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ALMOST PERIODIC AT INFINITY SOLUTIONS TO

INTEGRO-DIFFERENTIAL EQUATIONS WITH

NON-INVERTIBLE OPERATOR AT DERIVATIVE

M.S. BICHEGKUEV

Abstract. In the paper we consider an integro-differential equation with a non-invertible

operator at a derivative in the space of uniformly continuous bounded functions. The

integral part of the operator is a convolution of an operator-valued compactly supported

Borel measure and a bounded continuous vector function. We obtain sufficient conditions

(spectral conditions) of almost periodicity at infinity for bounded solutions of this equation.

The above results are based on the proven statement that if the right-hand side of the

equation in question belongs to 𝐶0(J, 𝑋), which is the space of functions tending to zero

at infinity, then the Beurling spectrum of each weak solution is contained in the singular

set of a characteristic equation. In particular, for the equations of the form 𝜇 * 𝑥 = 𝜓,

where the function 𝜓 ∈ 𝐶0(J, 𝑋) and the support supp𝜇 of a scalar measure 𝜇 are compact,

we establish that each classical solution is almost periodic at infinity. We show that if the

singular set of the characteristic function of the considered equation has no accumulation

points in R, then each weak solution is almost periodic at infinity. We study the structure

of bounded solutions in terms of slowly varying at infinity functions.

We provide applications of our results to nonlinear integro-differential equations. We

establish that when the right hand side of a nonlinear integro-differential equation is a

decaying at infinity mapping and a singular set of the characteristic function has no finite

accumulation points on R, a bounded solution of this equation is almost periodic at infinity.

The main results of the paper are obtained by means of the methods of abstract harmonic

analysis. The spectral theory of Banach modules is essentially employed.

Keywords: almost periodic at infinity function, Banach space of almost periodic functions

at infinity, Beurling spectrum, Bohr almost periodic function.
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1. Introduction and main results

The theory of almost periodic functions created by H. Bohr [1] has numerous applications
in studying the almost periodicity in the Bohr sense of bounded solutions to various classes of
equations (differential, difference ones and others), see [2]–[14]. Usually one considered various
classes of linear equations with almost periodic in the Bohr sense coefficients and the right hand
side. However, a bounded solution to the simplest differential equation �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝜓(𝑡),
𝑡 > 0, considered in a finite-dimensional linear space with a linear operator 𝐴 and a continuous
vanishing at infinity function 𝜓 : R+ → R is not almost periodic in the usual sense.
In papers by A.G. Baskakov [17], [18], a new class of continuous almost periodic functions

was introduced; they are called almost periodic at infinity functions. This class involve almost
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periodic in the Bohr sense functions are well as the solutions of various classes of equations
including the above discussed equation.
In the present work we obtain sufficient spectral conditions ensuring the almost periodicity at

infinity for a rather wide class of integro-differential equations with a non-invertible equations
at the derivative. The main results of the paper are contained in Theorems 1–4 and Theorem 7.
They are obtained by means of the methods in the abstract harmonic analysis. We also employ
essentially the spectral theory of Banach moduli, see [11], [12], [19], [20], over the Banach
algebra 𝐿1(R) = 𝐿1(R,C) of summable on R complex-valued functions with the convolution

(𝑓 * 𝑔)(𝑡) =

∫︁
R

𝑓(𝑡− 𝑠)𝑔(𝑠)𝑑𝑠, 𝑡 ∈ R, 𝑓, 𝑔 ∈ 𝐿1(R)

as the product.
We first introduce main functional space and several equivalent definitions of almost periodic

at infinity functions.
Let 𝑋 be a complex Banach space and 𝐿𝐵(𝑋) be a Banach algebra of linear bounded

operators acting in 𝑋.
Let J be one of the segments R = (−∞,∞) or R+ = [0,∞). By 𝐶𝑏 = 𝐶𝑏(J, 𝑋) we denote

the Banach space of continuous and bounded on J functions with values in 𝑋 and the norm

‖𝑥‖∞ = sup
𝑡∈J

‖𝑥(𝑡)‖𝑋 .

The symbol 𝐶𝑏,𝑢 = 𝐶𝑏,𝑢(J, 𝑋) stands for a closed subspace of uniformly continuous functions
in 𝐶𝑏(J, 𝑋), while 𝐶0 = 𝐶0(J, 𝑋) denotes a closed subspace of the functions in 𝐶𝑏(J, 𝑋) tending
to zero at infinity.
In the Banach space 𝐶𝑏,𝑢(J, 𝑋) we consider a strongly continuous semi-group of the operators

𝑆 : J → 𝐿𝐵(𝐶𝑏,𝑢) acting by the rule:

(𝑆(𝑡)𝑥)(𝜏) = 𝑥(𝑡+ 𝜏), 𝑡, 𝜏 ∈ J, 𝑥 ∈ 𝐶𝑏,𝑢(J, 𝑋). (1)

We note that 𝑆 is a group if J = R.

Definition 1. (see [17],[18]). The function 𝑥 ∈ 𝐶𝑏,𝑢(J, 𝑋) is called slowly varying at infinity
if (𝑆(𝑡)𝑥−𝑥) ∈ 𝐶0(J, 𝑋) for each 𝑡 ∈ J. We denote the set of slowly varying at infinity functions
by the symbol 𝐶𝑠𝑙,∞(J, 𝑋).

The examples of slowly varying at infinity functions are
1) 𝑥1(𝑡) = sin ln(1 + 𝑡2), 𝑡 ∈ R;
2) 𝑥2(𝑡) = arctan 𝑡, 𝑡 ∈ R;
3) 𝑥3 : R+ → 𝑋, 𝑥3(𝑡) = 𝑐+ 𝑥0(𝑡), 𝑡 > 0, where 𝑐0 is a vector in the Banach space 𝑋 and 𝑥0

is an arbitrary function from 𝐶0(R+, 𝑋);
4) each continuously differentiable function in 𝐶𝑏(R, 𝑋) obeying �̇� ∈ 𝐶0(R, 𝑋).
We note that the set 𝐶𝑠𝑙,∞(J, 𝑋) is a closed subspace in the Banach space 𝐶𝑏,𝑢(J, 𝑋).
In papers [17], [18], a definition of an almost periodic at infinity function was given. There

are several approaches to defining such functions. The first definition is based on the notion of
an 𝜀-period, cf. [2].

Definition 2. Let 𝜀 > 0. A number 𝜔 ∈ J is called an 𝜀-period at infinity of the function
𝑥 ∈ 𝐶𝑏(J, 𝑋) if there exists a number 𝑎(𝜀) > 0 such that

sup
|𝑡|>𝑎(𝜀)

‖𝑥(𝑡+ 𝜔) − 𝑥(𝑡)‖ < 𝜀.

The set of 𝜀-periods at infinity of the function 𝑥 is denoted by the symbol Ω∞(𝑥; 𝜀).
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Definition 3. A function 𝑥 ∈ 𝐶𝑏,𝑢(J, 𝑋) is called almost periodic at infinity if for each 𝜀 > 0
the set Ω∞(𝑥; 𝜀) of its 𝜀-periods possesses the following property: there exists a number 𝑙(𝜀) > 0
such that each interval in J of the length 𝑙(𝜀) contains at least one 𝜀-period at infinity of the
function 𝑥.

It follows from this definition corresponding to the Bohr definition of an almost periodic
function [1] that each continuous almost periodic in the Bohr sense function 𝑥 ∈ 𝐶𝑏(J, 𝑋) is
almost periodic at infinity.
We are going to recall a series of definitions from the theorem of Banach moduli used in

what follows. Let 𝒳 be a complex Banach space. As a Banach algebra, we consider the space
𝐿1(R) = 𝐿1(R,C) with the convolution

(𝑓 * 𝑔)(𝑡) =

∫︁
R

𝑓(𝑡− 𝑠)𝑔(𝑠)𝑑𝑠, 𝑡 ∈ R, 𝑓, 𝑔 ∈ 𝐿1(R),

as a product.
If 𝑇 : R → 𝐿𝐵(𝒳 ) is a strongly continuous isometric representation of the group R, then

the formula [19], [20]

𝑓𝑥 =

∫︁
R

𝑓(𝑠)𝑇 (−𝑠)𝑥𝑑𝑠, 𝑓 ∈ 𝐿1(R), 𝑥 ∈ 𝒳 ,

equips the space 𝒳 by the structure of a Banach 𝐿1(R)-module, which is also denoted by the
symbol (𝒳 , 𝑇 ).
In particular, the Banach space 𝐶𝑏,𝑢(R,𝒳 ) = 𝐶𝑏,𝑢 is equipped by the structure of the Banach

𝐿1(R)-module by means of the group of isometries of the translations of the functions

𝑆 : R→ 𝐿𝐵(𝐶𝑏,𝑢), (𝑆(𝑡)𝑥)(𝑠) = 𝑥(𝑠+ 𝑡), 𝑡, 𝑠 ∈ R, 𝑥 ∈ 𝐶𝑏,𝑢.

Thus, a module structure on 𝐶𝑏,𝑢 is defined by the convolution of the functions

(𝑓 * 𝑥)(𝑡) =

∫︁
R

𝑓(𝑡− 𝑠)𝑥(𝑠)𝑥𝑑𝑠 =

∫︁
R

𝑓(𝜏)(𝑆(−𝜏)𝑥)(𝑡)𝑑𝜏, 𝑡 ∈ R,

for all 𝑓 ∈ 𝐿1(R), 𝑥 ∈ 𝐶𝑏,𝑢.

Definition 4. A vector 𝑥 in the Banach 𝐿1(R)-module (𝒳 , 𝑇 ) is called almost periodic if
the set of the vectors {𝑇 (𝑡)𝑥 : 𝑡 ∈ R}, the orbit of the vector 𝑥, is pre-compact in 𝒳 .

The set of almost periodic vector in the Banach 𝐿1(R)-module 𝒳 forms a closed submodule
denoted in what follows by the symbol 𝐴𝑃𝒳 . In particular, 𝐴𝑃𝐶𝑏,𝑢(R, 𝑋) = 𝐴𝑃 (R, 𝑋) is
a Banach space of continuous almost periodic Bohr functions with respect to the group of
translations 𝑆(𝑡), 𝑡 ∈ R.
The symbol 𝒳 stands for the quotient space 𝐶𝑏,𝑢(R+, 𝑋)/𝐶0(R+, 𝑋).

In the Banach space 𝒳 , the group of isometries 𝑆 : R→ 𝐿𝐵(𝒳 ) acting by the rule

𝑆(𝑡)�̃� = 𝑆(𝑡)𝑥, 𝑡 ∈ R, �̃� ∈ 𝒳 ,

is well-defined, where 𝑆(𝑡)𝑥 is the translation of the function 𝑥 to the left, see (1), for 𝑡 > 0,

while as 𝑡 < 0, the symbol 𝑆(𝑡)𝑥 denotes an equivalence class containing a continuous function
of the form

𝑥𝑡(𝑠) =

{︃
𝑥(𝑠+ 𝑡), as 𝑠+ 𝑡 > 0,

−𝑡−1𝑠𝑥(0), as 𝑠+ 𝑡 6 0, 𝑠 > 0.
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The structure of Banach 𝐿1(R)-module on 𝒳 is introduce by the representation 𝑆, that is,
by the formula

𝑓�̃� =

∫︁
R

𝑓(𝜏)𝑆(−𝜏)�̃�𝑑𝜏, 𝑓 ∈ 𝐿1(R), �̃� ∈ 𝒳 .

Remark 1. The definition of the module structure on the quotient space 𝒳 =
𝐶𝑏,𝑢(R+, 𝑋)/𝐶0(R+, 𝑋) implies immediately that for all functions 𝑓 ∈ 𝐿1(R) and 𝑥 ∈
𝐶𝑏,𝑢(R+, 𝑋) the identity ̃︁𝑓𝑥 = ˜(𝑓 * 𝑦)|R+

holds true for each continuation 𝑦 ∈ 𝐶𝑏,𝑢(R, 𝑋) of the function 𝑥 on R with the property:

lim
𝑡→−∞

𝑦(𝑡) = 0.

Definition 5. A function 𝑥 ∈ 𝐶𝑏,𝑢(J, 𝑋) is called almost periodic at infinity if the equivalence
class �̃� = 𝑥+𝐶0(J, 𝑋) is an almost periodic vector in the space 𝒳 = 𝐶𝑏,𝑢(J, 𝑋)/𝐶0(J, 𝑋) of the

ismetric representation 𝑆 : R→ 𝐿𝐵(𝒳 ), that is, {𝑆(𝑡)�̃� : 𝑡 ∈ R} is a pre-compact space in the
quotient space 𝒳 or, equivalently, 𝑡 ↦→ 𝑆(𝑡)�̃� : R→ 𝒳 is a continuous almost periodic function.

Definition 6. A function 𝑥 ∈ 𝐶𝑏,𝑢(J, 𝑋) is called almost periodic at infinity if for each
𝜀 > 0 there exist numbers 𝜆1, . . . , 𝜆𝑛 ∈ R and slowly varying at infinity functions 𝑥1, . . . , 𝑥𝑛 ∈
𝐶𝑠𝑙,∞(J, 𝑋) such that

sup
𝑡∈J

⃦⃦⃦⃦
⃦𝑥(𝑡) −

𝑛∑︁
𝑘=1

𝑥𝑘(𝑡)𝑒𝑖𝜆𝑘𝑡

⃦⃦⃦⃦
⃦ < 𝜀.

The formulations of Definitions 5 and 6 imply that they are equivalent, see [17], [18].
The symbol 𝐴𝑃 (J, 𝑋) denotes a Banach space of almost periodic functions, while the symbol

𝐴𝑃∞(J, 𝑋) stands for the Banach space of almost periodic at infinity functions in 𝐶𝑏,𝑢(J, 𝑋).
It is clear that 𝐶0(J, 𝑋) ⊂ 𝐶𝑠𝑙,∞(J, 𝑋) ⊂ 𝐴𝑃∞(J, 𝑋).

By ̂︀𝑓 : R→ C we denote the Fourier transform

̂︀𝑓(𝜆) =

∫︁
R

𝑓(𝑡)𝑒−𝑖𝜆𝑡𝑑𝑡, 𝜆 ∈ R,

of a function 𝑓 ∈ 𝐿1(R).

Definition 7. The Beurling spectrum of a vector 𝑥 in a Banach 𝐿1(R)-module (𝒳 , ̃︀𝑆) is the
set

Λ(𝑥) =
{︀
𝜆0 ∈ R : 𝑓𝑥 ̸= 0 for each function 𝑓 ∈ 𝐿1(R) obeying ̂︀𝑓(𝜆0) ̸= 0

}︀
.

This definition implies that

Λ(𝑥) = R ∖
{︀
𝜇0 ∈ R : ∃𝑓 ∈ 𝐿1(R) such that ̂︀𝑓(𝜇0) ̸= 0 and 𝑓𝑥 = 0

}︀
.

If 𝒳0 is a closed submodule in 𝒳 , then the quotient space 𝒳/𝒳0 is a Banach 𝐿1(R)-module
with a structure defined for all 𝑓 ∈ 𝐿1(R) and �̃� = 𝑥+ 𝒳0 by the formula

𝑓�̃� = 𝑓𝑥+ 𝒳0 = ̃︁𝑓𝑥.
Definition 8. Let 𝑥 ∈ 𝐶𝑏,𝑢(J, 𝑋). The Beurling spectrum of the function 𝑥 at infinity

is the Beurling spectrum Λ(̃︀𝑥), where ̃︀𝑥 = 𝑥 + 𝐶0(J, 𝑋) is the equivalence class in 𝒳 =
𝐶𝑏,𝑢(J, 𝑋)/𝐶0(J, 𝑋) and it is denoted by the symbol Λ∞(𝑥).
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We consider an integro-differential equation of the form

𝐵�̇�(𝑡) + 𝐴𝑥(𝑡) + (𝜇 * 𝑥)(𝑡) = 𝜓(𝑡), 𝑡 ∈ J, (2)

where 𝐵,𝐴 ∈ 𝐿𝐵(𝑋, 𝑌 ) are operators, 𝜇 : 𝜎 → 𝐿𝐵(𝑋, 𝑌 ) is the Borel measure with a compact
support and 𝜎 is the algebra of Borel sets in J, and 𝜓 ∈ 𝐶𝑏,𝑢(J, 𝑌 ). Hereinafter the symbol
𝐿𝐵(𝑋, 𝑌 ) stands for the Banach space of linear bounded operators acting from the Banach
space 𝑋 with the values in 𝑌 . The operator 𝐵 is not necessarily invertible. The convolution
𝜇 * 𝑥 of the measure 𝜇 and the function 𝑥 ∈ 𝐶𝑏(J, 𝑌 ) is defined by the formula

(𝜇 * 𝑥)(𝑡) =

∫︁
J

𝜇(𝑑𝑠)𝑥(𝑡− 𝑠), 𝑡 ∈ J.

Such form of the convolution is because the measure 𝜇 is operator-valued.

Definition 9. An operator valued function

𝐻 : R→ 𝐿𝐵(𝑋, 𝑌 ), 𝐻(𝜆) = 𝑖𝐵𝜆+ 𝐴+ ̂︀𝜇(𝜆), 𝜆 ∈ R,

where ̂︀𝜇(𝜆) =
∫︀
R

𝜇(𝑑𝑡)𝑒−𝑖𝜆𝑡, 𝜆 ∈ R, is the Fourier transform of the measure 𝜇, is called the

characteristic function corresponding to operator equation (2).

Remark 2. Since the support supp𝜇 of the measure 𝜇 is compact, that is, the support supp𝜇
is contained in some segment [𝑎, 𝑏], it follows from the representation

̂︀𝜇(𝜆) =

∫︁
R

𝜇(𝑑𝑡)𝑒−𝑖𝜆𝑡 =

𝑏∫︁
𝑎

𝜇(𝑑𝑡)𝑒−𝑖𝜆𝑡, 𝜆 ∈ R,

that the function ̂︀𝜇 : R → 𝐿𝐵(𝑋, 𝑌 ) is infinitely differentiable on R. Moreover, it can be
continued to an entire function on C of exponential type at most max{|𝑏|, |𝑎|}.

Definition 10. The set

𝑠(𝐻) =
{︀
𝜆 ∈ R : 𝐻(𝜆) is an invertible operator in 𝐿𝐵(𝑋, 𝑌 )}

is called a singular set of the characteristic function 𝐻. The set 𝜌(𝐻) = R ∖ 𝑠(𝐻) is called a
regular set of the function 𝐻.

Remark 3. Let 𝑡𝑘, 𝑘 > 1, be some sequence of the points in the segment [𝑎, 𝑏] and 𝐴𝑘,
𝑘 > 1, be a sequence of the operators in the Banach space 𝐿𝐵(𝑋, 𝑌 ) satisfying the condition∑︀
𝑘>1

‖𝐴𝑘‖ < ∞. Then the measure 𝜇 =
∑︀
𝑘>1

𝐴𝑘𝛿𝑡𝑘 , where 𝛿𝑘 is the Dirac measure concentrated

at a point 𝑡𝑘 satisfies the above conditions. Its Fourier transform reads as ̂︀𝜇(𝜆) =
∑︀
𝑘>1

𝐴𝑘𝑒
−𝑖𝜆𝑡𝑘 .

Thus, 𝜇 is an almost periodic operator-valued function. In this case the characteristic function
𝐻(𝜆) corresponding to equation (2) with the above measure 𝜇 reads as

𝐻(𝜆) = 𝑖𝐵𝜆+ 𝐴+
∑︁
𝑘>1

𝐴𝑘𝑒
−𝑖𝜆𝑡𝑘 , 𝜆 ∈ R.

If 𝐵 = 0, then equation (2) becomes a difference equation of form

𝐴𝑥(𝑡) +
∑︁
𝑘>1

𝐴𝑘𝑥(𝑡− 𝑡𝑘) = 𝜓(𝑡), 𝑡 ∈ J.
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Remark 4. The considered class of equations includes a series of partial differential equa-
tions, where 𝐴 : 𝐷(𝐴) ⊂ 𝑌 → 𝑌 is a linear closed operator and 𝐵 is an operator relatively
bounded with respect to the operator 𝐴. In this case 𝑋 = 𝐷(𝐴) with the norm of the graph of
the operator 𝐴. If 𝜇 = 0, then equation (2) becomes

𝐵�̇�(𝑡) + 𝐴𝑥(𝑡) = 𝜓(𝑡), 𝑡 ∈ J.

A characteristic function corresponding to this equation is the operator pencil

𝐻(𝜆) = 𝑖𝜆𝐵 + 𝐴, 𝜆 ∈ R.

A singular set of such characteristic function reads as

𝑠(𝐻) = {𝜆 ∈ R : 𝑖𝜆𝐵 + 𝐴 is an invertible operator}.

Employing the terminology of [10]–[12], we obtain that the set 𝑠(𝐻) coincides with the set
𝜎(𝐴,−𝐵) ∩ (𝑖R), where 𝜎(𝐴,−𝐵) is the spectrum of an ordered pair 𝐴,−𝐵, which is the
spectrum of the operator pencil 𝐴+ 𝜆𝐵, 𝜆 ∈ R.
Many of the obtained results can be generalized to differential inclusions defined by linear

relations on a Banach space, see [21]–[24].

Remark 5. The convolution equation of the form 𝜇 * 𝑥 = 𝜓 (the case 𝐵 = 0, 𝐴 = 0) was
considered in paper [10]. In this paper there were obtained sufficient conditions of an asymptotic
almost periodicity of this solution to this equation with a complex measure. We recall that the
function 𝑥 ∈ 𝐶𝑏,𝑢(R+, 𝑋) is called asymptotically almost periodic if it can be represented as a
sum of two functions, one being almost periodic in the Bohr sense, while the other belongs to
the space 𝐶0(R+, 𝑋). It is clear that such functions are almost periodic at infinity. Criterions
for asymptotic almost periodicity of bounded solutions to parabolic equations were considered in
papers [13]–[15], see also monograph [3].

Definition 11. A classical solution to integro-differential equation (2) is a continuously dif-
ferentiable function 𝑥0 ∈ 𝐶𝑏,𝑢(J, 𝑋) such that �̇�0 ∈ 𝐶𝑏,𝑢(J, 𝑋) and it solves equation (2). A
function 𝑦0 ∈ 𝐶𝑏,𝑢(J, 𝑋) is called a weak solution to integro-differential equation (2) if it is a
uniform limit of some sequence of classical solutions to equation (2).

The following four theorems present main results of the paper.

Theorem 1. For each function 𝜓 ∈ 𝐶0(J, 𝑋) and for each weak solution 𝑥0 of equation (2)
the inclusion holds:

Λ∞(𝑥0) ⊂ 𝑠(𝐻). (3)

This theorem serves as a base of most statements in this paper.

Theorem 2. Let the singular set 𝑠(𝐻) of a characteristic function 𝐻 have no finite accu-
mulation points on R and let 𝜓 ∈ 𝐶0(J, 𝑋). Then each weak solution 𝑥0 ∈ 𝐶𝑏,𝑢(J, 𝑋) is an
almost periodic at infinity function.

Theorem 2 implies immediately the following statement.

Theorem 3. Let the singular set 𝑠(𝐻) of a characteristic function 𝐻 have no finite accu-
mulation points on R. Then each weak solution 𝑥0 ∈ 𝐶𝑏,𝑢(J, 𝑋) of homogeneous equation (2)
is an almost periodic at infinity function.

Theorem 4 (On the structure of bounded solutions). Let the set 𝑠(𝐻) = {𝜆𝑘 : 𝑘 > 1} have
no finite accumulation points on R and 𝑥0 ∈ 𝐶𝑏,𝑢(J, 𝑋) is a weak solution to equation (2) with
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the function 𝜓 ∈ 𝐶0(J, 𝑋). Then for each 𝜀 > 0 there exist slowly varying at infinity functions
𝜙1, . . . , 𝜙𝑛 ∈ 𝐶𝑠𝑙,∞(J, 𝑋) such that

sup
𝑡∈J

⃦⃦⃦⃦
⃦𝑥0(𝑡) −

𝑛∑︁
𝑘=1

𝜙𝑘(𝑡)𝑒𝑖𝜆𝑘𝑡

⃦⃦⃦⃦
⃦ < 𝜀.

2. Proof of main results

We begin with the following lemma.

Lemma 1. A function 𝑥0 ∈ 𝐶𝑏,𝑢(R+, 𝑋) is almost periodic at infinity if and only if when
the function the same holds for a function 𝑦0 ∈ 𝐶𝑏,𝑢(R, 𝑋) with the following properties:
1) 𝑦0 is a continuous continuation of 𝑥0 on R;
2) supp 𝑦0 ∩R− is a compact set, where R− = (−∞, 0].

Proof. For an arbitrary 𝜔 > 0 there exist numbers 𝑎(𝜔) > 0 and 𝑏(𝜔) > 0 such that the identity
holds:

sup
𝑡>𝑎(𝜔)

‖𝑥0(𝑡+ 𝜔) − 𝑥0(𝑡)‖ = sup
𝑡/∈[−𝑏(𝜔),𝑎(𝜔)]

‖𝑦0(𝑡± 𝜔) − 𝑦0(𝑡)‖.

This identity implies immediately that

Ω∞(𝑥0, 𝜀) = Ω∞(𝑦0, 𝜀) ∩R+,

Ω∞(𝑦0, 𝜀) = Ω∞(𝑥0, 𝜀) ∪ (−Ω(𝑥0, 𝜀)),

for each 𝜀 > 0.

Proof of Theorem 1. We first assume that 𝑥0 is a classical solution to equation (2). Let 𝜆0 ∈
𝜌(𝐻) = R ∖ 𝑠(𝐻). The function 𝐻(𝜆) = 𝑖𝜆𝐵 + 𝐴 + �̂�(𝜆), 𝜆 ∈ C, is entire. This is why the
invertibility of 𝐻(𝜆0) yields the existence of a number 𝛿 > 0 such that the interval (𝜆0−𝛿, 𝜆0+𝛿)
is contained in a regular set 𝜌(𝐻) of the function𝐻; the number 𝛿 is determined by the condition

sup
|𝜆−𝜆0|<𝛿

‖𝐻(𝜆) −𝐻(𝜆0)‖ · ‖𝐻(𝜆0)‖−1 < 1.

Thus, 𝐻(𝜆), 𝜆 ∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿), are invertible operators.
Let us consider an infinitely differentiable function 𝑓0 in the algebra 𝐿1(R) with the proper-

ties:
1) ̂︀𝑓0(𝜆0) ̸= 0;

2) supp ̂︀𝑓0 ⊂ (𝜆0 − 𝛿, 𝜆0 + 𝛿).
Then the function

̂︀𝐹 (𝜆) =

{︃̂︀𝑓0(𝜆)𝐻(𝜆)−1, as 𝜆 ∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿),

0, as 𝜆 /∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿),

is infinitely differentiable and is compactly supported. It is a Fourier transform of a summable
operator-valued function 𝐹 : R→ 𝐿𝐵(𝑌,𝑋) of the form

𝐹 (𝑡) =
1

2𝜋

∫︁
R

̂︀𝐹 (𝜆)𝑒𝑖𝜆𝑡𝑑𝜆, 𝑡 ∈ R.

We first consider the case J = R. We apply the operator of the convolution with the function
𝐹 with the identity

𝐵�̇�0 + 𝐴𝑥0 + 𝜇 * 𝑥0 = 𝜓.

As a result, we get the identity by employing the simplest properties of the Fourier transform:

(𝐵�̇� + 𝐴𝐹 + 𝜇 * 𝐹 ) * 𝑥0 = 𝐹 * 𝜓.
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Hence, the relation holds:

Φ * 𝑥0 = 𝐹 * 𝜓 = 𝜙 ∈ 𝐶0(R, 𝑋),

where Φ : R→ 𝐿𝐵(𝑌,𝑋) is a summable operator-valued function of the form

Φ = 𝐵�̇� + 𝐴𝐹 + 𝜇 * 𝐹.

Its Fourier transform reads aŝ︀Φ(𝜆) =𝑖𝜆𝐵 ̂︀𝐹 (𝜆) + 𝐴 ̂︀𝐹 (𝜆) + ̂︀𝜇(𝜆) ̂︀𝐹 (𝜆)

=

{︃
𝐻(𝜆) ̂︀𝐹 (𝜆), as 𝜆 ∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿),

0, as 𝜆 /∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿),
𝜆 ∈ R.

Since ̂︀𝑓0(𝜆)𝐼 = 𝐻(𝜆) ̂︀𝐹 (𝜆), where 𝜆 ∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿) and 𝐼 is the identity mapping in 𝐿𝐵(𝑌 ),
the identity holds:

𝑓0 * 𝑥0 = 𝜙 ∈ 𝐶0(R, 𝑋).

Since ̂︀𝑓0(𝜆0) ̸= 0, in view of the definition of the Beurling spectrum at infinity we obtain that
𝜆0 ∈ Λ∞(𝑥0). This proves inclusion (3).
Let J = R+ and 𝑥0 ∈ 𝐶𝑏,𝑢(R+, 𝑋) is a solution to equation (2). We define a function

𝑦0 ∈ 𝐶𝑏,𝑢(R, 𝑋) as in the lemma. Then the identity holds:

𝐵�̇�0(𝑡) + 𝐴𝑦0(𝑡) + (𝜇 * 𝑦0)(𝑡) = 𝜓1(𝑡), 𝑡 ∈ R,

where 𝜓1 ∈ 𝐶𝑏,𝑢(R, 𝑌 ), 𝜓1(𝑡) = 𝜓(𝑡) as 𝑡 > max{0, 𝑏}. The function 𝜓1 : R → 𝑌 is compactly
supported on the semi-axis (−∞, 𝑏] due to the compactness of the support of the measure 𝜇.
Hence, by Lemma 1, the function 𝜓1 belongs to the space 𝐴𝑃∞(R, 𝑋). Remark 1 implies also
the identity Λ∞(𝑦0) = Λ∞(𝑥0). Therefore, Λ∞(𝑥0) ⊂ 𝑠(𝐻).
Let 𝑥0 be a weak solution to equation (2) and let (𝑥𝑛) be a sequence of classical solutions

converging uniformly to 𝑥0. By the above proven facts, 𝑥𝑛 ∈ 𝐴𝑃∞(J, 𝑋), 𝑛 ∈ Z, and therefore,
by the closedness of 𝐴𝑃∞(J, 𝑋), we have 𝑥0 ∈ 𝐴𝑃∞(J, 𝑋).

In what follows we make use of the following theorem.

Theorem 5. Assume that the Beurling spectrum at infinity Λ∞(𝑥0) of the function 𝑥0 ∈
𝐶𝑏,𝑢(J, 𝑋) has no accumulation points in R. Then 𝑥0 ∈ 𝐴𝑃∞(J, 𝑋).

A more abstract version of this theorem was provided in paper [11].

Proof of Theorem 2. Theorem 1 implies the inclusion Λ∞(𝑥0) ⊂ 𝑠(𝐻). Since the set 𝑠(𝐻)
possesses no accumulation points on R, according Theorem 5, we have 𝑥 ∈ 𝐴𝑃∞(J, 𝑋).

Proof of Theorem 4. It follows from Theorems 1 and 2 that 𝑥0 ∈ 𝐴𝑃∞(J, 𝑋) and Λ(̃︀𝑥0) ⊂
𝑠(𝐻) = {𝜆𝑘 : 𝑘 > 1}. The results of papers [17] and [18] yield that the Fourier series an almost
periodic at infinity reads as 𝑥(𝑡) =

∑︀
𝑘>1

𝜓𝑘(𝑡)𝑒𝑖𝜆𝑘𝑡, where 𝜓𝑘, 𝑘 > 1, are slowly varying at infinity

functions. The theorem on approximation of an almost periodic at infinity function [18] implies
that for each 𝜀 > 0 there exist functions 𝜙1, . . . , 𝜙𝑛 ∈ 𝐶𝑠𝑙,∞(J, 𝑋) such that inequality (3) holds
true.

We consider the equation

𝜇 * 𝑥 = 𝜓, (4)

where the function 𝜓 ∈ 𝐶0(J, 𝑋) and the support supp𝜇 of the scalar measure 𝜇 is compact.
In this case, the characteristic function of this equation reads as

𝐻(𝜆) = ̂︀𝜇(𝜆), 𝜆 ∈ R.
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This is why 𝑠(𝐻) = supp ̂︀𝜇. Since ̂︀𝜇 can be continued to an entire function of an exponential
type on the complex plane, according the uniqueness theorem for analytic functions, the set
𝑠(𝐻) can have no finite accumulation points on R. Thus, we have just proved the following
theorem.

Theorem 6. Each classical solution 𝑥0 ∈ 𝐶𝑏,𝑢(J, 𝑋) to equation (4) is an almost periodic at
infinity function.

3. Almost periodic at infinity solutions to nonlinear equations

Definition 12. A continuous mapping 𝜙 : J×𝑋 → Y is called decaying at infinity if

lim
|𝑡|→∞

sup
‖𝑥‖6𝑅

‖𝜙(𝑡, 𝑥)‖ = 0

for each 𝑅 > 0.

Theorem 7. Let 𝑥0 ∈ 𝐶𝑏,𝑢(J, 𝑌 ) be a bounded solution of a nonlinear differential equation

𝐵�̇�(𝑡) + 𝐴𝑥(𝑡) + (𝜇 * 𝑥)(𝑡) = 𝜙(𝑡, 𝑥), (5)

where 𝜙 is a decaying at infinity mapping and let the set 𝑠(𝐻) have no finite accumulation point
in R. Then 𝑥0 is an almost periodic at infinity function.

Proof. Since 𝑥0 is a solution of equation (5), then 𝑥0 solves also inhomogeneous linear integral-
differential equation (2), where 𝜓(𝑡) = 𝜙(𝑡, 𝑥0(𝑡)), 𝑡 ∈ J. Definition 12 implies that the function
𝜓 belongs to the space 𝐶0(J, 𝑌 ). Thus, the function 𝑥0 satisfies assumptions of Theorem 3.

Theorem 7 implies the following statement.

Corollary 1. Let the assumptions of Theorem 7 be satisfied and the mapping 𝜙 : J×𝑋 → 𝑌
reads as 𝜙(𝑡, 𝑥) = 𝜙0(𝑡)𝑔(𝑥), where 𝑔 : 𝑋 → 𝑌 is a continuous mapping bounded on bounded
sets and 𝜙 ∈ 𝐶0(J, 𝑋). Then 𝑥0 is an almost periodic at infinity function.
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