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INTEGRATION OF EQUATIONS

OF KAUP SYSTEM KIND

WITH SELF-CONSISTENT SOURCE

IN CLASS OF PERIODIC FUNCTIONS

A.B. YAKHSHIMURATOV, B.A. BABAJANOV

Abstract. In this paper, we consider the equations of Kaup system kind with a self-

consistent source in the class of periodic functions. We discuss the complete integrability of

the considered nonlinear system of equations, which is based on the transformation to the

spectral data of an associated quadratic pencil of Sturm-Liouville equations with periodic

coefficients. In particular, Dubrovin-type equations are derived for the time-evolution of

the spectral data corresponding to the solutions of equations of Kaup system kind with

self-consistent source in the class of periodic functions. Moreover, it is shown that spectrum

of the quadratic pencil of Sturm-Liouville equations with periodic coefficients associated

with considering nonlinear system does not depend on time. In a one-gap case, we write

the explicit formulae for solutions of the problem under consideration expressed in terms of

the Jacobi elliptic functions. We show that if 𝑝0(𝑥) and 𝑞0(𝑥) are real analytical functions,
the lengths of the gaps corresponding to these coefficients decrease exponentially. The gaps

corresponding to the coefficients 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) are same. This implies that the solutions

of considered problem 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) are real analytical functions in 𝑥.
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1. Introduction

In [1], D.J. Kaup proved that the nonlinear system of equations⎧⎨⎩𝜂𝜏 = Φ𝑥𝑥 + 𝛽2Φ𝑥𝑥𝑥𝑥 − 𝜀 · (Φ𝑥𝜂)𝑥

𝜂 = Φ𝜏 +
1

2
𝜀 · Φ2

𝑥,

is completely integrable. The system describes the waves propagation in a shallow water. In [2],
complex finite-gap multiphase solutions expressed in terms of the Riemann theta functions were
considered. Multi-soliton solutions were found and the asymptotic behavior of these solutions
was studied. In [3], [4] and [5], a real finite-gap regular solutions of Kaup system were studied.
In [6], the ’Inverse Scattering Transform’ was employed to solve a class of nonlinear equations
associated with the inverse problem for the one-dimensional Schrodinger equation with the
energy-dependent potential.
It is not difficult (see [2]) to confirm that after the transformations

𝜂 =
4𝛽2

𝜀
(𝑞 + 𝑝2) +

1

𝜀
,
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Φ𝜏 =
4𝛽2

𝜀
(𝑞 + 3𝑝2) +

1

𝜀
,

Φ𝑥 = −4𝛽

𝑖𝜀
𝑝, 𝑡 = 𝑖𝛽𝜏,

the system of Kaup equations casts into a simpler form

{︂
𝑝𝑡 = −6𝑝𝑝𝑥 − 𝑞𝑥

𝑞𝑡 = 𝑝𝑥𝑥𝑥 − 4𝑞𝑝𝑥 − 2𝑝𝑞𝑥.

We shall also call it the Kaup system.
The Kaup system can be considered as a compatibility condition (see [2])

𝑦𝑥𝑥𝑡 − 𝑦𝑡𝑥𝑥 ≡ [(𝑞𝑡 − 𝑝𝑥𝑥𝑥 + 4𝑞𝑝𝑥 + 2𝑝𝑞𝑥) + 2𝜆(𝑝𝑡 + 6𝑝𝑝𝑥 + 𝑞𝑥)]𝑦 = 0

for the system of the linear equations

{︃
−𝑦𝑥𝑥 + 𝑞𝑦 + 2𝜆𝑝𝑦 − 𝜆2𝑦 = 0

𝑦𝑡 + 2𝜆𝑦𝑥 + 2𝑝𝑦𝑥 − 𝑝𝑥𝑦 = 0.

The first of these equations is called the quadratic pencil of Sturm-Liouville equations.
In [7], the Kaup system with self-consistent sources was studied by means of the inverse

problem for the quadratic pencil of Sturm-Liouville equations with periodic potential. The
inverse problem for the quadratic pencil of Sturm-Liouville equations with periodical potential
on a half-line and the entire line was solved in the works [8]-[13].
Recently, nonlinear evolution equations with self-consistent sources have received much

attention in the scientific literature. Physically, the sources appear in solitary waves with non-
constant velocity and lead to a variety of dynamics in physical models. They have important
applications in plasma physics, hydrodynamics, solid-state physics, etc. [14]-[19]. For example,
the KdV equation, which is included an integral type self-consistent source, was considered
in [17]. This type equation can be employed to describe the interaction of long and short
capillary-gravity waves [18]. Other important soliton equations with self-consistent source are
the nonlinear Schrodinger equation, which describes the nonlinear interaction of an ion acoustic
wave in the two component homogeneous plasma with the electrostatic high frequency wave
[19]. Other aspects on integration of nonlinear systems were presented in [20]-[25].
In this paper, the method of the inverse spectral problem for the quadratic pencil of Sturm-

Liouville equations with periodic coefficients is used to integrate the equation of Kaup system
kind with a self-consistent source in the class of periodic functions. In the one-gap case, we
write the explicit formulae for solutions of the problem under consideration, expressed in terms
of the Jacobi elliptic functions.
The paper is organized as follows. In section 2, we present the formulation of the considered

problem and we provide some basic information about the spectral theory of the quadratic
pencil of Sturm-Liouville equations with periodic coefficients. Section 3 is devoted to describing
the evolution of the spectral data corresponding to the problem in question. In section 4, we
illustrate the application of the main result for the one-gap case.



EQUATIONS OF KAUP SYSTEM KIND WITH SELF-CONSISTENT SOURCE . . . 105

2. Formulation of problem

We consider the system of equations with a self-consistent source⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑡 =𝑝𝑥𝑥𝑥 − 6𝑝𝑥𝑞 − 6𝑝𝑞𝑥 − 30𝑝2𝑝𝑥 +
∞∑︁

𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)(𝜓
2
+(𝑥, 𝜆𝑘, 𝑡))𝑥,

𝑞𝑡 =𝑞𝑥𝑥𝑥 + 6𝑝𝑝𝑥𝑥𝑥 + 18𝑝𝑥𝑝𝑥𝑥 − 6𝑞𝑞𝑥 − 24𝑝𝑞𝑝𝑥 − 6𝑝2𝑞𝑥

+ 2
∞∑︁

𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)
(︀
−𝑝𝑥 · 𝜓2

+(𝑥, 𝜆𝑘, 𝑡) + (𝜆𝑘 − 2𝑝)(𝜓2
+(𝑥, 𝜆𝑘, 𝑡))𝑥

)︀
,

(2.1)

in the class of real-valued 𝜋-periodic in the spatial variable 𝑥 functions 𝑝 = 𝑝(𝑥, 𝑡) and 𝑞 = 𝑞(𝑥, 𝑡)
possessing the following regularity

𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡) ∈ 𝐶3
𝑥(𝑡 > 0) ∩ 𝐶1

𝑡 (𝑡 > 0) ∩ 𝐶(𝑡 > 0)

and satisfying the initial conditions

𝑝(𝑥, 𝑡)|𝑡=0 = 𝑝0(𝑥), 𝑞(𝑥, 𝑡)|𝑡=0 = 𝑞0(𝑥). (2.2)

Here 𝑝0(𝑥) and 𝑞0(𝑥) are the given real-valued 𝜋-periodic functions such that for each nontrivial
function 𝑦(𝑥) ∈ 𝑊 2

2 [0, 𝜋] satisfying the identities

𝑦′(0)𝑦(0) − 𝑦′(𝜋)𝑦(𝜋) = 0, (𝑦, 𝑦) = 1,

the following inequality holds:

(𝑝0𝑦, 𝑦)2 + (𝑞0𝑦, 𝑦) + (𝑦′, 𝑦′) > 0,

where (· , ·) is a scalar product of the space 𝐿2(0, 𝜋). We observe that for 𝑝(𝑥) = 0 the
equation (2.1) reduces to the Korteweg-de Vriez equation with a self-consistent source. In
system (2.1), 𝛼𝑘(𝑡), 𝑘 ∈ 𝑍 is a given sequences of real-valued continuous functions having
a uniform asymptotic behavior

𝛼𝑘 = 𝑂

(︂
1

𝑘3

)︂
, 𝑘 → ±∞,

and 𝜓+(𝑥, 𝜆𝑘, 𝑡) is the Floquet solution normalized by the condition 𝜓+(0, 𝜆𝑘, 𝑡) = 1 of the
quadratic pencil of Sturm-Liouville equations

𝑇 (𝜆, 𝑡)𝑦 ≡ −𝑦′′ + 𝑞𝑦 + 2𝜆 𝑝𝑦 − 𝜆 2𝑦 = 0, 𝑥 ∈ R. (2.3)

Here 𝜆𝑘 are the zeroes of the function ∆2(𝜆) − 4, where ∆(𝜆) = 𝑐(𝜋, 𝜆, 𝑡) + 𝑠′(𝜋, 𝜆, 𝑡). We
denote by 𝑐(𝑥, 𝜆, 𝑡) and 𝑠(𝑥, 𝜆, 𝑡) the solutions of equation (2.3) satisfying the initial conditions

𝑐(0, 𝜆, 𝑡) = 1, 𝑐′(0, 𝜆, 𝑡) = 0, 𝑠(0, 𝜆, 𝑡) = 0, 𝑠′(0, 𝜆, 𝑡) = 1,

respectively.
The spectrum of the quadratic pencil (2.3) is real and coincides with the set [8-9]

𝜎(𝑇 ) = {𝜆 ∈ R | − 2 6 ∆(𝜆) 6 2} = R ∖
∞⋃︁

𝑛=−∞

(𝜆2𝑛−1, 𝜆2𝑛).

The intervals (𝜆2𝑛−1, 𝜆2𝑛), 𝑛 ∈ Z, are called the gaps or lacunas. The numbering is introduced
in such a way that 𝜆−1 < 0 < 𝜆0.
We denote by 𝜉𝑛(𝑡), 𝑛 ∈ Z ∖ {0} the eigenvalues of the Dirichlet problem (𝑦(0) = 𝑦(𝜋) = 0)

for equation (2.3). The inclusions 𝜉𝑛(𝑡) ∈ [𝜆2𝑛−1, 𝜆2𝑛] and the identity

𝑠(𝜋, 𝜆, 𝑡) = 𝜋
∞∏︁

0̸=𝑘=−∞

𝜉𝑘(𝑡) − 𝜆

𝑘
(2.4)

are satisfied.
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The numbers 𝜉𝑛 = 𝜉𝑛(𝑡) with the signs

𝜎𝑛 = 𝜎𝑛(𝑡) = sign {𝑠′(𝜋, 𝜉𝑛) − 𝑐(𝜋, 𝜉𝑛)} , 𝑛 ∈ Z ∖ {0},
are called the spectral parameters of quadratic pencil (2.3).
The boundaries 𝜆𝑛 of the spectrum and the spectral parameters 𝜉𝑛, 𝜎𝑛 are called the spectral

data of problem (2.3).
The aim of this work is to develop a procedure for constructing the solution (𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡),

𝜓+(𝑥, 𝜆𝑘, 𝑡)) of problem (2.1)-(2.3) by means of the inverse spectral problem for the quadratic
pencil of Sturm-Liouville equations (2.3).

3. Main Result

The main result of the paper is presented in the following theorem.

Theorem 3.1. Let 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡) and 𝜓+(𝑥, 𝜆𝑘, 𝑡) be solution of problem (2.1)-(2.3). Then
the spectrum of problem (2.3) is independent of 𝑡, and the spectral parameters 𝜉𝑛(𝑡), 𝑛 ∈ Z∖{0}
satisfy the following analogue of the system of Dubrovin equations

𝜉𝑛(𝑡) =2(−1)𝑛𝜎𝑛(𝑡)sign (𝑛) ·
√︀

(𝜉𝑛(𝑡) − 𝜆2𝑛−1)(𝜆2𝑛 − 𝜉𝑛(𝑡))

·

⎯⎸⎸⎷(𝜉𝑛(𝑡) − 𝜆−1)(𝜉𝑛(𝑡) − 𝜆0)
∏︁
𝑘 ̸=𝑛,0

(𝜉𝑛(𝑡) − 𝜆2𝑘−1)(𝜉𝑛(𝑡) − 𝜆2𝑘)

(𝜉𝑛(𝑡) − 𝜉𝑘(𝑡))2

·

(︃(︃
4𝜉𝑛(𝑡) + 2(𝜆−1 + 𝜆0) + 4

∞∑︁
0̸=𝑘=−∞

(︂
𝜆2𝑘−1 + 𝜆2𝑘

2
− 𝜉𝑘(𝑡)

)︂)︃
𝜉𝑛(𝑡)

+ 2

(︃
𝜆−1 + 𝜆0

2
+

∞∑︁
0 ̸=𝑘=−∞

(︂
𝜆2𝑘−1 + 𝜆2𝑘

2
− 𝜉𝑘(𝑡)

)︂)︃2

+ 𝜆2−1 + 𝜆20

+
∞∑︁

0 ̸=𝑘=−∞

(︀
𝜆22𝑘−1 + 𝜆22𝑘 − 2𝜉2𝑘(𝑡)

)︀
+

∞∑︁
𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡, 𝜏)

𝜉𝑛(𝑡) − 𝜆𝑘

)︃
.

(3.1)

The sign 𝜎𝑛(𝑡) = ±1 changes at each collision of the point 𝜉𝑛(𝑡) with the boundaries of its gap
[𝜆2𝑛−1, 𝜆2𝑛]. Moreover, the following initial conditions are satisfied

𝜉𝑛(𝑡)|𝑡=0 = 𝜉0𝑛, 𝜎𝑛(𝑡)|𝑡=0 = 𝜎0
𝑛, 𝑛 ∈ Z ∖ {0}, (3.2)

where 𝜉0𝑛, 𝜎
0
𝑛, 𝑛 ∈ Z ∖ {0} are the spectral parameters of the quadratic pencil of Sturm-Liouville

equations corresponding to the coefficients 𝑝0(𝑥) and 𝑞0(𝑥).

Proof. Let 𝑦𝑛(𝑥, 𝑡) be the normalized eigenfunction of the Dirichlet problem for equation (2.3)
corresponding to the eigenvalue 𝜉𝑛 = 𝜉𝑛(𝑡). It is easy to see that

𝑦𝑛(𝑥, 𝑡) =
1

𝑐𝑛(𝑡)
𝑠(𝑥, 𝜉𝑛(𝑡), 𝑡), (3.3)

where

𝑐2𝑛(𝑡) =

𝜋∫︁
0

𝑠2(𝑥, 𝜉𝑛(𝑡), 𝑡)𝑑𝑥.

Differentiating the identity

−(𝑦′′𝑛, 𝑦𝑛) + (𝑞𝑦𝑛, 𝑦𝑛) + 2𝜉𝑛(𝑝𝑦𝑛, 𝑦𝑛) − 𝜉2𝑛 = 0,

with respect to 𝑡, we get

− (𝑦′′𝑛, 𝑦𝑛) − (𝑦′′𝑛, �̇�𝑛) + (𝑞𝑡𝑦𝑛 + 𝑞�̇�𝑛, 𝑦𝑛) + (𝑞𝑦𝑛, �̇�𝑛) + 2𝜉𝑛(𝑝𝑦𝑛, 𝑦𝑛)
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+ 2𝜉𝑛(𝑝𝑡𝑦𝑛 + 𝑝�̇�𝑛, 𝑦𝑛) + 2𝜉𝑛(𝑝𝑦𝑛, �̇�𝑛) − 2𝜉𝑛𝜉𝑛 = 0.

By the last identity we obtain

(−𝑦′′𝑛 + 𝑞�̇�𝑛 + 2𝜉𝑛𝑝�̇�𝑛, 𝑦𝑛) + (−𝑦′′𝑛 + 𝑞𝑦𝑛 + 2𝜉𝑛𝑝𝑦𝑛, �̇�𝑛)

+ (𝑞𝑡𝑦𝑛 + 2𝜉𝑛𝑝𝑡𝑦𝑛, 𝑦𝑛) + 2𝜉𝑛(𝑝𝑦𝑛, 𝑦𝑛) − 2𝜉𝑛𝜉𝑛 = 0,

2𝜉𝑛[𝜉𝑛 − (𝑝𝑦𝑛, 𝑦𝑛)] = (𝑞𝑡𝑦𝑛 + 2𝜉𝑛𝑝𝑡𝑦𝑛, 𝑦𝑛) ,

and hence,

2𝜉𝑛

⎛⎝𝜉𝑛 − 𝜋∫︁
0

𝑝𝑦2𝑛𝑑𝑥

⎞⎠ =

𝜋∫︁
0

(𝑞𝑡 + 2𝜉𝑛𝑝𝑡)𝑦
2
𝑛𝑑𝑥. (3.4)

According to (2.1) we have

𝑞𝑡 + 2𝜉𝑛𝑝𝑡 =𝑞𝑥𝑥𝑥 + 6𝑝𝑝𝑥𝑥𝑥 + 18𝑝𝑥𝑝𝑥𝑥 − 6𝑞𝑞𝑥 − 24𝑝𝑞𝑝𝑥 − 6𝑝2𝑞𝑥

+ 2𝜉𝑛(𝑝𝑥𝑥𝑥 − 6𝑝𝑥𝑞 − 6𝑝𝑞𝑥 − 30𝑝2𝑝𝑥) +𝐺2 + 2𝜉𝑛𝐺1,
(3.5)

where

𝐺1(𝑥, 𝑡) =
∞∑︁

𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)(𝜓
2
+(𝑥, 𝜆𝑘, 𝑡))𝑥

and

𝐺2(𝑥, 𝑡) = 2
∞∑︁

𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)
{︀
−𝑝𝑥 · 𝜓2

+(𝑥, 𝜆𝑘, 𝑡) + (𝜆𝑘 − 2𝑝)(𝜓2
+(𝑥, 𝜆𝑘, 𝑡))𝑥

}︀
.

We introduce the polynomial

𝑐(𝑥, 𝑡, 𝜉𝑛) = 𝑐0(𝑥, 𝑡)𝜉
2
𝑛 + 𝑐1(𝑥, 𝑡)𝜉𝑛 + 𝑐2(𝑥, 𝑡)

and we rewrite identity (3.5) as

𝑞𝑡 + 2𝜉𝑛𝑝𝑡 =
1

2
𝑐′′′ + 2𝑐′ · (𝜉2𝑛 − 2𝑝𝜉𝑛 − 𝑞) − 𝑐 · (2𝑝′𝜉𝑛 + 𝑞′) +𝐺2 + 2𝜉𝑛𝐺1, (3.6)

where

𝑐0(𝑥, 𝑡) = 4, 𝑐1(𝑥, 𝑡) = 4𝑝(𝑥, 𝑡), 𝑐2(𝑥, 𝑡) = 2[𝑞(𝑥, 𝑡) + 3𝑝2(𝑥, 𝑡)].

Using the identity

𝑞𝑦𝑛 = 𝜉2𝑛𝑦𝑛 + 𝑦′′𝑛 − 2𝜉𝑛𝑝𝑦𝑛

it is easy to show that(︂(︂
1

2
𝑐′′ + 𝑐 · (𝜉2𝑛 − 2𝑝𝜉𝑛 − 𝑞)

)︂
𝑦2𝑛 − 𝑐′𝑦𝑛𝑦

′
𝑛 + 𝑐(𝑦2𝑛)′

)︂′

=

(︂
1

2
𝑐′′′ + 2𝑐′ · (𝜉2𝑛 − 2𝑝𝜉𝑛 − 𝑞) − 𝑐 · (2𝑝′𝜉𝑛 + 𝑞′)

)︂
𝑦2𝑛.

(3.7)
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Substituting expressions (3.6) into formula (3.4) and taking into consideration (3.7), we arrive
at the identity

2𝜉𝑛

⎛⎝𝜉𝑛 − 𝜋∫︁
0

𝑝𝑦2𝑛𝑑𝑥

⎞⎠ =

(︂(︂
1

2
𝑐′′ + 𝑐 · (𝜉2𝑛 − 2𝑝𝜉𝑛 − 𝑞)

)︂
𝑦2𝑛 − 𝑐′𝑦𝑛𝑦

′
𝑛 + 𝑐(𝑦2𝑛)′

)︂⃒⃒⃒⃒𝜋
0

+

𝜋∫︁
0

(𝐺2 + 2𝜉𝑛𝐺1)𝑦
2
𝑛𝑑𝑥

=𝑐(0, 𝑡, 𝜉𝑛)
(︀
𝑦′2𝑛(𝜋, 𝑡) − 𝑦′2𝑛(0, 𝑡)

)︀
+

𝜋∫︁
0

(𝐺2 + 2𝜉𝑛𝐺1)𝑦
2
𝑛𝑑𝑥.

(3.8)

Now we calculate the last integral in (3.8)

𝐼 ≡
𝜋∫︁

0

(𝐺2 + 2𝜉𝑛𝐺1)𝑦
2
𝑛𝑑𝑥

=
∞∑︁

𝑘=−∞

𝛼𝑘𝑠(𝜋, 𝜆𝑘, 𝑡)

·
𝜋∫︁

0

(︀
− 2𝑝𝑥𝑦

2
𝑛 · 𝜓2

+(𝑥, 𝜆𝑘, 𝑡) + 2(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦2𝑛 · (𝜓2
+(𝑥, 𝜆𝑘, 𝑡))𝑥

)︀
𝑑𝑥.

(3.9)

It is easy to confirm that

𝐽 ≡− 2

𝜋∫︁
0

𝑝𝑥𝑦
2
𝑛𝜓

2
𝑘𝑑𝑥+ 2

∫︁ 𝜋

0

(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦2𝑛(𝜓2
𝑘)𝑥𝑑𝑥

= − 2

𝜋∫︁
0

𝑝𝑥𝑦
2
𝑛𝜓

2
𝑘𝑑𝑥+

𝜋∫︁
0

(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦2𝑛(𝜓2
𝑘)𝑥𝑑𝑥+

∫︁ 𝜋

0

(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦2𝑛𝑑(𝜓2
𝑘)

= − 2

𝜋∫︁
0

𝑝𝑥𝑦
2
𝑛𝜓

2
𝑘𝑑𝑥+

𝜋∫︁
0

2(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦2𝑛 𝜓𝑘 𝜓
′
𝑘𝑑𝑥

−
𝜋∫︁

0

(︀
− 2𝑝𝑥𝑦

2
𝑛 + 2(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦𝑛𝑦

′
𝑛

)︀
𝜓2
𝑘𝑑𝑥

=

𝜋∫︁
0

2(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦𝑛𝜓𝑘(𝑦𝑛𝜓
′
𝑘 − 𝑦′𝑛𝜓𝑘)𝑑𝑥,

(3.10)

where 𝜓𝑘 = 𝜓+(𝑥, 𝜆𝑘, 𝑡). Using the identity

(𝜉𝑛 + 𝜆𝑘 − 2𝑝)𝑦𝑛𝜓𝑘 =
(𝑦𝑛𝜓

′
𝑘 − 𝑦′𝑛𝜓𝑘)′

𝜉𝑛 − 𝜆𝑘
,

by (3.10) we obtain that

𝐽 =
1

𝜉𝑛 − 𝜆𝑘

(︀
𝑦′2𝑛(𝜋, 𝑡) − 𝑦′2𝑛(0, 𝑡)

)︀
. (3.11)
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Substituting (3.11) into (3.9), we get

𝐼 =
∞∑︁

𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)

𝜉𝑛 − 𝜆𝑘
·
(︀
𝑦′2𝑛(𝜋, 𝑡) − 𝑦′2𝑛(0, 𝑡)

)︀
. (3.12)

Hence, by means of expression (3.12), we conclude that

2𝜉𝑛

⎛⎝𝜉𝑛 − 𝜋∫︁
0

𝑝𝑦2𝑛𝑑𝑥

⎞⎠ =
(︀
𝑦′2𝑛(𝜋, 𝑡) − 𝑦′2𝑛(0, 𝑡)

)︀ 2∑︁
𝑘=0

𝑐𝑘(0, 𝑡)𝜉2−𝑘
𝑛

+
(︀
𝑦′2𝑛(𝜋, 𝑡) − 𝑦′2𝑛(0, 𝑡)

)︀ ∞∑︁
𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)

𝜉𝑛 − 𝜆𝑘
.

(3.13)

By virtue of (3.3), identity (3.13) can be written as

2𝜉𝑛(𝑡)

⎛⎝𝜉𝑛(𝑡)𝑐2𝑛(𝑡) −
𝜋∫︁

0

𝑝𝑠2(𝑥, 𝜉𝑛(𝑡), 𝑡)𝑑𝑥

⎞⎠ =
(︀
𝑠′2(𝜋, 𝜉𝑛(𝑡), 𝑡) − 1

)︀ 2∑︁
𝑘=0

𝑐𝑘(0, 𝑡)𝜉2−𝑘
𝑛

+
(︀
𝑠′2(𝜋, 𝜉𝑛(𝑡), 𝑡) − 1

)︀ ∞∑︁
𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)

𝜉𝑛 − 𝜆𝑘
.

It follows from the identity

2𝜉𝑛(𝑡)𝑐2𝑛(𝑡) − 2

𝜋∫︁
0

𝑝(𝑥, 𝑡)𝑠2(𝑥, 𝜉𝑛(𝑡), 𝑡)𝑑𝑥 = 𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡)
𝜕𝑠(𝜋, 𝜉𝑛(𝑡), 𝑡)

𝜕𝜆

that

𝜉𝑛(𝑡)
𝜕𝑠(𝜋, 𝜉𝑛(𝑡), 𝑡)

𝜕𝜆
=

(︂
𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡) − 1

𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡)

)︂ 2∑︁
𝑘=0

𝑐𝑘(0, 𝑡)𝜉2−𝑘
𝑛

+

(︂
𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡) − 1

𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡)

)︂ ∞∑︁
𝑘=−∞

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡)

𝜉𝑛 − 𝜆𝑘
.

(3.14)

Now, substituting the values 𝑥 = 𝜋 and 𝜆 = 𝜉𝑛(𝑡) into the identity

𝑐(𝑥, 𝜆, 𝑡)𝑠′(𝑥, 𝜆, 𝑡) − 𝑐′(𝑥, 𝜆, 𝑡)𝑠(𝑥, 𝜆, 𝑡) = 1,

we find that

𝑐(𝜋, 𝜉𝑛(𝑡), 𝑡) =
1

𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡)
. (3.15)

By (3.15) and the identity

[𝑐(𝜋, 𝜆, 𝑡) − 𝑠′(𝜋, 𝜆, 𝑡)]2 = (∆2(𝜆) − 4) − 4𝑐′(𝜋, 𝜆, 𝑡)𝑠(𝜋, 𝜆, 𝑡),

we arrive at the identity

𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡) − 1

𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡)
= 𝜎𝑛(𝑡)

√︀
∆2(𝜉𝑛(𝑡)) − 4. (3.16)

Using (2.4), (3.16) and the expansion

∆2(𝜆) − 4 = −4𝜋2(𝜆− 𝜆−1)(𝜆− 𝜆0)
∞∏︁

0̸=𝑘=−∞

(𝜆− 𝜆2𝑘−1)(𝜆− 𝜆2𝑘)

𝑘2
,
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we find:

𝑠′(𝜋, 𝜉𝑛(𝑡), 𝑡) − 1
𝑠′(𝑥,𝜉𝑛(𝑡),𝑡)

𝜕𝑠(𝜋,𝜉𝑛(𝑡),𝑡)
𝜕𝜆

=
𝜎𝑛(𝑡)

√︀
∆2(𝜉𝑛(𝑡)) − 4

𝜕𝑠(𝜋,𝜉𝑛(𝑡),𝑡)
𝜕𝜆

= 2(−1)𝑛𝜎𝑛(𝑡)sign (𝑛) ·
√︀

(𝜉𝑛(𝑡) − 𝜆2𝑛−1)(𝜆2𝑛 − 𝜉𝑛(𝑡))

·

⎯⎸⎸⎷(𝜉𝑛(𝑡) − 𝜆−1)(𝜉𝑛(𝑡) − 𝜆0)
∏︁
𝑘 ̸=𝑛,0

(𝜉𝑛(𝑡) − 𝜆2𝑘−1)(𝜉𝑛(𝑡) − 𝜆2𝑘)

(𝜉𝑛(𝑡) − 𝜉𝑘(𝑡))2
.

(3.17)
Here we have also employed the identity

sign

(︃
−𝜋
𝑛

∏︁
𝑘 ̸=𝑛,0

𝜉𝑘(𝑡) − 𝜉𝑛(𝑡)

𝑘

)︃
= (−1)𝑛sign (𝑛).

From (3.14), (3.17) and the trace formulae

𝑝(𝑡) =
𝜆−1 + 𝜆0

2
+

∞∑︁
0̸=𝑘=−∞

(︂
𝜆2𝑘−1 + 𝜆2𝑘

2
− 𝜉𝑘(𝑡)

)︂
,

𝑞(𝑡) + 2𝑝2(𝑡) =
𝜆2−1 + 𝜆20

2
+

∞∑︁
0̸=𝑘=−∞

(︂
𝜆22𝑘−1 + 𝜆22𝑘

2
− 𝜉2𝑘(𝑡)

)︂
we get (3.1).

We note that if instead of the Dirichlet boundary conditions we consider periodic or anti-
periodic boundary value conditions, then equation (3.13) becomes �̇�𝑛(𝑡) = 0, 𝑛 ∈ 𝑍. Hence, the
spectrum of problem (2.3) is independent of the parameter 𝑡, and this completes the proof.

Remark 1. If instead of 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) we consider the functions 𝑝(𝑥+𝜏, 𝑡) and 𝑞(𝑥+𝜏, 𝑡),
then, as we have seen in the previous section, the eigenvalues of the periodic and antiperiodic
problems are independent of the parameters 𝜏 and 𝑡. However, the eigenvalues 𝜉𝑛 of the Dirichlet
problem and the signs 𝜎𝑛 do depend on 𝜏 and 𝑡: 𝜉𝑛 = 𝜉𝑛(𝜏, 𝑡), 𝜎𝑛 = 𝜎𝑛(𝜏, 𝑡) = ±1.

Remark 2. The theorem gives a method for solving problem (2.1)-(2.3). First we find the
spectral data 𝜆𝑛, 𝑛 ∈ 𝑍, 𝜉0𝑛(𝜏), 𝜎0

𝑛(𝜏), 𝑛 ∈ Z ∖ {0} of the quadratic pencil of Sturm-Liouville
equations corresponding to the coefficients 𝑝0(𝑥 + 𝜏) and 𝑞0(𝑥 + 𝜏). Then we solve the Cauchy
problem for Dubrovin system (3.1) with the initial conditions

𝜉𝑛(𝜏, 𝑡) |𝑡=0 = 𝜉0𝑛(𝜏), 𝜎𝑛(𝜏, 𝑡)
⃒⃒
𝑡=0 = 𝜎0

𝑛(𝜏) , 𝑛 ∈ Z ∖ {0}.
Finally, by using the trace formulae

𝑝(𝜏, 𝑡) =
𝜆−1 + 𝜆0

2
+

∞∑︁
0̸=𝑘=−∞

(︂
𝜆2𝑘−1 + 𝜆2𝑘

2
− 𝜉𝑘(𝜏, 𝑡)

)︂
,

𝑞(𝜏, 𝑡) + 2𝑝2(𝜏, 𝑡) =
𝜆2−1 + 𝜆20

2
+

∞∑︁
0 ̸=𝑘=−∞

(︂
𝜆22𝑘−1 + 𝜆22𝑘

2
− 𝜉2𝑘(𝜏, 𝑡)

)︂
we get the expressions of 𝑝(𝜏, 𝑡) and 𝑞(𝜏, 𝑡). After that the Floquet solutions 𝜓+(𝑥, 𝜆𝑘, 𝑡) of
equation (2.3) can be found easily.

Remark 3. If the number of zones is finite, that is, there are two nonnegative integer num-
bers 𝑁 and 𝑀 such that 𝜆2𝑘−1 = 𝜆2𝑘 = 𝜉𝑘 for all 𝑘 > 𝑁 and −𝑀 < 𝑘, then system (3.1) reads
as

𝜕𝜉𝑛
𝜕𝑡

=2(−1)𝑛𝜎𝑛(𝜏, 𝑡)sign (𝑛) ·
√︀

(𝜉𝑛 − 𝜆2𝑛−1)(𝜆2𝑛 − 𝜉𝑛)
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·

⎯⎸⎸⎸⎷(𝜉𝑛 − 𝜆−1)(𝜉𝑛 − 𝜆0)
𝑁∏︁

𝑘=−𝑀
𝑘 ̸=𝑛,0

(𝜉𝑛 − 𝜆2𝑘−1)(𝜉𝑛 − 𝜆2𝑘)

(𝜉𝑛 − 𝜉𝑘)2

·

(︃(︃
4𝜉𝑛 + 2(𝜆−1 + 𝜆0) + 4

𝑁∑︁
0̸=𝑘=−𝑀

(︂
𝜆2𝑘−1 + 𝜆2𝑘

2
− 𝜉𝑘(𝜏, 𝑡)

)︂)︃
𝜉𝑛

+ 2

(︃
𝜆−1 + 𝜆0

2
+

𝑁∑︁
0̸=𝑘=−𝑀

(︂
𝜆2𝑘−1 + 𝜆2𝑘

2
− 𝜉𝑘(𝜏, 𝑡)

)︂)︃2

+ 𝜆2−1 + 𝜆20

+
𝑁∑︁

0̸=𝑘=−𝑀

(︀
𝜆22𝑘−1 + 𝜆22𝑘 − 2𝜉2𝑘(𝜏, 𝑡)

)︀
+

𝑁∑︁
𝑘=−𝑀

𝛼𝑘(𝑡)𝑠(𝜋, 𝜆𝑘, 𝑡, 𝜏)

𝜉𝑛 − 𝜆𝑘

)︃
,

where 𝑛 = −𝑀, . . . ,−1, 1, . . . , 𝑁 .

Remark 4. In [13], there was proved the theorem stating that the lengths of the gaps of the
quadratic pencil of Sturm-Liouvelle equations with 𝜋-periodic real-valued coefficients decrease
exponentially if and only if the coefficients are analytic. From this theorem we conclude that if
𝑝0(𝑥) and 𝑞0(𝑥) are real analytical functions, then the lengths of the gaps corresponding to these
coefficients decrease exponentially. The gaps corresponding to the coefficients 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡)
are same. Hence, the solutions 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) of problem (2.1)-(2.3) are real analytical
functions on 𝑥.

Remark 5. In [26], an analogue of Borg inverse theorem was proved: the number 𝜋
2
is a

period of the coefficients of the quadratic pencil of Sturm-Liouvelle equations with 𝜋-periodic
real-valued coefficients if and only if all eigenvalues of antiperiodic problem are double. By this
theorem we conclude that if the functions 𝑝0(𝑥) and 𝑞0(𝑥) have the period 𝜋

2
, then all eigenvalues

of antiperiodic problem corresponding to these coefficients are double. The gaps corresponding
to the coefficients 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) are same. Hence, the solutions 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) of problem
(2.1)–(2.3) are 𝜋

2
-periodic functions in 𝑥.

4. Example

We now illustrate the application of Theorem to solve the problem (2.1)–(2.2).
Let us consider the following initial value conditions

𝑝(𝑥, 𝑡)|𝑡=0 = 𝑝0(𝑥) =
3 − 4𝑠𝑛2

(︀
3𝑥, 2

3

)︀
1 + 2𝑐𝑛2

(︀
3𝑥, 2

3

)︀ ,
𝑞(𝑥, 𝑡)|𝑡=0 = 𝑞0(𝑥) =

81 − 156𝑠𝑛2
(︀
3𝑥, 2

3

)︀
+ 72𝑠𝑛4

(︀
3𝑥, 2

3

)︀(︀
1 + 2𝑐𝑛2

(︀
3𝑥, 2

3

)︀)︀2 ,

for equations of Kaup system kind (2.1) with 𝛼𝑘(𝑡) = 1
𝜋𝑘3

. Let us find the spectral data of the
problem (2.3) for 𝑝0(𝑥) and 𝑞0(𝑥). It has the form

𝜆−1 = −1, 𝜆0 = 1, 𝜆1 = 2, 𝜆2 = 4, 𝜉01(0) = 2, 𝜎0
1(0) = 1.

In this case the system (3.1) reads as

𝜕𝜉1
𝜕𝑡

= −226𝜎𝑛(𝜏, 𝑡) ·
√︀

(4 − 𝜉1)(𝜉1 − 2)(𝜉1 − 1)(𝜉1 + 1). (4.1)

We consider this system subject to the initial condition

𝜉1(𝜏, 𝑡) |𝑡=0 = 𝜉01(𝜏), 𝜎1(𝜏, 𝑡)
⃒⃒
𝑡=0 = 𝜎0

1(𝜏) , (4.2)
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where 𝜉01(𝜏) solves the differential equation

𝑑𝜉01(𝜏)

𝑑𝜏
= 2𝜎0

1(𝜏)
√︁

(4 − 𝜉01(𝜏))(𝜉01(𝜏) − 2)(𝜉01(𝜏) − 1)(𝜉01(𝜏) + 1)

and satisfies the initial condition

𝜉01(𝜏)
⃒⃒
𝜏=0

= 2, 𝜎0
1(𝜏)

⃒⃒
𝜏=0

= 1.

Solving the Cauchy problem (4.1)-(4.2) we find that (see [27])

𝜉1(𝜏, 𝑡) =
6 − 2sn2

(︀
−339𝑡+ 3𝜏, 2

3

)︀
1 + 2cn2

(︀
−339𝑡+ 3𝜏, 2

3

)︀ .
Substituting this into the first and second trace formulae, we obtain the solution of the given
problem:

𝑝(𝜏, 𝑡) =
3 − 4sn2

(︀
−339𝑡+ 3𝜏, 2

3

)︀
1 + 2cn2

(︀
−339𝑡+ 3𝜏, 2

3

)︀ ,
𝑞(𝜏, 𝑡) =

81 − 156sn2
(︀
−339𝑡+ 3𝜏, 2

3

)︀
+ 72sn4

(︀
−339𝑡+ 3𝜏, 2

3

)︀(︀
1 + 2cn2

(︀
−339𝑡+ 3𝜏, 2

3

)︀)︀2 ,

where sn and cn are the Jacobi elliptic functions.
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