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CLASSIFICATION OF A SUBCLASS

OF QUASILINEAR TWO-DIMENSIONAL LATTICES

BY MEANS OF CHARACTERISTIC ALGEBRAS

M.N. KUZNETSOVA

Abstract. We consider a classification problem of integrable cases of the Toda type two-
dimensional lattices 𝑢𝑛,𝑥𝑦 = 𝑓(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛,𝑥, 𝑢𝑛,𝑦). The function 𝑓 = 𝑓(𝑥1, 𝑥2, · · ·𝑥5)
is assumed to be analytic in a domain 𝐷 ⊂ C5. The sought function 𝑢𝑛 = 𝑢𝑛(𝑥, 𝑦) depends
on real 𝑥, 𝑦 and integer 𝑛. Equations with three independent variables are complicated
objects for study and especially for classification. It is commonly accepted that for a given
equation, the existence of a large class of integrable reductions indicates integrability. Our
classification algorithm is based on this observation. We say that a constraint 𝑢0 = 𝜙(𝑥, 𝑦)
defines a degenerate cutting off condition for the lattice if it divides this lattice into two
independent semi-infinite lattices defined on the intervals −∞ < 𝑛 < 0 and 0 < 𝑛 < +∞,
respectively. We call a lattice integrable if there exist cutting off boundary conditions
allowing us to reduce the lattice to an infinite number of hyperbolic type systems integrable
in the sense of Darboux. Namely, we require that lattice is reduced to a finite system of
such kind by imposing degenerate cutting off conditions at two different points 𝑛 = 𝑁1,
𝑛 = 𝑁2 for arbitrary pair of integers 𝑁1, 𝑁2. Recall that a system of hyperbolic equations
is called Darboux integrable if it admits a complete set of integrals in both characteristic
directions. An effective criterion of the Darboux integrability of the system is connected
with properties of an associated algebraic structures. More precisely, the characteristic Lie-
Rinehart algebras assigned to both characteristic directions have to be of a finite dimension.
Since the obtained hyperbolic system is of a very specific form, the characteristic algebras
are effectively studied. Here we focus on a subclass of quasilinear lattices of the form

𝑢𝑛,𝑥𝑦 = 𝑝(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1)𝑢𝑛,𝑥 + 𝑟(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1)𝑢𝑛,𝑦 + 𝑞(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1).

Keywords: two-dimensional lattice, integrable reduction, characteristic Lie algebra, de-
generate cutting off condition, Darboux integrable system, 𝑥-integral.
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1. Introduction

The problem of classifying integrable two-dimensional chains of the form

𝑢𝑛,𝑥𝑦 = 𝑓(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛,𝑥, 𝑢𝑛,𝑦), −∞ < 𝑛 <∞, (1.1)

is topical and currently remains open. The function 𝑓 = 𝑓(𝑥1, 𝑥2, · · ·𝑥5) is assumed to be
analytic in a domain 𝐷 ⊂ C5, and the sought function 𝑢𝑛 = 𝑢𝑛(𝑥, 𝑦) depends on real 𝑥, 𝑦 and
integer 𝑛.

In this paper we focus on the following subclass of quasilinear lattices (1.1):

𝑢𝑛,𝑥𝑦 = 𝑝(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝑢𝑛,𝑥 + 𝑟(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝑢𝑛,𝑦 + 𝑞(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), −∞ < 𝑛 <∞.
(1.2)
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Here functions 𝑝(𝑥1, 𝑥2, 𝑥3), 𝑟(𝑥1, 𝑥2, 𝑥3), 𝑞(𝑥1, 𝑥2, 𝑥3) are assumed to be analytic in a domain
𝐷 ⊂ C3.

Equations with three independent variables are complicated objects for study and especially
for classification. Currently, there are different approaches to studying integrable multidimen-
sional equations [1]–[10]. The presence of a wide class of integrable reductions indicates the
integrability of the equation. This fact is often used in the study of multidimensional equations,
see [1, 2, 3], where the existence of integrable reductions of a hydrodynamic type is taken to
determine the integrability. Here we use a similar idea by treating integrability as the presence
of an infinite sequence of Darboux integrable hyperbolic systems.

In describing Darboux integrable systems of hyperbolic equations of a special type, the
concept of the characteristic Lie algebra [11, 12, 13] was used a lot. The transition to a more
general characteristic Lie-Rinehart algebra opens up new possibilities [14]–[18].

The characteristic Lie algebra for two-dimensional lattices was introduced in [19]. Namely,
the structure of this algebra was described for two-dimensional Toda lattice. It was observed in
paper [16] that any integrable lattice of the form (1.1) admits a so-called degenerate cutting off
boundary conditions. When such kind boundary conditions are imposed at two different points
𝑛 = 𝑁1 and 𝑛 = 𝑁2, the lattice reduces to a Darboux integrable system of the hyperbolic type
equations. In our works [16], [17], [18], we suggested and developed a classification algorithm
based on this observation. Let us briefly discuss the essence of the method.

We say that a constraint

𝑢0 = 𝜙(𝑥, 𝑦)

defines a degenerate cutting off condition for lattice (1.1) if it divides (1.1) into two independent
semi-infinite lattices defined on the intervals −∞ < 𝑛 < 0 and 0 < 𝑛 < +∞, respectively.

Definition 1.1. Lattice (1.1) is called integrable if there exist functions 𝜙1 and 𝜙2 such that
for any pair of integers 𝑁1, 𝑁2, where 𝑁1 < 𝑁2 − 1, the hyperbolic system

𝑢𝑁1 = 𝜙1(𝑥, 𝑦),

𝑢𝑛,𝑥𝑦 = 𝑓(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛,𝑥, 𝑢𝑛,𝑦), 𝑁1 < 𝑛 < 𝑁2,

𝑢𝑁2 = 𝜙2(𝑥, 𝑦)

obtained from lattice (1.1) by imposing degenerate boundary conditions is integrable in the sense
of Darboux.

Recall that a system of hyperbolic equations is called Darboux integrable if it admits a
complete set of integrals in both characteristic directions, see [14], [15]. An effective criterion of
the Darboux integrability of the system is connected with properties of an associated algebraic
structures. More precisely, the characteristic Lie-Rinehart algebras [20, 21] assigned to both
characteristic directions have to be of a finite dimension. Since the obtained hyperbolic system
is of a very specific form, this allows us to study effectively the characteristic algebras. The
method was shown to be effective in our articles [17], [18]. A large class of the integrable
lattices of form (1.1) was represented in [22], where they were studied in the framework of
the symmetry approach. It is remarkable that all equations of this class turned out to be
integrable in the sense of Definition 1.1. Another argument in favor of our definition is that
the resulting hyperbolic systems admit explicit solutions, which are extended to solutions of
the original nonlinear chain. So, the chains integrable in our sense have a very wide class of
explicit solutions.

In this article we continue the study initiated in [17], [18], where the integrable in the sense
of Definition 1.1 cases of the two-dimensional quasilinear lattices of the form

𝑢𝑛,𝑥𝑦 = 𝛼𝑛𝑢𝑛,𝑥𝑢𝑛,𝑦 + 𝑝𝑛𝑢𝑛,𝑥 + 𝑟𝑛𝑢𝑛,𝑦 + 𝑞𝑛, (1.3)



CLASSIFICATION OF A SUBCLASS OF QUASILINEAR TWO-DIMENSIONAL LATTICES . . . 111

were described under the non-degeneracy condition 𝜕𝛼𝑛

𝜕𝑢𝑛±1
̸= 0. Here the coefficients depend on

three successive variables

𝛼𝑛 = 𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), 𝑝𝑛 = 𝑝(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1),

𝑟𝑛 = 𝑟(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), 𝑞𝑛 = 𝑞(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1).

We mention review [23], where a complete classification of lattices of the form

𝑢𝑛,𝑥𝑥 = 𝑓(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1, 𝑢𝑛,𝑥),
𝜕𝑓

𝜕𝑢𝑛+1

𝜕𝑓

𝜕𝑢𝑛+1

̸= 0,

was presented. In our paper [18], we found two new equations of form (1.3), which were
integrable in the sense of Definition 1.1. We note that these equations were two-dimensional
generalizations of the equations from the list in paper [23].

Now we focus on a particular case (1.2) of lattice (1.3), as 𝛼𝑛 vanishes identically. We suppose
that the following conditions are satisfied: at least one of the following derivatives is non-zero:

𝜕𝑟𝑛
𝜕𝑢𝑛+1

̸= 0 or
𝜕𝑟𝑛
𝜕𝑢𝑛−1

̸= 0, (1.4)

𝜕𝑝𝑛
𝜕𝑢𝑛+1

̸= 0 or
𝜕𝑝𝑛
𝜕𝑢𝑛−1

̸= 0. (1.5)

The main result of this paper is as follows.

Theorem 1.1. If chain (1.2), (1.4) is integrable in the sense of Definition 1.1, then by point
transformations it is reduced to one of the following forms:

𝑢𝑛,𝑥𝑦 =
(︀
𝑒𝑢𝑛−𝑢𝑛−1 − 𝑒𝑢𝑛+1−𝑢𝑛

)︀
𝑢𝑛,𝑦, (1.6)

𝑢𝑛,𝑥𝑦 =
(︀
−𝑢𝑛+1 + 2𝑢𝑛 − 𝑢𝑛−1

)︀
𝑢𝑛,𝑦. (1.7)

Lattices (1.6), (1.7) were known before [22]. Condition (1.5) implies that lattices obtained
under classification procedure coincide with these lattices up to the change 𝑥↔ 𝑦.

In the next section we describe briefly a theoretical base of the main research method; a
detailed explanation was presented in [17, 18].

2. Preliminaries

According Definition 1.1, there exist cutting off conditions at two points that reduce (1.2) to
the finite hyperbolic type system:

𝑢−1 = 𝜙1,

𝑢𝑛,𝑥𝑦 = 𝑝𝑛𝑢𝑛,𝑥 + 𝑟𝑛𝑢𝑛,𝑦 + 𝑞𝑛, 0 6 𝑛 6 𝑁,

𝑢𝑁+1 = 𝜙2.

(2.1)

Here 𝑝𝑛 = 𝑝(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1), 𝑟𝑛 = 𝑟(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1), 𝑞𝑛 = 𝑞(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1).
We recall that a hyperbolic system of partial differential equations (2.1) is integrable in the

sense of Darboux if it admits a complete set of functionally independent 𝑥- and 𝑦-integrals (see
[14]). A function 𝐼 depending on finitely many dynamical variables u,u𝑥,u𝑥𝑥, . . . is called 𝑦-
integral if it solves the equation 𝐷𝑦𝐼 = 0 (see [14]), where 𝐷𝑦 is the operator of total derivative
with respect to variable 𝑦 and u is a vector with coordinates 𝑢0, 𝑢1, . . . , 𝑢𝑁 . Since system (2.1)
is autonomous, we consider autonomous 𝑦-integrals depending at least on one of the dynamical
variables u,u𝑥,u𝑥𝑥, . . ..

We suppose that system (2.1) is Darboux integrable and denote by 𝐼(u,u𝑥, . . .) its nontrivial
𝑦-integral. By definition, 𝐼 solves the equation 𝐷𝑦𝐼 = 0. Let us calculate an action of the
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operator 𝐷𝑦 on functions of the form 𝐼(u,u𝑥, . . .). It is determined by the rule 𝐷𝑦𝐼 = 𝑌 𝐼,
where

𝑌 =
𝑁∑︁
𝑖=0

(︂
𝑢𝑖,𝑦

𝜕

𝜕𝑢𝑖
+ 𝑓𝑖

𝜕

𝜕𝑢𝑖,𝑥
+ 𝑓𝑖,𝑥

𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

)︂
.

Here 𝑓𝑖 = 𝑝𝑖𝑢𝑖,𝑥 + 𝑟𝑖𝑢𝑖,𝑦 + 𝑞𝑖 is the right hand side of lattice (1.2). Therefore, the function 𝐼
satisfies the equation 𝑌 𝐼 = 0. Coefficients of the equation 𝑌 𝐼 = 0 depend on the variables 𝑢𝑖,𝑦,
whereas a solution 𝐼 is independent of 𝑢𝑖,𝑦. Hence, 𝐼 satisfies the system of linear equations:

𝑌 𝐼 = 0, 𝑋𝑗𝐼 = 0, 𝑗 = 0, . . . , 𝑁, (2.2)

where 𝑋𝑖 = 𝜕
𝜕𝑢𝑖,𝑦

. It follows from (2.2) that the commutator 𝑌𝑖 = [𝑋𝑖, 𝑌 ] = 𝑋𝑖𝑌 − 𝑌 𝑋𝑖 of

operators 𝑌 and 𝑋𝑖, 𝑖 = 0, 1, . . . , 𝑁 also annihilates 𝐼. In the case of lattice (1.2) operator 𝑌
can be represented as:

𝑌 =
𝑁∑︁
𝑖=0

𝑢𝑖,𝑦𝑌𝑖 +𝑅, (2.3)

where 𝑌𝑖 and 𝑅 are defined as

𝑌𝑖 =
𝜕

𝜕𝑢𝑖
+𝑋𝑖(𝑓𝑖)

𝜕

𝜕𝑢𝑖,𝑥
+𝑋𝑖(𝐷𝑥𝑓𝑖)

𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

=
𝜕

𝜕𝑢𝑖
+ 𝑟𝑖

𝜕

𝜕𝑢𝑖,𝑥
+
(︀
𝐷𝑥(𝑟𝑖) + 𝑟2𝑖

)︀ 𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

𝑅 =
𝑁∑︁
𝑖=0

(𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖)
𝜕

𝜕𝑢𝑖,𝑥
+
(︀
𝐷𝑥(𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖) + (𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖)𝑟𝑖

)︀ 𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

(2.4)

Let F be a ring of locally analytical functions of the dynamical variables u,u𝑥,u𝑥𝑥, . . .. We
consider the Lie-Rinehart algebra ℒ(𝑦,𝑁) over the ring F generated by differential operators
𝑌, 𝑌0, 𝑌1, . . . , 𝑌𝑁 . We call this algebra the characteristic Lie algebra of system (2.1) along the
𝑦-direction. We shall show that we can multiply the elements in the algebra by functions
depending on finitely many dynamical variables; this fact distinguishes our algebra from an
ordinary Lie algebra. The characteristic Lie algebra of system (2.1) along the 𝑥-direction is
defined in the same way.

Now we shall work with the operators in the algebra ℒ(𝑦,𝑁). Algebra ℒ(𝑦,𝑁) is of
a finite dimension if there exist a finite basis 𝑍1, 𝑍2, . . . , 𝑍𝑘 consisting of linearly indepen-
dent operators such that each element 𝑍 ∈ ℒ(𝑦,𝑁) is represented as a linear combination
𝑍 = 𝑎1𝑍1 + 𝑎2𝑍2 + . . . + 𝑎𝑘𝑍𝑘, where the coefficients 𝑎1, 𝑎2, . . . , 𝑎𝑘 are an-
alytic functions depending on the dynamical variables defined in an open domain.
Then the identity 𝑎1𝑍1 + 𝑎2𝑍2 + . . . + 𝑎𝑘𝑍𝑘 = 0 implies that 𝑎1 = 𝑎2 = . . . = 𝑎𝑘 = 0.
System (2.1) is integrable in the sense of Darboux if and only if the characteristic Lie algebras
in both directions are of a finite dimension [14].

In our study, we shall apply the operator 𝐷𝑥 to smooth functions depending on the dynam-
ical variables u,u𝑥,u𝑥𝑥, . . .. On this class of functions, we obtain the following commutation
relations for the operators 𝑌𝑖, 𝑅:

[𝐷𝑥, 𝑌𝑖] = −𝑟𝑖𝑌𝑖, (2.5)

[𝐷𝑥, 𝑅] = −
𝑁∑︁
𝑖=0

(𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖)𝑌𝑖.

The following statement holds [13, 19, 14]:



CLASSIFICATION OF A SUBCLASS OF QUASILINEAR TWO-DIMENSIONAL LATTICES . . . 113

Lemma 2.1. If a vector field

𝑍 =
∑︁
𝑖

𝑧1,𝑖
𝜕

𝜕𝑢𝑖,𝑥
+ 𝑧2,𝑖

𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

solves the equation [𝐷𝑥, 𝑍] = 0, then 𝑍 = 0.

We shall also use the standard notation ad𝑋(𝑍) := [𝑋,𝑍].
The key method, on which the classification algorithm is based, is a test sequence method.

We call a sequence of operators 𝑊0,𝑊1,𝑊2, . . . in the algebra ℒ(𝑦,𝑁) a test sequence if

[𝐷𝑥,𝑊𝑚] =
𝑚∑︁
𝑗=0

𝑤𝑗,𝑚𝑊𝑗

holds true for all 𝑚. The test sequence allows us to derive integrability conditions for hyperbolic
type system (2.1), see [24, 14, 15].

The first step of our study is to define the functions 𝑝𝑛, 𝑟𝑛. Let us note that when we search
the function 𝑟𝑛 we study the subalgebra Lie generated by the operators 𝑌𝑖, see (2.4). It follows
from (2.3), (2.4), (2.5) that this subalgebra coincides with the Lie algebra of a hyperbolic type
system corresponding the lattice

𝑢𝑛,𝑥𝑦 = 𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝑢𝑛,𝑦. (2.6)

The following statement holds true for this lattice.

Lemma 2.2. If lattice (2.6) is integrable in the sense of Definition 1.1, then it is reduced by
point transformations to one of the following forms:

𝑢𝑛,𝑥𝑦 =
(︀
𝑒𝑢𝑛−𝑢𝑛−1 − 𝑒𝑢𝑛+1−𝑢𝑛

)︀
𝑢𝑛,𝑦, (2.7)

𝑢𝑛,𝑥𝑦 =
(︀
−𝑢𝑛+1 + 2𝑢𝑛 − 𝑢𝑛−1

)︀
𝑢𝑛,𝑦. (2.8)

Proof of Lemma (2.2) is given in Section 3.

Remark 2.1. If the function 𝑟𝑛 depends only on the variable 𝑢𝑛, that is 𝑟𝑛 = 𝑟𝑛(𝑢𝑛), then

[𝑌𝑘, 𝑌𝑗] = 0

for all 𝑘, 𝑗 and system (2.6) splits into the system of independent equations 𝑢𝑛,𝑥𝑦 = 𝑟𝑛(𝑢𝑛)𝑢𝑛,𝑦.
This system has integrals in the direction we consider. We mention that a wide class of scalar
equations of the form 𝑢𝑥,𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑥) was studied in [14] within the characteristic Lie algebras
approach. But the case 𝑟𝑛 = 𝑟𝑛(𝑢𝑛) or 𝑝𝑛 = 𝑝𝑛(𝑢𝑛) holds for lattice (1.2) and is to be studied,
see Section 4.

3. Integrability conditions

3.1. The first test sequence. Let us define a sequence of operators in the characteristic
algebra ℒ(𝑦,𝑁) by the reccurent formula:

𝑌0, 𝑌1, 𝑊1 = [𝑌0, 𝑌1] , 𝑊2 = [𝑌0,𝑊1] , . . . 𝑊𝑘+1 = [𝑌0,𝑊𝑘] , . . . (3.1)

The following commutation relations are valid for the first elements of the sequence (3.1), see
formula (2.5):

[𝐷𝑥, 𝑌0] = −𝑟0𝑌0, [𝐷𝑥, 𝑌1] = −𝑟1𝑌1. (3.2)
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By using the Jacobi identity we get the formulae

[𝐷𝑥,𝑊1] = −(𝑟1 + 𝑟0)𝑊1 − 𝑌0(𝑟1)𝑌1 + 𝑌1(𝑟0)𝑌0, (3.3)

[𝐷𝑥,𝑊2] = −(𝑟1 + 2𝑟0)𝑊2 − 𝑌0(2𝑟1 + 𝑟0)𝑊1 − 𝑌 2
0 (𝑟1)𝑌1 + 𝑌0𝑌1(𝑟0)𝑌0, (3.4)

[𝐷𝑥,𝑊3] = − (𝑟1 + 3𝑟0)𝑊3 − 𝑌0(3𝑟1 + 3𝑟0)𝑊2 − 𝑌 2
0 (3𝑟1 + 𝑟0)𝑊1

− 𝑌 3
0 (𝑟1)𝑌1 + 𝑌 2

0 𝑌1(𝑟0)𝑌0,
(3.5)

[𝐷𝑥,𝑊4] = − (𝑟1 + 4𝑟0)𝑊4 − 𝑌0(4𝑟1 + 6𝑟0)𝑊3 − 𝑌 2
0 (6𝑟1 + 4𝑟0)𝑊2

− 𝑌 3
0 (4𝑟1 + 𝑟0)𝑊1 − 𝑌 4

0 (𝑟1)𝑌1 + 𝑌 3
0 𝑌1(𝑟1)𝑌0.

(3.6)

It can be proved by induction that (3.1) is a test sequence. Moreover, for 𝑘 > 4

[𝐷𝑥,𝑊𝑘] = 𝑎𝑘𝑊𝑘 + 𝑏𝑘𝑊𝑘−1 + 𝑠𝑘𝑊𝑘−2 + 𝑡𝑘𝑊𝑘−3 + · · · , (3.7)

where

𝑎𝑘 = −(𝑟1 + 𝑘𝑟0), 𝑏𝑘 =
𝑘 − 𝑘2

2
𝑌0(𝑟0) − 𝑌0(𝑟1)𝑘, (3.8)

𝑠𝑘 = −𝑌 2
0 (3𝑟1 + 𝑟0) +

1

2
(𝑘 − 3)𝑌0(𝑞3 + 𝑞𝑘−1),

𝑡𝑘 = −𝑌 3
0 (4𝑟1 + 𝑟0) +

1

2
(𝑘 − 4)𝑌0(𝑠4 + 𝑠𝑘−1).

By assumption, in the algebra ℒ(𝑦,𝑁) there are finitely many linearly independent elements
of sequence (3.1). Therefore, there exists 𝑀 such that

𝑊𝑀 = 𝜆𝑊𝑀−1 + · · · , (3.9)

the operators 𝑌0, 𝑌1, 𝑊1, . . . , 𝑊𝑀−1 are linearly independent, the dots stand for a linear
combination of the operators 𝑌0, 𝑌1, 𝑊1, . . . , 𝑊𝑀−2.

Let us consider the first three elements.

Lemma 3.1. If condition (1.4) holds, then the operators 𝑌0, 𝑌1,𝑊1 are linear independent.
Otherwise, if 𝑟0 = 𝑟0(𝑢0) depends only on the variable 𝑢0, then 𝑊1 = 0.

Proof. Let 𝑟0 depend on at least one of the variables 𝑢−1, 𝑢1. We are going to prove that 𝑌0,
𝑌1, 𝑊1 are linear independent in this case. We argue by contradiction assuming that

𝜆1𝑊1 + 𝜇1𝑌1 + 𝜇0𝑌0 = 0.

The operators 𝑌0, 𝑌1 are of the form

𝑌0 =
𝜕

𝜕𝑢0
+ · · · , 𝑌1 =

𝜕

𝜕𝑢1
+ · · · ,

while 𝑊1 contains terms of the form 𝜕
𝜕𝑢0

and 𝜕
𝜕𝑢1

. Hence, the coefficients 𝜇1, 𝜇0 are equal to
zero. If 𝜆1 ̸= 0, then 𝑊1 = 0. We apply the operator ad𝐷𝑥 to both sides of the last identity,
then by virtue of (3.2) we obtain the equation

𝑌0(𝑟1)𝑌1 − 𝑌1(𝑟0)𝑌0 = 0.

It implies that 𝑌0(𝑟1) = 𝑟1,𝑢0 = 0 and 𝑌1(𝑟0) = 𝑟0,𝑢1 = 0. This is equivalent to 𝑟0,𝑢−1 = 0,
𝑟0,𝑢1 = 0 and we arrive at a contradiction to condition (1.4).

By direct calculation of the operator

𝑊1 = [𝑌0, 𝑌1] = 𝑌0𝑌1 − 𝑌1𝑌0

and using formula (2.4), we prove the second part of the lemma. The proof is complete.

In what follows we assume that 𝑀 > 2 and condition (1.4) holds.
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Lemma 3.2. If relation (3.9) holds true for 𝑀 > 2, then the function 𝑟0 has one of the
following forms:

i) if 𝜆 = 0, then

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛼(𝑢−1) −
2

𝑀 − 1
𝛼(𝑢0) + 𝛿(𝑢1); (3.10)

ii) if 𝜆 ̸= 0, then

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛽(𝑢−1)𝑒
− 2

𝑀(𝑀−1)
𝜆𝑢0 + 𝜓(𝑢0, 𝑢1), (3.11)

where functions 𝛽 and 𝜓 satisfy the equation

𝜆𝜓(𝑢0, 𝑢1) +
1

2
𝑀(𝑀 − 1)𝜓𝑢0(𝑢0, 𝑢1) +𝑀𝑒−

2
𝑀(𝑀−1)

𝜆𝑢1𝛽′(𝑢0) = 0. (3.12)

Proof. We apply the operator ad𝐷𝑥 to both sides of identity (3.9). Combining the coefficients
before 𝑊𝑀−1, we get the equation:

𝐷𝑥(𝜆) = 𝜆(𝑎𝑀 − 𝑎𝑀−1) + 𝑏𝑀 . (3.13)

We substitute formulae (3.8) into (3.13):

𝐷𝑥(𝜆) = −𝑟0𝜆− 𝑀(𝑀 − 1)

2
𝑟0,𝑢0 −𝑀𝑟1,𝑢0 . (3.14)

From identity (3.14) it follows that 𝜆 is a constant and

𝑟0𝜆+
𝑀(𝑀 − 1)

2
𝑟0,𝑢0 +𝑀𝑟1,𝑢0 = 0. (3.15)

Let us apply the operator 𝜕
𝜕𝑢2

to (3.15):

𝑀𝑟1,𝑢0𝑢2 = 0.

This is equivalent to 𝑟0,𝑢−1𝑢1 = 0 and, hence,

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝜙(𝑢−1, 𝑢0) + 𝜓(𝑢0, 𝑢1). (3.16)

We substitute function (3.15) into (3.14)

𝜆𝜙𝑢−1 +
𝑀(𝑀 − 1)

2
𝜙𝑢0𝑢−1 = 0. (3.17)

We consider two different cases:
i) 𝜆 = 0;
ii) 𝜆 ̸= 0.
If i) holds, then 𝜙𝑢0𝑢−1 = 0, so that 𝜙(𝑢−1, 𝑢0) = 𝛼(𝑢−1) + 𝛽(𝑢0) and

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛼(𝑢−1) + 𝛽(𝑢0) + 𝜓(𝑢0, 𝑢1).

We re-denote 𝛽 + 𝜓 → 𝜓 and we get

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛼(𝑢−1) + 𝜓(𝑢0, 𝑢1). (3.18)

We substitute (3.18) and 𝜆 = 0 into (3.15):

𝑀(𝑀 − 1)

2
𝜓𝑢0(𝑢0, 𝑢1) +𝑀𝛼′(𝑢0) = 0. (3.19)

Applying the operator 𝜕
𝜕𝑢1

to identity (3.19), we obtain 𝜓𝑢0𝑢1 = 0 and, hence,

𝜓(𝑢0, 𝑢1) = 𝛾(𝑢0) + 𝛿(𝑢1).

We substitute 𝜓 into (3.19) and we find

𝛾(𝑢0) = − 2

𝑀 − 1
𝛼(𝑢0) + 𝑐1
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and, then

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛼(𝑢−1) −
2

𝑀 − 1
𝛼(𝑢0) + 𝛿(𝑢1).

Let us consider case ii). Solution of equation (3.17) is the function

𝜙(𝑢−1, 𝑢0) = 𝛼(𝑢0) + 𝑒−
2

𝑀(𝑀−1)
𝜆𝑢0𝛽(𝑢−1).

Then function (3.16) becomes

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛼(𝑢0) + 𝑒−
2

𝑀(𝑀−1)
𝜆𝑢0𝛽(𝑢−1) + 𝜓(𝑢0, 𝑢1).

We redenote 𝛼 + 𝜓 → 𝜓 and we get

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝑒−
2

𝑀(𝑀−1)
𝜆𝑢0𝛽(𝑢−1) + 𝜓(𝑢0, 𝑢1).

Substituting 𝑟0 into (3.15), we obtain (3.12). The proof is complete.

3.2. Second test sequence. We construct the test sequence containing operators 𝑌0, 𝑌1,
𝑌2 and their multiple commutators:

𝑍0 = 𝑌0, 𝑍1 = 𝑌1, 𝑍2 = 𝑌2, 𝑍3 = [𝑌1, 𝑌0] , 𝑍4 = [𝑌2, 𝑌1] ,

𝑍5 = [𝑌2, 𝑍3] , 𝑍6 = [𝑌1, 𝑍3] , 𝑍7 = [𝑌1, 𝑍4] , 𝑍8 = [𝑌1, 𝑍5] .

The elements 𝑍𝑚, 𝑚 > 8 are defined by the recurrent formula 𝑍𝑚 = [𝑌1, 𝑍𝑚−3].
The following commutation relations hold:

[𝐷𝑥, 𝑌0] = −𝑟0𝑌0, [𝐷𝑥, 𝑌1] = −𝑟1𝑌1, [𝐷𝑥, 𝑌2] = −𝑟2𝑌2, (3.20)

[𝐷𝑥, 𝑍3] = −(𝑟1 + 𝑟0)𝑍3 + 𝑌0(𝑟1)𝑌1 − 𝑌1(𝑟0)𝑌0, (3.21)

[𝐷𝑥, 𝑍4] = −(𝑟2 + 𝑟1)𝑍4 + 𝑌1(𝑟2)𝑌2 − 𝑌2(𝑟1)𝑌1, (3.22)

[𝐷𝑥, 𝑍5] = − (𝑟0 + 𝑟1 + 𝑟2)𝑍5 − 𝑌2(𝑟1 + 𝑟0)𝑍3 + 𝑌0(𝑟1)𝑍4

+ 𝑌2𝑌0(𝑟1)𝑌1 − 𝑌2𝑌1(𝑟0)𝑌0,
(3.23)

[𝐷𝑥, 𝑍6] = −(𝑟0 + 2𝑟1)𝑍6 − 𝑌1(2𝑟0 + 𝑟1)𝑍3 + 𝑌1𝑌0(𝑟1)𝑌1 − 𝑌 2
1 (𝑟0)𝑌0,

[𝐷𝑥, 𝑍7] = −(2𝑟1 + 𝑟2)𝑍7 − 𝑌1(𝑟1 + 2𝑟2)𝑍4 + 𝑌 2
1 (𝑟2)𝑌2 − 𝑌1𝑌2(𝑟1)𝑌1,

[𝐷𝑥, 𝑍8] = − (𝑟0 + 2𝑟1 + 𝑟2)𝑍8 + 𝑌0(𝑟1)𝑍7 − 𝑌2(𝑟0 + 𝑟1)𝑍6 − 𝑌1(𝑟0 + 𝑟1 + 𝑟2)𝑍5

+ 𝑌1𝑌0(𝑟1)𝑍4 − 𝑌1𝑌2(𝑟1)𝑍3 + 𝑌1𝑌2𝑌0(𝑟1)𝑌1 − 𝑌1𝑌2𝑌1(𝑟0)𝑌0.
(3.24)

We recall that we assume condition (1.4), otherwise, starting with 𝑍3, all elements of the
sequence vanish.

Lemma 3.3. The operators 𝑍0, 𝑍1, . . . , 𝑍5 are linearly independent.

Proof. It is easy to show that the operators 𝑍0, 𝑍1, . . . , 𝑍4 are linearly independent; this is
similar to the proof of Lemma 3.1. We prove Lemma 3.3 by arguing by contradiction. We
suppose that

𝑍5 =
4∑︁

𝑗=0

𝜆𝑗𝑍𝑗. (3.25)
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We apply the operator ad𝐷𝑥 to both sides of identity (3.25), and we use formulae (3.21)–(3.23)
to simplify the obtained identity:

−(𝑟0 + 𝑟1 + 𝑟2)
4∑︁

𝑗=0

𝜆𝑗𝑍𝑗 + 𝑌0(𝑟1)𝑍4 − 𝑌2(𝑟1)𝑍3 + 𝑌2𝑌0(𝑟1)𝑌1 − 𝑌2𝑌1(𝑟0)𝑌0

=
4∑︁

𝑗=0

𝐷𝑥(𝜆𝑗)𝑍𝑗 + 𝜆4
(︀
−(𝑟2 + 𝑟1)𝑍4 + 𝑌1(𝑟2)𝑌2 − 𝑌2(𝑟1)𝑌1

)︀
+ 𝜆3

(︀
−(𝑟1 + 𝑟0)𝑍3 + 𝑌0(𝑟1)𝑌1 − 𝑌1(𝑟0)𝑌0

)︀
− 𝜆2𝑟2𝑌 − 2 − 𝜆1𝑟1𝑌1 − 𝜆0𝑟0𝑌0.

(3.26)

Combining the coefficients at 𝑍4 in (3.26), we get the equation:

𝐷𝑥(𝜆4) = −𝑟0𝜆4 + 𝑟1,𝑢0 .

This identity implies that 𝜆4 is a constant and

− 𝑟0𝜆4 + 𝑟1,𝑢0 = 0. (3.27)

We shall study this equation in two different cases i) and ii):
i) If 𝑟0 is defined by formula (3.10), then (3.27) casts into the form

−
(︂
𝛼(𝑢−1) −

2

𝑀 − 1
𝛼(𝑢0) + 𝛿(𝑢1)

)︂
𝜆4 + 𝛼′(𝑢0) = 0. (3.28)

If 𝜆4 ̸= 0, then (3.28) implies that functions 𝛼, 𝛿 are constants since the variables 𝑢1, 𝑢0, 𝑢−1

are independent. Then we get that 𝑟0 is a constant that contradicts condition (1.4). If 𝜆4 = 0,
then it follows from (3.28) that 𝛼′(𝑢0) = 0 and

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛿(𝑢1). (3.29)

ii) If 𝑟0 is defined by (3.11), then identity (3.27) becomes

−
(︁
𝛽(𝑢−1)𝑒

− 2
𝑀(𝑀−1)𝜆𝑢0 + 𝜓(𝑢0, 𝑢1)

)︁
𝜆4 + 𝛽′(𝑢0)𝑒

− 2
𝑀(𝑀−1)

𝜆𝑢1 = 0. (3.30)

We apply the operator 𝜕
𝜕𝑢−1

to (3.30):

𝛽′(𝑢−1)𝑒
− 2

𝑀(𝑀−1)
𝜆𝑢0𝜆4 = 0.

If 𝜆4 = 0, then it follows from (3.30) that 𝛽′(𝑢0) = 0 and, hence, 𝛽 = 𝑐4, where 𝑐4 is a constant.
If 𝜆4 ̸= 0, then it follows from (3.30) that

𝛽(𝑢−1)𝑒
− 2

𝑀(𝑀−1)𝜆𝑢0 + 𝜓(𝑢0, 𝑢1) = 0.

The expression in the left hand side of the last identity coincides exactly with 𝑟0(𝑢1, 𝑢0, 𝑢−1).
Therefore, the last identity contradicts condition (1.4).

Thus, we obtain that 𝜆4 = 0 and 𝑟0 is defined by the formula

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝑐4𝑒
− 2

𝑀(𝑀−1)
𝜆𝑢0 + 𝜓(𝑢0, 𝑢1). (3.31)

We collect the coefficients at 𝑍3 in (3.26), take into consideration that 𝜆4 = 0, and we obtain
the equation

𝐷𝑥(𝜆3) = −𝑟2𝜆3 − 𝑟1,𝑢2 .

Hence, 𝜆3 is a constant, and

𝑟2𝜆3 + 𝑟1,𝑢2 = 0.

Applying the shift operator, we get the equation

𝑟1𝜆3 + 𝑟0,𝑢1 = 0. (3.32)
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i) Let us substitute the function 𝑟0 defined by formula (3.29) into (3.32):

𝛿(𝑢2)𝜆3 + 𝛿′(𝑢1) = 0.

A simple analysis of the last equation gives the contradiction to condition (1.4).
ii) Let us substitute the function 𝑟0 defined by formula (3.31) into (3.32):(︁

𝑐4𝑒
− 2

𝑀(𝑀−1)
𝜆𝑢1 + 𝜓(𝑢1, 𝑢2)

)︁
𝜆3 + 𝜓𝑢1(𝑢0, 𝑢1) = 0. (3.33)

We apply the operator 𝜕
𝜕𝑢2

to both sides of identity (3.33) 𝜓𝑢2(𝑢1, 𝑢2)𝜆3 = 0. Studying (3.33)

in this case, we arrive to contradiction to condition (1.4).
Otherwise, if 𝜆3 ̸= 0, then the expression in the left hand side of identity (3.33), coinciding

with 𝑟1, is equal to zero. Thus, we obtain the contradiction to condition (1.4). The proof is
complete.

For further purposes, it is convenient to divide sequence (3.26) into three subsequences {𝑍3𝑚},
{𝑍3𝑚+1}, {𝑍3𝑚+2}

Lemma 3.4. Operator adDx acts on sequence (3.26) according the following formulae:

[𝐷𝑥, 𝑍3𝑚] = −(𝑟0 +𝑚𝑟1)𝑍3𝑚 +

(︂
𝑚−𝑚2

2
𝑌1(𝑟1) −𝑚𝑌1(𝑟0)

)︂
𝑍3𝑚−3 + · · · ,

[𝐷𝑥, 𝑍3𝑚+1] = −(𝑟2 +𝑚𝑟1)𝑍3𝑚+1 +

(︂
𝑚−𝑚2

2
𝑌1(𝑟1) −𝑚𝑌1(𝑟2)

)︂
𝑍3𝑚−2 + · · · ,

[𝐷𝑥, 𝑍3𝑚+2] = −(𝑟0 +𝑚𝑟1 + 𝑟2)𝑍3𝑚+2 + 𝑌0(𝑟1)𝑍3𝑚+1 − 𝑌2(𝑟1)𝑍3𝑚

− (𝑚− 1)
(︁𝑚

2
𝑌1(𝑟1) + 𝑌1(𝑟0 + 𝑟2)

)︁
𝑍3𝑚−1 + · · ·

Lemma 3.4 can be easily proved by induction.

Theorem 3.1. Assume that 𝑍3𝑘+2 is a linear combination

𝑍3𝑘+2 = 𝜆𝑘𝑍3𝑘+1 + 𝜇𝑘𝑍3𝑘 + 𝜈𝑘𝑍3𝑘−1 + · · · (3.34)

of the previous terms in sequence (3.26) and none of the operators 𝑍3𝑗+2 for 𝑗 < 𝑘 is a linear
combination of operators 𝑍𝑠 with 𝑠 < 3𝑗 + 2. Then the coefficient 𝜈𝑘 satisfies the equation

𝐷𝑥(𝜈𝑘) = −𝑟1𝜈𝑘 −
𝑘(𝑘 − 1)

2
𝑌1(𝑟1) − (𝑘 − 1)𝑌1(𝑟0 + 𝑟2). (3.35)

Lemma 3.5. Suppose that the assumptions of Theorem 3.1 are satisfied and the operator
𝑍3𝑘 (the operator 𝑍3𝑘+1) is linearly expressed in terms of the operators 𝑍𝑖, 𝑖 < 3𝑘. Then in this
decomposition the coefficient at 𝑍3𝑘−1 vanishes.

Proof. We argue by contradiction. Suppose that

𝑍3𝑘 = 𝜆𝑍3𝑘−1 + · · · (3.36)

and 𝜆 ̸= 0. We apply the operator adDx to both sides of identity (3.36). Using formulae from
Lemma 3.4, we get

−(𝑟0 + 𝑘𝑟1)𝜆𝑍3𝑘−1 + · · · = 𝐷𝑥(𝜆)𝑍3𝑘−1 − 𝜆
(︀
𝑟0 + (𝑘 − 1)𝑟1 + 𝑟2

)︀
𝑍3𝑘−1 + · · ·

Collecting coefficients at 𝑍3𝑘−1, we obtain

𝐷𝑥(𝜆) = 𝜆(𝑟2 − 𝑟1)𝑘.

This equation implies that 𝜆 is a constant and 𝜆(𝑟2 − 𝑟1)𝑘 = 0. Then 𝑟2 = 𝑟1 = 𝑐𝑜𝑛𝑠𝑡 that
contradictions condition (1.4). The proof is complete.
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In order to prove Theorem 3.1, we apply the operator ad𝐷𝑥 to both sides of the identity (3.34).
Then we simplify a obtained identity using formulae from Lemma 3.4. Collecting coefficients
at 𝑍3𝑘−1, we obtain equation (3.35).

The next step of our work is studying equation (3.35) as 𝑟0 is defined by formulae (3.10) or
(3.11) under condition (1.4) and for 𝑀 > 2, 𝑘 > 2.

We find exact values of coefficients in equation (3.35) and substitute them into (3.35):

𝐷𝑥(𝜈𝑘) = −𝑟1𝜈𝑘 −
𝑘(𝑘 − 1)

2
𝑟1,𝑢1 − (𝑘 − 1)(𝑟0,𝑢1 + 𝑟2,𝑢1).

This equation implies that 𝜈𝑘 is a constant and, hence,

𝜈𝑘𝑟1 +
𝑘(𝑘 − 1)

2
𝑟1,𝑢1 + (𝑘 − 1)(𝑟0,𝑢1 + 𝑟2,𝑢1) = 0. (3.37)

Lemma 3.6. If relations (3.9), (3.34) hold true for some 𝑀 > 2, 𝑘 > 2, and condition (1.4)
holds true, then

i) if 𝜆 = 0, 𝜈𝑘 = 0, then

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝛼(𝑢𝑛−1) −
2

𝑀 − 1
𝛼(𝑢𝑛) +

(︂
𝑘

𝑀 − 1
− 1

)︂
𝛼(𝑢𝑛+1) + 𝑐1; (3.38)

ii) if 𝜆 ̸= 0, 𝜈𝑘 = 0, 𝑘 = 2, 𝑀 ̸= 3, then

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑒𝑢𝑛−ℎ𝑢𝑛−1 + 𝑐𝑒𝑢𝑛+1−ℎ𝑢𝑛 ; (3.39)

iii) if 𝜆 ̸= 0, 𝜈𝑘 ̸= 0, then 𝑟𝑛 is defined by formula (3.39).

The proof of this lemma is rather complicated and is presented in Appendix.
We proceed to relations (3.9), (3.34).
We need another one test sequence:

𝑌0, 𝑌1, 𝑊 1 = [𝑌1, 𝑌0] , 𝑊 2 =
[︀
𝑌1,𝑊 1

]︀
, . . .𝑊 𝑘+1 =

[︀
𝑌1,𝑊 𝑘

]︀
. . . .

The following commutation relation hold:[︀
𝐷𝑥,𝑊 1

]︀
= −(𝑟1 + 𝑟0)𝑊 1 + 𝑌0(𝑟1)𝑌1 − 𝑌1(𝑟0)𝑌0, (3.40)[︀

𝐷𝑥,𝑊 2

]︀
= −(2𝑟1 + 𝑟0)𝑊 2 − 𝑌1(𝑟1 + 2𝑟0)𝑊 1 + 𝑌1𝑌0(𝑟1)𝑌1 − 𝑌 2

1 (𝑟0)𝑌0, (3.41)[︀
𝐷𝑥,𝑊 3

]︀
= − (3𝑟1 + 𝑟0)𝑊 3 − 𝑌1(3𝑟1 + 3𝑟0)𝑊 2 − 𝑌 2

1 (𝑟1 + 3𝑟0)𝑊 1

+ 𝑌 2
1 𝑌0(𝑟1)𝑌1 − 𝑌 3

1 (𝑟0)𝑌0,
(3.42)[︀

𝐷𝑥,𝑊 4

]︀
= − (4𝑟1 + 𝑟0)𝑊 4 − 𝑌1(6𝑟1 + 4𝑟0)𝑊 3 − 𝑌 2

1 (4𝑟1 + 6𝑟0)𝑊 2

− 𝑌 3
1 (𝑟1 + 4𝑟0)𝑊 1 + 𝑌 3

1 𝑌0(𝑟1)𝑌1 − 𝑌 4
1 (𝑟0)𝑌0.

(3.43)

It is easy to prove that [︀
𝐷𝑥,𝑊 𝑘

]︀
= 𝑎𝑘𝑊 𝑘 + 𝑏𝑘𝑊 𝑘−1 + 𝑠𝑘𝑊 𝑘−2 + · · · , (3.44)

for 𝑘 > 3, where

𝑎𝑘 = −(𝑘𝑟1 + 𝑟0), 𝑏𝑘 =
𝑘 − 𝑘2

2
𝑌1(𝑟1) − 𝑌1(𝑟0)𝑘,

𝑠𝑘 = −𝑌 2
1 (𝑟1 + 3𝑟0) +

1

2
(𝑘 − 3)𝑌1(𝑞3 + 𝑞𝑘−1).

We observe that the first terms 𝑌0, 𝑌1, 𝑊 1 = −𝑊1 obey Lemma 3.1.
We suppose that ℒ(𝑦,𝑁) is finitely-dimensional, that is, each sequence of its elements ter-

minates at some step. Consequently, there exists 𝑁 such that:

𝑊𝑁 = Λ𝑊𝑁−1 + · · · , (3.45)

where the operators 𝑌0, 𝑌1, 𝑊 1, . . . , 𝑊𝑁−1 are linearly independent, and the dots stand for
linear combination of the operators 𝑌0, 𝑌1, 𝑊 1, . . . , 𝑊𝑁−2.
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3.3. Case 𝑀 = 2. Suppose that relation (3.9) holds true for 𝑀 = 2:

𝑊2 = 𝜆𝑊1 + 𝜀𝑌1 + 𝜂𝑌0. (3.46)

We apply the operator adDx to both sides of identity (3.46) and we get:

−(𝑟1 + 2𝑟0)(𝜆𝑊1 + 𝜀𝑌1 + 𝜂𝑌0) − 𝑌0(2𝑟1 + 𝑟0)𝑊1 − 𝑌 2
0 (𝑟1)𝑌1 + 𝑌0𝑌1(𝑟0)𝑌0

= 𝜆
(︀
−(𝑟1 + 𝑟0)𝑊1 − 𝑌0(𝑟1)𝑌1 + 𝑌1(𝑟0)𝑌0

)︀
− 𝜀𝑟1𝑌1 − 𝜂𝑟0𝑌0.

Collecting the coefficients at independent operators 𝑊1, 𝑌1, 𝑌0, we obtain the system

𝑟0𝜆+ 2𝑟1,𝑢0 + 𝑟0,𝑢0 = 0, (3.47)

2𝑟0𝜀+ 𝑟1,𝑢0𝑢0 − 𝜆𝑟1,𝑢0 = 0, (3.48)

−(𝑟1 + 𝑟0)𝜂 + 𝑟0,𝑢0𝑢1 − 𝜆𝑟0,𝑢1 = 0. (3.49)

3.3.i) Let us consider the case when thefunction 𝑟𝑛 is described by formula (3.38) and 𝜆 = 0.
We substitute function (3.38) and 𝜆 = 0 into system (3.47)–(3.49). Then equation (3.47)
becomes identity and we arrive to the system:

2
(︀
𝛼(𝑢−1) − 2𝛼(𝑢0) + (𝑘 − 1)𝛼(𝑢1) + 𝑐1

)︀
𝜀+

𝑑2𝛼(𝑢0)

𝑑𝑢20
= 0,(︀

𝛼(𝑢0) + 2𝛼(𝑢1) − (𝑘 − 1)𝛼(𝑢2) + 2𝑐1 + 𝛼(𝑢−1) + (𝑘 − 1)𝛼(𝑢1)
)︀
𝜂 = 0.

This system yields that

𝜀 = 𝜂 = 0, 𝛼(𝑢0) = 𝐶1𝑢0 + 𝐶2,

𝑟0(𝑢1, 𝑢0, 𝑢−1) = (𝑘 − 1)𝐶1𝑢1 − 2𝐶1𝑢0 + 𝐶1𝑢−1 + 𝐶3,

where 𝐶3 = −2𝐶2 + 𝑘𝐶2 + 𝑐1. We will study the lattice corresponding to this function, in
Section 3.5.i, see (3.62).

3.3.ii) Let us consider the case when the function 𝑟𝑛 is described by formula (3.39) and 𝜆 ̸= 0.
System (3.47)–(3.49) casts into the form:

(𝜆+ 1)𝑒𝑢0−ℎ𝑢−1 + (−𝑐ℎ+ 𝜆𝑐− 2ℎ)𝑒𝑢1−ℎ𝑢0 = 0,

2𝜀𝑒𝑢0−ℎ𝑢−1 + (2𝜀𝑐+ ℎ2 + 𝜆ℎ)𝑒𝑢1−ℎ𝑢0 = 0,

− 𝜂𝑒𝑢0−ℎ𝑢−1 + (−𝜂 − 𝜂𝑐− 𝑐ℎ− 𝜆𝑐)𝑒𝑢1−ℎ𝑢0 − 𝜂𝑐𝑒𝑢2−ℎ𝑢1 = 0.

A simple analysis of the last system leads us to the identities 𝜆 = −1, ℎ = 1, 𝑐 = −1, 𝜀 = 𝜂 = 0.
We get that 𝑟𝑛 has the following form:

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑒𝑢𝑛−𝑢𝑛−1 − 𝑒𝑢𝑛+1−𝑢𝑛 . (3.50)

And 𝑊2 = −𝑊1, 𝑊 2 = 𝑊 1.
Now let us substitute (3.50) into (3.37):(︂

𝜈𝑘 +
1

2
𝑘2 − 3

2
𝑘 + 1

)︂
𝑒𝑢1−𝑢0 +

(︂
−𝜈𝑘 +

1

2
𝑘2 − 3

2
𝑘 + 1

)︂
𝑒𝑢2−𝑢1 = 0,

which implies 𝜈𝑘 = 0, 𝑘 = 2.
Thus, relation (3.34) is of the form

𝑍8 = 𝜌𝑍4 + 𝜎𝑍3 + 𝜏𝑍2 + 𝜑𝑍1 + 𝜋𝑍0, (3.51)

and

𝑍6 = [𝑌1, [𝑌1, 𝑌0]] = 𝑊 2 = 𝑊 1 = [𝑌1, 𝑌0] = 𝑍3,

𝑍7 = [𝑌1, [𝑌2, 𝑌1]] = 𝐷𝑛 [𝑌0, [𝑌1, 𝑌0]] = −𝐷𝑛𝑊2 = 𝐷𝑛𝑊1 = −𝑍4.
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Commutation relation (3.24) become

[𝐷𝑥, 𝑍8] = − (𝑟0 + 2𝑟1 + 𝑟2)𝑍8 − 𝑌1(𝑟0 + 𝑟1 + 𝑟2)𝑍5 +
(︀
𝑌1𝑌0(𝑟1) − 𝑌0(𝑟1)

)︀
𝑍4

−
(︀
𝑌2(𝑟0 + 𝑟1) + 𝑌1𝑌2(𝑟1)

)︀
𝑍3 + 𝑌1𝑌2𝑌0(𝑟1)𝑌1 − 𝑌1𝑌2𝑌1(𝑟0)𝑌0.

(3.52)

We apply the operator adDx to both sides of identity (3.51) and take into consideration the
formulae (3.20)–(3.23), (3.52), then we collect coefficients at independent operators 𝑍4, 𝑍3, 𝑍2,
𝑍1, 𝑍0:

− (𝑒𝑢0−𝑢−1 − 𝑒𝑢2−𝑢1)𝜌 = 0, (−𝑒𝑢3−𝑢2 + 𝑒𝑢1−𝑢0)𝜎 = 0,

− (𝑒𝑢0−𝑢−1 + 𝑒𝑢1−𝑢0 − 2𝑒𝑢2−𝑢1)𝜏 + 𝜌𝑒𝑢2−𝑢1 = 0,

− (𝑒𝑢0−𝑢−1 − 𝑒𝑢3−𝑢2)𝜑− 𝜌𝑒𝑢2−𝑢1 + 𝜎𝑒𝑢1−𝑢0 = 0.

− (2𝑒𝑢1−𝑢0 − 𝑒𝑢2−𝑢1 − 𝑒𝑢3−𝑢2)𝜋 − 𝜎𝑒𝑢1−𝑢0 = 0.

It is clear that 𝜌 = 𝜎 = 𝜏 = 𝜑 = 𝜋 = 0. Hence, 𝑍8 = 0.

3.4. Case 𝑀 = 3. Suppose that relation (3.9) holds true for 𝑀 = 3:

𝑊3 = 𝜆𝑊2 + 𝜌𝑊1 + 𝜀𝑌1 + 𝜂𝑌0. (3.53)

We apply the operator adDx to both sides of identity (3.53) and use formulae (3.2), (3.3), (3.4),
(3.5). Collecting coefficients at the independent operators, we obtain the system

𝑟0𝜆+ 3𝑟1,𝑢0 + 3𝑟0,𝑢0 = 0, (3.54)

− 2𝑟0𝜌+ 𝜆(2𝑟1,𝑢0 + 𝑟0,𝑢0) − 3𝑟1,𝑢0𝑢0 − 𝑟0,𝑢0𝑢0 = 0, (3.55)

− 3𝑟0𝜀+ 𝜆𝑟1,𝑢0𝑢0 + 𝜌𝑟1,𝑢0 − 𝑟1,𝑢0𝑢0𝑢0 = 0, (3.56)

− (𝑟1 + 2𝑟0)𝜂 − 𝜆𝑟0,𝑢0𝑢1 − 𝜌𝑟0,𝑢1 + 𝑟0,𝑢0𝑢0𝑢1 = 0. (3.57)

3.4.i) Let us consider case (3.38), 𝜆 = 0. It follows from equations (3.54)–(3.57) that

𝛼(𝑢𝑛) = 𝐶1𝑢𝑛 + 𝐶2, 𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) =
𝑘 − 2

2
𝐶1𝑢𝑛+1 − 𝐶1𝑢𝑛 + 𝐶1𝑢𝑛−1 + 𝐶3,

where 𝐶3 = 1
2
𝐶2𝑘 − 𝐶2 + 𝑐1. Further study of the lattice with 𝑟𝑛 defined by this formula is

provided in 3.5.i, see (3.62).
3.4.ii) Let us consider case (3.39) 𝜆 ̸= 0. We substitute 𝑟𝑛 into (3.47)–(3.49). Studying this

system, we obtain that 𝜆 = −3, 𝜌 = −2, 𝜀 = 𝜂 = 0, ℎ = 1, 𝑐 = −1
2
. The function (3.39)

becomes

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑒𝑢𝑛−𝑢𝑛−1 − 1

2
𝑒𝑢𝑛+1−𝑢𝑛 .

We substitute this function into equation (3.37) and we get 𝑘 = 1 or 𝑘 = 5
2
. These identities

contradict condition 𝑘 > 2.

3.5. Case 𝑀 > 3. Let the following relation be true for 𝑀 > 3

𝑊𝑀 = 𝜆𝑊𝑀−1 + 𝜌𝑊𝑀−2 + 𝜅𝑊𝑀−3 + · · · (3.58)

Taking into account formula (3.7), we apply the operator adDx to both sides of the above
identity:

𝑎𝑀(𝜆𝑊𝑀−1 + 𝜌𝑊𝑀−2 + 𝜅𝑊𝑀−3 + · · · ) + 𝑏𝑀𝑊𝑀−1 + 𝑠𝑀𝑊𝑀−2 + 𝑡𝑀𝑊𝑀−3 + · · ·
=𝜆(𝑎𝑀−1𝑊𝑀−1 + 𝑏𝑀−1𝑊𝑀−2 + 𝑠𝑀−1𝑊𝑀−3 + · · · )

+ 𝜌(𝑎𝑀−2𝑊𝑀−2 + 𝑏𝑀−2𝑊𝑀−3 + · · · ) + 𝜅(𝑎𝑀−3𝑊𝑀−3 + · · · )
We collect coefficients at the independent operators 𝑊𝑀−1, 𝑊𝑀−2, 𝑊𝑀−3:

𝜆(𝑎𝑀 − 𝑎𝑀−1) + 𝑏𝑀 = 0, (3.59)

𝜌(𝑎𝑀 − 𝑎𝑀−2) + 𝑠𝑀 − 𝜆𝑏𝑀−1 = 0, (3.60)

𝜅(𝑎𝑀 − 𝑎𝑀−3) + 𝑡𝑀 − 𝜆𝑠𝑀−1 − 𝜌𝑏𝑀−2 = 0. (3.61)
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3.5.i) By system (3.59)–(3.61) we obtain that 𝛼(𝑢𝑛) = 𝐶1𝑢𝑛 + 𝐶2 and

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) =
𝑘 − (𝑀 − 1)

𝑀 − 1
𝐶1𝑢𝑛+1 −

2𝐶1

𝑀 − 1
𝑢𝑛 + 𝐶1𝑢𝑛−1 + 𝐶3,

where

𝐶3 =
𝑐1𝑀 − 𝑐1 − 2𝐶2 + 𝑘𝐶2

𝑀 − 1
.

Now we consider the function

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑐1𝑢𝑛+1 + 𝑐2𝑢𝑛 + 𝑐3𝑢𝑛−1 + 𝑐4. (3.62)

Commutation relations (3.7), (3.44) become

[𝐷𝑥,𝑊𝑘] = 𝑎𝑘𝑊𝑘 + 𝑏𝑘𝑊𝑘−1,
[︀
𝐷𝑥,𝑊 𝑘

]︀
= 𝑎𝑘𝑊 𝑘 + 𝑏𝑘𝑊 𝑘−1, (3.63)

where

𝑎𝑘 = −(𝑟1 + 𝑘𝑟0), 𝑏𝑘 =
𝑘 − 𝑘2

2
𝑐2 − 𝑐3𝑘, (3.64)

𝑎𝑘 = −(𝑘𝑟1 + 𝑟0), 𝑏𝑘 =
𝑘 − 𝑘2

2
𝑐2 − 𝑐1𝑘. (3.65)

Assume that sequence {𝑊𝑛} is terminated at the step 𝑀 :

𝑊𝑀 =
𝑀−1∑︁
𝑘=1

Λ𝑀−𝑘𝑊𝑀−𝑘 + 𝜑1𝑌1 + 𝜑0𝑌0. (3.66)

We apply the operator adDx to both sides of identity (3.66)

𝑎𝑀

(︃
𝑀−1∑︁
𝑘=1

Λ𝑀−𝑘𝑊𝑀−𝑘 + 𝜑1𝑌1 + 𝜑0𝑌0

)︃
+ 𝑏𝑀𝑊𝑀−1

=
𝑀−2∑︁
𝑘=1

Λ𝑀−𝑘(𝑎𝑀−𝑘𝑊𝑀−𝑘 + 𝑏𝑀−𝑘𝑊𝑀−𝑘−1)

+ Λ1(−(𝑟1 + 𝑟0)𝑊1 − 𝑐3𝑌1 + 𝑐1𝑌0) − 𝜑1𝑟1𝑌1 − 𝜑0𝑟0𝑌0.

We collect the coefficients at 𝑊𝑀−1 in this identity:

Λ𝑀−1(𝑎𝑀 − 𝑎𝑀−1) + 𝑏𝑀 = 0.

We substitute formulae (3.64),(3.65) into the last equation:

−Λ𝑀−1

(︀
𝑐1𝑢1 + 𝑐2𝑢0 + 𝑐3𝑢−1 + 𝑐4

)︀
+
𝑀 −𝑀2

2
𝑐2 − 𝑐3𝑀 = 0.

A simple analysis of this equation shows that Λ𝑀−1 = 0 and 𝑐3 = 1−𝑀
2
𝑐2. Then, collecting

coefficients before 𝑊𝑀−𝑘, 𝑘 = 2, . . . ,𝑀 − 2, we arrive at the equations

Λ𝑀−𝑘(𝑎𝑀 − 𝑎𝑀−𝑘) = 0, 𝑘 = 2, . . . ,𝑀 − 2,

which implies Λ𝑀−𝑘 = 0, 𝑘 = 2, . . . ,𝑀−2. The coefficient at 𝑊1 is Λ1(𝑎𝑀 +𝑟1 +𝑟0) = 0. Then
Λ1 = 0. The coefficients at 𝑌1 and 𝑌0 read as (𝑎𝑀 + 𝑟1)𝜑1 = 0, (𝑎𝑀 + 𝑟0)𝜑0 = 0 and hence,
𝜑1 = 𝜑0 = 0. Thus, 𝑊𝑀 = 0.

Similarly, if sequence {𝑊 𝑘} is terminated at step 𝑁 , then 𝑐1 = 1−𝑁
2
𝑐2 and 𝑊𝑁 = 0. As a

result, we obtain:

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) =
1 −𝑁

2
𝑐2𝑢𝑛+1 + 𝑐2𝑢𝑛 +

1 −𝑀

2
𝑐2𝑢𝑛−1 + 𝑐4.

By rescaling 𝑐2
2
𝑢𝑖 → 𝑣𝑖, the original lattice is reduced to a lattice of the same form with function

𝑟𝑛 defined by the formula

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = (1 −𝑁)𝑢𝑛+1 + 2𝑢𝑛 + (1 −𝑀)𝑢𝑛−1 + 𝑐,
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where 𝑐 is an arbitrary constant. If 4 −𝑀 − 𝑁 ̸= 0, then we exclude constant 𝑐 by the shift
transformation 𝑢 → 𝑢 − 𝑐

4−𝑀−𝑁
. If 𝑀 + 𝑁 = 4, then 𝑀 = 𝑁 = 2, and 𝑐 is excluded by the

transformation 𝑢𝑛 → 𝑢𝑛 + 𝑐
2
𝑛2. Thus, the function 𝑟𝑛 becomes:

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = (1 −𝑁)𝑢𝑛+1 + 2𝑢𝑛 + (1 −𝑀)𝑢𝑛−1 (3.67)

and, in particular,

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = −𝑢𝑛+1 + 2𝑢𝑛 − 𝑢𝑛−1. (3.68)

We substitute (3.67) into (3.37), and we get that 𝑘 = 𝑀 + 𝑁 − 2. We substitute (3.68) into
(3.37), and we get that 𝑘 = 2.

Let us consider lattice (2.6) when 𝑟𝑛 is defined by (3.67). We impose cut-off conditions
𝑢0 = 0, 𝑢𝐿+1 = 0 and we reduce this lattice to the following hyperbolic system:

𝑢1,𝑥𝑦 = (2𝑢1 + 𝑝𝑢2)𝑢1,𝑦,

𝑢𝑘,𝑥𝑦 = (𝑞𝑢𝑘−1 + 2𝑢𝑘 + 𝑝𝑢𝑘+1)𝑢𝑘,𝑦, 2 6 𝑘 6 𝐿− 1, (3.69)

𝑢𝐿,𝑥𝑦 = (𝑞𝑢𝐿−1 + 2𝑢𝐿)𝑢𝐿,𝑦,

where 𝑝 = 1 − 𝑁 , 𝑞 = 1 − 𝑀 ; we recall that 𝑁 > 1, 𝑀 > 1. This system is reduced by
differential substitution 𝑣𝑖 = ln𝑢𝑖,𝑦 to the exponential system:

𝑣1,𝑥𝑦 = 2𝑒𝑣1 + 𝑝𝑒𝑣2 ,

𝑣𝑘,𝑥𝑦 = 𝑞𝑒𝑣𝑘−1 + 2𝑒𝑣𝑘 + 𝑝𝑒𝑣𝑘+1 , 2 6 𝑘 6 𝐿− 1, (3.70)

𝑣𝐿,𝑥𝑦 = 𝑞𝑒𝑣𝐿−1 + 2𝑒𝑣𝐿 .(︁
v𝑥𝑦 = 𝐴𝑒v

)︁
.

We denote by 𝐴 the matrix of coefficients before exponents in the right hand side of the system
and we denote by v = (𝑣1, 𝑣2, . . . , 𝑣𝐾)𝑇 , 𝑒v = (𝑒𝑣1 , 𝑒𝑣2 , . . . , 𝑒𝑣𝐾 )𝑇 the column vectors. System
(3.70) is related with the system

𝑤1,𝑥𝑦 = 𝑒2𝑤1+𝑝𝑤2 ,

𝑤𝑘,𝑥𝑦 = 𝑒𝑞𝑤𝑘−1+2𝑤𝑘+𝑝𝑤𝑘+1 , 2 6 𝑘 6 𝐿− 1, (3.71)

𝑤𝐿,𝑥𝑦 = 𝑒𝑞𝑤𝐿−1+2𝑤𝐿 .(︁
w𝑥𝑦 = 𝑒𝐴w

)︁
.

by the following point change of variables

𝑣1 = 2𝑤1 + 𝑝𝑤2,

𝑣𝑘 = 𝑞𝑤𝑘−1 + 2𝑤𝑘 + 𝑝𝑤𝑘+1, 2 6 𝑘 6 𝐿− 1, (3.72)

𝑣𝐿 = 𝑞𝑤𝐿−1 + 2𝑤𝐿.(︁
v = 𝐴w

)︁
.

System (3.71) is reduced to system (3.69) by differential substitution

𝑢𝑖 = 𝑤𝑖,𝑥. (3.73)

It is shown in [11, 25] (see also [14]) that if 𝐴 is the Cartan matrix of a simple Lie algebra,
then the system (3.70) ((3.71)) is integrated in quadratures. Comparing the Cartan matrix and
matrix 𝐴, one can see that 𝑝 = 𝑞 = −1. Thus, we have that 𝑀 = 𝑁 = 2. In this case we find
that 𝑊2 = 0, 𝑊 2 = 0, 𝑍8 = 0.

Let us show that if systems (3.70), (3.71) is integrable in the sense of Darboux then system
(3.69) is integrable in the sense of Darboux, too. Suppose that 𝐼(w𝑥,w𝑥𝑥, · · · ) is an 𝑦-integral
of system (3.71). We change variables by the rule 𝑤𝑖,𝑥 = 𝑢𝑖, 𝑤𝑖,𝑥𝑥 = 𝑢𝑖,𝑥 and so on, due to
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(3.73), then we obtain an 𝑦-integral 𝐼(u,u𝑥, · · · ) of system (3.69). Assume that 𝐼(v𝑦,v𝑦𝑦, · · · )
is an 𝑥-integral of system (3.70). Using (3.73) and (3.72), we derive:

u = w𝑥 = 𝐴−1v𝑥.

Hence, by virtue (3.70)
u𝑦 = 𝐴−1v𝑥𝑦 = 𝐴−1𝐴𝑒v = 𝑒v.

We change variables in the function 𝐼(v𝑦,v𝑦𝑦, . . .) by the rule 𝑣𝑖 = ln𝑢𝑖,𝑦, 𝑣𝑖,𝑦 = (ln𝑢𝑖,𝑦)𝑦 and
so on. Thus, we get an 𝑥-integral 𝐼((ln𝑢𝑖,𝑦)𝑦, (ln𝑢𝑖,𝑦)𝑦𝑦, . . .) of system (3.69).

3.5.ii) Let us consider case (3.39) and 𝜆 ̸= 0. We substitute 𝑟𝑛 into system (3.59)–(3.61) and
into equation (3.37), we get the following system:

𝐴1𝑒
𝑢0−ℎ𝑢−1 +𝐵1𝑒

𝑢1−ℎ𝑢0 = 0,

𝐴2𝑒
𝑢0−ℎ𝑢−1 +𝐵2𝑒

𝑢1−ℎ𝑢0 = 0,

𝐴3𝑒
𝑢0−ℎ𝑢−1 +𝐵3𝑒

𝑢1−ℎ𝑢0 = 0,

𝐴4𝑒
𝑢1−ℎ𝑢0 +𝐵4𝑒

𝑢2−ℎ𝑢1 = 0.

Obviously, the coefficients 𝐴𝑖, 𝐵𝑖 at independent exponent functions have to be equal to zero.
Thus, we obtain a system of 8 algebraic equations in 8 unknowns 𝑐, ℎ,𝑀, 𝜆, 𝜌, 𝜅, 𝑘, 𝜈𝑘. Studying
this system, we get the following possible variants:

𝑀 = 4, 𝑘 =
10

3
; 𝑀 = 5, 𝑘 =

17

4
; 𝑀 = 2, 𝑘 = 2.

All of these variants contradict our assumptions about values of 𝑘, 𝑀 .
Thus, we have proved the following statement.

Lemma 3.7. If relations (3.9), (3.34), (3.45) hold true for some 𝑀 > 2, 𝑘 > 2, 𝑁 > 2,
then the function 𝑟𝑛 casts into one of the forms (3.50) or (3.68) up to point transformations.

Lemma 2.2 is implied immediately by Lemma 3.7.
Summarizing the rezults of this section, we observe that we have lattice (1.2) for further

study, where ther function 𝑟𝑛 is defined by one of the formulae 𝑟𝑛 = 𝑟𝑛(𝑢𝑛), (3.50), (3.68).
Similarly, function 𝑝𝑛 is defined by one of the following formulae:

𝑝𝑛 = 𝑝𝑛(𝑢𝑛),

𝑝𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑒𝑢𝑛−𝑢𝑛−1 − 𝑒𝑢𝑛+1−𝑢𝑛 ,

𝑝𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = −𝑢𝑛+1 + 2𝑢𝑛 − 𝑢𝑛−1.

4. Function 𝑞𝑛

We recall that the operator 𝑌 can be represented as follows, see formula (2.3):

𝑌 =
∑︁
𝑖

𝑢𝑖,𝑦𝑌𝑖 +𝑅,

where

𝑌𝑖 =
𝜕

𝜕𝑢𝑖
+ 𝑟𝑖

𝜕

𝜕𝑢𝑖,𝑥
+
(︀
𝐷𝑥(𝑟𝑖) + 𝑟2𝑖

)︀ 𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

𝑅 =
∑︁
𝑖

(𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖)
𝜕

𝜕𝑢𝑖,𝑥
+
(︀
𝐷𝑥(𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖) + (𝑢𝑖,𝑥𝑝𝑖 + 𝑞𝑖)𝑟𝑖

)︀ 𝜕

𝜕𝑢𝑖,𝑥𝑥
+ · · ·

We shall determine the function 𝑞𝑛 by using the operator 𝑅. We define a sequence of operators
in the characteristic algebra ℒ(𝑦,𝑁) by the following recurrent formula:

𝑌−1, 𝑌0, 𝑌1, 𝑌0,−1 = [𝑌0, 𝑌−1] , 𝑌1,0 = [𝑌1, 𝑌0] , (4.1)

𝑅0 = [𝑌0, 𝑅] , 𝑅1 = [𝑌0, 𝑅0] , 𝑅2 = [𝑌0, 𝑅1] , . . . 𝑅𝑘+1 = [𝑌0, 𝑅𝑘] .
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For elements of the sequence the following commutation relations hold:

[𝐷𝑥, 𝑌−1] = −𝑟−1𝑌−1, [𝐷𝑥, 𝑌0] = −𝑟0𝑌0, [𝐷𝑥, 𝑌1] = −𝑟1𝑌1,
[𝐷𝑥, 𝑌0,−1] = −(𝑟−1 + 𝑟0)𝑌0,−1 − 𝑌0(𝑟−1)𝑌−1 + 𝑌−1(𝑟0)𝑌0,

[𝐷𝑥, 𝑌1,0] = −(𝑟0 + 𝑟1)𝑌1,0 − 𝑌1(𝑟0)𝑌0 + 𝑌0(𝑟1)𝑌1,

[𝐷𝑥, 𝑅] = −
∑︁
𝑖

ℎ𝑖𝑌𝑖, ℎ𝑖 = 𝑝𝑖𝑢𝑖,𝑥 + 𝑞𝑖,

[𝐷𝑥, 𝑅0] = − 𝑟0𝑅0 + ℎ1𝑌1,0 − ℎ−1𝑌0,−1

− 𝑌0(ℎ1)𝑌1 + (𝑅(𝑟0) − 𝑌0(ℎ0))𝑌0 − 𝑌0(ℎ−1)𝑌−1,

[𝐷𝑥, 𝑅1] = −2𝑟0𝑅1 − 𝑌0(𝑟0)𝑅0 + · · · ,
[𝐷𝑥, 𝑅2] = −3𝑟0𝑅2 − 3𝑌0(𝑟0)𝑅1 − 𝑌 2

0 (𝑟0)𝑅0 + · · · ,
[𝐷𝑥, 𝑅3] = −4𝑟0𝑅3 − 6𝑌0(𝑟0)𝑅2 − 4𝑌 2

0 (𝑟0)𝑅1 − 𝑌 3
0 (𝑟0)𝑅0 + · · · ,

where the dots stand for a linear combinations of operators 𝑌1,0, 𝑌0,−1, 𝑌1, 𝑦0, 𝑌−1. By induction
we prove that the following formula holds for all 𝑛 > 2:

[𝐷𝑥, 𝑅𝑛] = 𝑎𝑛𝑅𝑛 + 𝑏𝑛𝑅𝑛−1 + · · · ,
where

𝑎𝑛 = −(𝑛+ 1)𝑟0, 𝑏𝑛 = −𝑛
2 + 𝑛

2
𝑌0(𝑟0),

and the dots stand for a linear combinations of the operators𝑅𝑘, 𝑘 < 𝑛−1, 𝑌1,0, 𝑌0,−1, 𝑌1, 𝑌0, 𝑌−1.

Lemma 4.1. If the operator 𝑅0 is linearly expressed in terms of operators (4.1)

𝑅0 = 𝜇𝑌1,0 + �̃�𝑌0,−1 + 𝜈𝑌1 + 𝜂𝑌0 + 𝜀𝑌−1, (4.2)

then chain (1.2) is reduced to one of forms (2.7), (2.8) by point transformations.

Proof. We apply the operator ad𝐷𝑥 to both sides of identity (4.2). Collecting the coefficients
at independent operators 𝑌1,0, 𝑌0,−1, 𝑌1, 𝑌0, 𝑌−1, we get the system of equations

𝐷𝑥(𝜇) = 𝑟1𝜇+ ℎ1, (4.3)

𝐷𝑥(�̃�) = 𝑟−1�̃�− ℎ−1, (4.4)

𝐷𝑥(𝜈) = (𝑟1 − 𝑟0)𝜈 − 𝑌0(ℎ1) − 𝜇𝑌0(𝑟1), (4.5)

𝐷𝑥(𝜂) = 𝑅(𝑟0) − 𝑌0(ℎ0) + 𝜇𝑌1(𝑟0) − �̃�𝑌−1(𝑟0), (4.6)

𝐷𝑥(𝜀) = (𝑟−1 − 𝑟0)𝜀− 𝑌0(ℎ−1) + �̃�𝑌0(𝑟−1). (4.7)

We consider equation (4.3):

𝑟1(𝑢2, 𝑢1, 𝑢0)𝜇+ 𝑝1(𝑢2, 𝑢1, 𝑢0)𝑢1,𝑥 + 𝑞1(𝑢2, 𝑢1, 𝑢0) = 𝐷𝑥(𝜇).

A simple analysis of this equation shows that 𝜇 = 𝜇(𝑢1) and, hence, this equation splits into
two equations

𝜇′(𝑢1) = 𝑝1(𝑢2, 𝑢1, 𝑢0), 𝑟1(𝑢2, 𝑢1, 𝑢0)𝜇(𝑢1) + 𝑞1(𝑢2, 𝑢1, 𝑢0) = 0.

Hence,

𝑝𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝜇′(𝑢𝑛), 𝑞𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = −𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝜇(𝑢𝑛). (4.8)

Using equation (4.4), we obtain that �̃� = �̃�(𝑢−1), �̃�(𝑣) = −𝜇(𝑣).
We simplify identity (4.5) using (4.8) and we get

𝐷𝑥(𝜈) = (𝑟1 − 𝑟0)𝜈.

It easy to see that 𝜈 = 0. Similarly, it follows from (4.7) that 𝜀 = 0.
We simplify identity (4.6) as follows:

𝐷𝑥(𝜂) = −𝑝0,𝑢0𝑢0,𝑥 − 𝑞0,𝑢0 − 𝑟0𝑝0 + 𝜇𝑟0,𝑢1 − �̃�𝑟0,𝑢−1 .
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A simple analysis of this equation shows that 𝜂 = 𝜂(𝑢0) and, hence, this equation splits into
two equations

𝜂′(𝑢0) = −𝑝0,𝑢0 , −𝑞0,𝑢0 − 𝑟0𝑝0 + 𝜇𝑟0,𝑢1 − �̃�𝑟0,𝑢−1 = 0. (4.9)

We substitute formulae (4.8) into identities (4.9) and we obtain 𝜂′(𝑢0) = −𝜇′′(𝑢0),

𝑟0,𝑢0𝜇(𝑢0) + 𝜇(𝑢1)𝑟0,𝑢1 + 𝜇(𝑢−1)𝑟0,𝑢−1 = 0. (4.10)

We substitute the function 𝑟𝑛 defined by formula (3.50) into (4.10), and we get that 𝜇 = 𝑐 is
an arbitrary constant. Therefore, 𝑝𝑛 = 0, 𝑞𝑛 = −𝑐𝑟𝑛, and lattice (1.2) becomes

𝑢𝑛,𝑥𝑦 = (𝑒𝑢𝑛−𝑢𝑛−1 − 𝑒𝑢𝑛+1−𝑢𝑛)𝑢𝑛,𝑦 − 𝑐(𝑒𝑢𝑛−𝑢𝑛−1 − 𝑒𝑢𝑛+1−𝑢𝑛).

The transformation 𝑢𝑛 − 𝑐𝑦 → 𝑢𝑛 reduces this lattice to (2.7).
If 𝑟𝑛 is defined by (3.68), then (4.10) implies 𝜇 = 𝑐, where 𝑐 is an arbitrary constant. Hence,

𝑝𝑛 = 0, 𝑞𝑛 = −𝑐𝑟𝑛, and lattice (1.2) takes the following form:

𝑢𝑛,𝑥𝑦 = (−𝑢𝑛+1 + 2𝑢𝑛 − 𝑢𝑛−1)𝑢𝑛,𝑦 + 𝑐(−𝑢𝑛+1 + 2𝑢𝑛 − 𝑢𝑛−1).

The transformation 𝑢𝑛 − 𝑐𝑦 → 𝑢𝑛 reduces this lattice to (2.8).
If 𝑟𝑛 = 𝑟𝑛(𝑢𝑛), then it follows from (4.10) that 𝜇 = 0 or 𝑟0,𝑢0 = 0. In the first case formulae

(4.8) imply 𝑝𝑛 = 0, 𝑞𝑛 = 0. Then chain (1.2) becomes 𝑢𝑛,𝑥𝑦 = 𝑟𝑛(𝑢𝑛)𝑢𝑛,𝑦. In the second case
𝑟0 = 𝑐1, where 𝑐1 is an arbitrary constant, hence, by (4.8)), 𝑝𝑛 = 𝜇′(𝑢𝑛), 𝑞𝑛 = −𝑐1𝜇(𝑢𝑛), and
chain (1.2) casts into the form 𝑢𝑛,𝑥𝑦 = 𝜇′(𝑢𝑛)𝑢𝑛,𝑥 + 𝑐1𝑢𝑛,𝑦 − 𝑐1𝜇(𝑢𝑛). The proof is complete.

Suppose that 𝑅𝑛depends linearly on 𝑅𝑘, 𝑘 < 𝑛, 𝑌1,0, 𝑌0,−1, 𝑌1, 𝑌0, 𝑌−1 for some 𝑛:

𝑅𝑛 = 𝜆𝑅𝑛−1 + · · · , 𝑛 > 0. (4.11)

Lemma 4.2. If function 𝑟𝑛 has one of forms (3.50), (3.68), then case (4.11) is not realized.

Proof. We apply the operator ad𝐷𝑥 to both sides of identity (4.11). Collecting coefficients at
𝑅𝑛−1 in obtained relation, we get the equation:

𝐷𝑥(𝜆) = −𝑟0𝜆− 𝑛2 + 𝑛

2
𝑟0,𝑢0 .

A simple analysis of this equation shows that 𝜆 is a constant, hence

𝑟0𝜆+
𝑛2 + 𝑛

2
𝑟0,𝑢0 = 0. (4.12)

Substituting formulae (3.50), (3.68) into (4.12), we get that 𝜆 = 0 and 𝑛2 + 𝑛 = 0. Hence,
𝑛 = 0 or 𝑛 = −1. Both solutions contradict the assumption 𝑛 > 0. The proof is complete.

heorem 1.1 is implied Lemma 4.1, 4.2.

5. Appendix. Proof of Lemma 3.6

The proof is a study of equation (3.37):

𝜈𝑘𝑟1 +
𝑘(𝑘 − 1)

2
𝑟1,𝑢1 + (𝑘 − 1)(𝑟0,𝑢1 + 𝑟2,𝑢1) = 0 (5.1)

in different cases (3.10) and (3.11) under conditions (1.4), 𝑀 > 2, 𝑘 > 2. We denote 𝜈𝑘 = 𝜈.
i) We substitute function 𝑟0 defined by formula (3.10) into (5.1)

𝜈

(︂
𝛼(𝑢0) −

2

𝑀 − 1
𝛼(𝑢1) + 𝛿(𝑢2)

)︂
− 𝑘(𝑘 − 1)

𝑀 − 1
𝛼′(𝑢1) + (𝑘 − 1)

(︀
𝛿′(𝑢1) + 𝛼′(𝑢1)

)︀
= 0. (5.2)

We apply the operator 𝜕
𝜕𝑢2

to this identity, and we get 𝜈𝛿′(𝑢2) = 0. It is easy to show that the

case 𝜈 ̸= 0 leads us to a contradiction to (1.4). Assume that 𝜈 = 0, then from (5.2) we obtain
that the function 𝑟0 becomes

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝛼(𝑢−1) −
2

𝑀 − 1
𝛼(𝑢0) +

(︂
𝑘

𝑀 − 1
− 1

)︂
𝛼(𝑢1) + 𝑐1.
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ii) We substitute the function 𝑟0 defined by formula (3.11) into equation (5.1).

𝛽(𝑢0)(𝜈𝑀
2 − 𝜈𝑀 + 𝑘𝜆− 𝑘2𝜆)

𝑀(𝑀 − 1)
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) + (𝑘 − 1)𝛽′(𝑢1)𝑒

− 2𝜆𝑢2
𝑀(𝑀−1)

+ 𝜈𝜓(𝑢1, 𝑢2) + (𝑘 − 1)
𝜕𝜓(𝑢0, 𝑢1)

𝜕𝑢1
+

1

2
(𝑘 − 1)𝑘

𝜕𝜓(𝑢1, 𝑢2)

𝜕𝑢1
= 0.

(5.3)

We apply the operator 𝜕
𝜕𝑢0

to both sides of identity (5.3)

𝛽′(𝑢0)(𝜈𝑀
2 − 𝜈𝑀 + 𝑘𝜆− 𝑘2𝜆)

𝑀(𝑀 − 1)
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) + (𝑘 − 1)

𝜕2𝜓(𝑢0, 𝑢1)

𝜕𝑢0𝜕𝑢1
= 0.

This equation has the following solution::

𝜓(𝑢0, 𝑢1) =
𝛽(𝑢0)(𝜈𝑀

2 − 𝜈𝑀 + 𝑘𝜆− 𝑘2𝜆)

2(𝑘 − 1)𝜆
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) + 𝐹1(𝑢0) + 𝐹2(𝑢1). (5.4)

We substitute function (5.4) into equation (5.3), then we differentiate an obtained identity with

respect to 𝑢2, and we multiple both sides of the obtained identity by 𝑒
2𝜆𝑢2

𝑀(𝑀−1) :

−𝜈(𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆)𝛽(𝑢1)

𝑀(𝑘 − 1)(𝑀 − 1)

− 1

2

(𝜆𝑘3 + 𝑘2𝜆+ 𝑘𝑀2𝜈 − 𝑘𝑀𝜈 + 4𝑘𝜆− 4𝜆)𝛽′(𝑢1)

(𝑀 − 1)𝑀
+ 𝐹 ′

2(𝑢2)𝑒
2𝜆𝑢2

𝑀(𝑀−1)𝜈 = 0.

(5.5)

Let us consider two different cases 𝜈 = 0 and 𝜈 ̸= 0.
ii.1) If 𝜈 = 0, then (5.5) becomes

1

2

𝜆(𝑘 − 1)(𝑘 − 2)(𝑘 + 2)𝛽′(𝑢1)

𝑀(𝑀 − 1)
= 0 (5.6)

It follows from this identity that 𝑘 = 2 or 𝛽′(𝑢1) = 0.
ii.1.1) If 𝑘 = 2, then equation (5.3) casts into the form 𝐹 ′

1(𝑢1) + 𝐹 ′
2(𝑢1) = 0. It is clear that

𝐹2(𝑢1) = −𝐹1(𝑢1) + 𝑐1. Equation (3.12) becomes(︂
−𝜆𝛽(𝑢0) −

1

2
𝛽′(𝑢0)𝑀

2 +
3

2
𝑀𝛽′(𝑢0)

)︂
𝑒−

2𝜆𝑢1
𝑀(𝑀−1)

+
1

2
𝑀(𝑀 − 1)𝐹 ′

1(𝑢0) + 𝜆(𝐹1(𝑢0) − 𝐹1(𝑢1) + 𝑐1) = 0.

(5.7)

We apply the operator 𝜕2

𝜕𝑢1𝜕𝑢0
to both sides of identity (5.7)

𝜆𝑒−
2𝜆𝑢1

𝑀(𝑀−1)
2𝜆𝛽′(𝑢0) +𝑀(𝑀 − 3)𝛽′′(𝑢0)

𝑀(𝑀 − 1)
= 0.

By the condition 𝜆 ̸= 0 we see that

2𝜆𝛽′(𝑢0) +𝑀(𝑀 − 3)𝛽′′(𝑢0) = 0. (5.8)

ii.1.1.1) If 𝑀 = 3, then 𝛽(𝑢0) = 𝑐0, where 𝑐0 is an arbitrary constant. The function 𝑟0 defined
by formula (3.11) becomes

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝑐0𝑒
− 1

3
𝜆𝑢0 − 𝑐0𝑒

− 1
3
𝜆𝑢1 + 𝐹1(𝑢0) − 𝐹1(𝑢1) + 𝑐1, (5.9)

and equation (3.12) reads as

− 𝜆𝑐0𝑒
− 1

3
𝜆𝑢1 − 𝜆𝐹1(𝑢1) + 𝜆𝐹1(𝑢0) + 𝜆𝑐1 + 3𝐹 ′

1(𝑢0) = 0. (5.10)

We apply the operator 𝜕
𝜕𝑢1

to identity (5.10) :

1

3
𝜆2𝑐0𝑒

− 1
3
𝜆𝑢1 − 𝜆𝐹 ′

1(𝑢1) = 0,
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hence,

𝐹1(𝑢1) = −𝑐0𝑒−
1
3
𝜆𝑢1 + 𝐶1.

We substitute 𝐹1 into (5.9) and we get 𝑟0 = 𝐶1. This contradicts condition (1.4).
ii.1.1.2) If 𝑀 ̸= 3, then equation (5.8) has the solution

𝛽(𝑢0) = 𝐶1 + 𝐶2𝑒
− 2𝜆𝑢0

𝑀(𝑀−3) .

We differentiate equation (3.12) with respect to 𝑢1 and, since 𝜆 ̸= 0, this equation gives

𝐹1(𝑢1) = −𝐶1𝑒
− 2𝜆𝑢1

𝑀(𝑀−1) + 𝐶2.

Equation (3.12) becomes 𝜆𝑐1 = 0, hence, 𝑐1 = 0, and, finally,

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝐶2𝑒
− 2𝜆

𝑀(𝑀−1)
𝑢0− 2𝜆

𝑀(𝑀−3)
𝑢−1 − 𝐶2𝑒

− 2𝜆
𝑀(𝑀−3)

𝑢0− 2𝜆
𝑀(𝑀−1)

𝑢1 . (5.11)

We return back to equation (5.6) and consider the following case.
ii.1.2) If 𝛽′(𝑢1) = 0, then 𝛽(𝑢1) = 𝑐3, where 𝑐3 is an arbitrary constant. By equation (5.1)

we find

𝐹2(𝑢1) = −1

2
𝑘𝐹1(𝑢1) + 𝑐4.

Equation (3.12) is transformed as

𝜆𝐹1(𝑢0) +
1

2
𝑀(𝑀 − 1)𝐹 ′

1(𝑢0) −
1

2
𝜆
(︁
𝑐3𝑘𝑒

− 2𝜆𝑢1
𝑀(𝑀−1) + 𝑘𝐹1(𝑢1) − 2𝑐4

)︁
= 0. (5.12)

We apply the operator 𝜕
𝜕𝑢1

to both sides of identity (5.12)

−1

2

𝑘𝜆

𝑀(𝑀 − 1)

(︁
−2𝑐3𝜆𝑒

− 2𝜆𝑢1
𝑀(𝑀−1) +𝑀(𝑀 − 1)𝐹 ′

1(𝑢1)
)︁

= 0.

This equation has the solution

𝐹1(𝑢1) = −𝑐3𝑒−
2𝜆𝑢1

𝑀(𝑀−1) + 𝑐5.

We substitute 𝐹1 into (5.12), and we find 𝑐4: 𝑐4 = 1
2
𝑐5(𝑘−2). We substitute the found functions

and constants into (3.11) and we get 𝑟0(𝑢1, 𝑢0, 𝑢−1) = 0, which contradicts condition (1.4).
We return back to equation (5.5).

ii.2) If 𝜈 ̸= 0, then 𝐹 ′
2(𝑢2)𝑒

2𝜆𝑢2
𝑀(𝑀−1) = 𝑐1 and, hence,

𝐹2(𝑢2) = −1

2

𝑀(𝑀 − 1)𝑐1𝑒
− 2𝜆𝑢2

𝑀(𝑀−1)

𝜆
+ 𝑐2.

Equation (5.5) reads as

−𝜈(𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆)𝛽(𝑢1)

𝑀(𝑘 − 1)(𝑀 − 1)

− 1

2

(𝜆𝑘3 + 𝑘2𝜆+ 𝑘𝑀2𝜈 − 𝑘𝑀𝜈 + 4𝑘𝜆− 4𝜆)𝛽′(𝑢1)

(𝑀 − 1)𝑀
+ 𝑐1𝜈 = 0.

(5.13)

We denote:

𝐴 = 𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆, (5.14)

𝐵 = 𝜆𝑘3 + 𝑘2𝜆+ 𝑘𝑀2𝜈 − 𝑘𝑀𝜈 + 4𝑘𝜆− 4𝜆. (5.15)

We shall consider the following different cases:
ii.2.1) 𝐴 = 0, 𝐵 = 0;
ii.2.2) 𝐴 = 0, 𝐵 ̸= 0;
ii.2.3) 𝐴 ̸= 0, 𝐵 = 0;
ii.2.4) 𝐴 ̸= 0, 𝐵 ̸= 0.
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In case ii.2.1), that is, as

𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆 = 0, 𝜆𝑘3 + 𝑘2𝜆+ 𝑘𝑀2𝜈 − 𝑘𝑀𝜈 + 4𝑘𝜆− 4𝜆 = 0.

Then we express 𝜈 from the first equation and we substitute this function into the second
equation, and we get 4(𝑘 − 1)𝜆 = 0, which contradicts to 𝑘 > 2, 𝜆 ̸= 0.

ii.2.2) Assume that
𝐴 = 𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆 = 0.

We express 𝜈 from this identity and we substitute 𝜈 into (5.13). This equation has the solution
𝛽(𝑢1) = 1

2
𝑘𝑐1𝑢1 + 𝑐3. Equation (5.3) becomes

1

2
𝑘(𝑘 − 1)

𝑑𝐹1(𝑢1)

𝑑𝑢1
+

𝑘(𝑘 − 1)𝜆

𝑀(𝑀 − 1)
𝐹1(𝑢1) + 𝑐1(𝑘 − 1)𝑒−

2𝜆𝑢1
𝑀(𝑀−1) +

𝑘(𝑘 − 1)𝑐2𝜆

𝑀(𝑀 − 1)
= 0.

This equation has the solution

𝐹1(𝑢1) = −(2𝑐1𝑢1 − 𝑐4𝑘)

𝑘
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) − 𝑐2.

Equation (3.12) casts into the form

−𝑐1𝑀(𝑀 − 1)

𝑘
𝑒−

2𝜆𝑢0
𝑀(𝑀−1) − 𝑐1𝑀(𝑀 − 𝑘 − 1)

2
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) = 0.

It is clear that this identity holds true only if 𝑐1 = 0 (we are working under the condition
𝑀 > 2). Hence, we have

𝑟0(𝑢1, 𝑢0, 𝑢−1) = (𝑐3 + 𝑐4)𝑒
− 2𝜆𝑢0

𝑀(𝑀−1) ,

which contradicts condition (1.4).
ii.2.3) Suppose that

𝐵 = 𝜆𝑘3 + 𝑘2𝜆+ 𝑘𝑀2𝜈 − 𝑘𝑀𝜈 + 4𝑘𝜆− 4𝜆 = 0.

We express 𝜈:

𝜈 =
𝜆(𝑘 − 1)(𝑘 − 2)(𝑘 + 2)

𝑘𝑀(𝑀 − 1)
.

Since 𝜈 ̸= 0, then 𝑘 ̸= 2. Equation (5.13) becomes

𝜆(𝑘 − 1)(𝑘 − 2)(𝑘 + 2)

𝑘2𝑀2(𝑀 − 1)2
(𝑐1𝑘𝑀

2 − 𝑐1𝑘𝑀 + 4𝜆𝛽(𝑢1)) = 0.

We find the function 𝛽:

𝛽(𝑢1) = −1

4

𝑐1𝑘𝑀(𝑀 − 1)

𝜆
. (5.16)

Taking into consideration the obtained function, we simplify equation (5.3):

1

2
𝑘(𝑘 − 1)

𝑑𝐹1(𝑢1)

𝑑𝑢1
+
𝜆(𝑘 − 1)(𝑘 − 2)(𝑘 + 2)

𝑘𝑀(𝑀 − 1)
𝐹1(𝑢1)

+ (𝑘 − 1)𝑐1𝑒
− 2𝜆𝑢1

𝑀(𝑀−1) +
𝑐2𝜆(𝑘 − 2)(𝑘 − 1)(𝑘 + 2)

𝑘𝑀(𝑀 − 1)
= 0.

This equation has the solution:

𝐹1(𝑢1) =
𝑐1𝑘𝑀(𝑀 − 1)

4𝜆
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) + 𝐶1𝑒

− 2𝜆(𝑘−2)(𝑘+2)

𝑘2𝑀(𝑀−1)
𝑢1 − 𝑐2.

Let us transform equation (3.12)

4𝜆𝐶1

𝑘2
𝑒
− 2𝜆(𝑘−2)(𝑘+2)

𝑘2𝑀(𝑀−1)
𝑢1 = 0.

It follows from this identity that 𝐶1 = 0. Substitution found functions and constants into
(3.11), we obtain that 𝑟0 = 0, that contradicts condition (1.4).
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ii.2.4) If 𝐴 ̸= 0 and 𝐵 ̸= 0, then equation (5.13) has the solution

𝛽(𝑢1) = 𝑐3𝑒
− 2𝜈(𝜈𝑀2−𝜈𝑀−𝑘2𝜆+𝑘𝜆)𝑢1

(𝑘−1)(−𝜆𝑘3+𝑘2𝜆+4𝑘𝜆+𝑘𝑀2𝜈−𝑘𝑀𝜈−4𝜆) +
𝑀𝑐1(𝑘 − 1)(𝑀 − 1)

𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆
. (5.17)

We substitute (5.17) into (5.3) and we obtain

1

2
𝑘(𝑘 − 1)

𝑑𝐹1(𝑢1)

𝑑𝑢1
+ 𝜈𝐹1(𝑢1) + 𝑐1(𝑘 − 1)𝑒−

2𝜆𝑢1
𝑀(𝑀−1) + 𝜈𝑐2. (5.18)

Equation (5.18) has the solution

𝐹1(𝑢1) = −𝑐2 + 𝑐4𝑒
− 2𝜈𝑢1

𝑘(𝑘−1) − 𝑐1𝑀(𝑀 − 1)(𝑘 − 1)

𝜈𝑀2 − 𝜈𝑀 − 𝑘2𝜆+ 𝑘𝜆
𝑒−

2𝜆𝑢1
𝑀(𝑀−1) .

Function (3.11) becomes

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝑐4𝑒
− 2𝜈𝑢0

𝑘(𝑘−1) + 𝑐3𝑒
− 2𝜆𝑢0

𝑀(𝑀−1)
− 2𝜈𝐴𝑢−1

𝐵(𝑘−1) +
𝐴𝑐3

2(𝑘 − 1)𝜆
𝑒−

2𝜆𝑢1
𝑀(𝑀−1)

− 2𝜈𝐴𝑢0
𝐵(𝑘−1) .

Here 𝐴, 𝐵 are defined by formulae (5.14), (5.15). We substitute these functions into (3.12)

− 𝐴𝑐4
𝑘(𝑘 − 1)

𝑒−
2𝜈𝑢0

𝑘(𝑘−1) − 𝐴𝑐3(𝜆𝐵 + 𝜈𝑀2𝐴− 𝜈𝑀𝐴− 𝜆𝑘𝐵 − 4𝑀𝜈𝜆+ 4𝑀𝜈𝑘𝜆)

2𝐵𝑘𝜆(𝑘 − 1)2
𝑒−

2𝜆𝑢1
𝑀(𝑀−1)

− 2𝜈𝐴𝑢0
𝐵(𝑘−1) = 0.

Since 𝐴 ̸= 0, 𝜈 ̸= 0, it follows from the last identity that 𝑐4 = 0 and

𝜆𝐵 + 𝜈𝑀2𝐴− 𝜈𝑀𝐴− 𝜆𝑘𝐵 − 4𝑀𝜈𝜆+ 4𝑀𝜈𝑘𝜆 = 0.

Thus, we have specified the function 𝑟0:

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝑐3𝑒
− 2𝜆𝑢0

𝑀(𝑀−1)
− 2𝜈𝐴𝑢−1

𝐵(𝑘−1) +
𝐴𝑐3

2(𝑘 − 1)𝜆
𝑒−

2𝜆𝑢1
𝑀(𝑀−1)

− 2𝜈𝐴𝑢0
𝐵(𝑘−1) .

We can rewrite 𝑟0 in the following form:

𝑟0(𝑢1, 𝑢0, 𝑢−1) = 𝐶1𝑒
ℎ1𝑢0−ℎ2𝑢−1 + 𝐶2𝑒

ℎ1𝑢1−ℎ2𝑢0 ,

where 𝐶1𝐶2 ̸= 0, ℎ1ℎ2 ̸= 0 are some constants.
Lattice (1.2) is reduced to one with 𝑟𝑛 of the following form

𝑟𝑛(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑒𝑢𝑛−ℎ𝑢𝑛−1 + 𝑐𝑒𝑢𝑛+1−ℎ𝑢𝑛

by rescaling ℎ1𝑢𝑛 → 𝑢𝑛, 𝑐1ℎ1𝑥 → 𝑥. Similarly transformations one can apply to the lattice in
case ii.1.1.2 (see (5.11)). The proof of Lemma 3.6 is complete.
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