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GRAPHS OF TOTALLY GEODESIC FOLIATIONS ON

PSEUDO-RIEMANNIAN MANIFOLDS

N.I. ZHUKOVA

Abstract. We study totally geodesic foliations (𝑀,𝐹 ) of arbitrary codimension 𝑞 on
𝑛-dimensional pseudo-Riemannian manifolds, for which the induced metrics on leaves is
non-degenerate. We assume that the 𝑞-dimensional orthogonal distribution M to (𝑀,𝐹 )
is an Ehresmann connection for this foliation. Since the usual graph 𝐺(𝐹 ) is not Haus-
dorff manifold in general, we study the graph 𝐺M(𝐹 ) of the foliation with an Ehresmann
connection M introduced early by the author. This graph is always a Hausdorff mani-
fold. We prove that on the graph 𝐺M(𝐹 ), a pseudo-Riemannian metric is defined, with
respect to which the induced foliation and the simple foliations formed by the leaves of the
canonical projections are totally geodesic. We show that the leaves of the induced folia-
tion on the graph are non-degenerately reducible pseudo-Riemannian manifolds and their
structure is described. The application to parallel foliations on nondegenerately reducible
pseudo-Riemannian manifolds is considered. We also show that each foliation defined by
the suspension of a homomorphism of the fundamental group of a pseudo-Riemannian
manifold belongs to the considered class of foliations.

Keywords: totally geodesic foliation, pseudo-Riemaniann manifold, graph of a foliation,
Ehresmann connection for a foliation.
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1. Introduction and main results

Foliation golonomy gruppoid was introduced by Ch. Ehresmann and an equivalent construction was
proposed by H.E. Winkelnkemper [1] and was called the graph of a foliation. The graph of a foliation
contains all information about the foliation and on germ holonomy groups conventionally accepted in
the foliation theory [2]. 𝐶*-algebras of complex-valued functions for foliations introduced by Connes
[3] are defined on the holonomy gruppoids of these foliations.

Let (𝑀,𝐹 ) be a smooth foliation of codimension 𝑞 on an 𝑛-dimensional smooth manifold𝑀 . R. Blu-
menthal and J. Hebda defined an Ehresmann connection for (𝑀,𝐹 ) as a 𝑞-dimensional distribution
M transversal to the leaves whose integral curves admit a translation along each curve in a leaf of the
foliation [4], [5]. For an arbitrary leaf 𝐿𝛼 of the foliation (𝑀,𝐹 ), the notion of a M-holonomy group
was introduced. We provide exact definitions in Section 2.

Let us recall the construction of the graph 𝐺M(𝐹 ) of a foliation 𝐹 of a codimension 𝑞 with an
Ehresmann connection M on an 𝑛-dimensional manifold 𝑀 introduced by us [6], see also [7], [8].
Let us consider two points 𝑥 and 𝑦 in the same leaf 𝐿𝛼 in this foliation, We denote by 𝐴(𝑥, 𝑦) the
set of all piecewise smooth paths in 𝐿𝛼 connecting 𝑥 and 𝑦. Paths ℎ and 𝑓 in 𝐴(𝑥, 𝑦) are called
equivalent ℎ ∼ 𝑓 if the loop ℎ · 𝑓−1 equalling to the product of the paths ℎ and 𝑓−1 generates a
trivial element of a M-holonomy group 𝐻M(𝐿𝛼, 𝑥) of a leaf 𝐿𝛼 at a point 𝑥. The equivalence class
containing a path ℎ is denoted by {ℎ}. The set 𝐺M(𝐹 ) of triples of form (𝑥, {ℎ}, 𝑦), where 𝑥 ∈ 𝑀 ,
𝑦 ∈ 𝐿(𝑥), ℎ ∈ 𝐴(𝑥, 𝑦), is called the graph of the foliation (𝑀,𝐹 ) with an Ehresmann connection M,
while the mappings 𝑝1 : 𝐺M(𝐹 ) → 𝑀 : (𝑥, {ℎ}, 𝑦) ↦→ 𝑥, 𝑝2 : 𝐺M(𝐹 ) → 𝑀 : (𝑥, {ℎ}, 𝑦) ↦→ 𝑦 are called
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the canonical projections. We show that the graph 𝐺M(𝐹 ) is naturally equipped with a structure of
(2𝑛− 𝑞)-dimensional smooth Hausdorff manifold [6], see also [7], [8].

Thus, the graph of a foliation with an Ehresmann connection 𝐺M(𝐹 ) is defined similar to a classical
graph of a foliation 𝐺(𝐹 ) [1] by replacing the germ holonomy group Γ(𝐿, 𝑥) of a leaf 𝐿, 𝑥 ∈ 𝑀 , by
the M-holonomy group 𝐻M(𝐿, 𝑥). In distinction to 𝐺M(𝐹 ), a topological space of the graph 𝐺(𝐹 ) is
generally speaking not Hausdorff.

The mapping

𝛽 : 𝐺M(𝐹 ) → 𝐺(𝐹 ), 𝛽(𝑥, {ℎ}, 𝑦) = (𝑥,< ℎ >, 𝑦),

where (𝑥,< ℎ >, 𝑦) ∈ 𝐺(𝐹 ), is a local diffeomorphism. Both graphs 𝐺(𝐹 ) and 𝐺M(𝐹 ) are equipped
with the structure of gruppoids and 𝛽 is a homomorphism of these gruppoids, that is, it maps the
product of the elements in one gruppoid into that of corresponding elements in another grouppoid.

Let 𝑝 : 𝑀 → 𝐵 be a submersion and M be a distribution on 𝐵. We shall employ the notation
𝑝*M := {N𝑥 |𝑥 ∈𝑀}, where N𝑥 = {𝑌 ∈ 𝑇𝑥𝑀 | 𝑝*𝑥𝑌 ∈ M𝑝(𝑥)}

We proved the following properties of the two aforementioned graphs of an arbitrary foliation with
an Ehresmann connection [6], [7].

Theorem 1. Let (𝑀,𝐹 ) be a foliation of codimension 𝑞 on a smooth 𝑛-dimensional manifold 𝑀
admitting an Ehresmann connection M. Then

1. A homomorphism 𝛽 : 𝐺M(𝐹 ) → 𝐺(𝐹 ) of gruppoids is an isomorphism if and only if the graph
𝐺(𝐹 ) is Hausdorff.

2. The canonical projections 𝑝𝑖 : 𝐺M(𝐹 ) →𝑀 , 𝑖 = 1, 2, are locally trivial fibrations.
3. The distribution N := 𝑝*1M ∩ 𝑝*2M is an Ehresmann connection for the induced foliation

F := {𝑝−1
1 (𝐿) |𝐿 ∈ 𝐹} = {𝑝−1

2 (𝐿) |𝐿 ∈ 𝐹},

on the graph 𝐺M(𝐹 ), and the holonomy groups 𝐻N(L, 𝑧) and 𝐻M(𝐿, 𝑥), 𝑥 = 𝑝1(𝑧) of leaves L and
𝐿 = 𝑝1(L) and their germ holonomy groups are canonically isomorphic.

Definition 1. A pseudogroup ℋ of locally holonomic diffeomorphisms of a manifold 𝑀 is called
quasianalytic if the fact that for some open connected subset 𝑉 in 𝑀 the identity ℎ|𝑉 = 𝑖𝑑𝑉 holds for
some element ℎ ∈ ℋ implies that ℎ = 𝑖𝑑𝐷(ℎ) on the entire connected domain 𝐷(ℎ) of the element ℎ
containing 𝑉 .

According [9, Prop. 2], the Winkelnkemper critetion on the Hausdorff property of the graph 𝐺(𝐹 )
can be reformulated as follows.

Proposition 1. A topological space of the graph 𝐺(𝐹 ) of the foloation (𝑀,𝐹 ) is Hausdorff if and
only the holonomy pseudogroup of this foliation is quasianalytic.

According Theorem 1 and Proposition 1, for the foliations with an Ehresmann connection having a
quasianalytic holonomy pseudogroup, we can identify the graphs 𝐺M(𝐹 ) and 𝐺(𝐹 ) by the canonical
isomorphism 𝛽 and we denote this by 𝐺M(𝐹 ) ∼= 𝐺(𝐹 ). Therefore, the graph 𝐺M(𝐹 ) can be considered
as a desingularization of a non-Hausdorff graph 𝐺(𝐹 ), where by the singularity we mean the absence
of the Hausdorff property. Such essential difference between the properties of these graphs is explained
by the fact that the M-holonomy group 𝐻M(𝐿𝛼, 𝑥) is of a global nature, while germ holonomy group
Γ(𝐿𝛼, 𝑥) has a local-global nature; the global one is over the leaves and the local one is over the
transversals.

The following three foliations are induced on the graph 𝐺M(𝐹 ):

𝐹 (1) = {𝑝−1
1 (𝑥) |𝑥 ∈𝑀}, 𝐹 (2) = {𝑝−1

2 (𝑥) |𝑥 ∈𝑀}, F = {𝑝−1
1 (𝐿) |𝐿 ∈ 𝐹}.

We observe F = {𝑝−1
2 (𝐿) |𝐿 ∈ 𝐹}.

We introduce the notation N = 𝑝*1M ∩ 𝑝*2M and M(1) = N ⊕ 𝑇𝐹 (2). We stress that each smooth

vector field 𝑋 on the graph 𝐺M(𝐹 ) is uniquely represented as 𝑋 = 𝑋(1) +𝑋N +𝑋(2), where 𝑋(𝑖) ∈
X𝐹 (𝑖)(𝐺M(𝐹 )), 𝑖 = 1, 2, 𝑋N ∈ XN(𝐺M(𝐹 )), as well as in the form:

𝑋 = 𝑋(1) +𝑋M(1)
, (1)

where 𝑋M(1) ∈ XM(1)(𝐺M(𝐹 )).
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Definition 2. Let (𝑀,𝐹 ) be a foliation of a codimension 𝑞 on 𝑛-dimensional pseudo-Riemannian
manifold (𝑀, 𝑔), 0 < 𝑞 < 𝑛, and on the leaves pseudo-Riemannian metrics are induced. Then for all
vector fields 𝑋,𝑌 ∈ X(𝐺M(𝐹 )) given by (1) the identity

𝑑(𝑋,𝑌 ) := (𝑝*1𝑔)(𝑋
M(1)

, 𝑌M(1)
) + (𝑝*2𝑔)(𝑋

(1), 𝑌 (1)) (2)

defines a pseudo-Riemannian metrics 𝑑 on the graph 𝐺M(𝐹 ) called the induced metrics.

As (𝑀,𝐹 ) is a transversally analytic Riemannian foliation and M is the 𝑞-dimensional orthogonal
distribution on a complete Riemannian manifold and the graph 𝐺(𝐹 ) is identified with the graph
𝐺M(𝐹 ), the induced metrics 𝑑 on 𝐺(𝐹 ) was considered by R. Wolak in [10].

Definition 3. A distribution M on a pseudo-Riemannian manifold (𝑀, 𝑔) is called geodesically
invariant if each smooth geodesic curve of the Levi-Civita connection of the metrics 𝑔 touching the
distribution M at a single point is an integral curve of this distribution.

Foliations with a geodesically invariant tangential distribution are called the totally geodesic folia-
tions.

A following theorem is one of the main results of the present work.

Theorem 2. Let (𝑀,𝐹 ) be a totally geodesic foliation of an arbitrary codimension 𝑞 on an 𝑛-
dimensional pseudo-Riemannian manifold (𝑀, 𝑔), and on the leaves, pseudo-Riemannian metrics are
induced. Assume that a 𝑞-dimensional distribution M orthogonal to the foliation (𝑀,𝐹 ) is an Ehres-

mann connection for (𝑀,𝐹 ). Then the above defined foliations 𝐹 (1), 𝐹 (2) and F on the graph 𝐺M(𝐹 )
with the induced metrics 𝑑 are totally geodesic and the 𝑞-dimensional distribution N orthogonal to F
is geodesically invariant.

The first statement of Theorem 1, Proposition 1 and Theorem 2 imply the following statement.

Corollary 1. Assume that a foliation (𝑀,𝐹 ) satisfies the assumptions of Theorem 2 and the holo-
nomy pseudogroup of this foliation is quasi-analytic. Then the graph 𝐺(𝐹 ) is identified with the graph
𝐺M(𝐹 ) equipped with the induced metrics, the induced foliations (𝐺(𝐹 ),F) and a foliation formed by
the leaves of the canonical projections 𝑝𝑖 : 𝐺(𝐹 ) →𝑀 , 𝑖 = 1, 2, are totally geodesic.

Since a holonomy pseudogroup of a transversally analytic foliation (𝑀,𝐹 ) is quasianalytic, the
graphs 𝐺(𝐹 ) and 𝐺M(𝐹 ) are identified. Since the completeness of the Riemannian manifold implies
the completeness of each totally geodesic foliation on this manifold, according Proposition 4, the
foliation M complementary to 𝑇𝐹 with respect to the orthogonality is an Ehresmann connection for
(𝑀,𝐹 ). This is why Theorem 1 implies the following statement.

Corollary 2. If (𝑀,𝐹 ) is a transversally analytic foliation on a complete Riemmanian manifold
(𝑀, 𝑔) and 𝐺(𝐹 ) is the graph of this foliation equipped with the induced metrics, then the induced

foliation (𝐺(𝐹 ),F) and the foliations (𝐺(𝐹 ), 𝐹 (𝑖)), 𝑖 = 1, 2, formed by the fibres of canonical projections
𝑝𝑖 : 𝐺(𝐹 ) →𝑀 are totally geodesic foliations.

Remark 1. Under the assumptions of Corollary 2, R. Wolak proved a totally geodesic property for
the foliation formed by the fibres of only one canonical projection 𝑝1 : 𝐺(𝐹 ) →𝑀 [10, Thm. 2].

Remark 2. The graphs of pseudo-Riemmanian foliations on pseudo-Riemmanian manifold with
non-degenerate metrics on the leaves were studied by A.Yu. Dolgonosova and the author in [11].

Applying Theorem 2, we prove the following properties for the graphs of the considered class of
totally geodesic foliations.

Theorem 3. Let (𝑀,𝐹 ) be a foliation satisfying conditions of Theorem 2, 𝐹 (1), 𝐹 (2), F be the
aforementioned foliations on the graph 𝐺M(𝐹 ) and 𝐿0 = 𝑝−1

1 (𝑥), 𝑥 ∈ 𝑀 , be an arbitrary fibre of the
canonical projection and the graph and the leaves of the corresponding foliations are considered with
the induced metrics 𝑑. Then

1. Each leaf L = 𝑝−1
1 (𝐿) of the induced foliation (𝐺M(𝐹 ),F) is a non-degenerately reduced pseudo-

Riemmanian manifold with a pair of parallel foliations 𝐹 (1)|L and 𝐹 (2)|L mutually complementary with
respect to the orthogonality.

2. For each leaf 𝐿 in the foliation (𝑀,𝐹 ) there exists a regular pseudo-Riemannian covering 𝑓𝐿 :
𝐿0 → 𝐿 with the group of covering transformations isomorphic to the M-holonomy group 𝐻M(𝐿).
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3. The group 𝐻M(𝐿) acts freely diagonally and properly discontinuous on the pseudo-Riemmanian
product 𝐿0 × 𝐿0 by means of an isometry group Ψ and there exists an isometry

𝜂 : L → (𝐿0 × 𝐿0)/Ψ

of the leaf L = 𝑝−1
1 (𝐿) onto the quotient-manifold (𝐿0×𝐿0)/Ψ mapping the leaves of parallel foliations

𝐹 (1)|L and 𝐹 (2)|L onto the respected leaves of the foliations covered by the product 𝐿0 × 𝐿0.

According the second statement in Theorem 3, each leaf (𝐿𝛼, 𝑔) of the foliation (𝑀,𝐹 ) is locally
isometric to (𝐿0, 𝑑) that yields the following corollary.

Corollary 3. If there exists a leaf 𝐿 of a totally geodesic foliation (𝑀,𝐹 ) having a constant cur-
vature, then each leaf 𝐿𝛼 of this foliation has the same constant curvature.

Let (𝑀, 𝑔) be a non-degenerately reducible pseudo-Riemmanian manifold considered with the Levi-
Civita connection. This means that there exists a subspace M𝑥 in the tangential vector space 𝑇𝑥𝑀
at some point 𝑥 ∈𝑀 , on which the restriction of the metrics 𝑔 is non-degenerate and M𝑥 is invariant
with respect to the parallel translations along piece-wise smooth loops at the point 𝑥. A parallel
translation of the subspace M𝑥 into any other point in the manifold 𝑀 defines a distribution M on
𝑀 called parallel. Since the parallel translation preserves the metric tensor, then the subspace M⊥

𝑥

complementary with respect to the orthogonality is invariant with respect to parallel translations
along the loops at the point 𝑥 and therefore, it also defines a parallel distribution M⊥ on 𝑀 . As it
is known, each parallel distribution is integrable and is tangential to some foliation, which is called
parallel.

Thus, on each non-degenerately reducible pseudo-Riemmanian manifold there exists a pair of parallel
foliations (𝐹, 𝐹⊥) mutually complementary with respect to the orthogonality.

Theorem 4. Let (𝑀, 𝑔) be a non-degenerately reducible pseudo-Riemannian manifold 𝐹 and 𝐹⊥

be the parallel foliations of an additional dimension and M = 𝑇𝐹⊥ is an Ehresmann connection for
the foliation (𝑀,𝐹 ). Then in terms of the above notations we have:

1. The graphs 𝐺(𝐹 ) and 𝐺M(𝐹 ) are canonically isomorphic and are identified; 𝐺(𝐹 ) is equipped
with the induced pseudo-Riemmanian metrics 𝑑.

2. For almost all points 𝑧 ∈ 𝐺(𝐹 ) and 𝑥 = 𝑝1(𝑧) ∈ 𝑀 the leaves L = L(𝑧) and 𝐿 = 𝐿(𝑥) have
trivial holonomy groups and are isometric to 𝐿0 × 𝐿0 and 𝐿0, respectively, where 𝐿0 is an arbitrary
fixed leaf of the canonical projection 𝑝1 : 𝐺(𝐹 ) →𝑀 with the induced metrics.

3. There defined the foliations 𝐹N, ℱ (𝑖), 𝑖 = 1, 2, such that 𝑇𝐹N = N and 𝑇ℱ (𝑖) = M(𝑖) on the
graph 𝐺(𝐹 ).

4. The graph 𝐺(𝐹 ) with the induced metrics 𝑑 is a non-degenerately reducible pseudo-Riemmanian
manifold with three pairs of parallel mutually complementary with respect to the orthogonality foliations
(𝐹 (1),ℱ (1)), (𝐹 (2),ℱ (2)), and (𝐹N,F).

5. Each of the above six foliations possesses an integrable Ehresmann connection and for its graph
Theorems 2 and 3 hold as well as Statements 1–4 of the present theorem.

Theorem 4 and the following two statements show that the considered class of foliations is rather
wide.

Proposition 2. Let (𝑀,𝐹 ) be a totally geodesic foliation of a codimension 𝑞 on 𝑛-dimensional
pseudo-Riemmanian manifold (𝑀, 𝑔), where 0 < 𝑞 < 𝑛. If complete pseudo-Riemmanian metrics are
induced on its leaves, then a 𝑞-dimensional distribution M orthogonal to the leaves is an Ehresmann
connection for the foliation (𝑀,𝐹 ).

Proposition 3. Let (𝐵, 𝑔𝐵) be an arbitrary pseudo-Riemmanian manifold. If (𝑀,𝐹 ) is a foliation
obtained by the suspension of a homomorphism

𝜌 : 𝜋1(𝐵, 𝑏) → 𝐷𝑖𝑓𝑓(𝑇 ),

then on 𝑀 there exists a pseudo-Riemmanian metrics such that
1) (𝑀,𝐹 ) is a totally geodesic foliation with an induced pseudo-Riemmanian metrics on the leaves

and the leaves of the foliation (𝑀,𝐹 ) are complete pseudo-Riemmanian manifolds if and only if (𝐵, 𝑔𝐵)
is complete;
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2) the associated locally trivial fibration is formed by the fibres of the pseudo-Riemmanian submer-
sion 𝑝 :𝑀 → 𝐵;

3) the distribution formed by the tangential spaces to the fibres of the submersion 𝑝 :𝑀 → 𝐵 is an
integrable Ehhresmann connection for (𝑀,𝐹 );

4) the graph 𝐺(𝐹 ) is Hausdorff if and only if the group Ψ := 𝜌(𝜋1(𝐵, 𝑏)) acts quasi-analytically on
the manifold 𝑇 .

Notations. Following [15], we denote by 𝑃 (𝑁,𝐻) the principle 𝐻-bundle over a manifold 𝑁 . By
X(𝑀) we denote the module of smooth vector fields on a manifold𝑀 over the algebra F(𝑀) of smooth
functions. A foliation 𝐹 on a manifold𝑀 is denoted both by a single letter and by the pair (𝑀,𝐹 ). Let
M be a smooth distribution on the manifold 𝑀 , then XM(𝑀) := {𝑋 ∈ X(𝑀) | 𝑋𝑢 ∈ M𝑢 ∀𝑢 ∈ 𝑀}.
If M is integrable and M = 𝑇𝐹, then XM(𝑀) is also denoted by X𝐹 (𝑀).

By Fol we denote the category of foliations, in which the morphisms map the leaves of one foliation
into those of another.

The restriction of a foliation (or metrics) on a submanifold is denoted by the symbol as the original
foliation (or metrics).

By ∼= we denote the isomorphism in a corresponding category, while ⊕ stands for the direct sum of
vector spaces and distributions.

2. Foliations with Ehresmann connection

2.1. Ehresmann connection for foliations. Assume we are given a foliation 𝐹 of an arbitrary
codimension 𝑞 > 1 on a smooth 𝑛-dimensional manifold 𝑀 .

We denote by M a 𝑞-dimensional transversal to 𝐹 distribution, then the tangential space 𝑇𝑥𝑀 to
the manifold 𝑀 at each point 𝑥 ∈ 𝑀 can be represented as 𝑇𝑥𝑀 = 𝑇𝑥𝐹 ⊕M𝑥. The distribution M
and piece-wise smooth integral curves of this distribution are called M-horizontal or simply horizontal.
A tangent distribution 𝑇𝐹 to the leaves of the foliation 𝐹 and each vector 𝑋 in 𝑇𝑥𝐹 , 𝑥 ∈𝑀 , are called
vertical. A curve in the manifold 𝑀 belonging to a single leaf in the foliation 𝐹 is called vertical.

A piece-wise smooth mapping 𝐻 : 𝐼 × 𝐼 → 𝑀 , where 𝐼 = [0, 1], is called the vertical-horizontal
homotopy (VHH) if for each (𝑠, 𝑡) ∈ 𝐼 × 𝐼, the curve 𝐻|𝐼×{𝑡} is horizontal and 𝐻|{𝑠}×𝐼 is a vertical
curve. The pair (𝐻|𝐼×{0}, 𝐻|{0}×𝐼) is called the base of VHH 𝐻. Two curves (𝛿, 𝜏) on 𝑀 are called
the admissible pair of paths if 𝛿(0) = 𝜏(0) and the path 𝛿 is horizontal and 𝜏 is vertical.

If for each admissible pair of paths (𝛿, 𝜏) there exists VHH with the base (𝛿, 𝜏), then the distribution
M is called the Ehresmann connection for 𝐹 . If at that the distribution M is integrable, then the
Ehresmann connection M is called integrable.

We shall say that a curve ̃︀𝛿 is obtained by the translation of the curve 𝛿 along 𝜏 with respect to an

Ehresmann connection M if ̃︀𝛿 := 𝐻|𝐼×{1}. We denote this translation by 𝛿
𝜏−→> ̃︀𝛿.

2.2. M-holonomy groups. Let (𝑀,𝐹 ) be a foliation with an Ehresmann connectionM. We denote
by Ω𝑥, 𝑥 ∈𝑀, the set of horizontal curves originating at the point 𝑥. The action of the fundamental
group 𝜋1(𝐿, 𝑥) of the leaf 𝐿 = 𝐿(𝑥) on the set Ω𝑥 is defined as follows: 𝛷𝑥 : 𝜋1(𝐿, 𝑥) × Ω𝑥 → Ω𝑥 :
([ℎ], 𝜎) ↦→ �̃�, where [ℎ] ∈ 𝜋1(𝐿, 𝑥) and �̃� is the result of the translation of the curve 𝜎 ∈ Ω𝑥 along ℎ with
respect to M. Let 𝐾M(𝐿, 𝑥) be the kernel of the action 𝛷𝑥, that is, 𝐾M(𝐿, 𝑥) = {𝛼 ∈ 𝜋1(𝐿, 𝑥) |𝛼(𝜎) =
𝜎 ∀𝜎 ∈ Ω𝑥}. The quotient group 𝐻M(𝐿, 𝑥) = 𝜋1(𝐿, 𝑥)/𝐾M(𝐿, 𝑥) is called the M-holonomy group of
the leaf 𝐿 [4]. Thanks to the connectivity of the leaves, the M-holonomy groups at different points
of the same leaf are isomorphic. Let Γ(𝐿, 𝑥) be the germ holonomy group of a leaf 𝐿. There is an
epimorphism of the groups 𝜒 : 𝐻M(𝐿, 𝑥) → Γ(𝐿, 𝑥) satisfying the identity

𝜒 ∘ 𝜇 = 𝜈, (3)

where 𝜇 : 𝜋1(𝐿, 𝑥) → 𝐻M(𝐿, 𝑥) is the quotient mapping and 𝜈([ℎ]) :=< ℎ > is the germ of a local
holonomic diffeomorphism of a transversal 𝑞-dimensional disk along a loop ℎ at the point 𝑥.

2.3. Local horizontal holonomic diffeomorphisms. We consider an arbitrary smooth foliation
(𝑀,𝐹 ) of codimension 𝑞 on a 𝑛-dimensional manifold 𝑀 . Let M be a smooth 𝑞-dimensional distribu-
tion on 𝑀 transversal to this foliation, that is, 𝑇𝑥𝑀 = 𝑇𝑥𝐹 ⊕M𝑥 for all 𝑥 ∈ 𝑀. In what follows we
shall consider vertical-horizonatl homotopies with respect to the distributions 𝑇𝑀 and M. At each
point 𝑥 ∈ 𝑀 there exists a neighbourhood 𝑉𝑥 such that for each admissible pair of paths (𝜎, ℎ) in
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𝑉𝑥 with a common origin at 𝑥, there exists a VHH in 𝑉𝑥 with the base (𝜎, ℎ). Let 𝜎 : [0, 1] → 𝑀
be arbitrary smooth integral curve of the distribution M with the origin 𝑥0 := 𝜎(0) and the end
𝑥1 := 𝜎(1). It is easy to make sure that there exist contractible neighbourhoods 𝑈0 of the point 𝑥0
in the leaf 𝐿0 ∋ 𝑥0 and 𝑈1 of the point 𝑥1 in the leaf 𝐿1 ∋ 𝑥1 such that for each point 𝑥 ∈ 𝑈0 and
each piece-wise smooth path ℎ𝑥 : [0, 1] → 𝑈0 connecting ℎ(0) = 𝑥0 with ℎ(1) = 𝑥, there exists VHH
𝐻𝑥 with the base (𝜎, ℎ𝑥). At that, M-horizontal curve 𝜎𝑥(𝑠) := 𝐻𝑥(𝑠, 1), 𝑠 ∈ [0, 1], is smooth and
since 𝑈0 is contractible, this curve is independent of the choice of the path ℎ𝑥 connecting 𝑥0 with 𝑥
in 𝑈0. In what follows 𝜎𝑥 is called the translation of the path 𝜎 to the point 𝑥 ∈ 𝑈0. At that, the
diffeomorphism is well-defined:

Φ𝜎 : 𝑈0 → 𝑈1 : 𝑥 ↦→ 𝜎𝑥(1), 𝑥 ∈ 𝑈0,

which is called the locally horizontal holonomic diffeomorphism along M-curve 𝜎 [5].
The definition of the Lie derivative 𝐿𝑋𝑔 of 2-form 𝑔 along a vector field 𝑋 implies the following

statement.

Lemma 1. Assume that (𝑀,𝐹 ) is a foliation of codimension 𝑞 on 𝑛-dimensional pseudo-
Riemmanian manifold (𝑀, 𝑔) and the induced metrics does not degenerate on its leaves, and that
M is the 𝑞-dimensional distribution orthogonal to 𝑇𝐹 . Let 𝜎 : [0, 1] → 𝑀 be an arbitrary smooth
M-horizontal curve in 𝑀 , Φ𝜎 : 𝑈0 → 𝑈1 be a local holonomic diffeomorphism along 𝜎 and
𝑊 := {𝜎𝑥(𝑠) |𝑥 ∈ 𝑈0, 𝑠 ∈ (0, 1)}, where 𝜎𝑥 is the translation of 𝜎 to the point 𝑥 ∈ 𝑈0. Then the
following two conditions are equivalent:

1. The diffeomorphism Φ𝜎 is an isometry of (𝑈0, 𝑔) and (𝑈1, 𝑔);
2. For a vector field 𝑋 ∈ XM(𝑊 ) such that 𝑋|𝜎𝑥(𝑠) = �̇�𝑥(𝑠), where 𝑥 ∈ 𝑈0, 𝑠 ∈ [0, 1], the identity

(𝐿𝑋𝑔)(𝑌,𝑍) = 0 holds for all 𝑌, 𝑍 ∈ X𝐹 (𝑊 ).

3. Pseudo-Riemmanian submersions

The study of pseudo-Riemmanian submersions was initiated by B. O’Neill [12] and A. Gray [13].
A smooth surjective submersion 𝑝 : 𝑀 → 𝐵 between two pseudo-Riemannian manifolds (𝑀, 𝑔) and
(𝐵, 𝑔𝐵) is called the pseudo-Riemmanian submersion if the metrics induced on each fibre of the
submersion 𝑝−1(𝑏), where 𝑏 ∈ 𝐵 is non-degenerate and 𝑝 preserves the scalar product of the vectors
orthogonal to the fibres of the submersion.

Numerous works by various authors are devoted to studying pseudo-Riemmanian submersions.
Pseudo-Riemannian submersions with totally geodesic fibres are of a special interest, for some classes
classification theorems were proved, see [14] and the references therein.

The following properties of pseudo-Riemannian submersions with totally geodesic fibres are essen-
tially employed in the present work.

Proposition 4. If (𝑀, 𝑔) and (𝐵, 𝑔𝐵) are pseudo-Riemannian manifolds of dimensions 𝑛 and 𝑞,
respectively, where 0 < 𝑞 < 𝑛, and 𝑝 : 𝑀 → 𝐵 is a pseudo-Riemannian submersion with fibres being
totally geodesic manifolds in (𝑀, 𝑔), then

(i) the projection 𝜎 = 𝑝 ∘ 𝛾 of each geodesic curves 𝛾 in (𝑀, 𝑔) is geodesic in (𝐵, 𝑔𝐵);
(ii) the pre-image 𝑝−1(𝐿) of each totally geodesic submanifold 𝐿 from the base (𝐵, 𝑔𝐵) is a totally

geodesic submanifold in (𝑀, 𝑔); it is not connected once the lfibres of the submersion 𝑝 are not.

Proof. Let 𝑝 :𝑀 → 𝐵 be a pseudo-Riemannian submersion with totally geodesic fibres.
(𝑖). The geodesic property of a curve in a pseudo-Riemannian manifold (𝑀, 𝑔) is local. This is

why it is sufficient to show that for each geodesic curve 𝛾 in an arbitrary coordinate neighbourhood
𝑈 adapted to (𝑀,𝐹 ), its projection 𝑝 ∘ 𝛾 is a geodesic curve in the neighbourhood 𝑉 := 𝑝(𝑈) of the
manifold (𝐵, 𝑔𝐵). We observe that 𝑝|𝑈 : 𝑈 → 𝑉 is a pseudo-Riemannian submersion on a contractible
manifold with contractible fibres. This is why without loss of generality, in the present proof we let
𝑀 = 𝑈 , 𝐵 = 𝑉 , 𝑝 : 𝑀 → 𝐵 be a pseudo-Riemannina submersion with totally geodesic fibres, and
𝐹 = {𝑝−1(𝑏) | 𝑏 ∈ 𝐵}.

Assume that pseudo-Riemannian metrics 𝑔 and 𝑔𝐵 have the same signatures (𝑘, 𝑠) and (𝑘1, 𝑠1),
respectively, where 𝑘 + 𝑠 = 𝑛, 𝑘1 + 𝑠1 = 𝑞. Let 𝐻1 = 𝑂(𝑘1, 𝑠1), 𝐻 = 𝑂(𝑘, 𝑠). By ℒ(𝑀,𝐻) = 𝑀 ×𝐻
and 𝑃1(𝐵,𝐻1) = 𝐵 × 𝐻1 we denote the principle bundles of pseudo-orthogonal frames on 𝑀 and
𝐵 defined by the metrics 𝑔 and 𝑔𝐵, respectively; they are trivial principal bundles with projections
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𝜋 : ℒ → 𝑀 and 𝑓1 : 𝑃1 → 𝐵. Let M be a 𝑞-dimensional distribution orthogonal to the fibres of the
submersion 𝑝. We denote by 𝑃 =𝑀 ×𝐻1 the bundle of M-transversal frames being the pre-image of
the bundle 𝑃1(𝐵,𝐻1) under the submersion 𝑝, that is, 𝑃 = {(𝑦, 𝑣) ∈𝑀 × 𝑃1| 𝑝(𝑦) = 𝑓1(𝑣)}. At that,
the projections 𝑓 : 𝑃 → 𝑀 , 𝑓(𝑦, 𝑣) := 𝑦, ℎ : 𝑃 → 𝑃1, ℎ(𝑦, 𝑣) = 𝑣 for all (𝑦, 𝑣) ∈ 𝑃 , are well-defined
and they satisfy the identity 𝑓1 ∘ℎ = 𝑝 ∘ 𝑓. The fibres of the submersion ℎ : 𝑃 → 𝑃1 form the foliation
(𝑃, 𝐹𝑃 ).

Since 𝑀 = 𝑈 is a coordinate neighbourhood adapted to the foliation (𝑀,𝐹 ), at each point 𝑦 ∈𝑀 ,
a coordinate frame ( 𝜕

𝜕𝑥𝑎 |𝑦,
𝜕
𝜕𝑥𝛼 |𝑦), 𝑎 = 1, . . . , 𝑛 − 𝑞, 𝛼 = 𝑛 − 𝑞 + 1, . . . , 𝑛, is well-defined and { 𝜕

𝜕𝑥𝑎 |𝑦}
is a basis of 𝑇𝑦𝐹 in the tangent space to the leaf of the foliation (𝑀,𝐹 ) at the point 𝑦. Each point
(𝑦, 𝑣) ∈ 𝑃 is a transversal frame, that is, a basis {𝑍𝛼|𝑦} in the vector space M𝑦 at the point 𝑦 ∈ 𝑀
defined by the identity 𝑝*𝑦(𝑍𝛼|𝑦) = 𝑋𝛼|𝑥, where {𝑋𝛼|𝑥} = 𝑣 is the basis in the tangential vector space

𝑇𝑥𝐵 at the point 𝑥 = 𝑓1(𝑣) = 𝑝(𝑦). Therefore, the mapping 𝐽 : 𝑃 → ℒ, 𝐽(𝑦, 𝑣) = { 𝜕
𝜕𝑥𝑎 |𝑦, 𝑍𝛼|𝑦} is

well-defined and this is an embedding of the manifold 𝑃 into ℒ satisfying the identity 𝜋 ∘ 𝐽 = 𝑓.
Let 𝐸𝑛−𝑞 be the unit (𝑛 − 𝑞)-dimensional matrix. By 𝑗 : 𝐻1 → 𝐻 :𝐴 ↦→

(︀
𝐸𝑛−𝑞 0

0 𝐴

)︀
we denote an

embedding of the group 𝐻1 into the group 𝐻. At that, the pair (𝐽, 𝑗) defines a reduction ℛ of 𝐻-
foliation ℒ to a closed subgroup 𝑗(𝐻1) [15, Ch. 1, Sect. 5]. Since the mapping 𝐽 : 𝑃 → ℛ = 𝐽(𝑃 )
is an isomorphism of principle foliated spaces can be identified with 𝑃 with ℛ by means with 𝐽 . At
that, we have a commutative diagram:

ℒ ⊃ ℛ ∼= 𝑃
ℎ−−−−→ 𝑃1

𝜋ℛ=𝑓

⎮⎮⌄ ⎮⎮⌄𝑓1
𝑀

𝑝−−−−→ 𝐵,

(4)

where 𝜋ℛ := 𝜋|ℛ. Hence, on ℛ, the foliation ℱ is well-defined as the image of the foliation (𝑃, 𝐹𝑃 )
under the mentioned identification and the restriction of the mapping 𝜋ℛ on each leaf (ℛ,ℱ) is a
diffeomorphism on a corresponding leaf (𝑀,𝐹 ).

The Levi-Civita connection ∇ of the pseudo-Riemannian manifold (𝑀, 𝑔) defines a 𝐻-connection

𝑄 on ℒ. Let 𝑄(1) be a 𝐻1-connection on 𝑃1 defined by the Levi-Civita connection ∇𝐵 of the pseudo-
Riemannian manifold (𝐵, 𝑔𝐵). We denote by 𝜔 the gl(𝑛,R)-valued 1-form of the connection 𝑄,
while 𝜃 stands for the canonical 1-form of this connection on ℒ with values in R𝑛. We recall that
𝐵𝜉 ∈ X(ℒ) is called the standard horizontal vector field if 𝜔(𝐵𝜉) = 0, that is, 𝐵𝜉 ∈ X𝑄(ℒ), and
𝜃(𝐵𝜉) = 𝜉 = 𝑐𝑜𝑛𝑠𝑡 ∈ R𝑛. As it is known [15, Ch. III, Prop. 6.3], a curve 𝛾 is geodesic in (𝑀,∇) if and
only if 𝛾 is a projection of an integral curve of some standard horizontal vector field.

Since the lift in ℒ of each geodesic curve in (𝑀,∇) is an integral curve of the distribution 𝑄, the
complete geodesicity of (𝑀,𝐹 ) yields the inclusion 𝑇ℱ ⊂ 𝑄|ℛ. Therefore, 𝑄|ℛ = 𝑇ℱ ⊕ N, where
N = 𝜋*M ∩𝑄|ℛ.

Since 𝑝 : 𝑀 → 𝐵 is a pseudo-Riemannian submersion, according [11, Thm. 1], the distribution M
is geodesically invariant and this is why the 𝑄-lift ̃︀𝛾 to a point 𝑢 ∈ 𝜋−1(𝛾0) ∩ℛ of each M-horizontal
geodesic curve 𝛾 : [0, 1] → 𝑀 is an integral curve of the distribution N. Moreover, for each vector
𝑌 ∈ N𝑢, 𝑢 ∈ ℛ such that 𝜃(𝑌 ) = 𝜉 ∈ {0𝑛−𝑞} × R𝑞, where 0𝑛−𝑞 is the zero in R𝑛−𝑞, there exists
a unique M-horizontal geodesic curve 𝛾 on 𝑀 , whose 𝑄-lift at the point 𝑢 is an integral curve of a
standard horizontal vector field 𝐵𝜉 such that 𝐵𝜉|𝑢 = 𝑌.

By properties of a pseudo-Riemannian submersion, each M-horizontal geodesic curve is projected
to a geodesic curve of the base (𝐵,∇𝐵) by means of 𝑝 : 𝑀 → 𝐵 [12]. Hence, in view of the identity

𝑓1 ∘ ℎ = 𝑝 ∘ 𝜋ℛ, we obtain ℎ*𝑢(N𝑢) = ℎ*𝑢(𝑄𝑢) = 𝑄
(1)
ℎ(𝑢) for each point 𝑢 ∈ ℛ.

Let 𝛾 be an arbitrary geodesic curve in (𝑀, 𝑔) passing through a point 𝑥 = 𝛾(0) along a vector
𝑋 = �̇�(0) ∈ 𝑇𝑥𝑀 . We take a point 𝑢0 ∈ ℛ such that 𝜋(𝑢0) = 𝑥. We treat the frame 𝑢0 as a mapping
𝑢0 : R𝑛 → 𝑇𝑥𝑀 , which maps a vector in R𝑛 with coordinates 𝜆1, . . . , 𝜆𝑛 in the standard basis in R𝑛

into the vector in 𝑇𝑥𝑀 with the same coordinates in the base 𝑢0. Assume that 𝜂 := 𝑢−1
0 (𝑋) ∈ R𝑛.

Let 𝑝𝑟 : R𝑛 ∼= R𝑛−𝑞 × R𝑞 → R𝑞 be the canonical projection onto the factor and 𝜉 := 𝑝𝑟(𝜂) ∈ R𝑞.
Since 𝛾 is a geodesic curve, there exists an integral curve ̂︀𝛾 of the standard vector field 𝐵𝜂 on ℛ with
the origin at the point ̂︀𝛾(0) = 𝑢0. At that 𝛾 = 𝜋 ∘̂︀𝛾 and ̂︀𝜎 := ℎ ∘̂︀𝛾 is an integral curve of the standard
vector field 𝐵𝜉 on 𝑃1 passing through the point 𝑣0 = ℎ(𝑢0) = ̂︀𝜎(0). Since 𝑝 ∘ 𝜋ℛ = 𝑓1 ∘ ℎ, we have the
chain of the identities 𝜎 = 𝑝 ∘ 𝛾 = 𝑝 ∘ (𝜋 ∘ ̂︀𝛾) = (𝑝 ∘ 𝜋) ∘ ̂︀𝛾 = (𝑓1 ∘ ℎ) ∘ ̂︀𝛾 = 𝑓1 ∘ (ℎ ∘ ̂︀𝛾) = 𝑓1 ∘ ̂︀𝜎.
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Thus, the curve 𝜎 := 𝑓1 ∘ ̂︀𝜎 is geodesic on (𝐵, 𝑔𝐵) and it is a projection of the geodesic curve 𝛾 of
the manifold (𝑀, 𝑔), that is, 𝑝 ∘ 𝛾 = 𝜎, and this proves Statement (i).

(𝑖𝑖). Let 𝐿 be a totally geodesic submanifold in (𝐵, 𝑔𝐵) and 𝑁 := 𝑝−1(𝐿) be a smooth embedded
submanifold in 𝑀 ; it is not connected once the fibres of the submersion 𝑝 : 𝑀 → 𝐵 are not. We
take an arbitrary point 𝑦 ∈ 𝑁 and a vector 𝑌 ∈ 𝑇𝑦𝑁 . Let 𝛾 = 𝛾𝑌 (𝑠), 𝑠 ∈ [0, 1], be a geodesic curve
in (𝑀, 𝑔) passing through the point 𝑦 = 𝛾𝑌 (0) along the vector 𝑌 , that is, 𝑌 = �̇�𝑌 (0). According
the proven statement (𝑖), the curve 𝜎 := 𝑝 ∘ 𝛾 is geodesic (𝐵, 𝑔𝐵) and it passes through the point
𝑏 = 𝑝(𝑦) = 𝜎(0) along the vector 𝑋 = 𝑝*𝑦𝑌 ∈ 𝑇𝑏𝐿. Since 𝐿 is a totally geodesic submanifold, then
𝜎(𝑠) ∈ 𝐿 for all 𝑠 ∈ [0, 1], and hence, 𝛾(𝑠) ∈ 𝑁 for all 𝑠 ∈ [0, 1]. This means that the submanifold 𝑁
in (𝑀, 𝑔) is totally geodesic. The proof is complete.

4. Proof of Theorem 2

4.1. Criterion of a total geodesicity of foliation.

Definition 4. A vector field 𝑋 on a manifold 𝑀 is called foliated with respect to a foliation (𝑀,𝐹 )
if [𝑋,𝑌 ] ∈ X𝐹 (𝑀) for each 𝑌 ∈ X𝐹 (𝑀).

Proposition 5. Let (𝑀,𝐹 ) be a foliation on a pseudo-Riemannian manifold (𝑀, 𝑔) with the Levi-
Civita connection ∇ and on the leaves of the foliation, pseudo-Riemannian metrics are induced, and
let M be the distribution complementary to 𝑇𝐹 with respect to the orthogonality. Then the following
statements are equivalent:

(1) the foliation (𝑀,𝐹 ) is totally geodesic;
(2) 𝐿𝑋𝑔(𝑌,𝑍) = 0 for arbitrary vector fields 𝑋 ∈ XM(𝑀) and 𝑌,𝑍 ∈ X𝐹 (𝑀);
(3) 𝐿𝑋𝑔(𝑌,𝑍) = 0 for each foliated vector field 𝑋 ∈ XM(𝑀) and for each vector fields 𝑌, 𝑍 ∈

X𝐹 (𝑀);
(4) for each M-horizontal curve 𝜎 : [0, 1] → 𝑀 , the local horizontal holonomic diffeomorphism

Φ𝜎 : 𝑈0 → 𝑈1 is an isometry between (𝑈0, 𝑔) and (𝑈1, 𝑔).

Proof. We denote by 𝛼M(𝑌,𝑍) the orthogonal projection of ∇𝑌 𝑍 into XM(𝑀) with respect to the
decomposition 𝑇𝑀 = 𝑇𝐹⊕M. The total geodesicity of the foliation (𝑀,𝐹 ) is equivalent to 𝛼M(𝑌,𝑍) =
0 for all 𝑌,𝑍 ∈ X𝐹 (𝑀).

The equivalence of (1) and (2) was proved in [16, Prop. 2.7] as follows. By employing the property
of the Levi-Civita connection ∇ of the pseudo-Riemannian manifold (𝑀, 𝑔), the identity was obtained:

𝐿𝑋𝑔(𝑌, 𝑍) = 𝑔(𝑋,𝛼M(𝑌,𝑍)) for all 𝑋 ∈ XM(𝑀), 𝑌, 𝑍 ∈ X𝐹 (𝑀). (5)

And since the induced metrics on the leaves is non-degenerate, this implies the equivalence

𝐿𝑋𝑔(𝑌, 𝑍) = 0 for all 𝑋 ∈ XM(𝑀) ⇔ 𝛼M(𝑌, 𝑍) = 0,

that is, (1) ⇔ (2).
The implication (2) ⇒ (3) is obvious. Assume that (3) holds. We observe that an arbitrary vector

field 𝑋 ∈ XM(𝑀) is a linear combination of foliated vector fields in XM(𝑀), that is, 𝑋 = 𝛽𝑘𝑋𝑘, where
𝑋𝑘 ∈ XM(𝑀) are foliated vector fields, 𝛽𝑘 ∈ F(𝑀). Applying (5), thanks to the bilinearity of 𝑔, we
obtain

𝐿𝑋𝑔(𝑌,𝑍) = 𝑔(𝑋,𝛼M(𝑌,𝑍)) = 𝑔(𝛽𝑘𝑋𝑘, 𝛼M(𝑌,𝑍)) = 𝛽𝑘𝑔(𝑋𝑘, 𝛼M(𝑌, 𝑍)) = 𝛽𝑘𝐿𝑋𝑘
𝑔(𝑌,𝑍).

According the assumption, 𝐿𝑋𝑘
𝑔(𝑌,𝑍) = 0 and this is why 𝐿𝑋𝑔(𝑌, 𝑍) = 0. Therefore, (3) ⇒ (2) and

(2) ⇔ (3).
If 𝜎 is a piece-wise smooth M-horizontal curve, then Φ𝜎 is a composition of local horizontal holo-

nomic diffeomorphisms corresponding to smooth pieces of the curve 𝜎. This is why, without loss of
generality, in (4) we can assume that 𝜎 : [0, 1] →𝑀 is a smooth M-horizontal curve.

Assume that (3) is satisfied. Let 𝜎 : [0, 1] → 𝑀 be a smooth M-horizontal curve, Φ𝜎 : 𝑈0 → 𝑈1

be a local horizontal holonomic diffeomorphism along 𝜎 and 𝑋 be a vector field induced by Φ𝜎 in the
way described in Lemma 1. Since 𝑋 is a foliated vector field orthogonal to the foliation (𝑀,𝐹 ), it
follows from (3) that 𝐿𝑋𝑔(𝑌,𝑍) = 0 for all 𝑌, 𝑍 ∈ X𝐹 (𝑀). Therefore, by Lemma 1, Φ𝜎 is an isometry
between (𝑈0, 𝑔) and (𝑈1, 𝑔). Thus, (3) ⇒ (4).

Now it is sufficient to show that (4) ⇒ (3). Let 𝑋 ∈ XM(𝑀) be an arbitrary foliated vector field and
𝜎 : [0, 1] →𝑀 be its arbitrary integral curve. Since 𝜎 is a M-horizontal curve, then a local horizontal



GRAPHS OF TOTALLY GEODESIC FOLIATIONS . . . 37

holonomic diffeomorphism Φ𝜎 : 𝑈0 → 𝑈1 along 𝜎 is well-defined. Since 𝑋 is a foliated vector field, the
translation 𝜎𝑥 of the curve 𝜎 at the point 𝑥 ∈ 𝑈0 is also an integral curve of the field 𝑋. According
Lemma 1, this implies that 𝐿𝑋𝑔(𝑌,𝑍) = 0 for all 𝑌, 𝑍 ∈ X𝐹 (𝑀). Thus, (4) ⇒ (3).

Remark 3. Proposition 5 has been proved without assuming the existence of the Ehresmann con-
nection for the foliation (𝑀,𝐹 ).

4.2. Total geodesicity of foliation 𝐹 (1). Let us prove that 𝐹 (1) is a totally geodesic foliation on
the graph (𝐺M(𝐹 ), 𝑑).

Let 𝛾 : [0, 1] → 𝐺M(𝐹 ) be a smooth N-curve in 𝐺M(𝐹 ) with the origin at the point
𝛾(0) = 𝑧0 = (𝑥0, {ℎ}, 𝑦0) ∈ 𝐺M(𝐹 ). Then 𝜎 := 𝑝1 ∘ 𝛾 is a M-curve in 𝑀 with the origin at the point
𝑥0 = 𝜎(0) = 𝑝1(𝑧0). Since (𝜎, ℎ) is an admissible pair, there exists a VHH 𝐻 with a base (𝜎, ℎ).

Let 𝜎
ℎ−→> �̃�, at that �̃� = 𝑝2 ∘ 𝛾. Without loss of generality we assume that 𝑉0 is a neighbourhood

of the point 𝑧0 in the fibre 𝑝−1
1 (𝑥0) such that the neighbourhood 𝑈0 = 𝑝2(𝑉0) belonging to the leaf

𝐿 = 𝐿(𝑥0) is properly covered by the mapping 𝑝2|𝐿(1) : 𝐿(1) → 𝐿, where 𝐿(1) = 𝐿(1)(𝑧0) = 𝑝−1
1 (𝑥0). If

Φ𝛾 : 𝑉0 → 𝑉1 : 𝑧 ↦→ Φ𝛾(𝑧) is a horizontal holonomic diffeomorphism along 𝛾 in 𝐺M(𝐹 ), where 𝑉1 is a

neighbourhood of the point 𝛾(1) in the leaf 𝑝−1
1 (𝜎(1)), then for each point 𝑧 ∈ 𝑉0 and the N-lift 𝛾𝑧 of

the curve 𝜎 at the point 𝑧, by the definition we have Φ𝛾(𝑧) = 𝛾𝑧(1). At that, 𝑧 = (𝑥0, {ℎ𝑦}, 𝑦), where
𝑦 = 𝑝2(𝑧), ℎ𝑦 = ℎ · 𝑡𝑦, 𝑡𝑦 is a path in 𝑈0 connecting 𝑦0 with 𝑦 in 𝑈0. We observe that 𝜎𝑦 = 𝑝2 ∘𝛾𝑧 is M-
curve in𝑀 obtained by translating 𝜎 along the path ℎ𝑦 and Φ�̃� := 𝑝2∘Φ𝛾 : 𝑈0 = 𝑝2(𝑉0) → 𝑈1 = 𝑝2(𝑉1)
is a local M-horizontal holonomic diffeomorphism along �̃� satisfying a commutative diagram:

𝑉0
Φ𝛾−−−−→ 𝑉1

𝑝2|𝑉0

⎮⎮⌄ ⎮⎮⌄𝑝2|𝑉1
𝑈0 −−−−→

Φ�̃�

𝑈1.

(6)

According Proposition 5, the total geodesicity of the foliation 𝐹 implies that Φ�̃� : 𝑈0 → 𝑈1 is an isom-
etry between the pseudo-Riemannian manifolds (𝑈0, 𝑔) and (𝑈1, 𝑔). Hence, taking into consideration
that 𝑝1|𝑉0 : 𝑉0 → 𝑈0, 𝑝2|𝑉1 : 𝑉1 → 𝑈1 are isometries, by the commutativity of diagram (6) we obtain
that 𝛷𝛾 : 𝑉0 → 𝑉1 is an isometry between (𝑉1, 𝑑) and (𝑉2, 𝑑). Hence, similar to Proposition 5, we
obtain

(𝐿𝑋𝑑)(𝑌,𝑍) = 0 for all 𝑋 ∈ XN(𝐺M(𝐹 )), 𝑌, 𝑍 ∈ X𝐹 (1)(𝐺M(𝐹 )). (7)

We are going to show that (𝐿𝑋𝑑)(𝑌, 𝑍) = 0 for all 𝑌, 𝑍 ∈ X𝐹 (1)(𝐺M(𝐹 )) and for each 𝑋 ∈
X𝐹 (2)(𝐺M(𝐹 )). We denote by 𝐿(𝑖) = 𝐿(𝑖)(𝑧0), 𝑖 = 1, 2, and L = L(𝑧0) the leaves in the foliations

𝐹 (𝑖) and F respectively passing through 𝑧0. Let 𝛾 be an arbitrary 𝑇𝐹 (2)-curve with the origin at
𝑧0 = 𝛾(0), that is, 𝛾(𝑠) ∈ 𝐿(2), 𝑠 ∈ [0, 1]. A local horizontal diffeomorphism Φ𝛾 : 𝑊0 → 𝑊1 along 𝛾 is

well-defined, where 𝑊0 is a neighbourhood of the point 𝑧0 in the leaf 𝐿(1), and 𝑊1 is a neighbourhood
of the point 𝑧1 = 𝛾(1) in the leaf 𝐿(1)(𝑧1) in the foliation 𝐹 (1) passing through 𝑧1.

We recall that a subset of a foliated manifold (𝑁,𝐹𝑁 ) is 𝐹𝑁 -saturated if it can be represented as
the union of some leaves in the foliation (𝑁,𝐹𝑁 ).

Each leaf L of the induced foliation (𝐺M(𝐹 ),F) is both 𝐹 (1)-saturated and 𝐹 (2)-saturated subman-
ifold of the graph 𝐺M(𝐹 ) and according the definition of the metrics 𝑑, the leaf L with the induced
pseudo-Riemannian metrics (L, 𝑑) is locally a pseudo-Riemannian product of pseudo-Riemanninan

manifolds (𝐿(1), 𝑑) and (𝐿(2), 𝑑). This implies that 𝐹 (1)|L and 𝐹 (2)|L are parallel foliations on an non-

degenerate reducible pseudo-Riemannina manifold (L, 𝑑), see, for instance, [19]. Therefore, 𝐹 (1)|L
and 𝐹 (2)|L are totally geodesic foliations on (L, 𝑑) and according Proposition 5, Φ𝛾 : 𝑊0 → 𝑊1 is an
isometry and the identity holds

(𝐿𝑋𝑑)(𝑌, 𝑍) = 0 for all 𝑋 ∈ X𝐹 (2)(𝐺M(𝐹 )), 𝑌, 𝑍 ∈ X𝐹 (1)(𝐺M(𝐹 )). (8)

We observe that at each point of the graph 𝐺M(𝐹 ) there exists a neighbourhood 𝒲 adapted to

the foliations F, 𝐹 (1) and 𝐹 (2) simultaneously, at which both identities (7) and (8) hold. Since

M(1) = N ⊕ 𝑇𝐹 (2), each vector field 𝑋 ∈ XM(1)(𝑊 ) in the neighbourhood 𝒲 of an arbitrary point



38 N.I. ZHUKOVA

𝑧 ∈ 𝐺M(𝐹 ) can be represented as 𝑋 = 𝛼𝑋N+𝛽𝑋(2), where 𝑋N ∈ XN(𝐺M(𝐹 )), 𝑋(2) ∈ X𝐹 (2)(𝐺M(𝐹 )),
𝛼, 𝛽 ∈ F(𝑊 ). As in the proof of Proposition 5, we show that

(𝐿𝛼𝑋N+𝛽𝑋(2)𝑑)(𝑌,𝑍) = 𝛼(𝐿𝑋N𝑑)(𝑌,𝑍) + 𝛽(𝐿𝑋(2)𝑑)(𝑌,𝑍) for all 𝑌,𝑍 ∈ X𝐹 (1)(𝐺M(𝐹 )).

Identities (7) and (8) imply that (𝐿𝑋N𝑑)(𝑌,𝑍) = 0 and (𝐿𝑋(2)𝑑)(𝑌, 𝑍) = 0. Thus, we obtain:

(𝐿𝑋𝑑)(𝑌,𝑍) = 0 for all 𝑋 ∈ XM(1)(𝐺M(𝐹 )), 𝑌, 𝑍 ∈ X𝐹 (1)(𝐺M(𝐹 )).

According Proposition 5, this means that 𝐹 (1) is a totally geodesic foliation.

4.3. Geodesic invariance of distributions M(1), 𝑇F and 𝑇𝐹 (2). The definition of the metrics
𝑑 implies that 𝑝1 : 𝐺M → 𝑀 is a pseudo-Riemannian submersion and M(1) is a distribution comple-
mentary to the leaves of this submersion with respect to the orthogonality. This is why according [11,

Thm. 1], the distribution M(1) is geodesically invariant.

As it has been proved above, the foliation 𝐹 (1) is totally geodesic and hence, 𝑝1 : 𝐺M(𝐹 ) →𝑀 is a
pseudo-Riemannian submerions with totally geodesic fibres. Applying Statement (ii) of Proposition 4,
we obtain that the total geodesicity of (𝑀,𝐹 ) implies the same for the induced foliation (𝐺M(𝐹 ),F),
since each its leaf L = 𝑝−1

1 (𝐿) is the pre-image of some leaf 𝐿 of the foliation (𝑀,𝐹 ) being a totally
geodesic submanifold in (𝑀, 𝑔).

Since 𝑇𝐹 (2) = M(1) ∩ 𝑇F, then 𝑇𝐹 (2) is a geodesically invariant distribution as the intersection
of geodesically invariant distributions M(1) and 𝑇F. Therefore, (𝐺M(𝐹 ), 𝐹 (2)) is a totally geodesic
foliation on (𝐺M(𝐹 ), 𝑑).

5. Proof of Theorem 3

1. The first statement of Theorem 3 was proved in the proof of Theorem 2, see Subsection 4.2).
2. Let 𝑥1 and 𝑥2 be two points on the pseudo-Riemannina manifold (𝑀, 𝑔). According [4, Lm.

1.1], the leaves 𝐿1 ∋ 𝑥1 and 𝐿2 ∋ 𝑥2 can be connected by a M-horizontal curve 𝜎 : [0, 1] →𝑀 , where
𝑦1 = 𝜎(0) ∈ 𝐿1, 𝑦2 = 𝜎(1) ∈ 𝐿2. We connect 𝑥𝑖 with 𝑦𝑖 by the curve 𝜎𝑖 in the leaf 𝐿𝑖, 𝑖 = 1, 2. Then
the product of the paths 𝛾 := 𝜎1 · 𝜎 · 𝜎−1

2 connects a point 𝑥1 with a point 𝑥2. As it is known [7,
Lm. 1], each M-horizontal curve in 𝑀 possesess N-horizontal lifts in 𝐺M(𝐹 ). The curves 𝜎1 and 𝜎2
possess 𝑇𝐹 (2)-horizontal lifts in 𝐺M(𝐹 ), since for each leaf L in the induced foliation (𝐺M(𝐹 ),F), the
distribution 𝑇𝐹 (2)|L is an Ehresmann connection for the submersion 𝑝1|L. Therefore, for each point 𝑧

in 𝑝−1
1 (𝑥1), there exists a M(1)-horizontal lift ̂︀𝛾 of the curve 𝛾 with the origin at ̂︀𝛾(0) = 𝑧 and the end̂︀𝛾(1) ∈ 𝑝−1

1 (𝑥1). Since

Φ̂︀𝛾 : 𝑝−1
1 (𝑥0) → 𝑝−1

1 (𝑥1) : 𝑧 ↦→ ̂︀𝛾(1)
is a horizontal holonomic diffeomorphism with respect to the foliation (𝐺M, 𝐹

(1)) along a M(1)-
horizontal path ̂︀𝛾, then by the complete geodesicity of the mentioned foliation, it follows from Proposi-

tion 5 that the mapping Φ̂︀𝛾 is an isometry. Therefore, there exists a pseudo-Riemannian manifold 𝐿
(1)
0

isometric to each fibre of the submersion 𝑝1. In the same way, there exists a pseudo-Riemannian man-

ifold 𝐿
(2)
0 isometric to each fibre in the submersion 𝑝2. We fix a point 𝑧0 = (𝑥0, {1𝑥0}, 𝑥0) ∈ 𝐺M(𝐹 ),

where 1𝑥0 is the constant path at the point 𝑥0. We note that the restriction of the inversion
𝑖 : 𝐺M(𝐹 ) → 𝐺M(𝐹 ), 𝑖(𝑥, {ℎ}, 𝑦) = (𝑦, {ℎ−1}, 𝑥) on the leaf 𝑝−1

1 (𝑥0) is an isometry 𝑝−1
1 (𝑥0) onto the

leaf 𝑝−1
2 (𝑥0). This implies that 𝐿

(1)
0 and 𝐿

(2)
0 are isometric. We denote by 𝐿0 a pseudo-Riemannian

manifold isometric to 𝐿
(𝑖)
0 , 𝑖 = 1, 2.

Let 𝐿 = 𝐿(𝑥), 𝑥 ∈ 𝑀 , be an arbitrary leaf in the foliation (𝑀,𝐹 ). The definition of the graph
𝐺M(𝐹 ) implies that the restriction of the canonical projection 𝑝1|𝑝−1

2 (𝑥) : 𝑝−1
2 (𝑥) → 𝐿 is a regular

covering mapping with a group of covering mappings isomorphic to the M-holonomy group 𝐻M(𝐿, 𝑥).
According the definition of the pseudo-Riemannian metrics 𝑑 on 𝐺M(𝐹 ), this mapping is a local
isometry and therefore, is a pseudo-Riemannian covering. The above proven isometricity of 𝑝−1

2 (𝑥)
and 𝐿0 implies Statement (i) of the theorem.

We consider an arbitrary leaf L = 𝑝−1
1 (𝐿) of the induced foliation F on the graph 𝐺M(𝐹 ) with the

metrics 𝑑|L. As it has been shown in Subsection 4.2, a pseudo-Riemannian manifold (L, 𝑑) is non-

degenerately reducible and 𝐹 (1)|L and 𝐹 (2)|L its orthogonal parallel leaves. We stress that 𝑇𝐹 (1)|L is
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an integrable Ehresmann connection for 𝐹 (2)|L, and 𝑇𝐹 (2)|L is an integrable Ehresmann connection

for 𝐹 (1)|L. Thus, (L, 𝑝1|L, 𝑝1|L, 𝐿, 𝐿) is a symmetric simple transversal bifibration in the sense [8].
We fix a point 𝑧 = (𝑥, {1𝑥}, 𝑥) ∈ L. According (i), the group Ψ ∼= 𝐻M(𝐿, 𝑥) acts by isometries on

a pseudo-Riemannian covering manifold 𝐿0 as a group of covering transformations and this is why,
a diagonal action Φ of the group Ψ on a pseudo-Riemannian product 𝐿0 × 𝐿0 is well-defined by the
rule 𝜓(𝑧1, 𝑧2) = (𝜓(𝑧1), 𝜓(𝑧2)), (𝑧1, 𝑧2) ∈ 𝐿0 × 𝐿0. The action of Φ is free, properly discontinuous and
preserves the structure of the product. The quotient manifold (𝐿0 ×𝐿0)/Ψ is well-defined with a pair
of foliations 𝐹1, 𝐹2 covered by the product 𝐿0 × 𝐿0. Since Φ preserves the metrics of the pseudo-
Riemannian product on 𝐿0 ×𝐿0, then on (𝐿0 ×𝐿0)/Ψ, a pseudo-Riemannian metrics is induced, and
with respect to this metrics, the quotient mapping 𝐿0 × 𝐿0 → (𝐿0 × 𝐿0)/Ψ is a pseudo-Riemannian
covering. At that, on (𝐿0 × 𝐿0)/Ψ a pair of parallel foliations (𝐹1, 𝐹2) is well-defined, whose leaves
are covered by the leaves of trivial foliations of the product 𝐿0 × 𝐿0.

As it is known [8, Props. 5, 6], there exists a diffeomorphism

Θ : L → (𝐿0 × 𝐿0)/Ψ

being an isomorphism of both pairs of the foliations 𝐹 (𝑖)|L and 𝐹𝑖, 𝑖 = 1, 2 in the category of foliations
Fol. It is easy to see that 𝐿0 × 𝐿0 is a common pseudo-Riemannian covering space for L and for
(𝐿0 × 𝐿0)/Ψ, therefore, Θ is a diffeomorphism being a local isometry, that is, Θ is an isometry and
this completes the proof of Statement (ii) of Theorem 3.

6. Graphs of parallel foliations

6.1. Criterion of existence of integrable Ehresmann connection.

Definition 5. A pair of transversal foliations of additional dimensions (𝐹1, 𝐹2) on a manifold 𝑀
is called the a bifibration.

If (𝐹1, 𝐹2) is a bifibration on 𝑀 , then at each point 𝑥 ∈𝑀 , the identity 𝑇𝑥𝑀 = 𝑇𝑥𝐹1 ⊕ 𝑇𝑥𝐹2 holds
true.

Definition 6. Let (𝐹1, 𝐹2) be a bifibration on𝑀 and 𝜅 : ̂︁𝑀 →𝑀 be an universal covering mapping.
If the conditions hold:

1) ̂︁𝑀 =𝑀1 ×𝑀2 is a product of simply-connected manifolds 𝑀1 and 𝑀2,
2) 𝜅*𝐹1 = {𝑀1 × {𝑥2} |𝑥2 ∈𝑀2}, 𝜅*𝐹2 = {𝑥1 ×𝑀2 |𝑥1 ∈𝑀1},

then one says that the bifibration (𝐹1, 𝐹2) is covered by a product.

Employing the theorem by S. Kashiwabara [17, Thm. 2], it is easy to obtain the criterion of the
existence of an integrable Ehresmann connection for a smooth foliation. We formulate this criterion
in the following form convenient for us.

Theorem 5. A bifibration (𝐹1, 𝐹2) on a manifold 𝑀 is covered by a product if and only if the
distribution 𝑇𝐹2 is an integrable Ehresmann connection for the foliation (𝑀,𝐹1).

Let (𝐹1, 𝐹2) be a bifibration on the manifold 𝑀 . The definition of Ehresmann connection implies
that 𝑇𝐹2 is an Ehresmann connection for the foliation (𝑀,𝐹1) if and only if 𝑇𝐹1 is an Ehresmann
connection for (𝑀,𝐹2).

6.2. Lemma. We shall employ the following statement, which is essentially of a local character.

Lemma 2. Let (𝐹, 𝐹⊥) be mutually orthogonal foliations of additional dimensions on a pseudo-
Riemannian manifold (𝑀, 𝑔) and the induced metrics on the leaves of the foliations (𝑀,𝐹 ) is non-
degenerate. Then the following four statements are equivalent:

(1) the foliation (𝑀,𝐹 ) is simultaneously pseudo-Riemannian and totally geodesic;
(2) both foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are totally geodesic;
(3) both foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are pseudo-Riemannian;
(4) both foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are parallel.

Proof. Assume that under the assumptions of the lemma 𝑑𝑖𝑚(𝑀) = 𝑛 and 𝑑𝑖𝑚(𝐹 ) = 𝑞, where
0 < 𝑞 < 𝑛; at that, 𝑑𝑖𝑚(𝐹⊥) = 𝑛− 𝑞.

Let the foliation (𝑀,𝐹 ) be simultaneously pseudo-Riemannian and totally geodesic. Since (𝑀,𝐹 ) is
a pseudo-Riemannian foliation, according [11, Thm. 1], the orthogonal (𝑛−𝑞)-dimensional distribution
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M⊥ is totally geodesic. Since M⊥ = 𝑇𝐹⊥, this means that the foliation (𝑀,𝐹⊥) is totally geodesic.
Hence, (1) ⇒ (2).

Assume that both foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are totally geodesic. According [11, Thm. 1],
both these foliations are pseudo-Riemannian, that is, (2) ⇒ (3).

Let both foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are pseudo-Riemannian. As it is known, for each bifibration
(𝐹, 𝐹⊥), at each point 𝑥 ∈ 𝑀 , there exists a chart (𝑈,𝜙) such that 𝑈 = 𝑈1 × 𝑈2, where 𝐹 |𝑈 =
{𝑈1 ×{𝑥2} |𝑥2 ∈ 𝑈2} and 𝐹⊥|𝑈 = {{𝑥1}×𝑈2 |𝑥1 ∈ 𝑈1}. Since the foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are
pseudo-Riemannian, this implies the existence of pseudo-Riemannian metrics 𝑔1 and 𝑔2 on 𝑈1 and 𝑈2,
respectively, such that the projections on the factors 𝑈1 × 𝑈2 → 𝑈𝑖, 𝑖 = 1, 2, are pseudo-Riemannian
submersions (𝑈1 × 𝑈2, 𝑔) on (𝑈𝑖, 𝑔𝑖). This means that (𝑈1 × 𝑈2, 𝑔) is a pseudo-Riemannian product
of pseudo-Riemannian manifolds (𝑈1, 𝑔1) and (𝑈2, 𝑔2). Since 𝑥 is an arbitrary point in the manifold
𝑀 , this yields that (𝑀, 𝑔) is a non-degenerate pseudo-Riemannian manifold with parallel foliations
(𝑀,𝐹 ) and (𝑀,𝐹⊥), see, for instance, [19]. Thus, we have proved that (3) ⇒ (4).

Assume that (𝑀,𝐹 ) and (𝑀,𝐹⊥) are parallel foliations on (𝑀, 𝑔). Since the tangential vectors to
a geodesic curve forms a field of parallel translation, the definition of the parallel foliations imply that
they are totally geodesic and this is why it follows from the proven implication (2) ⇒ (3) that both
foliations are pseudo-Riemannian. Thus, (4) ⇒ (1).

6.3. Holonomy groups of parallel foliations.

Proposition 6. Let 𝐹 be a parallel foliation on a pseudo-Riemannian manifold (𝑀, 𝑔), the induced
metrics be non-degenerate on the leaves and the distribution complementary with respect to the orthog-
onality is an Ehresmann connection for 𝐹 . Then almost each leaf in the foliation 𝐹 has a trivial
holonomy group.

Proof. The assumptions imply the existence a parallel foliation 𝐹⊥ complementary to 𝐹 with respect
to the orthogonality. Since 𝑇𝐹⊥ is an Ehresmann connection for 𝐹 , it follows from Theorem 5
that the bifibration (𝐹, 𝐹⊥) is covered by a product, that is, the universal covering for 𝑀 reads as
𝜅 : 𝑀1 × 𝑀2 → 𝑀 and 𝜅*𝐹 = {𝑀1 × {𝑧} | 𝑧 ∈ 𝑀2}. We fix 𝑥0 ∈ 𝑀 and (𝑦0, 𝑧0) ∈ 𝑀1 × 𝑀2,
𝑝1(𝑦0, 𝑧0) = 𝑥0. By 𝐿 and 𝐿⊥ we denote the leaves of the foliations 𝐹 and 𝐹⊥ passing through 𝑥0.
We define 𝑀1

∼= 𝑀1 × {𝑧0} and 𝑀2
∼= {𝑦0} ×𝑀2. Let 𝑔1 = 𝑔|𝐿 and 𝑔2 = 𝑔|𝐿⊥ . Since 𝜅|𝑀1 : 𝑀1 → 𝐿

and 𝜅|𝑀2 : 𝑀2 → 𝐿⊥ are universal covering mappings, the pseudo-Riemannina manifolds (𝑀1, 𝜅
*𝑔1)

and (𝑀2, 𝜅
*𝑔2) are well-defined. Since locally (𝑀, 𝑔) is a product of pseudo-Riemannian manifolds

induced on local leaves of foliations 𝐹 and 𝐹⊥, the pseudo-Riemannian manifold (𝑀1 ×𝑀2, 𝜅
*𝑔) is a

product of pseudo-Riemannian manifolds (𝑀1, 𝜅
*𝑔1) and (𝑀2, 𝜅

*𝑔2).
The fundamental group 𝜋1(𝑀,𝑥0) acts on 𝑀1 ×𝑀2 as a group of covering transformations 𝐺 of

the covering 𝜅 preserving the structure of the product and a pseudo-Riemannian metrics 𝜅*𝑔. This
is why on 𝑀2, a group of isometries Ψ is induced and an epimorphism of the groups 𝜒 : 𝐺 → Ψ is
well-defined. Since the action of the group Ψ on 𝑀2 is quasi-analytic, the holonomy group Γ(𝐿, 𝑥) of
an arbitrary leaf 𝐿 = 𝐿(𝑥) of the foliation 𝐹 is isomorphic to the stationary subgroup Ψ𝑧 of the group
Ψ at a point 𝑧 ∈ 𝑝𝑟(𝜅−1(𝑥)), where 𝑝𝑟 : 𝑀1 ×𝑀2 → 𝑀2 is the canonical projection onto the second
factor. Therefore, the leaf 𝐿 = 𝐿(𝑥) possesses a trivial holonomy group if and only if the group Ψ𝑧 is
trivial as 𝑧 ∈ 𝑝𝑟(𝜅−1(𝑥)).

Let 𝑓𝑖𝑥(𝜓) be the set of fixed points of an isometry 𝜓 ∈ Ψ. Let us prove that union of all leaves in
the foliation(𝑀,𝐹 ) with non-trivial holonomy groups has a zero measure in 𝑀 . This is equivalent to
the fact that the set 𝐾 =

⋃︀
𝜓∈Ψ 𝑓𝑖𝑥(𝜓) has a zero measure in 𝑀2.

We recall that a subset 𝑁 of a 𝑚-dimensional manifold has a zero measure if at each point there
exists a chart (𝑈, 𝑓) of this manifold such that the subset 𝑓(𝑈 ∩𝑁) ⊂ R𝑚 has a zero measure in R𝑚.

Let 𝜓 be an arbitrary element in Ψ and 𝑧 be an arbitrary point in 𝑓𝑖𝑥(𝜓). Since a pseudo-
Riemannian metrics defines a𝐺-structure of the first order, there exists an isomorphism 𝜇 : Ψ𝑧 → 𝐷Ψ𝑧,
𝜇({𝜓}𝑧) = 𝜓*𝑧, of the stationary subgroup Ψ𝑧 onto the linear group 𝐷Ψ𝑧 mapping each isometry
𝜓 ∈ Ψ𝑧 into the differential 𝜓*𝑧 at the point 𝑧.

There exists a neighbourhood 𝑊0 of the zero in 𝑇𝑧𝑀2 such that the exponential mapping 𝐸𝑥𝑝|𝑊0 :
𝑊0 →𝑀2 is a diffeomorphism onto an open neighbourhood𝑊 of the point 𝑧 in𝑀2. By the continuity
of 𝜓*𝑧, there exists a neighbourhood 𝑊 ′

0 of the zero in 𝑇𝑧𝑀2 obeying 𝜓*𝑧(𝑊
′
0) ⊂ 𝑊0. Let 𝑊

′ =
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𝐸𝑥𝑝(𝑊 ′
0). Since 𝜓 is an isometry, it satisfies the identity

𝐸𝑥𝑝 ∘ 𝜓*𝑧|𝑊 ′
0
= 𝜓 ∘ 𝐸𝑥𝑝|𝑊 ′

0
,

and therefore, 𝐸𝑥𝑝−1(𝑓𝑖𝑥(𝜓) ∩𝑊 ′) = 𝑓𝑖𝑥(𝜓*𝑧) ∩𝑊 ′
0. Since 𝜓*𝑧 is a non-trivial linear mapping of the

vector space 𝑇𝑧𝑀2, the set 𝑓𝑖𝑥(𝜓*𝑧) is a proper subspace in 𝑇𝑧𝑀2 and this is why set 𝑓𝑖𝑥(𝜓*𝑧) ∩𝑊 ′
0

has a zero measure in 𝑇𝑧𝑀2
∼= R𝑞. We observe that (𝑊 ′, 𝐸𝑥𝑝−1|𝑊 ′) can be treated as a chart at the

point 𝑧 in the manifold 𝑀2. Therefore, the set 𝑓𝑖𝑥(𝜓) has a zero measure in 𝑀2. Since the group Ψ
is at most countable, this implies that the set 𝐾 has also a zero measure in 𝑀2.

6.4. Proof of Theorem 4. Assume that (𝑀, 𝑔) is a non-degenerate reducible pseudo-Riemannian
manifold, while 𝐹 and 𝐹⊥ are its parallel foliations of additional dimension and M = 𝑇𝐹⊥ is an
Ehresmann connection for the foliation (𝑀,𝐹 ). By Lemma 2, the foliations 𝐹 and 𝐹⊥ are simul-
taneously totally geodesic and pseudo-Riemannian. This is why the holonomy pseudo-group of the
foliation (𝑀,𝐹 ) is formed by local isometries and is quasi-analytic. Hence, Proposition 1 implies that
the graph 𝐺(𝐹 ) is Hausdorff. According Theorem 1, the graphs 𝐺(𝐹 ) and 𝐺M(𝐹 ) are canonically
isomorphic and are identified and this proves Statement 1.

According [11, Thm. 2], the induced foliation (𝐺(𝐹 ),F) is also pseudo-Riemannian and Statement 2
follows Proposition 6 and Statements 2, 3 of Theorem 3.

Let us show that the distribution N is integrable. For each 𝑋 ∈ XN(𝐺(𝐹 )), the properties of the
differential implies 𝑝𝑖*(𝑋) ∈ XM(𝑀) as 𝑖 = 1, 2. Taking this into consideration, by the integrability
of M we have

𝑝1*([𝑋,𝑌 ]) = [𝑝1*(𝑋), 𝑝1*(𝑌 )] ∈ XM(𝑀)

and

𝑝2*([𝑋,𝑌 ]) = [𝑝1*(𝑋), 𝑝2*(𝑌 )] ∈ XM(𝑀).

Hence, in view of the identity N = 𝑝*1M ∩ 𝑝*2M, we obtain [𝑋,𝑌 ] ∈ XN(𝐺(𝐹 )). By the Frobenius
theorem, the distributionN is integrable and defines a foliation, which we denote by 𝐹N. It follows from
Theorem 2 that the foliations 𝐹N and F are totally geodesic. According Lemma 2 this is equivalent to
the fact that (𝐹N,F) is a pair of parallel foliations complementary with respect to the orthogonality.

Let us show that the distribution M(2) is also integrable. We take arbitrary vector fields 𝑋, 𝑌
tangential to M(2). Let 𝑍 := [𝑋,𝑌 ]. Since M(2) = 𝑇𝐹 (1) ⊕N = 𝑝*1M, thanks to the integrability of
the distribution M = 𝑇𝐹⊥, the chain of identities holds:

𝑝1*(𝑍) = 𝑝1*([𝑋,𝑌 ]) = [𝑝1*(𝑋), 𝑝1*(𝑌 )] ∈ XM(𝑀),

and this is why it is necessary that 𝑍 ∈ XM(2)(𝐺(𝑀)). According Frobenius theorem, the distribution

M(2) is integrable. We denote by ℱ (2) the foliation, for which M(2) = 𝑇ℱ (2). By the assumptions, the
foliations (𝑀,𝐹 ) and (𝑀,𝐹⊥) are parallel and this is why it follows from Lemma 2 that the foliation
(𝑀,𝐹 ) is totally geodesic. By Theorem 2, the total geodesicity of the foliation (𝑀,𝐹 ) implies the

same for the foliation (𝐺(𝐹 ), 𝐹 (2)), and according [11, Thm. 2], the pseudo-Riemannian property of

(𝑀,𝐹 ) implies the same for the foliation (𝐺(𝐹 ), 𝐹 (2)). This is why, thanks to Lemma 2, the foliations

𝐹 (2) and ℱ (2) on the graph (𝐺(𝐹 ), 𝑑) complementary with respect to the orthogonality are parallel.
In the same way we prove that the pair of complementary with respect to the orthogonality foliations
(𝐹 (1),ℱ (1)) are parallel. This completes the proof of Statements 2 and 3.

We consider the universal covering mapping 𝑓 : 𝐺(𝐹 ) → 𝐺(𝐹 ). Since N = 𝑇𝐹N is an integrable

Ehresmann connection for the foliation (𝐺(𝑀),F), by Theorem 5, 𝐺(𝐹 ) = ̃︁𝐿N × ̃︀L is a product of

simply-connected manifolds and 𝑓*𝐹N = {̃︁𝐿N × {𝑣} | 𝑣 ∈ ̃︀L} and 𝑓*F = {{𝑢} × ̃︀L |𝑢 ∈ ̃︁𝐿N}. It follows
from Theorem 2 that ̃︀L ∼= ̃︁𝐿0 × ̃︁𝐿0, where 𝑓 |̃︁𝐿0

: ̃︁𝐿0 → 𝐿0 is an universal covering mapping for 𝐿0.

Thus, 𝐺(𝐹 ) ∼= ̃︁𝐿N×̃︁𝐿0×̃︁𝐿0. Since the bifibration (ℱ (2), 𝐹 (2)) is covered by a product (̃︁𝐿N×̃︁𝐿0)×̃︁𝐿0,

according Theorem 5, 𝑇𝐹 (2) is an integrable Ehresmann connection for the foliation (𝐺(𝐹 ),ℱ (2)). And

vice versa, 𝑇ℱ (2) is an integrable Ehresmann connection for (𝐺(𝐹 ), 𝐹 (2)). In the same way, 𝑇𝐹 (1)

is an integrable Ehresmann connection for (𝐺(𝐹 ),ℱ (1)) and vice versa. This completes the proof of
Statement 3 of the theorem.
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7. Two classes of studied foliations

7.1. Proof of Proposition 4. The family of piece-wise smooth geodesic curves of each pseudo-
Riemannian manifold form a system of paths in the sense of [18]. Therefore, on each leaf (𝐿𝛼, 𝑔) of
the foliation (𝑀,𝐹 ) a system of paths is well-defined. By the completeness of the induced metrics on
the leaves, the affine parameter of each geodesic curve lying in a leaf varies on the entire real line.
This means that the mentioned system of paths is complete. According Lemma 1 and [16, Prop. 2.7],
thanks to the total geodesicity of the foliation (𝑀,𝐹 ), for each integral curve 𝜎 of the distribution
M, a local horizontal holonomic diffeomorphism Φ𝜎 : 𝑈0 → 𝑈1 is an isometry. Therefore, Φ𝜎 maps a
geodesic curve into a geodesic curve keeping the parameter. This means that the foliation (𝑀,𝐹 ) is
M-conformed with the systems of paths on the leaves. Hence, it follows from [18, Thm. 6.1] that M
is an Ehresmann connection for the foliation (𝑀,𝐹 ).

7.2. Suspended foliations over pseudo-Riemannian manifolds.

Suspended foliations. Let (𝐵, 𝑔𝐵) be an arbitrary 𝑚-dimensional pseudo-Riemannian manifold and 𝑇
be an arbitrary smooth 𝑞-dimensional manifold. Suppose that we are given a homomorphism 𝜌 : 𝐺→
𝐷𝑖𝑓𝑓(𝑇 ) of the group 𝐺 = 𝜋1(𝐵, 𝑏) into the group 𝐷𝑖𝑓𝑓(𝑇 ) of diffeomorphisms of the manifold 𝑇. Let

the group𝐺 act from the right as a group of covering transformations on the universal covering space ̂︀𝐵.

Then the identity 𝑓(𝑥, 𝑡, 𝑔) = (𝑥 ·𝑔, 𝜌(𝑔−1)(𝑡)), where (𝑥, 𝑡, 𝑔) ∈ ̂︀𝐵×𝑇 ×𝐺, defines a right action of the

group 𝐺 on the product of the manifolds ̂︀𝐵×𝑇 . A quotient mapping 𝑓 : ̂︀𝐵×𝑇 →𝑀 onto the quotient

manifold 𝑀 := ( ̂︀𝐵×𝑇 )/𝐺 induces a smooth foliation 𝐹 = {𝑓( ̂︀𝐵×{𝑣}) | 𝑣 ∈ 𝑇} on 𝑀 , which is called

suspended and is denoted by (𝑀,𝐹 ) = 𝑆𝑢𝑠(𝑇,𝐵, 𝜌). The projection 𝑝 :𝑀 = ( ̂︀𝐵× 𝑇 )/𝐺→ 𝐵 = ̂︀𝐵/𝐺
forms a locally trivial fibration, which is called associated. The group Ψ = 𝜌(𝜋1(𝐵, 𝑏)) is called the
structural group of the suspended foliation (𝑀,𝐹 ).

7.3. Proof of Proposition 3. Let 𝑝 :𝑀 → 𝐵 be the associated fibration and M be a distribution
formed by tangential spaces to its fibres. Each vector field 𝑋 on 𝑀 is uniquely represented as
𝑋 = 𝑋𝐹 + 𝑋M, where 𝑋𝐹 ∈ X𝐹 (𝑀), 𝑋M ∈ XM(𝑀). Let 𝑔𝑀 be a pseudo-Riemannian metrics
𝑀 non-degenerate on the leaves of the foliation (𝑀,𝐹 ). A mentioned metrics 𝑔𝑀 exists since as 𝑔𝑀

we can take an arbitrary Riemannian metrics. Then the identity

𝑔(𝑋,𝑌 ) := (𝑝*𝑔𝐵)(𝑋𝐹 , 𝑌 𝐹 ) + 𝑔𝑀 (𝑋M, 𝑌M) for all 𝑋,𝑌 ∈ X(𝑀)

defines a pseudo-Riemannian metrics 𝑔 on the manifold 𝑀. The definition of the metrics 𝑔 implies
that 𝑝 : 𝑀 → 𝐵 is a pseudo-Riemannian submersion (𝑀, 𝑔) on (𝐵, 𝑔𝐵). Therefore, local horizontal
holonomic diffeomorphisms of the foliation 𝐹 are isometries and this is why, according Proposition 5,
𝐹 is a totally geodesics foliation on a pseudo-Riemannian manifold (𝑀, 𝑔). By the properties of the
suspended manifold, the restriction 𝑝|𝐿𝛼 of the projection 𝑝 on an arbitrary leaf 𝐿𝛼 of the foliation 𝐹
is a covering mapping onto the base 𝐵 and therefore, 𝑝|𝐿𝛼 : 𝐿𝛼 → 𝐵 is a pseudo-Riemannian covering
mapping. This implies that the leaves 𝐿𝛼 equipped with the induced pseudo-Riemannian metrics
are complete pseudo-Riemannian manifolds if and only if (𝐵, 𝑔𝐵) is a complete pseudo-Riemannian
manifold.

The completeness of the metrics 𝑔𝐵 is not assumed. Thus, we have constructed a totally geodesic
foliation (𝑀,𝐹 ) on the pseudo-Riemannian manifold (𝑀, 𝑔) with induced pseudo-Riemannian metrics
on the leaves, whose orthogonal 𝑞-dimensional distribution M is an integrable Ehresmann connection
for this foliation.

The proof of Statements 1)–3) is complete.
We stress that the graph of the foliation 𝐺(𝐹 ) is generally speaking not Hausdorff. Since the

holonomy pseudo-group ℋ(𝐹 ) of the foliation 𝐹 is determined by the transformations in the group
Ψ := 𝜌(𝜋1(𝐵, 𝑏)) ⊂ 𝐷𝑖𝑓𝑓(𝑇 ), by applying Proposition 1 we conclude that the graph 𝐺(𝐹 ) is Hausdorff
if and only if the group Ψ acts quasianalytically on 𝑇 . This completes the proof of Statement 4).

Thus, the foliations obtained by a suspension of a homomorphism of the fundamental group of a
pseudo-Riemannian manifold belong to the studied class of the foliations.

Remark 4. In terms of the above introduced notations, the graph 𝐺M(𝐹 ) of the suspended foliation
(𝑀,𝐹 ) is a Hausdorff smooth (2𝑚+ 𝑞)-dimensional manifold with a pseudo-Riemannian metrics 𝑑.
The fibres of the canonical projections 𝑝1 and 𝑝2 are totally geodesic 𝑚-dimensional submanifolds in
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(𝐺M(𝐹 ), 𝑑) isometric to arbitrary leaf (𝐿0, 𝑑) with the trivial M-holonomy group of the foliation (𝑀,𝐹 )
once it exists. A 𝑞-dimensional distributioin N orthogonal to the induced totally geodesic foliation F
is integrable and is tangent to some pseudo-Riemannian foliation.
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