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RENORMALIZATIONS OF MEASURABLE OPERATOR

IDEAL SPACES AFFILIATED TO SEMI-FINITE

VON NEUMANN ALGEBRA

A.M. BIKCHENTAEV

Abstract. This work is devoted to non-commutative analogues of classical methods of
constructing functional spaces. Let a von Neumann algebra ℳ of operators act in a Hilbert

space ℋ, 𝜏 be a faithful normal semi-finite traceℳ. Let ̃︁ℳ be an *-algebra of 𝜏 -measurable

operators, |𝑋| =
√
𝑋*𝑋 for 𝑋 ∈ ̃︁ℳ. A lineal ℰ in ̃︁ℳ is called ideal space on (ℳ, 𝜏) if

1) 𝑋 ∈ ℰ implies 𝑋* ∈ ℰ ;
2) 𝑋 ∈ ℰ , 𝑌 ∈ ̃︁ℳ and |𝑌 | 6 |𝑋| imply 𝑌 ∈ ℰ .

Let ℰ , ℱ be ideal spaces on (ℳ, 𝜏). We propose a method of constructing a mapping
𝜌 : ℰ → [0,+∞] with nice properties by employing a mapping 𝜌 on a positive cone ℰ+. At
that, if ℰ = ℳ and 𝜌 = 𝜏 , then 𝜌(𝑋) = 𝜏(|𝑋|) and if the trace 𝜏 is finite, then 𝜌(𝑋) = ‖𝑋‖1
for all 𝑋 ∈ ℳ. We study the case as 𝜌(𝑋) is equivalent to the original mapping 𝜌(|𝑋|).
Employing mappings on ℰ and ℱ , we construct a new mapping with nice properties on the
sum ℰ +ℱ . We provide examples of such mappings. The results are new also for *-algebra
ℳ = ℬ(ℋ) of all bounded linear operators in ℋ equipped with a canonical trace 𝜏 = tr.

Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable
operators, ideal space, renormalization.
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1. Introduction

The work is devoted to non-commutative analogues of classical methods of constructing
functional spaces. The beginning of developing a corresponding aspect of the theory of non-
commutative integration is due to I.E. Sigal and J. Dixmier, who in the beginning of 1950s
created the theory of non-commutative integration with respect to the trace on a semi-finite von
Neumann algebra [1]. The results of their studies were effectively applied in the duality theory
for unimodular groups and stimulated a progress in “non-commutative probability theory”. The
theory of algebras of measurable and locally measurable operator is being intensively developed
and has interesting applications in various fields of functional analysis, mathematical physics,
statistical mechanics, quantum field theory.
Till the mid of 1980s, the ideal spaces of measurable operators served mostly as an object of

studying, see [2] and the references therein. Recently there appeared publications in which they
served as a tool, see, for instance, [3]. This demonstrates a topicality of finding new methods
for constructing new methods for constructing ideal spaces and developing a general theory of
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these spaces. In [4], [5] new methods were proposed for constructing ideal spaces on semi-finite
von Neumann algebras and the geometric and topological spaces of the obtained spaces were
studied.
Let a von Neumann algebra ℳ of operators act in a Hilbert space ℋ, 𝜏 be a faithful normal

semi-infinite trace on ℳ. Let ℰ , ℱ be ideal spaces on (ℳ, 𝜏). In Section 3 we propose a
method of constructing a mapping 𝜌 : ℰ → [0,+∞] with nice properties by means of a given
mapping 𝜌 on a positive cone ℰ+. At that, if ℰ = ℳ and 𝜌 = 𝜏 , then 𝜌(𝑋) = 𝜏(|𝑋|) and if
the trace 𝜏 is finite, then 𝜌(𝑋) = ‖𝑋‖1 for each 𝑋 ∈ ℳ. We also study the case when 𝜌(𝑋)
is equivalent to the initial mapping 𝜌(|𝑋|). Employing mappings onto ℰ and ℱ , in Section 4
we construct a new mapping with nice properties on the sum ℰ + ℱ . The results are new also
for *-algebra ℳ = ℬ(ℋ) of all bounded linear operators in ℋ equipped by a canonical trace
𝜏 = tr.

2. Notations and definitions

Let ℳ be a von Neumann algebra in a Hilbert space ℋ, ℳpr be a lattice of projectors
(𝑃 = 𝑃 2 = 𝑃 *) in ℳ, 𝐼 be the identity mapping ℳ, 𝑃⊥ = 𝐼 −𝑃 for 𝑃 ∈ ℳpr, ℳ+ be a cone
of positive elements in ℳ, and ℳ1 = {𝑋 ∈ ℳ : ‖𝑋‖ 6 1}.
The mapping 𝜙 : ℳ+ → [0,+∞] is called trace if 𝜙(𝑋+𝑌 ) = 𝜙(𝑋)+𝜙(𝑌 ), 𝜙(𝜆𝑋) = 𝜆𝜙(𝑋)

for each 𝑋, 𝑌 ∈ ℳ+, 𝜆 > 0 (at that 0 · (+∞) ≡ 0) and 𝜙(𝑍*𝑍) = 𝜙(𝑍𝑍*) for each 𝑍 ∈ ℳ. A
trace 𝜙 is called faithful if 𝜙(𝑋) > 0 for each 𝑋 ∈ ℳ+, 𝑋 ̸= 0; and it is semi-infinite if

𝜙(𝑋) = sup{𝜙(𝑌 ) : 𝑌 ∈ ℳ+, 𝑌 6 𝑋, 𝜙(𝑌 ) < +∞}

for each 𝑋 ∈ ℳ+. A trace is normal if

𝑋𝑖 ↗ 𝑋 (𝑋𝑖, 𝑋 ∈ ℳ+) ⇒ 𝜙(𝑋) = sup𝜙(𝑋𝑖),

see [6, Ch. V, Sect. 2].
An operator in ℋ (not necessarily bounded of densely defined) is called affiliated to a von

Neumann algebra ℳ if it commutes with each unitary operator in the commutator subgroup
ℳ′ of the algebra ℳ. Hereafter 𝜏 is a faithful normal semi-infinite trace on ℳ. A closed
operator 𝑋 affiliated to ℳ with a domain 𝒟(𝑋) dense in ℋ is called 𝜏 -measurable if for

each 𝜀 > 0 there exists 𝑃 ∈ ℳpr, such that 𝑃ℋ ⊂ 𝒟(𝑋) and 𝜏(𝑃⊥) < 𝜀. A set ̃︁ℳ of all
𝜏 -measurable operators is an *-algebra with respect to the operations of taking the adjoint
operator, multiplication by a scalar and the operators of strong addition and multiplication

obtained by closure of usual operators [1], [7]. For a family ℒ ⊂ ̃︁ℳ by ℒ+ and ℒsa we denote

its positive and Hermitian part, respectively. A partial order in ̃︁ℳsa generated by a proper

cone ̃︁ℳ+ is denoted by 6. If 𝑋 ∈ ̃︁ℳ and 𝑋 = 𝑈 |𝑋| is the polar decomposition of 𝑋, then

𝑈 ∈ ℳ1 and |𝑋| =
√
𝑋*𝑋 ∈ ̃︁ℳ+.

The *-algebra ̃︁ℳ is equipped with the topology 𝑡𝜏 of convergence measure [7], whose funda-
mental system of neighbourhood is formed by the sets

𝑈(𝜀, 𝛿) = {𝑋 ∈ ̃︁ℳ : ∃𝑃 ∈ ℳpr (‖𝑋𝑃‖ 6 𝜀 and 𝜏(𝑃⊥) 6 𝛿)}, 𝜀 > 0, 𝛿 > 0.

It is know that (̃︁ℳ, 𝑡𝜏 ) is a complete metrizable topological *-algebra and ℳ is dense in

(̃︁ℳ, 𝑡𝜏 ).

By 𝜇𝑡(𝑋) we denote a permutation of an operator 𝑋 ∈ ̃︁ℳ, that is, a non-decreasing right-
continuous function 𝜇(𝑋) : (0,∞) → [0,∞) defined by the formula

𝜇𝑡(𝑋) = inf{‖𝑋𝑃‖ : 𝑃 ∈ ℳpr, 𝜏(𝑃⊥) 6 𝑡}, 𝑡 > 0.
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The set of 𝜏 -compact operators ̃︁ℳ0 = {𝑋 ∈ ̃︁ℳ : lim
𝑡→∞

𝜇𝑡(𝑋) = 0} is a 𝑡𝜏 -closed ideal in ̃︁ℳ
[8]. Let 𝑚 be a Lebesgue linear measure on R. An associated with (ℳ, 𝜏) non-commutative

Lebesgue 𝐿𝑝-space (0 < 𝑝 < ∞) can be defined as 𝐿𝑝(ℳ, 𝜏) = {𝑋 ∈ ̃︁ℳ : 𝜇𝑡(𝑋) ∈ 𝐿𝑝(R
+,𝑚)}

with 𝐹 -norm (norm for 1 6 𝑝 < ∞) ‖𝑋‖𝑝 = ‖𝜇𝑡(𝑋)‖𝑝, 𝑋 ∈ 𝐿𝑝(ℳ, 𝜏).

A lineal ℰ in ̃︁ℳ is called ideal space on (ℳ, 𝜏), see [9], [3], [2], if
1) 𝑋 ∈ ℰ implies 𝑋* ∈ ℰ ;
2) 𝑋 ∈ ℰ , 𝑌 ∈ ̃︁ℳ and |𝑌 | 6 |𝑋| imply 𝑌 ∈ ℰ .
This is, for instance, the algebra ℳ, the set of elementary operators ℱ(ℳ), ̃︁ℳ0, (𝐿1 +

𝐿∞)(ℳ, 𝜏) and 𝐿𝑝(ℳ, 𝜏) as 0 < 𝑝 < +∞. For each ideal space ℰ on (ℳ, 𝜏) we haveℳℰℳ ⊆ ℰ
[2, Lm. 5].
If ℳ = ℬ(ℋ) is *-algebra of all bounded linear operators in ℋ and 𝜏 = tr is the canonical

trace, then ̃︁ℳ and ̃︁ℳ0 coincide with ℬ(ℋ) and the ideal of compact operators inℋ, respectively.
We have

𝜇𝑡(𝑋) =
∞∑︁
𝑛=1

𝑠𝑛(𝑋)𝜒[𝑛−1,𝑛)(𝑡), 𝑡 > 0,

where {𝑠𝑛(𝑋)}∞𝑛=1 is the sequence of 𝑠-numbers of a compact operator𝑋 [10]; 𝜒𝐴 is the indicator
of a set 𝐴 ⊂ R. Then the space 𝐿𝑝(ℳ, 𝜏) is the Schatten-von Neumann ideal S𝑝, 0 < 𝑝 < ∞.

Lemma 2.1. [11]. If 𝑋, 𝑌 ∈ ̃︁ℳ+ and 𝑋 6 𝑌 , then there exists an operator 𝑍 ∈ ℳ1 such

that
√
𝑋 = 𝑍

√
𝑌 and 𝑋 = 𝑍𝑌 𝑍*.

Lemma 2.2. [12] If 𝑋, 𝑌 ∈ ̃︁ℳsa and 𝑍 ∈ ̃︁ℳ, then the inequality 𝑋 6 𝑌 implies 𝑍𝑋𝑍* 6
𝑍𝑌 𝑍*.

3. Renormalization of ideal spaces

Let 𝜏 be a faithful normal semi-infinite trace on a von Neumann algebra ℳ, ℰ be an ideal

space on (ℳ, 𝜏). If 𝐴 ∈ ̃︁ℳ and 𝐴*𝐴 ∈ ℰ , then 𝐴𝐴* ∈ ℰ [2, Lm. 5]. We assume the following
conditions for a mapping 𝜌 : ℰ+ → [0,+∞]:
(i) if 𝑋, 𝑌 ∈ ℰ+ and 𝑋 6 𝑌 , then 𝜌(𝑋) 6 𝜌(𝑌 );

(ii) 𝜌(𝑋*𝑋) = 𝜌(𝑋𝑋*)for each 𝑋 ∈ ̃︁ℳ with 𝑋*𝑋 ∈ ℰ ;
(iii) 𝜌(𝑋 + 𝑌 ) 6 𝜌(𝑋) + 𝜌(𝑌 ) for each 𝑋, 𝑌 ∈ ℰ+.

We assume the following conditions for a mapping 𝜌 : ℰ → [0,+∞]:
(iv) 𝜌(𝑋) = 𝜌(|𝑋|) = 𝜌(𝑋*) for each 𝑋 ∈ ℰ ;
(v) 𝜌(𝑋 + 𝑌 ) 6 𝜌(𝑋) + 𝜌(𝑌 ) for each 𝑋, 𝑌 ∈ ℰ ;
(vi) 𝜌(𝜆𝑋) = |𝜆|𝜌(𝑋) for each 𝜆 ∈ C and 𝑋, 𝑌 ∈ ℰ (at that, 0 ·+∞ = 0).

Example 3.1. Let (ℰ , ‖ · ‖ℰ) be a normalized ideal space on (ℳ, 𝜏) [9]. Then the restriction
of the norm ‖ · ‖ℰ on ℰ+ satisfies conditions (i)–(iii), while ‖ · ‖ℰ satisfies conditions (iv)–(vi).
The examples are (ℳ, ‖ · ‖) and (𝐿𝑝(ℳ, 𝜏), ‖ · ‖𝑝) for 𝑝 > 1.

Example 3.2. Let 𝜌 = ⟨(·)𝜉, 𝜉⟩ (𝜉 ∈ ℋ, ‖𝜉‖ = 1) be a vector state on the algebra ℬ(ℋ). The
restriction 𝜌|ℬ(ℋ)+ satisfies conditions (i) and (iii). For 𝜌1 = |𝜌|, conditions (v) and (vi) are
satisfied.

Example 3.3. Let ℰ be an ideal space on (ℳ, 𝜏) and 𝑌 ∈ ℰ+. We let

𝜌(𝑋) = inf{𝜆 > 0 : 𝑋 6 𝜆𝑌 }

for each 𝑋 ∈ ℰ+ assuming that inf over ∅ is equal to +∞. Then 𝜌 satisfies conditions (i) and
(iii).
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Proposition 3.1. Let ℰ be an ideal space on (ℳ, 𝜏) and a mapping 𝜌 : ℰ → [0,+∞] satisfy
conditions (iv)–(vi) (or (i), (iv) and (v)). Then ℱ = {𝑋 ∈ ℰ : 𝜌(𝑋) < +∞} is an ideal space
on (ℳ, 𝜏).

Proposition 3.2. Let ℰ be an ideal space on (ℳ, 𝜏) and a mapping 𝜌 : ℰ → [0,+∞] satisfy
conditions (i)–(iii). Then

𝜌(𝑋) 6
𝑛∑︁

𝑘=1

𝜌(𝑌𝑘𝑋𝑌 *
𝑘 )

for each 𝑋 ∈ ℰ+ and {𝑌𝑘}𝑛𝑘=1 ⊂ ℳ with
∑︀𝑛

𝑘=1 𝑌
*
𝑘 𝑌𝑘 > 𝐼.

Proof. By Lemma 2.2 we have

𝑋 6
√
𝑋

(︃
𝑛∑︁

𝑘=1

𝑌 *
𝑘 𝑌𝑘

)︃
√
𝑋 =

𝑛∑︁
𝑘=1

√
𝑋𝑌 *

𝑘 𝑌𝑘

√
𝑋.

This is why

𝜌(𝑋) 6
𝑛∑︁

𝑘=1

𝜌(
√
𝑋𝑌 *

𝑘 𝑌𝑘

√
𝑋) =

𝑛∑︁
𝑘=1

𝜌(𝑌𝑘𝑋𝑌 *
𝑘 )

and this completes the proof.

Lemma 3.1. Let ℰ be an ideal space on (ℳ, 𝜏) and a mapping 𝜌 : ℰ → [0,+∞] satisfies
conditions (i), (iv). If 𝑋, 𝑌 ∈ ℳ1, then 𝜌(𝑋𝑍𝑌 ) 6 𝜌(𝑍) for each 𝑍 ∈ ℰ.

Proof. If for some operators we have 𝐴,𝐵 ∈ ℳ, then 𝐴𝑍𝐵 ∈ ℰ for each 𝑍 ∈ ℰ . For each
𝑋 ∈ ℳ1 and 𝑍 ∈ ℰ , by the operator monotonicity of the function 𝜆 ↦→

√
𝜆 on R+ and

Lemma 2.2 we have

𝜌(𝑋𝑍) = 𝜌(|𝑋𝑍|) = 𝜌(
√
𝑍*𝑋*𝑋𝑍) 6 𝜌(

√
𝑍*𝑍) = 𝜌(|𝑍|) = 𝜌(𝑍).

If 𝑌 ∈ ℳ1, then 𝑌 * ∈ ℳ1 and 𝜌(𝑍𝑌 ) = 𝜌((𝑍𝑌 )*) = 𝜌(𝑌 *𝑍*) 6 𝜌(𝑍*) = 𝜌(𝑍). The proof is
complete.

Proposition 3.3. Let ℰ be an ideal space on (ℳ, 𝜏) and a mapping 𝜌 : ℰ → [0,+∞] satisfies
conditions (i), (iv). Then 𝜌 satisfies condition (ii).

Proof. Let 𝑋 = 𝑈 |𝑋| be the polar decomposition of the operator 𝑋 ∈ ̃︁ℳ. Then 𝑈,𝑈* ∈ ℳ1

and 𝑋𝑋* = 𝑈𝑋*𝑋𝑈* ∈ ℰ . By Lemma 3.1 we have

𝜌(𝑋𝑋*) = 𝜌(𝑈𝑋*𝑋𝑈*) 6 𝜌(𝑋*𝑋).

Replacing 𝑋 by 𝑋*, we obtain 𝜌(𝑋*𝑋) 6 𝜌(𝑋𝑋*) and this proves (ii).

Theorem 3.1. Let ℰ be an ideal space on (ℳ, 𝜏) and a mapping 𝜌 : ℰ+ → [0,+∞] be given.
We denote

𝜌(𝑋) = sup
𝑍∈ℳ1

sup
06𝐴6𝑍|𝑋|𝑍*

𝜌(𝐴) for each 𝑋 ∈ ℰ . (1)

Then 𝜌 satisfies conditions (i), (ii), (iv) and 𝜌(𝑋) > 𝜌(|𝑋|) for each 𝑋 ∈ ℰ.

Proof. Let 𝑋, 𝑌 ∈ ℰ+ and 𝑋 6 𝑌 . By Lemma 2.1, there exists an operator 𝑈 ∈ ℳ1 such that
𝑋 = 𝑈𝑌 𝑈*. This is why

𝜌(𝑋) = sup
𝑍∈ℳ1

sup
06𝐴6𝑍𝑋𝑍*

𝜌(𝐴) = sup
𝑍∈ℳ1

sup
06𝐴6𝑍𝑈𝑌 𝑈*𝑍*

𝜌(𝐴) 6 sup
𝑍∈ℳ1

sup
06𝐴6𝑍𝑌 𝑍*

𝜌(𝐴) = 𝜌(𝑌 )

and this proves (i).
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Let 𝑋 = 𝑈 |𝑋| be the polar decomposition of an operator 𝑋 ∈ ̃︁ℳ. Then |𝑋*| = 𝑈 |𝑋|𝑈*

and |𝑋*|2 = 𝑈 |𝑋|2𝑈*. We have

𝜌(𝑋*) = sup
𝑍∈ℳ1

sup
06𝐴6𝑍|𝑋*|𝑍*

𝜌(𝐴) = sup
𝑍∈ℳ1

sup
06𝐴6𝑍𝑈 |𝑋|𝑈*𝑍*

𝜌(𝐴) 6 sup
𝑍∈ℳ1

sup
06𝐴6𝑍|𝑋|𝑍*

𝜌(𝐴) = 𝜌(𝑋).

Thanks to the identity (𝑋*)* = 𝑋, this proves (iv). Now (ii) follows Proposition 3.3. The proof
is complete.

Theorem 3.2. Let ℰ be an ideal space on (ℳ, 𝜏) and a mapping 𝜌 : ℰ+ → [0,+∞] satisfy
condition (iii). Then the mapping 𝜌 : ℰ → [0,+∞] defined by formula (1) satisfies condition
(v).

Proof. Let 𝑋, 𝑌 ∈ ℰ and 𝛼 = 𝜌(𝑋 + 𝑌 ). Then for each number 𝜀 > 0 there exist operators
𝑍𝜀 ∈ ℳ1 and 𝐴𝜀 ∈ ℰ+ such that

𝐴𝜀 6 𝑍𝜀|𝑋 + 𝑌 |𝑍*
𝜀 , 𝛼 > 𝜌(𝐴𝜀) > 𝛼− 𝜀.

There exist partial isometries 𝑉,𝑊 ∈ ℳ1 such that |𝑋 + 𝑌 | 6 𝑉 |𝑋|𝑉 * + 𝑊 |𝑌 |𝑊 *, see [13,
Thm. 2.2], [14]. This is why, cf. also Lemma 2.2, for each number 𝜀 > 0 there exist operators
𝑍𝜀 ∈ ℳ1 and 𝐴𝜀 ∈ ℰ+ such that

𝐴𝜀 6 𝑍𝜀𝑉 |𝑋|𝑉 *𝑍*
𝜀 + 𝑍𝜀𝑊 |𝑌 |𝑊 *𝑍*

𝜀 , 𝛼 > 𝜌(𝐴𝜀) > 𝛼− 𝜀.

By Lemma 2.1, for each number 𝜀 > 0 there exists an operator 𝑈𝜀 ∈ ℳ1 such that

𝐴𝜀 = 𝑈𝜀𝑍𝜀𝑉 |𝑋|𝑉 *𝑍*
𝜀𝑈

*
𝜀 + 𝑈𝜀𝑍𝜀𝑊 |𝑌 |𝑊 *𝑍*

𝜀𝑈
*
𝜀 .

The operators 𝑈𝜀𝑍𝜀𝑉 , 𝑈𝜀𝑍𝜀𝑊 belong to ℳ1 and

𝜌(𝐴𝜀) 6 𝜌(𝑈𝜀𝑍𝜀𝑉 |𝑋|𝑉 *𝑍*
𝜀𝑈

*
𝜀 ) + 𝜌(𝑈𝜀𝑍𝜀𝑊 |𝑌 |𝑊 *𝑍*

𝜀𝑈
*
𝜀 ) 6 𝜌(𝑋) + 𝜌(𝑌 ).

By the arbitrary choice of the number 𝜀 > 0 we obtain 𝛼 6 𝜌(𝑋) + 𝜌(𝑌 ) and this completes
the proof.

Remark 3.1. Under the assumptions of Theorem 3.1, if 𝜌(𝐴) = 0 ⇔ 𝐴 = 0 (𝐴 ∈ ℰ+), then
𝜌(𝑋) = 0 ⇔ 𝑋 = 0 (𝑋 ∈ ℰ); if 𝜌(𝜆𝐴) = 𝜆𝜌(𝐴) for each 𝜆 ∈ R+ and 𝐴 ∈ ℰ+, then 𝜌 satisfies
condition (iv). If 𝜌 satisfies condition (i), then 𝜌(𝐼) = 𝜌(𝐼) and

𝜌(𝑋) = sup
𝑍∈ℳ1

𝜌(𝑍|𝑋|𝑍*) for each 𝑋 ∈ ℰ .

Proposition 3.4. Let ℰ be an ideal space on (ℳ, 𝜏), 𝜌 : ℰ+ → [0,+∞], and a mapping
𝜌 : ℰ → [0,+∞] is defined by formula (1). If 𝜌 satisfies conditions (i) and (ii), then 𝜌(𝑋) =
𝜌(|𝑋|) for each 𝑋 ∈ ℰ.

Proof. For each 𝑍 ∈ ℳ1 we have 𝑍*𝑍 6 𝐼 and
√︀
|𝑋|𝑍*𝑍

√︀
|𝑋| 6 |𝑋| holds for each 𝑋 ∈ ℰ

by Lemma 2.2. Then

𝜌(𝑋) = sup
𝑍∈ℳ1

sup
06𝐴6𝑍|𝑋|𝑍*

𝜌(𝐴) = sup
𝑍∈ℳ1

𝜌(𝑍|𝑋|𝑍*) = sup
𝑍∈ℳ1

𝜌(
√︀
|𝑋|𝑍*𝑍

√︀
|𝑋|) = 𝜌(|𝑋|).

Thus, the restriction 𝜌|ℰ+ coincides with 𝜌. The proof is complete.

Example 3.4. Let ℰ = ℳ and 𝜌 = 𝜏 . Then 𝜌(𝑋) = 𝜏(|𝑋|) and if the trace 𝜏 is finite, then
𝜌(𝑋) = ‖𝑋‖1 for each 𝑋 ∈ ℳ.

Proposition 3.5. Let ℰ be an ideal space on (ℳ, 𝜏), 𝜌 : ℰ+ → [0,+∞], and let a mapping
𝜌 : ℰ → [0,+∞] is defined by formula (1). If the following conditions hold:

(vii) there exists 𝐶1 > 0 such that 𝜌(𝑋*𝑋) 6 𝐶1𝜌(𝑋𝑋*) for each 𝑋 ∈ ̃︁ℳ with 𝑋*𝑋 ∈ ℰ;
(viii) there exists 𝐶2 > 0 such that 𝜌(𝑋) 6 𝐶2𝜌(𝑌 ) for each 𝑋, 𝑌 ∈ ℰ+ with 𝑋 6 𝑌 ,

then 𝜌(|𝑋|) 6 𝜌(𝑋) 6 2𝐶1𝐶
2
2𝜌(|𝑋|) for each 𝑋 ∈ ℰ.
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Proof. Let 𝑋 ∈ ℰ , 𝑍 ∈ ℳ1 and 0 6 𝐴 6 𝑍|𝑋|𝑍* be such that 𝜌(𝑋) 6 2𝜌(𝐴). By Lemma 2.2

we have
√︀

|𝑋|𝑍*𝑍
√︀

|𝑋| 6 |𝑋| and

𝜌(𝑋) 6 2𝜌(𝐴) 6 2𝐶2𝜌(𝑍|𝑋|𝑍*) 6 2𝐶1𝐶2𝜌(
√︀

|𝑋|𝑍*𝑍
√︀
|𝑋|) 6 2𝐶1𝐶

2
2𝜌(|𝑋|).

Thus, 𝜌(|𝑋|) 6 𝜌(𝑋) 6 2𝐶1𝐶
2
2𝜌(|𝑋|) for each 𝑋 ∈ ℰ . The proof is complete.

Remark 3.2. Let ℰ be an ideal space on (ℳ, 𝜏), where ℳ is a finite von Neumann algebra,
that is, 0 𝑈 ∈ ℳ and 𝑈*𝑈 = 𝐼 imply 𝑈𝑈* = 𝐼. Assume that a mapping 𝜌 : ℰ → R+ satisfies
condition (v). We let

𝜌1(𝑋) = sup
𝑍,𝑇∈ℳ1

𝜌(𝑍𝑋𝑇 ) for each 𝑋 ∈ ℰ .

It was shown in [15, Thm. 2] that a mapping 𝜌1 : ℰ → [0,+∞] satisfies conditions (i), (iv) and
(v). For a mapping 𝜌 with property (vi), the mapping 𝜌1 also satisfies (vi).

Proposition 3.6. Let 𝜌2 = ̃︂𝜌|ℰ+. Then 𝜌2(𝑋) 6 𝜌1(𝑋) for each 𝑋 ∈ ℰ.

Proof. Let 𝑋 ∈ ℰ and 𝛼 = 𝜌2(𝑋). Then for each number 𝜀 > 0 there exist operators 𝑍𝜀 ∈ ℳ1

and 𝐴𝜀 ∈ ℰ+ such that

𝐴𝜀 6 𝑍𝜀|𝑋|𝑍*
𝜀 , 𝛼 > 𝜌(𝐴𝜀) > 𝛼− 𝜀.

By Lemma 2.1, for each number 𝜀 > 0, there exists an operator 𝑈𝜀 ∈ ℳ1 such that

𝐴𝜀 = 𝑈𝜀𝑍𝜀|𝑋|𝑍*
𝜀𝑈

*
𝜀 .

Hence,

𝜌1(𝑋) = 𝜌1(|𝑋|) = sup
𝑍,𝑇∈ℳ1

𝜌(𝑍|𝑋|𝑇 ) > 𝜌(𝐴𝜀) > 𝛼− 𝜀.

By an arbitrary choice of the number 𝜀 > 0 we have 𝜌1(𝑋) > 𝛼 and this completes the proof.

Example 3.5. Let a mapping 𝜌 : ℳpr → R+ is monotone and unitarily invariant. Then the

mapping 𝜌𝑠 : ̃︁ℳ → R+ defined by the formula 𝜌𝑠(𝐴) = 𝜌(𝑠(|𝐴|)), where 𝐴 ∈ ̃︁ℳ and 𝑠(|𝐴|) is
the support of the operator |𝐴| satisfies conditions (i), (ii) and (iv).

4. Normalization of sums of ideal spaces

If ℰ , ℱ are ideal spaces on (ℳ, 𝜏), then the sets ℰ ∩ℱ and ℰ+ℱ = {𝐴+𝐵 : 𝐴 ∈ ℰ , 𝐵 ∈ ℱ}
are also ideal spaces on (ℳ, 𝜏) [2, Thm. 2]. The structure of ideal spaces is modular: if ℰ , ℱ
and 𝒢 are ideal spaces on (ℳ, 𝜏) and ℰ ⊂ 𝒢, then (ℰ + ℱ) ∩ 𝒢 = ℰ + (ℱ ∩ 𝒢) [2, Thm. 3]. In
the theory of non-commutative integration, the space (𝐿1+𝐿∞)(ℳ, 𝜏) = 𝐿1(ℳ, 𝜏)+ℳ plays
an important role [12].

Theorem 4.1. Let ℰ, ℱ be ideal spaces on (ℳ, 𝜏) and 𝒢 = ℰ + ℱ . If mappings 𝜌1 : ℰ →
[0,+∞] and 𝜌2 : ℱ → [0,+∞] satisfy conditions (i), (iv), then the mapping 𝜌 : 𝒢 → [0,+∞]
defined by the formula

𝜌(𝑍) = inf{𝜌1(𝑋) + 𝜌2(𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and 𝑍 = 𝑋 + 𝑌 }, (2)

also satisfies conditions (i), (iv).

Proof. Let 𝑍 = 𝑈 |𝑍| be the polar decomposition of the operator 𝑍 ∈ 𝒢. Then |𝑍| = 𝑈*𝑍. To
check (iv), we first observe that 𝜌(𝑍*) = 𝜌(𝑍). By Lemma 3.1 we have

𝜌(|𝑍|) = inf{𝜌1(𝑋) + 𝜌2(𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and |𝑍| = 𝑋 + 𝑌 }
> inf{𝜌1(𝑋) + 𝜌2(𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and 𝑈 |𝑍| = 𝑈𝑋 + 𝑈𝑌 }
> inf{𝜌1(𝑈𝑋) + 𝜌2(𝑈𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and 𝑈 |𝑍| = 𝑈𝑋 + 𝑈𝑌 } >
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> 𝜌(𝑍) = inf{𝜌1(𝑋) + 𝜌2(𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and 𝑍 = 𝑋 + 𝑌 }
> inf{𝜌1(𝑋) + 𝜌2(𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and |𝑍| = 𝑈*𝑍 = 𝑈*𝑋 + 𝑈*𝑌 }
> inf{𝜌1(𝑈*𝑋) + 𝜌2(𝑈

*𝑌 ) : 𝑋 ∈ ℰ , 𝑌 ∈ ℱ and |𝑍| = 𝑈*𝑋 + 𝑈*𝑌 }
> inf{𝜌1(𝑇 ) + 𝜌2(𝑆) : 𝑇 ∈ ℰ , 𝑆 ∈ ℱ and |𝑍| = 𝑇 + 𝑆} = 𝜌(|𝑍|)

and this proves (iv).
In order to check (i), we choose 𝐴,𝐵 ∈ ℰ+, 𝐴 6 𝐵. By Lemma 2.1, the identity 𝐴 = 𝑉 𝐵𝑉 *

holds for some 𝑉 ∈ ℳ1. Let 𝛼 = 𝜌(𝐵). Then for each 𝜀 > 0 there exist operators 𝑋𝜀 ∈ ℰ and
𝑌𝜀 ∈ ℱ such that

𝐵 = 𝑋𝜀 + 𝑌𝜀, 𝛼 6 𝜌1(𝑋𝜀) + 𝜌2(𝑌𝜀) < 𝛼+ 𝜀.

Then 𝐴 = 𝑉 (𝑋𝜀 + 𝑌𝜀)𝑉
* and by Lemma 3.1 we have

𝜌(𝐴) 6 𝜌1(𝑉 𝑋𝜀𝑉
*) + 𝜌2(𝑉 𝑌𝜀𝑉

*) 6 𝜌1(𝑋𝜀) + 𝜌2(𝑌𝜀).

By an arbitrary choice of the number 𝜀 > 0 this completes the proof.

Proposition 4.1. Let ℰ, ℱ be ideal spaces on (ℳ, 𝜏) and 𝒢 = ℰ + ℱ . If the mappings
𝜌1 : ℰ → [0,+∞] and 𝜌2 : ℱ → [0,+∞] satisfy condition (v) (respectively, (vi)), then the map-
ping 𝜌 : 𝒢 → [0,+∞] defined by formula (2) also satisfies condition (v) (respectively, (vi)).

Example 4.1. The identity ℰ + ℱ = ̃︁ℳ holds for ℰ = ℳ and ℱ = ̃︁ℳ0 [16]. The topology
𝑡𝜏 can be defined by means of an ideal 𝐹 -norm

𝜌𝜏 (𝑋) = inf
𝑡>0

max{𝑡, 𝜇𝑡(𝑋)}, 𝑋 ∈ ̃︁ℳ.

For 𝑍 ∈ ̃︁ℳ we define (cf. formula (2))

𝜌(𝑍) = inf{‖𝑋‖+ 𝜌𝜏 (𝑌 ) : 𝑋 ∈ ℳ, 𝑌 ∈ ̃︁ℳ0 and 𝑍 = 𝑋 + 𝑌 }.

Then 𝜌 satisfies conditions (iv) and (v). The restriction 𝜌|̃︁ℳ+ satisfies conditions (i)–(iii).

Thus, the mapping 𝜌 : ̃︁ℳ → R+ is an ideal 𝐹 -norm majorizing 𝜌𝜏 . Since

‖𝑋‖ = lim
𝑡→0+

𝜇𝑡(𝑋) = sup
𝑡>0

𝜇𝑡(𝑋) > 𝜌𝜏 (𝑋) for each 𝑋 ∈ ℳ,

we have 𝜌(𝑍) 6 2𝜌𝜏 (𝑍) for each 𝑍 ∈ ̃︁ℳ.

Remark 4.1. Let ℰ, ℱ be ideal spaces on0 (ℳ, 𝜏) and 𝒢 = ℰ ∩ ℱ . If mappings 𝜌1 : ℰ →
[0,+∞] and 𝜌2 : ℱ → [0,+∞] satisfy one of conditions (i)–(vi), then the mapping 𝜌 : 𝒢 →
[0,+∞] defined by the formula 𝜌(𝑍) = max{𝜌1(𝑍), 𝜌2(𝑍)} for each 𝑍 ∈ 𝒢 satisfies this condition
as well.
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