜙
⃒⃒
[0;𝜏 ]

⃦⃦
𝑊 [0;𝜏 ]

6‖ℱ𝜏 (0)‖𝑊 [0;𝜏 ] +
⃦⃦⃦
ℱ𝜏

[︀
𝑧
⃒⃒
[0;𝜏 ]

]︀
−ℱ𝜏 (0)

⃦⃦⃦
𝑊 [0;𝜏 ]

6𝛾0 + 𝒩 (𝛾1)ℵ0‖𝑧‖ℬ
(︀
[0;𝜏 ];𝑌

)︀ 6𝑀0.

We denote

ℵ2 = ℵ1𝛽1(𝑀1)
{︀

1 + 𝛽0(𝑀1)
}︀
, 𝒩𝜔 = max

{︀
1,𝒩 (𝜔)

}︀
,

𝑀1 = 𝑀 +𝑀0, 𝜔 = 𝛾1 +
(︀
𝛽0(𝑀1) + 1 + ℵ2

)︀
𝑀.

We choose a number 𝜎 > 0 so that 𝜎𝒩𝜔 < 1. After that, employing the continuity of the
function 𝛼 = 𝛼0(·)𝛼1(·), see Conditions G2), F2), as well as the condition 𝛼(0) = 0, we choose
a number 𝛿 ∈ (0; 𝛿0) so that

𝛼(𝛿)𝛽1(𝑀1) < 𝜎.

We choose an arbitrary partition of the segment [0;𝑇 ] of the form

0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 = 𝑇, 𝑡𝑖 − 𝑡𝑖−1 6 𝛿, 𝑖 = 1, 𝑘.

According Condition G1), we denote

𝑧𝑖 = 𝑧
⃒⃒⃒
[0;𝑡𝑖]

, 𝜙𝑖 = 𝜙
⃒⃒⃒
[0;𝑡𝑖]

= ℱ𝑡𝑖 [𝑧𝑖] ∈ 𝑊0[0; 𝑡𝑖].

We note that according Condition F1),

𝜙𝑖 = ℱ𝑡𝑖

[︁
𝑓 [𝑢](𝜙𝑖)

]︁
, 𝑖 = 1, 𝑘.

We define the function ℓ(𝑐) = 𝒩𝜔ℵ0

[︀
𝛽0(𝑀1) + 1 + ℵ2𝑐

]︀
and scalar sequences

𝐶𝑖 =

(︂
1 +

1

1 − 𝜎𝒩𝜔

)︂
ℓ(𝐶𝑖−1), 𝜋𝑖 =

ℓ(𝐶𝑖−1)

1 − 𝜎𝒩𝜔

, 𝑖 = 1, 𝑘, 𝐶0 = 0.

We choose an arbitrary control 𝑢 ∈ 𝑈 so that

0 6 𝜌(𝑢, 𝑢) 6𝑀, 𝐶𝑘𝜌(𝑢, 𝑢) 6𝑀.

Let us show that under such choice, equation (2.2) is solvable.
First of all, we consider the case 𝜌(𝑢, 𝑢) = 0. Then 𝜙 = 𝜙 solves equation (2.2). Indeed,

according Condition G2),⃦⃦⃦
𝜙−ℱ

[︀
𝑓 [𝑢](𝜙)

]︀⃦⃦⃦
𝑊 [0;𝑇 ]

=
⃦⃦⃦
ℱ
[︀
𝑓 [𝑢](𝜙)

]︀
−ℱ

[︀
𝑓 [𝑢](𝜙)

]︀⃦⃦⃦
𝑊 [0;𝑇 ]

6𝒩𝜔ℵ0

⃦⃦
𝑓 [𝑢](𝜙) − 𝑓 [𝑢](𝜙)

⃦⃦
ℬ
(︀
[0;𝑇 ];𝑌

)︀ = 𝒩𝜔ℵ0𝜌(𝑢, 𝑢) = 0.



ON PRESERVATION OF GLOBAL SOLVABILITY . . . 65

Here we have taken into account that⃦⃦
𝑓 [𝑢](𝜙) ± 𝑧

⃦⃦
ℬ
(︀
[0;𝑇 ];𝑌

)︀ 6
⃦⃦
𝑧
⃦⃦
ℬ
(︀
[0;𝑇 ];𝑌

)︀ + 𝜌(𝑢, 𝑢) = 𝛾1 6 𝜔.

This is why in what follows we consider the case 𝜌(𝑢, 𝑢) > 0. The further proof is made in
several steps. In these steps, we shall consider local analogues of equation (2.2):

𝜙 = ℱ𝑡𝑗

[︀
𝑓 [𝑢](𝜙)

]︀
, 𝜙 ∈ 𝑊 [0; 𝑡𝑗]. (ℰ𝑗)

The solvability of equations (ℰ𝑗) in corresponding spaces𝑊 [0; 𝑡𝑗] will be proved by the induction

in 𝑗 = 1, 𝑘.
1. We are going to prove the existence of a function 𝜙 = 𝜙1 ∈ 𝑊0[0; 𝑡1] solving equation (ℰ1)

and obeying the estimate:

‖𝜙1 − 𝜙1‖𝑊 [0;𝑡1] 6 𝐶1𝜌(𝑢, 𝑢).

We define Ψ1 as a set of all 𝜓 ∈ 𝑊0[0; 𝑡1] such that⃦⃦
𝜓 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6 𝜋1𝜌(𝑢, 𝑢), ̃︀𝑧 = 𝑓 [𝑢](𝜙1).

a) Let us show that Ψ1 ̸= ∅. Indeed, 𝜓 = ℱ𝑡1 [̃︀𝑧] ∈ Ψ1.
b) Let us show that the set Ψ1 is closed in the space 𝑊 [0; 𝑡1]. Let {𝜂𝑚} ⊂ Ψ1 and

‖𝜂𝑚 − 𝜂0‖𝑊 [0;𝑡1] → 0 as 𝑚→ ∞, 𝜂0 ∈ 𝑊 [0; 𝑡1].

It is obvious that ⃦⃦
𝜂0 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6‖𝜂0 − 𝜂𝑚‖𝑊 [0;𝑡1] +
⃦⃦
𝜂𝑚 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6‖𝜂𝑚 − 𝜂0‖𝑊 [0;𝑡1] + 𝜋1𝜌(𝑢, 𝑢).

Passing to limit as 𝑚→ ∞, we conclude that⃦⃦
𝜂0 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6 𝜋1𝜌(𝑢, 𝑢).

In view of the closedness of the set 𝑊0[0; 𝑡1] in the space 𝑊 [0; 𝑡1], this means that 𝜂0 ∈ Ψ1.
Thus, the set Ψ1 is closed in 𝑊 [0; 𝑡1].
c) We define an operator 𝐹1 : Ψ1 → 𝑊0[0; 𝑡1] by the formula

𝜂 = 𝐹1[𝜙] = ℱ𝑡1 [𝑧], where 𝑧 = 𝑓 [𝑢](𝜙), 𝜙 ∈ Ψ1.

Let us show that 𝜂 ∈ Ψ1. According Condition F1),

‖̃︀𝑧 − 𝑧1‖ℬ
(︀
[0;𝑡1];𝑌

)︀ =
⃦⃦
𝑓 [𝑢](𝜙1) − 𝑓 [𝑢](𝜙1)

⃦⃦
ℬ
(︀
[0;𝑡1];𝑌

)︀ 6 𝜌(𝑢, 𝑢).

Therefore,

‖̃︀𝑧‖
ℬ
(︀
[0;𝑡1];𝑌

)︀ 6 𝛾1 +𝑀 6 𝜔; ‖𝑧1‖ℬ
(︀
[0;𝑡1];𝑌

)︀ 6 𝛾1 6 𝜔.

We estimate:

‖𝜙− 𝜙1‖𝑊 [0;𝑡1] 6
⃦⃦
𝜙−ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

+
⃦⃦
ℱ𝑡1 [̃︀𝑧] −ℱ𝑡1 [𝑧1]

⃦⃦
𝑊 [0;𝑡1]

.

Hence, employing the definition of the set Ψ1 and Condition G2), we obtain:

‖𝜙− 𝜙1‖𝑊 [0;𝑡1] 6 𝜋1𝜌(𝑢, 𝑢) + 𝒩𝜔ℵ0‖̃︀𝑧 − 𝑧1‖ℬ
(︀
[0;𝑡1];𝑌

)︀ 6
[︀
𝜋1 + ℓ(0)

]︀
𝜌(𝑢, 𝑢),

that is,

‖𝜙− 𝜙1‖𝑊 [0;𝑡1] 6 𝐶1𝜌(𝑢, 𝑢) 6𝑀.

Therefore,

‖𝜙‖𝑊 [0;𝑡1] 6 ‖𝜙1‖𝑊 [0;𝑡1] +𝑀 6𝑀0 +𝑀 = 𝑀1.
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According Condition F2),

‖𝑧‖
ℬ
(︀
[0;𝑡1];𝑌

)︀ =
⃦⃦
𝑓 [𝑢](𝜙) ± 𝑓 [𝑢](𝜙1)

⃦⃦
ℬ
(︀
[0;𝑡1];𝑌

)︀
6ℵ1𝛽1(𝑀1)‖𝜙− 𝜙1‖𝑊 [0;𝑡1] + ‖̃︀𝑧‖

ℬ
(︀
[0;𝑡1];𝑌

)︀
6ℵ1𝛽1(𝑀1)𝑀 +𝑀 + 𝛾1 6 𝜔.

Employing Conditions G2), F2), we obtain:⃦⃦
𝜂 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

=
⃦⃦
ℱ𝑡1 [𝑧] −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6𝒩𝜔𝛼0(𝛿)
⃦⃦
𝑓 [𝑢](𝜙) − 𝑓 [𝑢](𝜙1)

⃦⃦
ℬ
(︀
[0;𝑡1];𝑌

)︀
6𝒩𝜔𝛼(𝛿)𝛽1(𝑀1)‖𝜙− 𝜙1‖𝑊 [0;𝑡1].

Since 𝜎𝒩𝜔 < 1, this yields that⃦⃦
𝜂 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6
[︀
𝜎𝒩𝜔𝜋1 + ℓ(𝐶0)

]︀
𝜌(𝑢, 𝑢) = 𝜋1𝜌(𝑢, 𝑢).

Therefore, 𝜂 ∈ Ψ1 and thus, 𝐹1 : Ψ1 → Ψ1.
d) Let us establish that the operator 𝐹1 is contracting on the set Ψ1. We choose arbitrary

𝜓1, 𝜓2 ∈ Ψ1 and we let

𝑧𝑠 = 𝑓 [𝑢](𝜓𝑠)(𝑡), 𝑡 ∈ [0; 𝑡1], 𝜂𝑠 = 𝐹1[𝜓𝑠] = ℱ𝑡1 [𝑧𝑠] ∈ Ψ1, 𝑠 = 1, 2.

Similar to Subsection 1,c), we have:

‖𝑧𝑠‖ℬ([0;𝑡1];𝑌 ) 6 𝜔, ‖𝜂𝑠‖𝑊 [0;𝑡1] 6𝑀1, 𝑠 = 1, 2.

Employing Condition G2), we estimate as follows:

‖𝜂1 − 𝜂2‖𝑊 [0;𝑡1] 6 𝒩𝜔𝛼0(𝛿) ‖𝑧1 − 𝑧2‖ℬ([0;𝑡1];𝑌 ),

where, according Condition F2),

‖𝑧1 − 𝑧2‖ℬ([0;𝑡1];𝑌 ) 6 𝛼1(𝛿)𝛽1(𝑀1)‖𝜓1 − 𝜓2‖𝑊 [0;𝑡1].

Therefore,

‖𝜂1 − 𝜂2‖𝑊 [0;𝑡1] 6 𝒩𝜔𝛼(𝛿)𝛽1(𝑀1) ‖𝜓1 − 𝜓2‖𝑊 [0;𝑡1] 6 𝒩𝜔𝜎 ‖𝜓1 − 𝜓2‖𝑊 [0;𝑡1],

where 𝒩𝜔𝜎 < 1. This means that the operator 𝐹1 is contracting on the set Ψ1.
e) According the contracting mapping principle, we conclude that equation (ℰ1) is uniquely

solvable in the set Ψ1, that is, it possesses a solution 𝜙1 ∈ 𝑊0[0; 𝑡1] satisfying the estimate:⃦⃦
𝜙1 −ℱ𝑡1 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡1]

6 𝜋1 𝜌(𝑢, 𝑢).

As it was shown in Subsection 1,c), the belonging 𝜙1 ∈ Ψ1 implies the inequalities:

‖𝜙1 − 𝜙1‖𝑊 [0;𝑡1] 6 𝐶1 𝜌(𝑢, 𝑢), ‖𝜙1‖𝑊 [0;𝑡1] 6𝑀1.

2. Proceeding by induction, we assume that we have already proved the existence of a solution
𝜙𝑗−1 ∈ 𝑊0[0; 𝑡𝑗−1] to equation (ℰ𝑗−1), 𝑗 ∈ 2,𝑚, obeying the estimates:

‖𝜙𝑗−1‖𝑊 [0;𝑡𝑗−1] 6𝑀1, ‖𝜙𝑗−1 − 𝜙𝑗−1‖𝑊 [0;𝑡𝑗−1] 6 𝐶𝑗−1 𝜌(𝑢, 𝑢).

We are going to prove that this assumption implies a similar statement for equation (ℰ𝑗).
We define Ψ𝑗 as the set of all 𝜓 ∈ Φ[𝑡𝑗, 𝜙𝑗−1] such that⃦⃦

𝜓 −ℱ𝑡𝑗 [̃︀𝑧]
⃦⃦
𝑊 [0;𝑡𝑗 ]

6 𝜋𝑗 𝜌(𝑢, 𝑢), ̃︀𝑧 = 𝑍[𝑡𝑗−1, 𝑡𝑗, 𝛾, 𝑢, 𝑢, 𝜙𝑗−1, 𝜙𝑗], (3.3)

and in view of Condition F3),̃︀𝑧 ∈ ℬ
(︀
[0; 𝑡𝑗];𝑌

)︀
, ̃︀𝑧 ⃒⃒

[0;𝑡𝑗−1]
= 𝑓 [𝑢](𝜙𝑗−1), 𝛾 = 𝜌(𝑢, 𝑢).
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a) Let us show that Ψ𝑗 ̸= ∅. Indeed, 𝜓 = ℱ𝑡𝑗 [̃︀𝑧] ∈ 𝑊0[0; 𝑡𝑗] obeys estimate (3.3) and by
Condition G1),

𝜓
⃒⃒⃒
[0;𝑡𝑗−1]

= ℱ𝑡𝑗−1

[︀̃︀𝑧 ⃒⃒
[0;𝑡𝑗−1]

]︀
= ℱ𝑡𝑗−1

[︀
𝑓 [𝑢](𝜙𝑗−1)

]︀
= 𝜙𝑗−1.

Therefore, 𝜓 ∈ Φ[𝑡𝑗, 𝜙𝑗−1], and hence, 𝜓 ∈ Ψ𝑗.
b) In view of Lemma 3.1, the closedness of the set Ψ𝑗 can be proven in the same way how

this was done for the set Ψ1.
c) We define an operator 𝐹𝑗 : Ψ𝑗 → 𝑊0[0; 𝑡𝑗] by the formula

𝜂 = 𝐹𝑗[𝜙] = ℱ𝑡𝑗 [𝑧], where 𝑧 = 𝑓 [𝑢](𝜙), 𝜙 ∈ Ψ𝑗.

Let us show that 𝜂 ∈ Ψ𝑗. According (3.3) and Conditions F3), F1), F2),

‖̃︀𝑧 − 𝑧𝑗‖ℬ
(︀
[𝑡𝑗−1;𝑡𝑗 ];𝑌

)︀ 6𝛽0(𝑀1)
(︁
𝜌(𝑢, 𝑢) +

⃦⃦
𝑓 [𝑢](𝜙𝑗−1) − 𝑓 [𝑢](𝜙𝑗−1)

⃦⃦
ℬ
(︀
[0;𝑡𝑗−1];𝑌

)︀)︁
6𝛽0(𝑀1)

{︁
𝜌(𝑢, 𝑢) + 𝛽1(𝑀1)ℵ1‖𝜙𝑗−1 − 𝜙𝑗−1‖𝑊 [0;𝑡𝑗−1]

}︁
.

In the same, according Conditions F2), F1),

‖̃︀𝑧 − 𝑧𝑗‖ℬ
(︀
[0;𝑡𝑗−1];𝑌

)︀ =
⃦⃦
𝑓 [𝑢](𝜙𝑗−1) − 𝑓 [𝑢](𝜙𝑗−1) ± 𝑓 [𝑢](𝜙𝑗−1)

⃦⃦
ℬ
(︀
[0;𝑡𝑗−1];𝑌

)︀
6𝛽1(𝑀1)ℵ1‖𝜙𝑗−1 − 𝜙𝑗−1‖𝑊 [0;𝑡𝑗−1] + 𝜌(𝑢, 𝑢).

Thus,
‖̃︀𝑧 − 𝑧𝑗‖ℬ

(︀
[0;𝑡𝑗 ];𝑌

)︀ 6
{︀
𝛽0(𝑀1) + 1

}︀
𝜌(𝑢, 𝑢) + ℵ2‖𝜙𝑗−1 − 𝜙𝑗−1‖𝑊 [0;𝑡𝑗−1],

and by the induction assumption,

‖̃︀𝑧 − 𝑧𝑗‖ℬ
(︀
[0;𝑡𝑗 ];𝑌

)︀ 6
{︁
𝛽0(𝑀1) + 1 + ℵ2𝐶𝑗−1

}︁
𝜌(𝑢, 𝑢) =

ℓ(𝐶𝑗−1)

𝒩𝜔ℵ0

𝜌(𝑢, 𝑢).

In particular, taking into consideration that

𝐶𝑗−1𝜌(𝑢, 𝑢) 6 𝐶𝑘𝜌(𝑢, 𝑢) 6𝑀, 𝜌(𝑢, 𝑢) 6𝑀,

we have
‖̃︀𝑧 − 𝑧𝑗‖ℬ

(︀
[0;𝑡𝑗 ];𝑌

)︀ 6
[︀
𝛽0(𝑀1) + 1 + ℵ2

]︀
𝑀.

Therefore,

‖̃︀𝑧‖
ℬ
(︀
[0;𝑡𝑗 ];𝑌

)︀ 6 𝛾1 +
[︀
𝛽0(𝑀1) + 1 + ℵ2

]︀
𝑀 6 𝜔, ‖𝑧𝑗‖ℬ

(︀
[0;𝑡𝑗 ];𝑌

)︀ 6 𝛾1 6 𝜔.

We estimate:

‖𝜙− 𝜙𝑗‖𝑊 [0;𝑡𝑗 ] 6
⃦⃦
𝜙−ℱ𝑡𝑗 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡𝑗 ]

+
⃦⃦
ℱ𝑡𝑗 [̃︀𝑧] −ℱ𝑡𝑗 [𝑧𝑗]

⃦⃦
𝑊 [0;𝑡𝑗 ]

.

By the definition of the set Ψ𝑗 and Condition G2), we obtain:

‖𝜙− 𝜙𝑗‖𝑊 [0;𝑡𝑗 ] 6 𝜋𝑗𝜌(𝑢, 𝑢) + 𝒩𝜔ℵ0‖̃︀𝑧 − 𝑧𝑗‖ℬ
(︀
[0;𝑡𝑗 ];𝑌

)︀ 6
[︀
𝜋𝑗 + ℓ(𝐶𝑗−1)

]︀
𝜌(𝑢, 𝑢), (3.4)

that is,
‖𝜙− 𝜙𝑗‖𝑊 [0;𝑡𝑗 ] 6 𝐶𝑗𝜌(𝑢, 𝑢) 6𝑀.

Hence,
‖𝜙‖𝑊 [0;𝑡𝑗 ] 6 ‖𝜙𝑗‖𝑊 [0;𝑡𝑗 ] +𝑀 6𝑀0 +𝑀 = 𝑀1.

According Conditions F2), F1),

‖𝑧‖
ℬ
(︀
[0;𝑡𝑗 ];𝑌

)︀ =
⃦⃦
𝑓 [𝑢](𝜙) ± 𝑓 [𝑢](𝜙𝑗)

⃦⃦
ℬ
(︀
[0;𝑡𝑗 ];𝑌

)︀
6ℵ1𝛽1(𝑀1)‖𝜙− 𝜙𝑗‖𝑊 [0;𝑡𝑗 ] +

⃦⃦
𝑓 [𝑢](𝜙𝑗) ± 𝑓 [𝑢](𝜙𝑗)

⃦⃦
ℬ
(︀
[0;𝑡𝑗 ];𝑌

)︀
6ℵ1𝛽1(𝑀1)𝑀 +𝑀 + 𝛾1 6 𝜔.
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Since
𝜙 ∈ Φ[𝑡𝑗, 𝜙𝑗−1], 𝜓 = ℱ𝑡𝑗 [̃︀𝑧] ∈ Φ[𝑡𝑗, 𝜙𝑗−1]

see Subsection 2,a), by Lemma 3.2, see (3.1), we get:

𝑧
⃒⃒⃒
[0;𝑡𝑗−1]

= 𝑓 [𝑢](𝜙)
⃒⃒⃒
[0;𝑡𝑗−1]

= 𝑓 [𝑢](𝜓)
⃒⃒⃒
[0;𝑡𝑗−1]

.

At that, as it was shown in Subsection 2,a), 𝜓
⃒⃒⃒
[0;𝑡𝑗−1]

= 𝜙𝑗−1. Hence, according Condition F1),

𝑧
⃒⃒⃒
[0;𝑡𝑗−1]

= 𝑓 [𝑢](𝜙𝑗−1) = ̃︀𝑧 ⃒⃒⃒
[0;𝑡𝑗−1]

. (3.5)

In view of the established facts, we employ Conditions G2), F2), we get:⃦⃦
𝜂 −ℱ𝑡𝑗 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡𝑗 ]

=
⃦⃦
ℱ𝑡𝑗 [𝑧] −ℱ𝑡𝑗 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡𝑗 ]

6𝒩𝜔𝛼0(𝛿)
⃦⃦
𝑓 [𝑢](𝜙) − 𝑓 [𝑢](𝜙𝑗)

⃦⃦
ℬ
(︀
[𝑡𝑗−1;𝑡𝑗 ];𝑌

)︀
6𝒩𝜔𝛼(𝛿)𝛽1(𝑀1)‖𝜙− 𝜙𝑗‖𝑊 [0;𝑡𝑗 ].

Hence, by (3.4) and the inequalities 𝛼(𝛿)𝛽1(𝑀1) 6 𝜎, 𝜎𝒩𝜔 < 1, we get:⃦⃦
𝜂 −ℱ𝑡𝑗 [̃︀𝑧]

⃦⃦
𝑊 [0;𝑡𝑗 ]

6
[︀
𝜎𝒩𝜔𝜋𝑗 + ℓ(𝐶𝑗−1)

]︀
𝜌(𝑢, 𝑢) = 𝜋𝑗𝜌(𝑢, 𝑢).

Thus, 𝜂 obeys estimate (3.3).
Let us show that 𝜂 ∈ Φ[𝑡𝑗, 𝜙𝑗−1]. Indeed, by (3.5), Condition G1) and induction assumption,

we conclude that this property holds in a stronger form:

𝜂
⃒⃒⃒
[0;𝑡𝑗−1]

= ℱ𝑡𝑗−1

[︁
𝑧
⃒⃒
[0;𝑡𝑗−1]

]︁
= ℱ𝑡𝑗−1

[︁
𝑓 [𝑢](𝜙𝑗−1)

]︁
= 𝜙𝑗−1. (3.6)

Thus, 𝜂 ∈ Ψ𝑗, and hence, 𝐹𝑗 : Ψ𝑗 → Ψ𝑗.
d) Let us show that the operator 𝐹𝑗 is contracting on the set Ψ𝑗. We choose arbitrary 𝜓1,

𝜓2 ∈ Ψ𝑗 and we let

𝑧𝑠 = 𝑓 [𝑢](𝜓𝑠), 𝜂𝑠 = 𝐹𝑗[𝜓𝑠] = ℱ𝑡𝑗 [𝑧𝑠], 𝑠 = 1, 2.

Similar to Subsection 2,c) we have:

‖𝑧𝑠‖ℬ([0;𝑡𝑗 ];𝑌 ) 6 𝜔, ‖𝜂𝑠‖𝑊 [0;𝑡𝑗 ] 6𝑀1, 𝑠 = 1, 2.

In view of Lemma 3.2, see (3.1), we get:

𝑧1

⃒⃒⃒
[0;𝑡𝑗−1]

= 𝑓 [𝑢](𝜓1)
⃒⃒⃒
[0;𝑡𝑗−1]

= 𝑓 [𝑢](𝜓2)
⃒⃒⃒
[0;𝑡𝑗−1]

= 𝑧2

⃒⃒⃒
[0;𝑡𝑗−1]

since 𝜓𝑠 ∈ Φ[𝑡𝑗, 𝜙𝑗−1], 𝑠 = 1, 2. This is why, by employing Conditions G2), F2), we obtain:

‖𝜂1 − 𝜂2‖𝑊 [0;𝑡𝑗 ] 6𝒩𝜔𝛼0(𝛿) ‖𝑧1 − 𝑧2‖ℬ([𝑡𝑗−1;𝑡𝑗 ];𝑌 ) = 𝒩𝜔𝛼0(𝛿) ‖𝑓 [𝑢](𝜓1) − 𝑓 [𝑢](𝜓2)‖ℬ([𝑡𝑗−1;𝑡𝑗 ];𝑌 )

6𝒩𝜔𝛼(𝛿)𝛽1(𝑀1) ‖𝜓1 − 𝜓2‖𝑊 [0;𝑡𝑗 ] 6 𝒩𝜔𝜎‖𝜓1 − 𝜓2‖𝑊 [0;𝑡𝑗 ],

where 𝒩𝜔𝜎 < 1. This means that the operator 𝐹𝑗 is contracting on the set Ψ𝑗.
e) By the contracting mapping principle, we conclude that equation (ℰ𝑗) has a unique solution

in the set Ψ𝑗, that is, a solution 𝜙𝑗 ∈ Φ[𝑡𝑗, 𝜙𝑗−1] satisfying the estimates

‖𝜙𝑗 − 𝜙𝑗‖𝑊 [0;𝑡𝑗 ] 6 𝐶𝑗 𝜌(𝑢, 𝑢), ‖𝜙𝑗‖𝑊 [0;𝑡𝑗 ] 6𝑀1,

which are obtained are similar to (3.4) just by using that 𝜙𝑗 ∈ Ψ𝑗. Moreover, similar to relation

(3.6) we obtain: 𝜙𝑗

⃒⃒⃒
[0;𝑡𝑗−1]

= 𝜙𝑗−1.

3. By induction we conclude that a similar statement holds for 𝑗 = 𝑘. And this means that
equation (2.2) has a solution 𝜙 ∈ 𝑊0[0;𝑇 ] satisfying the estimates:

‖𝜙‖𝑊 [0;𝑇 ] 6𝑀1, ‖𝜙− 𝜙‖𝑊 [0;𝑇 ] 6 𝐶𝑘 𝜌(𝑢, 𝑢).
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The uniqueness of solution in the space𝑊 [0;𝑇 ] follows Theorem 2.1. The proof is complete.

4. Example: initial boundary value problem for Navier-Stokes system

Let Ω ⊂ R3 be a bounded domain with a boundary 𝜕Ω = 𝑆 ∈ 𝐶2, 𝑇 > 0, 𝑝, 𝑟 > 1, 𝑄𝑇 =
Ω × [0;𝑇 ]. Following [31], apart of standard Lebesgue spaces 𝐿𝑝(Ω), 𝐿𝑝(𝑄𝑇 ) and anisotropic
Lebesgue spaces 𝐿𝑝,𝑟(𝑄𝑇 ) = 𝐿𝑟

(︀
[0;𝑇 ];𝐿𝑝(Ω)

)︀
, we shall make use of the following functional

spaces.
1) The Sobolev space 𝑊 [0;𝑇 ] = 𝑊 2,1

𝑝 (𝑄𝑇 ) with the norm

‖𝜙‖𝑊 [0;𝑇 ] =
∑︁
|𝜇|62

‖𝜕𝜇𝜙‖𝑝,𝑄𝑇
+ ‖𝜕𝑡𝜙‖𝑝,𝑄𝑇

,

where ‖ · ‖𝑝,𝑄𝑇
= ‖ · ‖𝐿𝑝(𝑄𝑇 ), 𝜇 = (𝜇1, 𝜇2, 𝜇3) is a multi-index,

|𝜇| =
3∑︁
𝑖=1

𝜇𝑖, 𝜕𝜇𝜙 =
𝜕|𝜇|𝜙

𝜕𝑥𝜇11 𝜕𝑥
𝜇2
2 𝜕𝑥

𝜇3
3

, 𝜕𝑡𝜙 =
𝜕𝜙

𝜕𝑡
,

where all derivatives are treated in the generalized sense. We shall also employ the following
notation for the norm: ‖ · ‖𝑝,𝑟,𝑄𝑇

= ‖ · ‖𝐿𝑝,𝑟(𝑄𝑇 ).

2) The symbol 𝐽
2− 2

𝑝
𝑝 (Ω) denotes the closure of the set of smooth compactly supported

solenoidal vectors vanishing on 𝑆 with respect to the norm 𝑊
2− 2

𝑝
𝑝 (Ω), see. [31]. An equiva-

lent norm in 𝐽
2− 2

𝑝
𝑝 (Ω) is

|||𝜙|||𝑝,Ω = inf
𝜓

‖𝜓‖𝑊 [0;1],

where the infimum is taken over all continuations 𝜓(𝑥, 𝑡) of a vector 𝜙 on the set 𝑄1. It can be
shown that for each given 𝜙 in the considered space at least one mentioned continuation exists.
3) The classes 𝐺𝑝(Ω) and 𝐽𝑝(Ω) are defined as follows [31]. Each smooth compactly supported

vector 𝑓(𝑥) can be represented as a sum of two terms orthogonal in 𝐿2(Ω):

𝑓(𝑥) = ∇𝜙(𝑥) + 𝑔(𝑥), where ∇ · 𝑔 = 0, 𝑔 · 𝑛(𝑥)
⃒⃒⃒
𝑆
= 0, (4.1)

𝑛(𝑥) is the unit outward normal,

∆𝜙 = ∇ · 𝑓(𝑥),
𝜕𝜙

𝜕𝑛

⃒⃒⃒
𝑆
= 𝑓 · 𝑛

⃒⃒⃒
𝑆
,

and ∇𝜙 and 𝑔 for all ∇Φ ∈ 𝐿𝑝′(Ω) satisfy the identities:

(∇𝜙,∇Φ) = (𝑓,∇Φ), (𝑔,∇Φ) = 0, (4.2)

where

(𝜙, 𝜓) =

∫︁
Ω

𝜙 · 𝜓 𝑑𝑥 =
3∑︁
𝑖=1

∫︁
Ω

𝜙𝑖(𝑥)𝜓𝑖(𝑥) 𝑑𝑥.

By 𝐺𝑝(Ω) we denote the set of all ∇𝜙 ∈ 𝐿𝑝(Ω), while 𝐽𝑝(Ω) stands for the set of all vectors
in 𝑔 ∈ 𝐿𝑝(Ω) obeying identity (4.2). We note that in [31] the notations 𝐿3

𝑝(Ω) for the space of
vector functions and 𝐿𝑝(Ω) for the space of scalar functions are not distinguished. This is why,
to have a better accordance with [31], we also adopt the same convention.

4) The classes 𝐺𝑝(𝑄𝑇 ) and 𝐽𝑝(𝑄𝑇 ) are subspaces of 𝐿𝑝(𝑄𝑇 ) consisting of the vectors belonging

to 𝐺𝑝(Ω) and 𝐽𝑝(Ω) for almost each 𝑡 ∈ [0;𝑇 ]. Relation (4.1) means that

𝐿𝑝(Ω) = 𝐺𝑝(Ω) ⊕ 𝐽𝑝(Ω), 𝐿𝑝(𝑄𝑇 ) = 𝐺𝑝(𝑄𝑇 ) ⊕ 𝐽𝑝(𝑄𝑇 ).

Following [31], we shall employ the notations: 𝑃𝐺 is the operator of projecting 𝐿𝑝(𝑄𝑇 ) →
𝐺𝑝(𝑄𝑇 ), 𝑃𝐽 is the operator of projecting 𝐿𝑝(𝑄𝑇 ) → 𝐽𝑝(𝑄𝑇 ).
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First of all, following [31], we consider an initial boundary value problem for a linearized
Navier-Stokes system:

𝜕𝜙

𝜕𝑡
− 𝜈∆𝜙+ 𝑎(𝑥, 𝑡)𝜙+

3∑︁
𝑘=1

𝑎𝑘(𝑥, 𝑡)𝜙𝑥𝑘 + ∇𝒫 = 𝑧(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 ∈ [0;𝑇 ], (4.3)

∇ · 𝜙 = 0, that is div𝜙 = 0, (4.4)

𝜙
⃒⃒⃒
𝑥∈𝑆

= 0, 𝑡 ∈ [0;𝑇 ]; 𝜙
⃒⃒⃒
𝑡=0

= 𝜙0(𝑥), 𝑥 ∈ Ω. (4.5)

Here 𝜙(𝑥, 𝑡) =
(︀
𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡), 𝜙3(𝑥, 𝑡)

)︀
is the velocity field of a liquid, 𝒫(𝑥, 𝑡) is a pressure,

𝜙 and 𝒫 are unknowns, 𝑎(𝑥, 𝑡), 𝑎𝑘(𝑥, 𝑡) are given functions such that

‖𝑎‖𝑠,𝜎,𝑄𝑇
+

3∑︁
𝑗=1

‖𝑎𝑗‖𝑠1,𝜎1,𝑄𝑇
6𝑀,

where

‖𝑎‖𝑠,𝜎,𝑄𝑇
= max

𝑘,𝑚
‖𝑎𝑘,𝑚‖𝑠,𝜎,𝑄𝑇

,
3

2𝑠
+

1

𝜎
< 1,

3

2𝑠1
+

1

𝜎1
<

1

2
;

𝑧 = (𝑧1, 𝑧2, 𝑧3) ∈ 𝐿𝑝(𝑄𝑇 ) is the density of external fields, 𝜈 is the viscosity coefficient. In [31] a
solution to problem (4.3)–(4.5) was constructed in two ways:
1) as a limit of classical solutions in the norm of an appropriate space [31, Sect. 4];
2) as a solution to Cauchy problem for an evolution operator differential equation in the

space 𝐽𝑝(Ω).
But the result, namely, the conditions of the existence and the uniqueness and the estimates
for the solutions, is the same for both ways.
Given a function 𝑧 ∈ 𝐿𝑝(𝑄𝑇 ), we get: 𝑧 = 𝑃𝐺𝑧 + 𝑃𝐽𝑧. Here 𝑃𝐺𝑧 is added to the vector

∇𝒫 , and after that 𝑧 in the right hand side is treated as 𝑃𝐽𝑧. We note that the operator 𝑃𝐽 is
bounded, see [31, Thm. 2.2].
A solution to problem (4.3)–(4.5) is treated as in [31, Sect. 5]. According that approach, we

seek it as a pair 𝜙 ∈ 𝑊 [0;𝑇 ], ∇𝒫 ∈ 𝐿𝑝(𝑄𝑇 ). The following statement holds [31, Thm. 4.2,
Cor. 2, Sect. 5].

Lemma 4.1. Under the above assumptions, for each pair 𝑧 ∈ 𝐿𝑝(𝑄𝑇 ), 𝜙0 ∈ 𝐽
2− 2

𝑝
𝑝 (Ω) problem

(4.3)–(4.5) possesses a unique solution 𝜙 ∈ 𝑊 [0;𝑇 ], ∇𝒫 ∈ 𝐿𝑝(𝑄𝑇 ), and the estimate holds true:

‖𝜙‖𝑊 [0;𝑇 ] + ‖∇𝒫‖𝑝,𝑄𝑇
6 𝐶1

(︀
1 + 𝑒𝛾𝑇

)︀{︀
|||𝜙0|||𝑝,Ω + ‖𝑧‖𝑝,𝑄𝑇

}︀
, (4.6)

where 𝐶1, 𝛾 > 0 are constants independent of 𝑇 , 𝜙0, 𝑧.

Remark 4.1. The proof of estimate (4.6) in [31] employs implicitly, with no explanations,
an inequality of the form

𝑞𝑏𝑞−1(𝑐1𝑎+ 𝑐2𝑏) 6 𝛾𝑞𝑏𝑞 + 𝑐3𝑎
𝑞 for all 𝑎, 𝑏 > 0 (4.7)

as 𝛾 > 𝑐2. In the next statement we establish this inequality.

Lemma 4.2. Let 𝛾 > 𝑐2, 𝑐1, 𝑐2 > 0, 𝑞 > 1. There exists a constant 𝑐3 = 𝑐3(𝑞, 𝛾, 𝑐1, 𝑐2) > 0
such that inequality (4.7) holds for all 𝑎, 𝑏 > 0.

Proof. In the cases 𝑎 = 0, 𝑏 = 0, 𝑞 = 1 the statement is trivial. This is why in suppose that
𝑎 > 0, 𝑏 > 0, 𝑞 > 1. We consider the left hand side of inequality (4.7):

𝑞𝑏𝑞−1(𝑐1𝑎+ 𝑐2𝑏) = 𝛾𝑞𝑏𝑞 + (𝛾 − 𝑐2)𝑞𝑏
𝑞−1

(︂
𝑐1

𝛾 − 𝑐2
𝑎− 𝑏

)︂
.
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We denote 𝛽 =
𝑐1

𝛾 − 𝑐2
. It is sufficient to show that

𝛽𝑎𝑏𝑞−1 − 𝑏𝑞 6 𝛼𝑎𝑞,

that is,

𝛽
(︁𝑎
𝑏

)︁
6 𝛼

(︁𝑎
𝑏

)︁𝑞
+ 1 for all 𝑎, 𝑏 > 0, (4.8)

for some 𝛼 > 0. In this case, inequality (4.7) holds true with 𝑐3 = 𝛼𝑞(𝛾 − 𝑐2).
We consider the function 𝑓(𝑡) = 1+ 𝑡𝑞−𝛽𝑡. It is clear that 𝑓(0) = 1 > 0, and by the theorem

on stability of the sign of a continuous function, there exists 𝑡 > 0 such that 𝑓(𝑡) > 0 for all
𝑡 ∈ [0; 𝑡].
In what follows we consider two cases:
1) 𝑡 =

𝑎

𝑏
< 𝑡. Then (4.8) holds as 𝛼 = 1, and thus, (4.7) holds true.

2) 𝑡 =
𝑎

𝑏
> 𝑡, that is, 𝑏 6

𝑎

𝑡
. Therefore,

𝑞𝑏𝑞−1
(︀
𝑐1𝑎− (𝛾 − 𝑐2)𝑏

)︀
6 𝑞𝑏𝑞−1𝑐1𝑎 6

𝑞

𝑡
𝑞−1 𝑐1𝑎

𝑞,

that is, (4.7) holds for 𝑐3 =
𝑞𝑐1

𝑡
𝑞−1 .

Thus, we can take 𝑐3 = max

{︂
𝑞(𝛾 − 𝑐2),

𝑞𝑐1

𝑡
𝑞−1

}︂
. The proof is complete.

The statement and the proof of Theorem 2.1 in [31] and the proof of Lemma 10.1 in [31]
imply the following lemma.

Lemma 4.3. Let 𝜏 ∈ (0; 𝜏 ], 𝜙 ∈ 𝑊 [0; 𝜏 ]. If 𝑞1, 𝑟1, 𝑞2, 𝑟2 > 𝑝 > 1 are such that the conditions

𝜌1 = 1 − 5

2𝑝
+

3

2𝑞1
+

1

𝑟1
> 0, 𝜌2 =

1

2
− 5

2𝑝
+

3

2𝑞2
+

1

𝑟2
> 0, (4.9)

hold, where as 𝑝𝑖 = ∞ or 𝑟𝑖 = ∞, 𝑖 = 1, 2, the inequality are assumed to be strict, then the
estimates

‖𝜙𝑖‖𝑞1,𝑟1,𝑄𝜏 6 𝑐
{︀
‖𝜙‖𝑊 [0;𝜏 ] + |||𝜙(·, 0)|||𝑝,Ω

}︀
, (4.10)

3∑︁
𝑖=1

‖𝜙𝑥𝑖‖𝑞2,𝑟2,𝑄𝜏 6 𝑐
{︀
‖𝜙‖𝑊 [0;𝜏 ] + |||𝜙(·, 0)|||𝑝,Ω

}︀
, (4.11)

hold true. Here 𝑐 is a constant independent of 𝜏 , 𝜙 but depending of the domain Ω.

Let 𝜏 ∈ (0;𝑇 ], 𝜙0 ∈ 𝐽
2− 2

𝑝
𝑝 (Ω) be fixed but arbitrary. We denote 𝑌 = 𝐿𝑝(Ω), 𝑊0[0; 𝜏 ] is the

set of all 𝜙 ∈ 𝑊 [0; 𝜏 ] such that

|||𝜙(·, 0) − 𝜙0|||𝑝,Ω = 0.

It is clear that

𝐿𝑝(𝑄𝜏 ) = 𝐿𝑝
(︀
[0; 𝜏 ];𝑌

)︀
≡ ℬ

(︀
[0; 𝜏 ];𝑌

)︀
.

The numbers 𝑞1, 𝑟1, 𝑞2, 𝑟2 are chosen as in Lemma 4.3. We define an operator ℱ𝜏 : 𝐿𝑝(𝑄𝜏 ) →
𝑊0[0; 𝜏 ] as follows. Given 𝑧 ∈ 𝐿𝑝(𝑄𝜏 ), we find a pair 𝜙 ∈ 𝑊0[0; 𝜏 ] and ∇𝒫 ∈ 𝐿𝑝(𝑄𝜏 ) as a
solution to problem (4.3)–(4.5) for 𝑇 = 𝜏 . After that we let ℱ𝜏 [𝑧] = 𝜙. By integral represen-
tation (5.5) in [31] we then conclude that Condition G1) holds true. Condition G2) is satisfied
by Lemma 4.1 with 𝒩 (𝜔) = 𝒩 = 𝐶1(1 + 𝑒𝛾𝑇 ), 𝛼0 ≡ 1. Condition G3) obviously holds since
according Lemma 4.1,

‖ℱ𝜏 (0)‖𝑊 [0;𝜏 ] 6 𝒩|||𝜙0|||𝑝,Ω.
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Then we consider problem (4.4) – (4.5) for a non-controlled nonlinear Navier-Stokes system

𝜕𝜙

𝜕𝑡
− 𝜈∆𝜙+ 𝑎(𝑥, 𝑡)𝜙+

3∑︁
𝑘=1

𝑎𝑘(𝑥, 𝑡)𝜙𝑥𝑘 + ∇𝒫 = 𝑓 [𝜙](𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 , (4.12)

where

𝑓 [𝜙](𝑥, 𝑡) = 𝑔(𝑥, 𝑡) −
3∑︁

𝑘=1

𝜙𝑘𝜙𝑥𝑘 , 𝑔 ∈ 𝐿𝑝(𝑄𝑇 ), 𝑝 >
5

3
.

We are going to obtained needed estimate for the right hand side 𝑓 . At that we shall make use
some constructions made in [31, Sect. 10]. We find numbers the 𝜎, 𝑞 > 1 by the conditions:

max

{︂
7

2𝑝
− 3

2
, 0

}︂
6

1

𝜎
<

1

𝑝
, (4.13)

1 +
3

2𝑝𝑞
− 5

2𝑝
> 0,

1

2
+

3

2𝑝𝑞′
− 5

2𝑝
> 0, (4.14)

where 𝑞′ is dual to 𝑞. Let us show that system (4.13), (4.14) is compatible. We take, for
instance, 𝑞 = 2. Then 𝑞′ = 2 and condition (4.14) becomes:

1

2
+

3

4𝑝
− 5

2𝑝
> 0 ⇔ 2𝑝+ 3 − 10 > 0 ⇔ 𝑝 >

7

2
.

Hence,
7

2𝑝
− 3

2
< 1 − 3

2
= −1

2
,

and (4.13) becomes

0 6
1

𝜎
<

1

𝑝
⇔ 𝜎 > 𝑝.

According Lemma 4.3, it follows from (4.14) that for 𝜙 ∈ 𝑊 [0; 𝜏 ], 𝑟 ∈ (1;∞) we have:

𝜙 ∈ 𝐿𝑝𝑞,𝜎𝑟(𝑄𝜏 ), 𝜙𝑥𝑘 ∈ 𝐿𝑝𝑞′,𝜎𝑟′(𝑄𝜏 ).

We denote:

𝐻[𝜙] = 𝐻[𝜙, 𝜙], 𝐻[𝜙, 𝜓] =
3∑︁

𝑘=1

𝜙𝑘𝜓𝑥𝑘 , 𝜙, 𝜓 ∈ 𝑊 [0; 𝜏 ].

Employing Hölder inequality for 𝐻 = 𝐻[𝜙, 𝜓], we get:

‖𝐻‖𝑝𝑝,𝑄𝜏
=

𝜏∫︁
0

𝑑𝑡

∫︁
Ω

|𝐻|𝑝 𝑑𝑥 6

⎛⎝ 𝜏∫︁
0

1𝜉
′
𝑑𝑡

⎞⎠ 1
𝜉′
⎛⎜⎝ 𝜏∫︁

0

⎧⎨⎩
∫︁
Ω

|𝐻|𝑝 𝑑𝑥

⎫⎬⎭
𝜉
⎞⎟⎠

1
𝜉

,

where

𝜉 =
𝜎

𝑝
⇒ 𝜉′ =

𝜉

𝜉 − 1
=

𝜎

𝜎 − 𝑝
.

Thus,

‖𝐻‖𝑝𝑝,𝑄𝜏
6 𝜏 1−

𝑝
𝜎

⎛⎝ 𝜏∫︁
0

‖𝐻‖𝜎𝑝,Ω 𝑑𝑡

⎞⎠
𝑝
𝜎

,

and this yields

‖𝐻‖𝑝,𝑄𝜏 6 𝜏
1
𝑝
− 1

𝜎 ‖𝐻‖𝑝,𝜎,𝑄𝜏 6 𝜏
1
𝑝
− 1

𝜎

3∑︁
𝑘=1

‖𝜙𝑘𝜓𝑥𝑘‖𝑝,𝜎,𝑄𝜏 .



ON PRESERVATION OF GLOBAL SOLVABILITY . . . 73

By the Hölder inequality

⃦⃦
(𝜙𝑘𝜓𝑥𝑘)(·, 𝑡)

⃦⃦𝑝
𝑝,Ω

6

⎛⎝∫︁
Ω

|𝜙𝑘|𝑝𝑞 𝑑𝑥

⎞⎠ 1
𝑞
⎛⎝∫︁

Ω

|𝜓𝑥𝑘 |𝑝𝑞
′
𝑑𝑥

⎞⎠ 1
𝑞′

,

and therefore, ⃦⃦
(𝜙𝑘𝜓𝑥𝑘)(·, 𝑡)

⃦⃦
𝑝,Ω

6 ‖𝜙𝑘‖𝑝𝑞,Ω‖𝜓𝑥𝑘‖𝑝𝑞′,Ω.
Hence,

‖𝜙𝑘𝜓𝑥𝑘‖𝜎𝑝,𝜎,𝑄𝜏
=

𝜏∫︁
0

‖𝜙𝑘𝜓𝑥𝑘‖𝜎𝑝,Ω 𝑑𝑡 6
𝜏∫︁

0

‖𝜙𝑘‖𝜎𝑝𝑞,Ω‖𝜓𝑥𝑘‖𝜎𝑝𝑞′,Ω 𝑑𝑡

6

⎛⎝ 𝜏∫︁
0

‖𝜙𝑘‖𝜎𝑟𝑝𝑞,Ω 𝑑𝑡

⎞⎠ 1
𝑟
⎛⎝ 𝜏∫︁

0

‖𝜓𝑥𝑘‖𝜎𝑟
′

𝑝𝑞′,Ω 𝑑𝑡

⎞⎠ 1
𝑟′

.

This implies the following lemma.

Lemma 4.4. For all 𝜙, 𝜓 ∈ 𝑊 [0; 𝜏 ] the estimates

‖𝜙𝑘𝜓𝑥𝑘‖𝑝,𝜎,𝑄𝜏 6 ‖𝜙𝑘‖𝑝𝑞,𝜎𝑟,𝑄𝜏‖𝜓𝑥𝑘‖𝑝𝑞′,𝜎𝑟′,𝑄𝜏 , (4.15)

‖𝐻‖𝑝,𝑄𝜏 6 𝜏
1
𝑝
− 1

𝜎

3∑︁
𝑘=1

‖𝜙𝑘‖𝑝𝑞,𝜎𝑟,𝑄𝜏‖𝜓𝑥𝑘‖𝑝𝑞′,𝜎𝑟′,𝑄𝜏 (4.16)

hold true.

This lemma implies the next one.

Lemma 4.5. Let 𝜏, 𝜉 ∈ (0;𝑇 ], 𝜏 6 𝜉, 𝜙, 𝜓 ∈ 𝑊 [0; 𝜉]. Then

‖𝐻‖
𝐿𝑝

(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝑐(𝜉 − 𝜏)
1
𝑝
− 1

𝜎

3∑︁
𝑘=1

‖𝜓𝑥𝑘‖𝑝𝑞′,𝜎𝑟′,𝑄𝜏

{︀
‖𝜙‖𝑊 [0;𝜏 ] + |||𝜙(·, 0)|||𝑝,Ω

}︀
,

‖𝐻‖
𝐿𝑝

(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝑐(𝜉 − 𝜏)
1
𝑝
− 1

𝜎

3∑︁
𝑘=1

‖𝜙𝑘‖𝑝𝑞,𝜎𝑟,𝑄𝜏

{︀
‖𝜓‖𝑊 [0;𝜏 ] + |||𝜓(·, 0)|||𝑝,Ω

}︀
.

We consider the difference

𝐻[𝜙] −𝐻[𝜓] =
3∑︁

𝑘=1

(︀
𝜙𝑘𝜙𝑥𝑘 − 𝜓𝑘𝜓𝑥𝑘

)︀
= 𝐻[𝜙− 𝜓, 𝜙] +𝐻[𝜓, 𝜙− 𝜓].

Thus, Lemmata 4.3, 4.5 imply the following statement.

Lemma 4.6. Let 0 6 𝜏 6 𝜉 6 𝑇 , 𝜙, 𝜓 ∈ 𝑊0[0; 𝜉],

‖𝜙‖𝑊 [0;𝜉] 6𝑀, ‖𝜓‖𝑊 [0;𝜉] 6𝑀.

Then ⃦⃦
𝐻[𝜙] −𝐻[𝜓]

⃦⃦
𝐿𝑝

(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝛼1(𝜉 − 𝜏)𝛽1(𝑀)‖𝜙− 𝜓‖𝑊 [0;𝜏 ], (4.17)

where 𝛼1(𝛿) = 𝛿
1
𝑝
− 1

𝜎 , 𝛽1(𝑀) = 3𝑐2
(︀
𝑀 + |||𝜙0|||𝑝,Ω

)︀
.

Remark 4.2. Inequality (4.17) in the formulation of Lemma 4.6 means that 𝐻[𝜙] satisfies
Condition F2). Condition F1) is obviously true. Condition F3) is satisfied thanks to Lemma 2.1.
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Now we consider a controlled operator

𝑔 = 𝑔[𝑢](𝜙)(𝑥, 𝑡), 𝑢 ∈ 𝑈,

satisfying Conditions F1) – F2) with the parameters 𝛼1 = 𝛼𝑔, 𝛽1 = 𝛽𝑔. In particular, from a
physical point of view, it is of interest to control the density of external fields by the feedback
principle with a linear pattern: 𝑔 = 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡)𝜙(𝑥, 𝑡). A corresponding problem can
be treated as a problem with a program control 𝑢 = (𝑢1, 𝑢2). It is clear that in the case
𝑢1 ∈ 𝐿𝑝(𝑄𝑇 ), 𝑢2 ∈ 𝐿𝑝𝑞′,𝜎𝑟′(𝑄𝑇 ) we can obtain estimates of the same type as above for the
function 𝐻[𝜙].
We consider the operator of the right hand side: 𝑓 [𝑢](𝜙) = 𝑔[𝑢](𝜙) − 𝐻[𝜙]. It is clear 𝑓 [𝑢]

satisfies Conditions F1)–F2). Condition F3) thanks to Lemma 2.1.
We consider problem (4.4) – (4.5) for a controlled nonlinear Naviers-Stokes system:

𝜕𝜙

𝜕𝑡
− 𝜈∆𝜙+ 𝑎(𝑥, 𝑡)𝜙+

3∑︁
𝑘=1

𝑎𝑘(𝑥, 𝑡)𝜙𝑥𝑘 + ∇𝒫 = 𝑓 [𝑢](𝜙)(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 . (4.18)

We have thus established that problem (4.4) – (4.5) for equation (4.18) possesses SEGS property.
We note that in [31, Sect. 10], the unique solvability of problem (4.4) – (4.5) for a non-

controlled equation of form (4.12) was proved only under the assumption that the final time 𝑇
is small enough.
In general, except for some particular cases like absence of forces 𝑔 = 0, axial symmetry, etc.,

and even in these particular cases, the issues of global solvability and those of uniqueness of the
solutions to non-linear non-stationary Navier-Stokes systems were studied mostly independently
in various spaces, see, for instance, [32], [33], [34], [35], [36], [37], [38], [39]. To find one class, in
which it would be possible to prove the global stability and uniqueness of the solution to this
system in a general case is still a topical problem.
Finally we mention the results in [3, Ch. 3, Sects. 4-5; Ch. 4], where problem (4.4)–(4.5)

was considered for equation of form (4.12) as 𝑎 = 0, 𝑎𝑘 = 0, 𝑘 = 1, 3, and the function 𝑔(𝑡, 𝑥)
was regarded as a control in a problem on minimizing the energy in speeding up a stationary
𝜙0 = 0 liquid up to a prescribed velocity. It was proved that the set of the controls for which
there exists a unique global solution (for an arbitrarily fixed 𝑇 > 0) is everywhere dense in
the space of the right hand sides. It was also observed that the uniqueness of the solution can
be proved only in a class of sufficiently smooth functions, for instance, 𝑊 [0;𝑇 ]. However, the
solvability in this class for arbitrary 𝑇 > 0 was not proved since the problem was ill-posed.

5. Example: Benjamin–Bona–Mahony–Burgers equation

Let Ω ⊂ Rℓ be a bounded domain with a boundary 𝜕Ω. Following [11], we introduce a series
of notations.

H𝑚
0 (Ω) is a Hilbert space of measurable functions having the zero trace on 𝜕Ω, possessing

generalized derivatives of orders up to 𝑚, 𝑚 ∈ N, in the space 𝐿2(Ω). The scalar product in
H𝑚

0 (Ω) is

(𝜙, 𝜓)H𝑚
0

=
∑︁
|𝜇|6𝑚

(𝜕𝜇𝜙, 𝜕𝜇𝜓)2,

where (·, ·)2 is the scalar product in 𝐿2(Ω);
H−𝑚(Ω) is the Hilbert space dual to H𝑚

0 (Ω). Each element of this dual space can be repre-
sented as

𝜙 =
∑︁
|𝜇|6𝑚

𝜕𝜇𝑔𝜇, 𝑔𝜇 ∈ 𝐿2(Ω);

see [11]. Here we mean that 𝜙 is a linear continuous functional on H𝑚
0 (Ω) and its action on

an element 𝜓 ∈ H𝑚
0 (Ω), denoted by ⟨𝜙, 𝜓⟩, is called duality bracket between the spaces H𝑚

0 (Ω)
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and H−𝑚(Ω). It is calculated by the formula:

⟨𝜙, 𝜓⟩ =
∑︁
|𝜇|6𝑚

(−1)|𝜇|(𝑔𝜇, 𝜕
𝜇𝜓)2 =

∑︁
|𝜇|6𝑚

(−1)|𝜇|
∫︁
Ω

𝑔𝜇 𝜕
𝜇𝜓 𝑑𝑥;

for more details, see [40, Subsect. 1.2.16].
W𝑘,𝑝(Ω) is a Banach space of measurable functions having all generalized derivatives of order

up to 𝑘 in the space 𝐿𝑝(Ω), 𝑝 > 1. The norm in the introduced space reads as

‖𝜙‖𝑘,𝑝 =
∑︁
|𝜇|6𝑘

‖𝜕𝜇𝜙‖𝑝,

where ‖ · ‖𝑝 is the norm in 𝐿𝑝(Ω);

W𝑘,𝑝
0 (Ω) is the Banach space of elements in W𝑘,𝑝(Ω) having zero trace on 𝜕Ω;

W−𝑘,𝑝′(Ω) is the Banach space dual to W𝑘,𝑝
0 (Ω), 𝑝′ =

𝑝

𝑝− 1
, whose elements can be repre-

sented as

𝜙 =
∑︁
|𝜇|6𝑘

𝜕𝜇𝑔𝜇, 𝑔𝜇 ∈ 𝐿𝑝′(Ω);

𝜕Ω ∈ 𝐶(𝑚,𝛿) is the boundary of the domain Ω, and in a vicinity of each point 𝑥 ∈ 𝜕Ω it can
be represented by local coordinates

𝜉𝑖 = Φ𝑖(𝜉1, . . . , 𝜉ℓ−1, 𝜂), 𝑖 = 1, ℓ− 1,

and the functions Φ𝑖 are 𝑚 times continuously differentiable in all variables and Φ
(𝑚)
𝑖 , 𝑚 ∈ Zℓ+,

are Hölder functions with an exponent 𝛿 ∈ (0; 1].
We let 𝑌 = H1

0(Ω), 𝑌 − = H−1(Ω). Following [11, Sect. 11], we begin with considering
Dirichlet initial boundary value problem for a three-dimensional Benjamin–Bona–Mahony–
Burgers equation (BBMBE):

𝜕

𝜕𝑡
(∆𝜙− 𝜙) + ∆𝜙+ 𝜙𝜙𝑥1 + 𝜙3 = 0, (𝑥, 𝑡) ∈ 𝑄𝑇 = Ω × (0;𝑇 ], (5.1)

𝜙(𝑥, 𝑡)
⃒⃒
𝜕Ω

= 0; 𝜙(𝑥, 0) = 𝜙0(𝑥), 𝑥 ∈ Ω, (5.2)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ Ω ⊂ R3, 𝜕Ω ∈ 𝐶(2,𝛿), 𝛿 ∈ (0; 1]. As it was said in [11, Sect. 11], such
problem arises in studying non-stationary processes in semiconductors under the presence of
sources and an external homogeneous constant electric field. A strong generalized equation of
problem (5.1), (5.2) is defined as a function in the class 𝐶(1)

(︀
[0;𝑇 ];𝑌

)︀
obeying the conditions:⟨︀

∆𝜙′ − 𝜙′ + ∆𝜙+ 𝜙𝜙𝑥1 + 𝜙3, 𝑤
⟩︀

= 0 for all 𝑤 ∈ 𝑌, 𝑡 ∈ [0;𝑇 ];

𝜙(0) = 𝜙0 ∈ 𝑌,

where ⟨·, ·⟩ is the dual bracketing between the spaces 𝑌 and 𝑌 −. The operator 𝐴1 = −∆𝜙 :
𝑌 → 𝑌 − is treated in the following sense:

⟨𝐴1𝜙, 𝜓⟩ = (∇𝜙,∇𝜓)2 for all 𝜙, 𝜓 ∈ 𝑌.

Following [11], we denote

𝐴𝜙 = −∆𝜙+ 𝜙, 𝐹1(𝜙) =
1

2

𝜕𝜙2

𝜕𝑥1
, 𝐹2(𝜙) = 𝜙3, 𝐹 (𝜙) = 𝜙+ 𝐹1(𝜙) + 𝐹2(𝜙),

and we reduce problem (5.1), (5.2) to an abstract Cauchy problem for an operator differential
equation:

𝐴
𝑑𝜙

𝑑𝑡
+ 𝐴𝜙 = 𝐹 (𝜙), 𝜙(0) = 𝜙0 ∈ 𝑌.
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As it was mentioned in [11, Sect. 11], the operator 𝐴 : 𝑌 → 𝑌 − possesses an inverse Lipschitz-
continuous operator:

‖𝐴−1𝑧1 − 𝐴−1𝑧2‖𝑌 6 ‖𝑧1 − 𝑧2‖𝑌 − for all 𝑧1, 𝑧2 ∈ 𝑌 −.

Moreover, this Cauchy problem is equivalent to an abstract integral equation:

𝜙(𝑡) = 𝜙0𝑒
−𝑡 +

𝑡∫︁
0

𝑑𝑠 𝑒−(𝑡−𝑠)𝐴−1𝐹 (𝜙), 𝜙 ∈ 𝐿∞
(︀
[0;𝑇 ];𝑌

)︀
. (5.3)

We consider a corresponding equation with a fixed right hand side 𝑧 ∈ 𝐿∞
(︀
[0;𝑇 ];𝑌

)︀
:

𝜙(𝑡) = 𝜙0𝑒
−𝑡 +

𝑡∫︁
0

𝑑𝑠 𝑒−(𝑡−𝑠)𝑧(𝑠), 𝜙 ∈ 𝐿∞
(︀
[0;𝑇 ];𝑌

)︀
. (5.4)

It is clear that

‖𝜙‖
𝐿∞

(︀
[0;𝜏 ];𝑌

)︀ 6 ‖𝜙0‖𝑌 +

𝜏∫︁
0

‖𝑧(𝑠)‖𝑌 𝑑𝑠 (5.5)

for each 𝜏 ∈ (0;𝑇 ]. For each 𝜏 ∈ (0;𝑇 ], formula (5.4) defines an operator

ℱ𝜏 : 𝑊 [0; 𝜏 ] → 𝑊0[0; 𝜏 ],

where we formally adopt the notation

𝑊0[0; 𝜏 ] = 𝑊 [0; 𝜏 ] = 𝐿∞
(︀
[0; 𝜏 ];𝑌

)︀
.

Condition G1) obviously holds, see (5.4). If 𝑧1, 𝑧2 ∈ 𝑊 [0; 𝜉], 𝑧1
⃒⃒
[0;𝜏 ]

= 𝑧2
⃒⃒
[0;𝜏 ]

, the by (5.4),

(5.5), we get:

⃦⃦
ℱ𝜉[𝑧1] −ℱ𝜉[𝑧2]

⃦⃦
𝑊 [0;𝜉]

6

𝜉∫︁
𝜏

⃦⃦
𝑧1(𝑠) − 𝑧2(𝑠)

⃦⃦
𝑌
𝑑𝑠 6 (𝜉 − 𝜏)‖𝑧1 − 𝑧2‖

𝐿∞

(︀
[𝜏 ;𝜉];𝑌

)︀.
This means that Condition G2) holds for 𝒩 ≡ 1, 𝛼0(𝑡) = 𝑡. Condition G3) holds as well since
ℱ𝜏 (0) = 𝜙0.
We define an operator 𝐺(𝜙) = 𝐴−1𝐹 (𝜙). According [11, Sect. 11], 𝐺(𝜙) can be regarded as

an operator 𝐺 : 𝑊 [0; 𝜏 ] → 𝑊 [0; 𝜏 ], and moreover, the estimates hold:⃦⃦
𝐹 (𝜙1) − 𝐹 (𝜙2)

⃦⃦
𝑌 − 6 𝜇(𝑀)‖𝜙1 − 𝜙2‖𝑌 for all 𝜙𝑖 ∈ 𝑌, ‖𝜙𝑖‖𝑌 6𝑀, 𝑖 = 1, 2;⃦⃦

𝐺(𝜙1) −𝐺(𝜙2)
⃦⃦
𝑌
6 𝜇(𝑀)‖𝜙1 − 𝜙2‖𝑌 for all 𝜙𝑖 ∈ 𝑌, ‖𝜙𝑖‖𝑌 6𝑀, 𝑖 = 1, 2.

Hence, ⃦⃦
𝐺(𝜙1) −𝐺(𝜙2)

⃦⃦
𝐿∞

(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝜇(𝑀)‖𝜙1 − 𝜙2‖𝑊 [0;𝜏 ]

for all 𝜙𝑖 ∈ 𝑊 [0; 𝜏 ], ‖𝜙𝑖‖𝑊 [0;𝜏 ] 6 𝑀 , 𝑖 = 1, 2. Thus, the operator 𝐺 satisfies Condition F2) as
𝛼1 ≡ 1, 𝛽1(𝑀) = 𝜇(𝑀). Condition F1) obviously holds since there is no explicit dependence
on the variable 𝑡 in the right hand side except for an implicit dependence in the argument 𝜙.
Condition F3) is implied directly by Lemma 2.1. Equation (5.3) is equivalent to the equation

𝜙 = ℱ𝑇

[︀
𝐺(𝜙)

]︀
, 𝜙 ∈ 𝑊 [0;𝑇 ].

As it was shown, all conditions G1) – G3), F1) – F3) are satisfied. We note that [11, Sect. 11]

ℱ𝜏 : 𝐿∞
(︀
[0; 𝜏 ];𝑌

)︀
→ AC

(︀
[0; 𝜏 ];𝑌

)︀
, ℱ𝜏 : 𝐶

(︀
[0; 𝜏 ];𝑌

)︀
→ 𝐶(1)

(︀
[0; 𝜏 ];𝑌

)︀
,

ℱ𝜏𝐺 : 𝐿∞
(︀
[0; 𝜏 ];𝑌

)︀
→ AC

(︀
[0; 𝜏 ];𝑌

)︀
, ℱ𝜏𝐺 : AC

(︀
[0; 𝜏 ];𝑌

)︀
→ 𝐶(1)

(︀
[0; 𝜏 ];𝑌

)︀
.

This is why the solution in fact belongs to the class 𝐶(1)
(︀
[0; 𝜏 ];𝑌

)︀
.
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We consider a corresponding controlled analogue:

𝐴
𝑑𝜙

𝑑𝑡
+ 𝐴𝜙 = 𝐹 (𝜙) + 𝑔[𝑢](𝜙), 𝜙 ∈ 𝐶(1)

(︀
[0;𝑇 ];𝑌

)︀
,

which is equivalent to the equation

𝜙 = ℱ𝑇

[︀
𝑓 [𝑢](𝜙)

]︀
, 𝜙 ∈ 𝑊 [0;𝑇 ],

where 𝑓 [𝑢](𝜙) = 𝐴−1
[︀
𝐹 (𝜙) + 𝑔[𝑢](𝜙)

]︀
. We assume that

𝑔[𝑢] : 𝑌 → 𝑌 −, 𝑔[𝑢] : 𝐿∞
(︀
[0; 𝜏 ];𝑌

)︀
→ 𝐿∞

(︀
[0; 𝜏 ];𝑌 −)︀, 𝜏 ∈ (0;𝑇 ],

𝑔[𝑢] : AC
(︀
[0;𝑇 ];𝑌

)︀
→ AC

(︀
[0;𝑇 ];𝑌 −)︀, 𝑢 ∈ 𝑈,⃦⃦

𝑔[𝑢](𝜙1) − 𝑔[𝑢](𝜙2)
⃦⃦
𝑌 − 6 𝜇𝑔(𝑀) for all 𝜙𝑖 ∈ 𝑌, ‖𝜙𝑖‖𝑌 6𝑀, 𝑖 = 1, 2.

Then the operator 𝑓 [𝑢](𝜙) satisfy Conditions F1) – F3) in the same way as for 𝐺(𝜙), 𝛼1 ≡ 1,
𝛽1(𝑀) = 𝜇(𝑀) + 𝜇𝑔(𝑀). Thus, according Theorem 2.2, the SEGS property holds.
We note that in [11], a local solvability and the existence of a maximal solution were proved

for problem (5.1), (5.2). There was also provided a way for finding a segment [𝑇1;𝑇2] such that
as 𝑇 ∈ (0;𝑇1), there exists a unique global solution, while for 𝑇 > 𝑇2 the solution blows up.

6. Example: strongly nonlinear pseudo-parabolic equations

Let Ω ⊂ R3 be a surface simply connected bounded domain. Following [11, Subsect. 8.1],
we consider initial boundary value problems for strongly nonlinear pseudo-parabolic equations
of form⎧⎨⎩

𝜕

𝜕𝑡
(∆𝜙− 𝜙) + 𝜙

𝜕𝜙

𝜕𝑥1
+ 𝜙3 = 0;

𝜙
⃒⃒
𝜕Ω

= 0, 𝑡 ∈ [0;𝑇 ]; 𝜙(𝑥, 0) = 𝜙0(𝑥), 𝑥 ∈ Ω; 𝜕Ω ∈ 𝐶(2,𝛿);

(6.1)

⎧⎪⎪⎨⎪⎪⎩
𝜕

𝜕𝑡
(−∆2𝜙+ ∆𝜙) + 𝜙

𝜕𝜙

𝜕𝑥1
− div (|∇𝜙|2∇𝜙) = 0;

𝜙
⃒⃒
𝜕Ω

=
𝜕𝜙

𝜕n

⃒⃒
𝜕Ω

= 0, 𝑡 ∈ [0;𝑇 ]; 𝜙(𝑥, 0) = 𝜙0(𝑥), 𝑥 ∈ Ω; 𝜕Ω ∈ 𝐶(4,𝛿);

(6.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕

𝜕𝑡
(−∆2𝜙+ ∆𝜙) +

3∑︁
𝑖=1

𝑏𝑖
𝜕

𝜕𝑥𝑖

∏︁
𝑗 ̸=𝑖

𝜕𝜙

𝜕𝑥𝑗
− div (|∇𝜙|2∇𝜙) = 0;

𝜙
⃒⃒
𝜕Ω

=
𝜕𝜙

𝜕n

⃒⃒
𝜕Ω

= 0, 𝑡 ∈ [0;𝑇 ]; 𝜙(𝑥, 0) = 𝜙0(𝑥), 𝑥 ∈ Ω; 𝜕Ω ∈ 𝐶(4,𝛿);

(6.3)

in a cylinder 𝑄𝑇 = Ω × (0;𝑇 ] ∋ (𝑥, 𝑡), where 𝑏1 + 𝑏2 + 𝑏3 = 0, 𝛿 ∈ (0; 1], 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ Ω.
In [11, Subsect. 8.1], problems (6.1) – (6.3) were rewritten as the following Cauchy problems

for abstract first order differential equations with operator coefficients, respectively:

𝐴1
𝑑𝜙

𝑑𝑡
= 𝐹3(𝜙) − 𝐹1(𝜙), 𝜙(0) = 𝜙0 ∈ H1

0(Ω), (6.4)

𝐴2
𝑑𝜙

𝑑𝑡
= 𝐹4(𝜙) − 𝐹1(𝜙), 𝜙(0) = 𝜙0 ∈ H2

0(Ω), (6.5)

𝐴2
𝑑𝜙

𝑑𝑡
= 𝐹4(𝜙) − 𝐹2(𝜙), 𝜙(0) = 𝜙0 ∈ H2

0(Ω). (6.6)
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Here

𝐴1𝜙 = −∆𝜙 : H1
0(Ω) → H−1(Ω), 𝐴2𝜙 = ∆2𝜙− ∆𝜙 : H2

0(Ω) → H−2(Ω),

⟨𝐴1𝜙, 𝜓⟩1 = (∇𝜙,∇𝜓)2 =

∫︁
Ω

∇𝜙 · ∇𝜓 𝑑𝑥,

⟨𝐴2𝜙, 𝜓⟩2 = (∇𝜙,∇𝜓)2 + (∆𝜙,∆𝜓)2 =

∫︁
Ω

[︀
∇𝜙 · ∇𝜓 + ∆𝜙∆𝜓

]︀
𝑑𝑥,

⟨·, ·⟩𝑚 is the duality bracketing between H𝑚
0 (Ω) and H−𝑚(Ω), (·, ·)𝑝 is the duality bracketing

between 𝐿𝑝(Ω) and 𝐿𝑝′(Ω), 𝑝′ =
𝑝

𝑝− 1
;

𝐹1(𝜙) =
1

2

𝜕𝜙2

𝜕𝑥1
: H1

0(Ω) ⊂ 𝐿4(Ω) → H−1(Ω),

𝐹2(𝜙) =
3∑︁
𝑖=1

𝑏𝑖
𝜕

𝜕𝑥𝑖

∏︁
𝑗 ̸=𝑖

𝜕𝜙

𝜕𝑥𝑗
: H2

0(Ω) → H−2(Ω),

𝐹3(𝜙) = 𝜙3 : H1
0(Ω) ⊂ 𝐿4(Ω) → 𝐿4/3(Ω) ⊂ H−1(Ω),

𝐹4(𝜙) = −div (|∇𝜙|2∇𝜙) : H2
0(Ω) ⊂ W1,4

0 (Ω) → W−1,4/3(Ω) ⊂ H−2(Ω).

Then in [11, Subsect. 8.1] each of problems (6.4) – (6.6) was rewritten as the Cauchy problem
for an abstract ordinary differential equations in the Banach space 𝑌 :

𝐴
𝑑𝜙

𝑑𝑡
= 𝐹 (𝜙), 𝜙(0) = 𝜙0 ∈ 𝑌, (6.7)

where 𝐴 : 𝑌 → 𝑌 *, 𝐹 : 𝑌 → 𝑌 *, and, as it was proved in [11, Subsect. 8.1],

‖𝐴𝜙1 − 𝐴𝜙2‖𝑌 * > 𝑚‖𝜙1 − 𝜙2‖𝑌 , for all 𝜙𝑖 ∈ 𝑌, 𝑖 = 1, 2,⃦⃦
𝐹 (𝜙1) − 𝐹 (𝜙2)

⃦⃦
𝑌 * 6 𝜇(𝑀)‖𝜙1 − 𝜙2‖𝑌 for all 𝜙𝑖 ∈ 𝑌, ‖𝜙𝑖‖𝑌 6𝑀, 𝑖 = 1, 2,

and the operator 𝐴 possesses an inverse Lipschitz-continuous operator 𝐴−1 : 𝑌 * → 𝑌 :⃦⃦
𝐴−1𝑧1 − 𝐴−1𝑧2

⃦⃦
𝑌
6 𝑚−1‖𝑧1 − 𝑧2‖𝑌 * for all 𝑧1, 𝑧2 ∈ 𝑌 *.

For (6.4) we choose 𝑌 = H1
0(Ω), while for (6.5) and (6.6) a similar choice is 𝑌 = H2

0(Ω). As it
was shown in the above cited work, problem (6.7) is equivalent to the following one:

𝑑𝜙

𝑑𝑡
= 𝐺(𝜙)(𝑡), 𝑡 ∈ (0;𝑇 ]; 𝜙(0) = 𝜙0 ∈ 𝑌 ; 𝜙 ∈ 𝐶(1)

(︀
[0;𝑇 ];𝑌

)︀
, (6.8)

where 𝐺(𝜙) = 𝐴−1𝐹 (𝜙) : 𝐶
(︀
[0;𝑇 ];𝑌

)︀
→ 𝐶

(︀
[0;𝑇 ];𝑌

)︀
. Finally, problem (6.8) is equivalent to

an abstract integral equation:

𝜙(𝑡) = 𝜙0 +

𝑡∫︁
0

𝑑𝑠𝐺(𝜙)(𝑠), 𝑡 ∈ [0;𝑇 ]; 𝜙 ∈ 𝐶
(︀
[0;𝑇 ];𝑌

)︀
. (6.9)

For an arbitrary 𝜏 ∈ (0;𝑇 ], we consider a following analogue with a fixed right hand side
𝑧 ∈ 𝐶

(︀
[0; 𝜏 ];𝑌

)︀
:

𝜙(𝑡) = 𝜙0 +

𝑡∫︁
0

𝑧(𝑠) 𝑑𝑠, 𝑡 ∈ [0; 𝜏 ]; 𝜙 ∈ 𝐶
(︀
[0; 𝜏 ];𝑌

)︀
. (6.10)

Formula (6.10) defines an operator ℱ𝜏 : 𝐶
(︀
[0; 𝜏 ];𝑌

)︀
→ 𝑊 [0; 𝜏 ], 𝜙 = ℱ𝜏 [𝑧], where 𝑊 [0; 𝜏 ] =

𝐶
(︀
[0; 𝜏 ];𝑌

)︀
. As 𝑊0[0; 𝜏 ], we can take the set of all 𝜙 ∈ 𝑊 [0; 𝜏 ] such that 𝜙(0) = 𝜙0.
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Condition G1) is obviously satisfied, see (6.10). If 𝑧1, 𝑧2 ∈ 𝑊 [0; 𝜉], 𝑧1
⃒⃒
[0;𝜏 ]

= 𝑧2
⃒⃒
[0;𝜏 ]

, then by

(6.10) we obtain:

⃦⃦
ℱ𝜉[𝑧1] −ℱ𝜉[𝑧2]

⃦⃦
𝑊 [0;𝜉]

6

𝜉∫︁
𝜏

⃦⃦
𝑧1(𝑠) − 𝑧2(𝑠)

⃦⃦
𝑌
𝑑𝑠 6 (𝜉 − 𝜏)‖𝑧1 − 𝑧2‖

𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀.
This means that Condition G2) holds as 𝒩 ≡ 1, 𝛼0(𝑡) = 𝑡. Condition G3) is satisfied as well
since ℱ𝜏 (0) = 𝜙0.
The operator 𝐺(𝜙) obviously satisfies Condition F1) since the formula defining this operator

involves no explicit time dependence. Let

𝜙𝑖 ∈ 𝑊 [0; 𝜉], ‖𝜙𝑖‖
𝐶
(︀
[0;𝜉];𝑌

)︀ 6𝑀, 𝑖 = 1, 2.

Then ⃦⃦
𝐺(𝜙1)(𝑡) −𝐺(𝜙2)(𝑡)

⃦⃦
𝑌
6𝑚−1

⃦⃦
𝐹 (𝜙1)(𝑡) − 𝐹 (𝜙2)(𝑡)

⃦⃦
𝑌 *

6𝑚−1𝜇(𝑀)
⃦⃦
𝜙1(𝑡) − 𝜙2(𝑡)

⃦⃦
𝑌

for all 𝑡 ∈ [0; 𝜉].

This implies that ⃦⃦
𝐺(𝜙1) −𝐺(𝜙2)

⃦⃦
𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀ 6 𝑚−1𝜇(𝑀)
⃦⃦
𝜙1 − 𝜙2

⃦⃦
𝐶
(︀
[𝜏 ;𝜉];𝑌

)︀.
Thus, Condition F2) holds as 𝛼1 ≡ 1, 𝛽1(𝑀) = 𝑚−1𝜇(𝑀). Condition F3) is implied by
Lemma 2.2.
We consider a following controlled analogue:

𝐴
𝑑𝜙

𝑑𝑡
= 𝐹 (𝜙) + 𝑔[𝑢](𝜙), 𝜙 ∈ 𝐶(1)

(︀
[0;𝑇 ];𝑌

)︀
,

which is equivalent to the equation

𝜙 = ℱ𝑇

[︀
𝑓 [𝑢](𝜙)

]︀
, 𝜙 ∈ 𝑊 [0;𝑇 ],

where 𝑓 [𝑢](𝜙) = 𝐴−1
[︀
𝐹 (𝜙) + 𝑔[𝑢](𝜙)

]︀
. We assume that

𝑔[𝑢] : 𝑌 → 𝑌 *, 𝑔[𝑢] : 𝐶
(︀
[0; 𝜏 ];𝑌

)︀
→ 𝐶

(︀
[0; 𝜏 ];𝑌 *)︀, 𝜏 ∈ (0;𝑇 ], 𝑢 ∈ 𝑈,⃦⃦

𝑔[𝑢](𝜙1) − 𝑔[𝑢](𝜙2)
⃦⃦
𝑌 * 6 𝜇𝑔(𝑀) for all 𝜙𝑖 ∈ 𝑌, ‖𝜙𝑖‖𝑌 6𝑀, 𝑖 = 1, 2.

Then the operator 𝑓 [𝑢](𝜙) satisfies Conditions F1) – F3) in the same way as for 𝐺(𝜙), 𝛼1 ≡ 1,
𝛽1(𝑀) = 𝑚−1(𝜇(𝑀) + 𝜇𝑔(𝑀)). Hence, according Theorem 2.2, the SEGS property holds.
We note that in [11, Sect. 8], a local solvability and the existence of a maximal solution were

proved for problem (6.1) – (6.3). There was also provided a way for finding a segment [𝑇1;𝑇2]
such that as 𝑇 ∈ (0;𝑇1), there exists a unique global solution, while for 𝑇 > 𝑇2 the solution
blows up.
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