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GREEN FUNCTION FOR ANALOGUE OF ROBIN PROBLEM

FOR POLYHARMONIC EQUATION

B.Kh. TURMETOV

Abstract. We propose a method of constructing the Green function for some boundary

value problems for a polyharmonic equation in a multi-dimensional unit ball. The con-

sidered problem are analogues of the Robin problem for an inhomogeneous polyharmonic

equation. For studying the solvability of these problems in the class of smooth in a ball

functions, we first provide the properties of integral-differential operators. Then, employing

these properties, the considered problems are reduced to an equivalent Dirichlet problem

with a special right hand side. Using then known statements on the Dirichlet problem,

for the main problems we prove the unique solvability theorems. We also obtain integral

representations for solutions of these problems via the solutions of the Dirichlet problem.

Employing the explicit form of the Green function, we find an integral representation of the

Dirichlet problem with a special right hand side. The obtained integral representation then

is used to construct the Green function for analogues of Robin problems. We also provide

an approach for constructing the Green function for other main problems. In order to do

this, we study the differential properties of the fundamental solution of the polyharmonic

operator. The obtained properties of the fundamental solutions are applied for studying

the properties of the Green function for the Dirichlet problem. We construct the repre-

sentations of the Green function for analogues of the Robin problem. While finding the

Green functions for these problems, we employ essentially the form of the Green function

for the Dirichlet problem for the polyhgarmonic equation. Namely, the Green function of

these problems is represented as the sum of the Green function for the Dirichlet problem

and some integral term. The obtained results are in agreement with the known results for

the Laplace operator.

Keywords: polyharmonic equation, boundary value problem, Dirichlet problem, analogue

of Robin problem, Green function, integral representation.
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1. Introduction

Let Ω = {𝑥 ∈ R𝑛 : |𝑥| < 1} be an 𝑛-dimensional unit ball, 𝑛 > 2, 𝜕Ω = {𝑥 ∈ R𝑛 : |𝑥| = 1}
be a unit sphere, 𝜈 be an outward normal to 𝜕Ω. The Dirichlet problem for an inhomogeneous

polyharmonic equation

(−∆)𝑚𝑣(𝑥) = 𝐹 (𝑥), 𝑥 ∈ Ω,
𝜕𝑘𝑣(𝑥)

𝜕𝜈𝑘
= 0, 𝑥 ∈ 𝜕Ω, 𝑘 = 0, 1, . . . ,𝑚− 1, 𝑚 > 1,
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in the domain Ω is a classical and well-studied problem.

If the function 𝐹 (𝑥) is smooth, then problem (1) is uniquely solvable and is represented by

means of the Green function:

𝑣(𝑥) =

∫︁
Ω

𝐺𝐷,𝑚(𝑥, 𝑦)𝐹 (𝑦)𝑑𝑦. (2)

The Green function for the Dirichlet problem was constructed explicitly in various ways in

works [1]–[5]. For instance, it was shown in [1] that the function 𝐺𝐷,𝑚(𝑥, 𝑦) reads as

𝐺𝐷,𝑚 (𝑥, 𝑦) = 𝐾𝑚,𝑛|𝑥− 𝑦|2𝑚−𝑛

𝑔(𝑥,𝑦)∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡, (3)

where

𝑔(𝑥, 𝑦) =
1

|𝑥− 𝑦|

⃒⃒⃒⃒
𝑥|𝑦| − 𝑦

|𝑥|

⃒⃒⃒⃒
, 𝐾𝑚,𝑛 =

1

4𝑚−1((𝑚− 1)!)2𝑛𝑒𝑛
, 𝑒𝑛 =

𝜋𝑛/2

Γ
(︀
1 + 𝑛

2

)︀ .
It is easy to obtain the following representation for the coefficient 𝐾𝑚,𝑛, see, for instance, [6]:

𝐾𝑚,𝑛 =
1

4𝑚−1((𝑚− 1)!)2𝜔𝑛

, (4)

where 𝜔𝑛 = 2𝜋𝑛/2/Γ(𝑛/2) is the area of the unit sphere.

In the case 𝑚 = 1, that is, for the Poisson equation, apart of the Dirichlet problem, the

Robin problem is also classical and well-studied:

−∆𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω,
𝜕𝑢(𝑥)

𝜕𝜈
+ 𝑎𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω,

where 0 < 𝑎 is a real number. The Green function for this problem was explicitly found in

works [7]–[9].

Let

𝑟 = |𝑥|, 𝑟
𝜕

𝜕𝑟
=

𝑛∑︁
𝑗=1

𝑥𝑗
𝜕

𝜕𝑥𝑗

.

We consider the operators

Γ𝑎 =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂
, Γ(𝑘)

𝑎 =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂𝑘

≡ Γ𝑎 · . . . · Γ𝑎⏟  ⏞  
𝑘

, 𝑘 > 2.

The properties and applications of the operators like Γ
(𝑘)
𝑎 in the class of harmonic functions

were studied in [10], [11].

In the present work we provide a method for constructing the Green function for the following

analogue of the Robin problem:

(−∆)𝑚𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω, Γ(𝑘)
𝑎 [𝑢](𝑥) = 0, 𝑥 ∈ 𝜕Ω, 𝑘 = 1, 2, . . . ,𝑚. (5)

A solution to this problem is a function 𝑢(𝑥) ∈ 𝐶2𝑚(Ω) ∩ 𝐶𝑚(Ω̄) satisfying the conditions of

problem (5) in a classical sense.
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2. Auxiliary statements

In this section we provide some properties of the solutions of Dirichlet problem (1), present

a method of reducing problem (5) to an auxiliary Dirichlet problem, and prove the unique

solvability of this problem.

We consider an operator

Γ−1
𝑎 [𝑢](𝑥) =

1∫︁
0

𝑠𝑎−1𝑢(𝑠𝑥)𝑑𝑠.

The following lemma is true [10], [12].

Lemma 1. If 𝑎 > 0 and 𝑢(𝑥) is a smooth function in the domain Ω, then the identities

Γ𝑎

[︀
Γ−1
𝑎 [𝑢]

]︀
(𝑥) = Γ−1

𝑎 [Γ𝑎[𝑢]] (𝑥) = 𝑢(𝑥) (6)

hold for each 𝑥 ∈ Ω.

Lemma 2. Let 𝑓 ∈ 𝐶𝜆+1(Ω), 0 < 𝜆 < 1. Then problem (5) is uniquely solvable and is

represented as

𝑢(𝑥) =

1∫︁
0

𝑠𝑎−1𝑣(𝑠𝑥)𝑑𝑠 ≡ Γ−1
𝑎 [𝑣](𝑥), (7)

where 𝑣(𝑥) is the solution to Dirichlet problem (1) with the function

𝐹 (𝑥) =

(︂
𝑟
𝜕

𝜕𝑟
+ 2𝑚 + 𝑎

)︂
𝑓(𝑥).

Proof. Suppose that 𝑢(𝑥) is a solution to problem (5). We apply the operator Γ𝑎 to this function

and we denote Γ𝑎[𝑢](𝑥) = 𝑣(𝑥). Let us find conditions for the function 𝑣(𝑥). Since

𝑟
𝜕

𝜕𝑟
=

𝑛∑︁
𝑗=1

𝑥𝑗
𝜕

𝜕𝑥𝑗

,∆

(︃
𝑛∑︁

𝑗=1

𝑥𝑗
𝜕𝑢(𝑥)

𝜕𝑥𝑗

)︃
=

(︂
𝑟
𝜕

𝜕𝑟
+ 2

)︂
∆𝑢(𝑥) = Γ2[∆𝑢](𝑥),

we get

(−∆)𝑚𝑣(𝑥) =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎 + 2𝑚

)︂
(−∆)𝑚𝑢(𝑥) = Γ2𝑚+𝑎[𝑓 ](𝑥) ≡ 𝐹 (𝑥).

For each 𝑥 ∈ 𝜕Ω we have

0 =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂
𝑢(𝑥)

⃒⃒⃒⃒
𝜕Ω

= 𝑣(𝑥)|𝜕Ω, 0 =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂2

𝑢(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

=

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂
𝑣(𝑥)

⃒⃒⃒⃒
𝜕Ω

=
𝜕

𝜕𝜈
𝑣(𝑥)

⃒⃒⃒⃒
𝜕Ω

+ 𝑎𝑣(𝑥)|𝜕Ω.

Therefore,

𝑣(𝑥)|𝜕Ω = 0, 𝑟
𝜕𝑣(𝑥)

𝜕𝑟

⃒⃒⃒⃒
𝜕Ω

=
𝜕𝑣(𝑥)

𝜕𝜈

⃒⃒⃒⃒
𝜕Ω

= 0.

Then (︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂2

𝑣(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

=

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂3

𝑢(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

= 0.

On the other hand,(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂2

𝑣(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

=

(︂
𝑟2

𝜕2

𝜕𝑟2
+ (2𝑎 + 1)𝑟

𝜕

𝜕𝑟
+ 𝑎2

)︂
𝑣(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω
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=
𝜕2𝑣(𝑥)

𝜕𝜈2

⃒⃒⃒⃒
𝜕Ω

+ (2𝑎 + 1)
𝜕𝑣(𝑥)

𝜕𝜈

⃒⃒⃒⃒
𝜕Ω

+ 𝑎2𝑣(𝑥)
⃒⃒
𝜕Ω

=
𝜕2𝑣(𝑥)

𝜕𝜈2

⃒⃒⃒⃒
𝜕Ω

.

Then
𝜕2𝑣(𝑥)

𝜕𝜈2

⃒⃒⃒⃒
𝜕Ω

= 0.

In the same way we show that for each 𝑘 = 3, 4, . . . ,𝑚− 1 the identities hold:

𝜕𝑘𝑣(𝑥)

𝜕𝜈𝑘

⃒⃒⃒⃒
𝜕Ω

= 0.

Hence, for the function 𝑣(𝑥) = Γ𝑎[𝑢](𝑥) we obtain Dirichlet problem (1) with the function

𝐹 (𝑥) = Γ2𝑚+𝑎[𝑓 ](𝑥). If 𝑓(𝑥) ∈ 𝐶𝜆+1(Ω), then 𝐹 (𝑥) ∈ 𝐶𝜆(Ω), and solution to problem (1) exists,

is unique and can be represented as (2).

Then by identity (6) we find

𝑢(𝑥) =

1∫︁
0

𝑠𝑎−1𝑣(𝑠𝑥) 𝑑𝑠,

and representation (7) holds true.

Let a function 𝑣(𝑥) solves problem (1) with the function 𝐹 (𝑥) = Γ2𝑚+𝑎[𝑓 ](𝑥). We are going

to show that the function 𝑢(𝑥) = Γ−1
𝑎 [𝑣](𝑥) satisfies all conditions of problem (5). Indeed, since

(−∆)𝑚Γ−1
𝑎 [𝑣](𝑥) =

1∫︁
0

𝑠𝑎+2𝑚−1𝐹 (𝑠𝑥)𝑑𝑠 = Γ−1
𝑎+2𝑚[𝐹 ](𝑥), 𝐹 (𝑥) = Γ2𝑚+𝑎[𝑓 ](𝑥),

by identity (6) we get

(−∆)𝑚𝑢(𝑥) = (−∆)𝑚Γ−1
𝑎 [𝑣](𝑥) = Γ−1

2𝑚+𝑎[Γ2𝑚+𝑎[𝑓 ]](𝑥) = 𝑓(𝑥).

In the integral
1∫︀
0

𝑠𝑎−1𝑣(𝑠𝑥)𝑑𝑠 we make the change of the variables 𝑠𝑟 = 𝜉. Then 𝑢(𝑥) is

represented as

𝑢(𝑥) = 𝑟−𝑎

𝑟∫︁
0

𝜉𝑎−1𝑣(𝜉𝜃)𝑑𝜉, 𝜃 =
𝑥

|𝑥|
.

This yields

Γ𝑎[𝑢](𝑥)|𝜕Ω =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂
𝑢(𝑥)

⃒⃒⃒⃒
𝜕Ω

=

⎛⎝−𝑎𝑟−𝑎

𝑟∫︁
0

𝜉𝑎−1𝑣(𝜉𝜃)𝑑𝑠 + 𝑣(𝑥) + 𝑎𝑟−𝑎

𝑟∫︁
0

𝜉𝑎−1𝑣(𝜉𝜃)𝑑𝑠

⎞⎠⃒⃒⃒⃒⃒⃒
𝑟=1

= 𝑣(𝑥)|𝜕Ω = 0,

Γ(2)
𝑎 [𝑢](𝑥)

⃒⃒
𝜕Ω

=

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂
𝑣(𝑥)

⃒⃒⃒⃒
𝜕Ω

=
𝜕𝑣(𝑥)

𝜕𝜈

⃒⃒⃒⃒
𝜕Ω

+ 𝑎𝑣(𝑥)|𝜕Ω = 0.

Since for each 𝑘 = 3, 4, . . . ,𝑚 the identities hold [13](︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂𝑘

𝑢(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

=

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎

)︂𝑘−1

𝑣(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

=
𝑘−1∑︁
𝑗=0

𝐶𝑗
𝑘−1𝑎

𝑘−1−𝑗

(︂
𝑟
𝜕

𝜕𝑟

)︂𝑗

𝑣(𝑥)

⃒⃒⃒⃒
⃒
𝜕Ω

=
𝑘−1∑︁
𝑗=0

𝐶𝑗
𝑘−1𝑎

𝑘−1−𝑗

𝑗∑︁
𝑖=0

𝑑𝑖,𝑗
𝜕𝑖𝑣(𝑥)

𝜕𝜈𝑖

⃒⃒⃒⃒
⃒
𝜕Ω

= 0,
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where 𝑑𝑖,𝑗 are some constants, boundary conditions in problem (5) are also satisfied.

Lemma 3. Let the function 𝐹 (𝑥) read as

𝐹 (𝑥) =

(︂
𝑟
𝜕

𝜕𝑟
+ 𝑎 + 2𝑚

)︂
𝑓(𝑥).

Then solution of Dirichlet problem (1) is represented as

𝑣(𝑥) =

∫︁
Ω

(︂
2𝑚 + 𝑎− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦. (8)

Proof. We consider the function

𝐼𝑗 =

∫︁
Ω

𝐺𝐷,𝑚(𝑥, 𝑦)𝑦𝑗
𝜕

𝜕𝑦𝑗
𝑓(𝑦)𝑑𝑦, 𝑗 = 1, 2, . . . , 𝑛.

Employing the approach of [14], we integrate by parts in 𝐼𝑗 taking into consideration the

property of the Green function 𝐺𝐷,𝑚(𝑥, 𝑦)||𝑦|=1 = 0 and we get

𝐼𝑗 =

∫︁
Ω

𝑦𝑗𝐺𝐷,𝑚(𝑥, 𝑦)
𝜕

𝜕𝑦𝑗
𝑓(𝑦)𝑑𝑦 =

∫︁
𝜕Ω

𝑦𝑗𝐺𝐷,𝑚(𝑥, 𝑦)𝑓(𝑦)𝑐𝑜𝑠(̂︂𝜈𝑦𝑦𝑗)𝑑𝑆𝑦

−
∫︁
Ω

𝜕

𝜕𝑦𝑗
[𝑦𝑗𝐺𝐷,𝑚(𝑥, 𝑦)] 𝑓(𝑦)𝑑𝑦 = −

∫︁
Ω

(︂
1 + 𝑦𝑗

𝜕

𝜕𝑦𝑗

)︂
𝐺𝐷,𝑚(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦.

Here ̂︂𝜈𝑦𝑦𝑗 is an angle between 𝜈𝑦 and 𝑦𝑗. Then∫︁
Ω

𝐺𝐷,𝑚(𝑥, 𝑦)𝜌
𝜕

𝜕𝜌
𝑓(𝑦)𝑑𝑦 =

∫︁
Ω

𝐺𝐷,𝑚(𝑥, 𝑦)
𝑛∑︁

𝑗=1

𝑦𝑗
𝜕

𝜕𝑦𝑗
𝑓(𝑦)𝑑𝑦

= −
∫︁
Ω

𝑛∑︁
𝑗=1

𝜕

𝜕𝑦𝑗
[𝑦𝑗𝐺𝐷,𝑚(𝑥, 𝑦)]𝑓(𝑦)𝑑𝑦

= −
∫︁
Ω

(︂
𝑛 + 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦.

Hence, the identity holds:∫︁
Ω

𝐺𝐷,𝑚(𝑥, 𝑦)

(︂
2𝑚 + 𝑎 + 𝜌

𝜕

𝜕𝜌

)︂
𝑓(𝑦)𝑑𝑦 =

∫︁
Ω

(︂
2𝑚 + 𝑎− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦.

This completes the proof.

Corollary 1. Let 𝑓(𝑥) ∈ 𝐶𝜆+1(Ω). Then problem (5) is uniquely solvable and the solution

can be represented as

𝑢(𝑥) =

∫︁
Ω

⎡⎣ 1∫︁
0

𝑠𝑎−1

(︂
𝑎 + 2𝑚− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦)

⎤⎦ 𝑓(𝑦)𝑑𝑦. (9)
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3. Construction of Green function

In this section we construct the Green function for the main problem. We denote

𝜌
𝜕

𝜕𝜌
=

𝑛∑︁
𝑗=1

𝑦𝑗
𝜕

𝜕𝑦𝑗
.

We begin with some auxiliary statements.

Lemma 4. The function

𝑔(𝑥, 𝑦) =
1

|𝑥− 𝑦|

⃒⃒⃒⃒
𝑥|𝑦| − 𝑦

|𝑥|

⃒⃒⃒⃒
satisfies the identity

|𝑥− 𝑦|2𝑚−𝑛
(︀
𝑔2(𝑥, 𝑦) − 1

)︀𝑚−1
𝑔2−𝑛(𝑥, 𝑦) =

(1 − |𝑥|2)𝑚−1
(1 − |𝑦|2)𝑚−1⃒⃒⃒

𝑥|𝑦| − 𝑦
|𝑦|

⃒⃒⃒𝑛−2 . (10)

Proof. Since ⃒⃒⃒⃒
𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒⃒2
− |𝑥− 𝑦|2 =

(︀
1 − |𝑥|2

)︀ (︀
1 − |𝑦|2

)︀
,

the definition of 𝑔(𝑥, 𝑦) yields

|𝑥− 𝑦|2𝑚−𝑛
(︀
𝑔2(𝑥, 𝑦) − 1

)︀𝑚−1
𝑔2−𝑛(𝑥, 𝑦) =|𝑥− 𝑦|2𝑚−𝑛 (1 − |𝑥|2)𝑚−1

(1 − |𝑦|2)𝑚−1

|𝑥− 𝑦|2𝑚−2

· |𝑥− 𝑦|𝑛−2⃒⃒⃒
𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒𝑛−2 =
(1 − |𝑥|2)𝑚−1

(1 − |𝑦|2)𝑚−1⃒⃒⃒
𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒𝑛−2 .

Lemma 5. The identities hold:(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
|𝑠𝑥− 𝑦|2𝑚−𝑛 = (2𝑚− 𝑛)|𝑠𝑥− 𝑦|2𝑚−𝑛, (11)(︂

𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
𝑔(𝑠𝑥, 𝑦) = 𝑔(𝑠𝑥, 𝑦)

𝑠2|𝑥|2|𝑦|2 − 1⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒2 . (12)

The proof is complete.

Proof. Applying successively the operators 𝜌 𝜕
𝜕𝜌

and 𝑠 𝑑
𝑑𝑠

to the function |𝑠𝑥− 𝑦|2𝑚−𝑛, we get(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
|𝑠𝑥− 𝑦|2𝑚−𝑛 =(2𝑚− 𝑛)|𝑠𝑥− 𝑦|2(𝑚−1)−𝑛

(︀
|𝑦|2 − 𝑠(𝑥, 𝑦)

)︀
+ (2𝑚− 𝑛)|𝑠𝑥− 𝑦|2(𝑚−1)−𝑛

(︀
𝑠2|𝑥|2 − 𝑠(𝑥, 𝑦)

)︀
=(2𝑚− 𝑛)|𝑠𝑥− 𝑦|2𝑚−𝑛 |𝑦|2 − 𝑠(𝑥, 𝑦) + 𝑠2|𝑥|2 − 𝑠(𝑥, 𝑦)

|𝑠𝑥− 𝑦|2

=(2𝑚− 𝑛)|𝑠𝑥− 𝑦|2𝑚−𝑛.

This proves identity (11).

We have(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
𝑔(𝑠𝑥, 𝑦) =|𝑠𝑥− 𝑦|−1 ·

(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂ ⃒⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒⃒
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+

⃒⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒⃒ (︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂(︀
|𝑠𝑥− 𝑦|−1)︀

=|𝑠𝑥− 𝑦|−1 · 2
𝑠2|𝑥|2|𝑦|2 − 𝑠(𝑥, 𝑦)⃒⃒⃒

𝑠𝑥|𝑦| − 𝑦
|𝑦|

⃒⃒⃒
−
⃒⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒⃒
|𝑠𝑥− 𝑦|−3 (︀|𝑦|2 − 𝑠(𝑥, 𝑦) + |𝑠2𝑦|2 − 𝑠(𝑥, 𝑦)

)︀
=

1

|𝑠𝑥− 𝑦|
· 2

𝑠2|𝑥|2|𝑦|2 − 𝑠(𝑥, 𝑦)⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒ −

⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒
|𝑠𝑥− 𝑦|

=

⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒
|𝑠𝑥− 𝑦|

·

⎡⎢⎣2𝑠2|𝑥|2|𝑦|2 − 2𝑠(𝑥, 𝑦)⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒2 − 1

⎤⎥⎦ = 𝑔(𝑠𝑥, 𝑦)
𝑠2|𝑥|2|𝑦|2 − 1⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒2 .
This proves identity (12).

Lemma 6. The identity holds(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦) =(2𝑚− 𝑛)𝐺𝐷,𝑚(𝑠𝑥, 𝑦)

−𝐾𝑚,𝑛(1 − 𝑠2|𝑥|2)𝑚−1(1 − |𝑦|2)𝑚−11 − 𝑠2|𝑥|2|𝑦|2⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒𝑛 , (13)

where 𝐾𝑚,𝑛 is defined by identity (4).

Proof. Employing the representation for the function 𝐺𝐷,𝑚(𝑥, 𝑦), we obtain

𝜌
𝜕

𝜕𝜌
𝐺𝐷,𝑚(𝑠𝑥, 𝑦) =𝐾𝑚,𝑛

𝑔(𝑠𝑥,𝑦)∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡𝜌
𝜕

𝜕𝜌
|𝑠𝑥− 𝑦|2𝑚−𝑛

+ 𝐾𝑚,𝑛|𝑠𝑥− 𝑦|2𝑚−𝑛(𝑔2 − 1)𝑚−1𝑔1−𝑛𝜌
𝜕

𝜕𝜌
𝑔(𝑠𝑥, 𝑦).

In the same way,

𝑠
𝑑

𝑑𝑠
𝐺𝐷,𝑚(𝑠𝑥, 𝑦) =𝐾𝑚,𝑛

𝑔(𝑠𝑥,𝑦)∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡𝑠
𝑑

𝑑𝑠
|𝑠𝑥− 𝑦|2𝑚−𝑛

+ 𝐾𝑚,𝑛|𝑠𝑥− 𝑦|2𝑚−𝑛(𝑔2 − 1)𝑚−1𝑔1−𝑛𝑠
𝑑

𝑑𝑠
𝑔(𝑠𝑥, 𝑦).

Hence,(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦) =𝐾𝑚,𝑛

𝑔(𝑠𝑥,𝑦)∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡

(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
|𝑠𝑥− 𝑦|2𝑚−𝑛

+ 𝐾𝑚,𝑛|𝑠𝑥− 𝑦|2𝑚−𝑛(𝑔2 − 1)𝑚−1𝑔1−𝑛

(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
𝑔(𝑠𝑥, 𝑦).
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Employing identities (11), (12) and (10), we finally obtain(︂
𝜌
𝜕

𝜕𝜌
+ 𝑠

𝑑

𝑑𝑠

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦) =𝐾𝑚,𝑛(2𝑚− 𝑛)|𝑠𝑥− 𝑦|2𝑚−𝑛

𝑔(𝑠𝑥,𝑦)∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡

+ 𝐾𝑚,𝑛|𝑠𝑥− 𝑦|2𝑚−𝑛(𝑔2 − 1)𝑚−1𝑔1−𝑛𝑔(𝑠𝑥, 𝑦)
𝑠2|𝑥|2|𝑦|2 − 1⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒2
=(2𝑚− 𝑛)𝐺𝐷,𝑚(𝑠𝑥, 𝑦)

−𝐾𝑚,𝑛(1 − 𝑠2|𝑥|2)𝑚−1(1 − |𝑦|2)𝑚−11 − 𝑠2|𝑥|2|𝑦|2⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒𝑛 .
The proof is complete.

We proceed to a main statement on the Green function for problem (5).

Theorem 1. Let 𝑎 > 0, 0 < 𝜆 < 1 and 𝑓 ∈ 𝐶𝜆+1(Ω). Then the solution of problem (5) can

be represented as

𝑢(𝑥) =

∫︁
Ω

𝐺𝑎(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦, (14)

where the Green function 𝐺𝑎(𝑥, 𝑦) reads as

𝐺𝑎(𝑥, 𝑦) = 𝐺𝐷,𝑚(𝑥, 𝑦) + 𝐾𝑚,𝑛(1 − |𝑦|2)𝑚−1

1∫︁
0

𝑠𝑎−1 (1 − 𝑠2|𝑥|2)𝑚−1
(1 − 𝑠2|𝑥|2|𝑦|2)⃒⃒⃒

𝑠𝑥|𝑦| − 𝑦
|𝑦|

⃒⃒⃒𝑛 𝑑𝑠. (15)

Proof. Since 𝑓 ∈ 𝐶𝜆+1(Ω), by Lemma 2, problem (5) is uniquely solvable and the solution is

given by (7), where 𝑣(𝑥) is the solution of Dirichlet problem (1) with the function

𝐹 (𝑥) =

(︂
𝑟
𝜕

𝜕𝑟
+ 2𝑚 + 𝑎

)︂
𝑓(𝑥).

By Corollary 1, the solution of problem (5) can be represented as (9), that is,

𝑢(𝑥) =

∫︁
Ω

⎡⎣ 1∫︁
0

𝑠𝑎−1

(︂
𝑎 + 2𝑚− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦)

⎤⎦ 𝑓(𝑦)𝑑𝑦.

We denote

𝐺𝑎(𝑥, 𝑦) =

1∫︁
0

𝑠𝑎−1

(︂
𝑎 + 2𝑚− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦)𝑑𝑠. (16)

Let us study the function (︂
𝑎 + 2𝑚− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦).

By identity (13) we have(︂
𝑎 + 2𝑚− 𝑛− 𝜌

𝜕

𝜕𝜌

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦) =

(︂
𝑠
𝑑

𝑑𝑠
+ 𝑎

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦)

+ 𝐾𝑚,𝑛(1 − |𝑦|2)𝑚−1 (1 − 𝑠2|𝑥|2)𝑚−1(1 − 𝑠2|𝑥|2|𝑦|2)⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒𝑛 .
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On the other hand,

1∫︁
0

𝑠𝑎−1

(︂
𝑠
𝑑

𝑑𝑠
+ 𝑎

)︂
𝐺𝐷,𝑚(𝑠𝑥, 𝑦)𝑑𝑠 =

1∫︁
0

𝑑

𝑑𝑠
[𝑠𝑎𝐺𝐷,𝑚(𝑠𝑥, 𝑦)] 𝑑𝑠 = 𝐺𝐷,𝑚(𝑥, 𝑦).

This implies identity (15) for the function 𝐺𝑎(𝑥, 𝑦) and representation (14) for the solution of

problem (5).

Corollary 2. As 𝑚 = 1, the Green function of the Robin problem for the Poisson equation

can be represented as

𝐺𝑎(𝑥, 𝑦) = 𝐺𝐷,1(𝑥, 𝑦) +
1

𝜔𝑛

1∫︁
0

𝑠𝑎−11 − 𝑠2|𝑥|2|𝑦|2⃒⃒⃒
𝑠𝑥|𝑦| − 𝑦

|𝑦|

⃒⃒⃒𝑛 𝑑𝑠.
In the case 𝑛 = 2, this corollary was obtained in work [7], while the case 𝑛 > 2 was resolved

in [8].

We proceed to a generalization of problem (5). Let 𝑎𝑗, 𝑗 = 1, 2, . . . ,𝑚, be positive real

numbers. We introduce the notations

Γ(ℓ)
𝑎1,𝑎2,...,𝑎ℓ

= Γ𝑎1 · Γ𝑎2 . . .Γ𝑎ℓ⏟  ⏞  
ℓ

, ℓ > 1.

In the same way as above we can study the following problem.

(−∆)𝑚𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω, Γ(𝑘)
𝑎1,𝑎2,...,𝑎𝑘

[𝑢](𝑥) = 0, 𝑥 ∈ 𝜕Ω, 𝑘 = 1, 2, . . . ,𝑚. (17)

We give a main statement on problem (17) with the proof.

Theorem 2. Let 𝑎𝑗 > 0, 𝑗 = 1, 2, . . . ,𝑚, 0 < 𝜆 < 1 and 𝑓 ∈ 𝐶𝜆+1(Ω). Then problem (17)

is uniquely solvable and the solution can be represented as

𝑢(𝑥) =

∫︁
Ω

𝐺𝑎1(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦,

where the Green function 𝐺𝑎1(𝑥, 𝑦) reads as

𝐺𝑎1(𝑥, 𝑦) = 𝐺𝐷,𝑚(𝑥, 𝑦) + 𝐾𝑚,𝑛(1 − |𝑦|2)𝑚−1

1∫︁
0

𝑠𝑎1−1 (1 − 𝑠2|𝑥|2)𝑚−1
(1 − 𝑠2|𝑥|2|𝑦|2)⃒⃒⃒

𝑠𝑥|𝑦| − 𝑦
|𝑦|

⃒⃒⃒𝑛 𝑑𝑠.
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