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AZARIN LIMITING SETS OF FUNCTIONS AND

ASYMPTOTIC REPRESENTATION OF INTEGRALS

K.G. MALYUTIN, T.I. MALYUTINA, T.V. SHEVTSOVA

Abstract. In the paper we consider integrals of form

𝑏∫︁
𝑎

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡 ,

where 𝜙(𝑟) is a smooth increasing function on the semi-axis [0,∞) such that lim
𝑟→+∞

𝜙(𝑟) =

∞ . We find a precise information on their asymptotic behavior and we prove an analogue of
Riemann-Lebesgue lemma for trigonometric integrals. By applying this lemma, we succeed
to obtain the asymptotic formulae for integrals with an absolutely continuous function.
The proposed method of obtaining asymptotic formulae differs from classical method like
Laplace method, applications of residua, saddle-point method, etc. To make the presen-
tation more solid, we mostly restrict ourselves by the kernels exp[𝑖 ln𝑝(𝑟𝑡)]. Appropriate
smoothness conditions for the function 𝑓(𝑡) allow us to obtain many-terms formulae. The
properties of the integrals and the methods of obtaining asymptotic estimates differ in the
cases 𝑝 ∈ (0, 1), 𝑝 = 1, 𝑝 > 1. As 𝑝 ∈ (0, 1), the asymptotic expansions are obtained by
another method, namely, by expanding the kernel into a series. We consider the cases,
when as an absolutely continuous function 𝑓(𝑡), we take a product of a power function 𝑡𝜌

and the Poisson kernel or the conjugate Poisson kernel for the half-plane and as the inte-
gration set, the imaginary semi-axis serves. The real and imaginary parts of these integrals
are harmonic functions in the complex plane cut along the positive semi-axis. We find the
Azarin limiting sets for such functions.

Keywords: Riemann-Lebesgue lemma, trigonometric integral, asymptotic formula, Pois-
son kernel, harmonic function, Azarin limiting set.
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1. Introduction

In the paper we consider the integrals of the form:

𝑏∫︁
𝑎

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡,

where 𝜙(𝑟) is a smooth increasing function on the half-line [0,∞) such that

lim
𝑟→+∞

𝜙(𝑟) = ∞,

and obtain sharp description of their asymptotic behavior.
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The kernel exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] is rather peculiar. For instance, in three-volumes monograph by

E. Riestinš [1]–[3], where, in particular the integrals
𝑏∫︀
𝑎

𝑓(𝑡)𝐾(𝑟𝑡) 𝑑𝑡 were considered, the asymp-

totic expansions of the integrals with the above kernels were not studied. We prove an analogue
of Riemann-Lebesgue lemma for trigonometric integrals, see Lemma 1. This lemma allows us to
obtain single-term asymptotic formulae for the integrals with an absolutely continuous function
𝑓(𝑡), see Theorems 1, 2, 3. We note that a proposed method for obtaining asymptotic formu-
lae differs from classical method like the Laplace method, application of residues, saddle-point
method and others described in monograph by M.A. Evgrafov [4].

To achieve a better completeness of the presentation, we mostly restrict ourselves by the
kernels exp[𝑖 ln𝑝(𝑟𝑡)]. The corresponding smoothness conditions for the function 𝑓(𝑡) allow us
to obtain many-terms formulae, see Theorem 4. The properties of the integrals and the ways
of obtaining asymptotic estimates differ in the cases 𝑝 ∈ (0, 1), 𝑝 = 1, 𝑝 > 1. As 𝑝 ∈ (0, 1),
the asymptotic expansions are obtained by expanding the kernel into an asymptotic series,
Theorem 5. Then we study particular functions taking the product of 𝑡𝜌 by the Poisson kernel
or by the adjoint Poisson kernel for the half-plane as 𝑓(𝑡), and as interval of integration we
take the ray [0,∞). The real and imaginary parts of these integrals are denoted by 𝑢𝑘(𝑧),
𝑘 = 3, 4, 5, 6, are harmonic functions in the complex plane cut along the positive semi-axis.

An important characteristics of the growth of a subharmonic and, in particular, harmonic
function 𝑢(𝑧) is its Azarin limiting setFr𝑢 [5]. This is a limiting set of the family of the functions
𝑢𝑡(𝑧) = 𝑢(𝑡𝑧)/𝑡𝜌 (𝜌 is the order of 𝑢) as 𝑡 → +∞ in the topology of the Schwarz space of
tempered distributions. In the case 𝑝 ∈ (0, 1), we find the Azarin limiting of the functions 𝑢𝑘(𝑧).
Azaring limiting set possesses more information on the behavior of subharmonic functions
in the vicinity of the infinity than the indicator. A general theory provides a theorem on
characterization of Azarin limiting sets and ensures the existence of the subharmonic functions
with a prescribed limiting set. However, we provide examples of particular functions of irregular
growth, for which we calculate Azarin limiting set. Up to now, asymptotic estimates have been
constructed for the functions of completely regular growth. Such functions approximate well
some subharmonic functions with zeroes on a single ray. We provide such functions. In this way,
we describe a wide class of subharmonic functions of irregular growth with a known asymptotic
behavior. We mention, that asymptotic formulae for entire functions of completely regular
growth were provided in book by B.Ya. Levin [6]. Entire functions of completely regular growth
are studied quite well, they arise in many works and have various applications. However, modern
studies on completeness and representations by series in functional spaces, on problems in the
theory of analytic continuation, on problems in theory of infinite order differential operators
and operators of convolution type require a thorough study of entire functions possessing no
regular behavior. This is why the developing of methods for solving problems related with
finding extremal values for main asymptotic characteristics for the growth of entire functions
in very general and natural classes is topical. Recently, there appeared many papers devoted
to this subject; here we mention a joint work by G.G. Braichev and V.B. Sherstykov [7] and a
work by V.B. Sherstykov [8].

2. On analogue of Riemann-Lebesgue theorem

We begin with an analogue of Riemann–Lebesgue lemma [9] on tending to the zero of the
Fourier coefficients of an arbitrary integrable function.

Lemma 1. Let 𝑓(𝑡) ∈ 𝐿1([𝑎, 𝑏]), 0 6 𝑎 < 𝑏 < +∞, and let 𝜙(𝑟) be an increasing twice
differentiable function on the half-line [0,+∞) such that

lim
𝑟→+∞

𝜙(𝑟) = ∞ lim
𝑟→+∞

𝑟2𝜙′′(𝑟) ln 𝑟

(𝑟𝜙′(𝑟) ln 𝑟 + 𝜙(𝑟))2
= 0 . (1)
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Then

lim
𝑟→+∞

𝑏∫︁
𝑎

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡 = 0 .

Proof. We observe that if 𝑓(𝑡) ∈ 𝐿1([𝑎, 𝑏]), then the inequality holds:⃒⃒⃒⃒
⃒⃒

𝑏∫︁
𝑎

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6

𝑏∫︁
𝑎

|𝑓(𝑡)| 𝑑𝑡 = ‖𝑓‖1 . (2)

By 𝐸 we denote the set of functions 𝑓(𝑡) ∈ 𝐿1([𝑎, 𝑏]), for which the lemma holds true. It
follows from (1) and (2) that 𝐸 is a closed subset in 𝐿1([𝑎, 𝑏]) in the topology defined by the
norm ‖ · ‖1. It is also obvious that 𝐸 is a linear subspace in the space 𝐿1([𝑎, 𝑏]). This is why,
to prove the lemma, it is sufficient to show that 𝐸 contains at least a set of functions, whose
linear combinations are dense in 𝐿1([𝑎, 𝑏]). We can find many sets of such kind. As an example
we take the set of the functions 𝐶1([𝑎, 𝑏]) continuously differentiable on the segment [𝑎, 𝑏].

Let 𝑓 ∈ 𝐶1([𝑎, 𝑏]) and assume first that 𝑎 > 0. We observe that as 𝑟 > 1/𝑎,

exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡 =
𝑡 𝑑(exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)])

𝑖(𝑟𝑡𝜙′(𝑟𝑡) ln(𝑟𝑡) + 𝜙(𝑟𝑡))
.

Integrating by parts, we obtain:

𝑏∫︁
𝑎

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡 =
𝑓(𝑡)𝑡 exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)]

𝑖(𝑟𝑡𝜙′(𝑟𝑡) ln(𝑟𝑡) + 𝜙(𝑟𝑡))

⃒⃒⃒⃒𝑏
𝑎

− 1

𝑖

𝑏∫︁
𝑎

[︂
𝑓 ′(𝑡)𝑡 + 𝑓(𝑡)

𝑟𝑡𝜙′(𝑟𝑡) ln(𝑟𝑡) + 𝜙(𝑟𝑡)

− 𝑓(𝑡)𝑡(𝑟𝜙′(𝑟𝑡) ln(𝑟𝑡) + 𝑟2𝑡𝜙′′(𝑟𝑡) ln(𝑟𝑡) + 2𝑟𝜙′(𝑟𝑡))

(𝑟𝑡𝜙′(𝑟𝑡) ln(𝑟𝑡) + 𝜙(𝑟𝑡))2

]︂
· exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡 .

It follows from (1) that the right hand of the latter identity tends to zero as 𝑟 → +∞.
If 𝑎 = 0, 𝑓 ∈ 𝐿1([0, 𝑏]), then given 𝜀 > 0, we choose 𝛿 > 0 so that the identity⃒⃒⃒⃒

⃒⃒
𝛿∫︁

0

𝑓(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝜀

is satisfied. Then, taking into consideration identity | exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡)]| = 1, we get:⃒⃒⃒⃒
⃒⃒

𝑏∫︁
0

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡]| 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒

𝛿∫︁
0

+

𝑏∫︁
𝛿

⃒⃒⃒⃒
⃒⃒ 6 𝜀 +

⃒⃒⃒⃒
⃒⃒

𝑏∫︁
𝛿

𝑓(𝑡) exp[𝑖𝜙(𝑟𝑡) ln(𝑟𝑡]| 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ ,

and by the first of the proof we arrive at the statement of the lemma.

Remark 1. As in Riemann-Lebesgue lemma, in Lemma 1, we do not estimate the rate
of the vanishing. This is impossible under the assumption 𝑓 ∈ 𝐿1([𝑎, 𝑏]). Under additional
assumptions for the smoothness of the function 𝑓 , by means of integrating by parts, one can
obtain a more detailed information on the asymptotic behavior of the integral.

Remark 2. A rather wide class of functions obeys restrictions (1). For instance, they hold
for the functions 𝜙(𝑟) = (ln 𝑟)𝜎, 𝜙(𝑟) = 𝑟𝜎, 𝜙(𝑟) = exp(𝑟𝜎) (𝜎 > 0) and so forth.
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3. Asymptotic formulae for integrals

Theorem 1. Let 𝑓(𝑡) be an absolutely continuous function on the segment [𝑎, 𝑏],
0 < 𝑎 < 𝑏 < ∞, 𝜌 ∈ R, and a function 𝜙(𝑟) satisfies condition (1). Then

𝑏∫︁
𝑎

𝑓(𝑡) 𝑑(𝑡𝜌 cos[𝜙(𝑟𝑡) ln(𝑟𝑡)]) = 𝑏𝜌𝑓(𝑏) cos[𝜙(𝑏𝑟) ln(𝑏𝑟)] − 𝑎𝜌𝑓(𝑎) cos[𝜙(𝑎𝑟) ln(𝑎𝑟)] + 𝑜(1),

𝑏∫︁
𝑎

𝑓(𝑡) 𝑑(𝑡𝜌 sin[𝜙(𝑟𝑡) ln(𝑟𝑡)]) = 𝑏𝜌𝑓(𝑏) sin[𝜙(𝑏𝑟) ln(𝑏𝑟)] − 𝑎𝜌𝑓(𝑎) sin[𝜙(𝑎𝑟) ln(𝑎𝑟)] + 𝑜(1) ,

(3)

as 𝑟 → +∞.

Proof. Let us prove the first formula in (3). Integrating by parts, we obtain:

𝑏∫︁
𝑎

𝑓(𝑡) 𝑑(𝑡𝜌 cos[𝜙(𝑟𝑡) ln(𝑟𝑡)]) = 𝑓(𝑡) 𝑡𝜌 cos[𝜙(𝑟𝑡) ln(𝑟𝑡)]
⃒⃒⃒𝑏
𝑎
−

𝑏∫︁
𝑎

𝑓 ′(𝑡) 𝑡𝜌 cos[𝜙(𝑟𝑡) ln(𝑟𝑡)] 𝑑𝑡 .

Since 𝑓 ′ ∈ 𝐿1([𝑎, 𝑏]), by Lemma 1, the integral in the right hand side converges to zero as
𝑟 → +∞. The second formula in (3) can be proved in the same way.

Let us consider a particular case 𝜙(𝑟) = (ln 𝑟)𝛼, where 𝛼 > 0 is a constant. In this case we
obtain formulae for the limiting set of the integrals in (3) in the direction 𝑟 → +∞.

Theorem 2. Let 𝑓(𝑡) be an absolutely continuous function on the segment [𝑎, 𝑏], 0 < 𝑎 <
𝑏 < ∞, and 𝜌 ∈ R, 𝑝 > 1 be constants. Then the limiting set of the integrals

𝑏∫︁
𝑎

𝑓(𝑡) 𝑑(𝑡𝜌 cos[(ln(𝑟𝑡))𝑝]),

𝑏∫︁
𝑎

𝑓(𝑡) 𝑑(𝑡𝜌 sin[(ln(𝑟𝑡))𝑝])

in the direction 𝑟 → +∞ coincides with the segment

[−𝑎𝜌|𝑓(𝑎)| − 𝑏𝜌|𝑓(𝑏)|, 𝑎𝜌|𝑓(𝑎)| + 𝑏𝜌|𝑓(𝑏)|] .

The proof of this theorem is based on the following lemma.

Lemma 2. Let 𝜙 be a 𝑇 -periodic continuous function, 𝑝 > 1, 𝐴 = 𝜙([0, 𝑇 )), 𝑎, 𝑏 be arbitrary
numbers, 0 < 𝑎 < 𝑏 < ∞. Then the limiting set of the function (𝜙((𝑥 + 𝑎)𝑝), 𝜙((𝑥 + 𝑏)𝑝)):
(−𝑎,+∞) → R2 as 𝑥 → +∞ coincides with the Cartesian square 𝐴× 𝐴.

Proof. Let 𝑓(𝑥) =
(︁
𝑥

1
𝑝 + 𝑐

)︁𝑝
, then for 𝑥 > |𝑐|𝑝

𝑓 ′(𝑥) =

(︂
1 +

𝑐

𝑥
1
𝑝

)︂𝑝−1

= 1 +
𝑐(𝑝− 1)

𝑥
1
𝑝

+ . . . .

We fix a number 𝑥 ∈ [0, 𝑇 ) and define a sequence 𝑥𝑘 by the formula

𝑥𝑘 = (𝑥 + 𝑘𝑇 )
1
𝑝 − 𝑎, (𝑥𝑘 + 𝑎)𝑝 = 𝑥 + 𝑘𝑇, 𝑘 ∈ N .

We denote

𝑤𝑘 = (𝑥𝑘 + 𝑏)𝑝 =
(︁

(𝑥 + 𝑘𝑇 )
1
𝑝 + 𝑏− 𝑎

)︁𝑝
= 𝑦𝑘 + 𝑗(𝑘)𝑇 ,

where 𝑗(𝑘) ∈ N, 𝑦𝑘 ∈ [0, 𝑇 ).
By the Lagrange formula we get:

𝑤𝑘+1 − 𝑤𝑘 =
(︁

(𝑥 + (𝑘 + 1)𝑇 )
1
𝑝 + 𝑏− 𝑎

)︁𝑝
−
(︁

(𝑥 + 𝑘𝑇 )
1
𝑝 + 𝑏− 𝑎

)︁𝑝
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=𝑇

(︃
1 +

𝑏− 𝑎

(𝑥 + (𝑘 + 𝜃)𝑇 )
1
𝑝

)︃𝑝−1

= 𝑇

(︃
1 +

(𝑏− 𝑎)(𝑝− 1)

(𝑥 + (𝑘 + 𝜃)𝑇 )
1
𝑝

+ . . .

)︃
=𝑇 + ∆𝑘, 𝜃 ∈ (0, 1) .

It is clear that

∆𝑘 = 𝑇

(︃
(𝑏− 𝑎)(𝑝− 1)

(𝑥 + (𝑘 + 𝜃)𝑇 )
1
𝑝

+
(𝑏− 𝑎)(𝑝− 1)(𝑝− 2)

2(𝑥 + (𝑘 + 𝜃)𝑇 )2/𝑝
+ . . .

)︃
∼ 𝑇

(𝑏− 𝑎)(𝑝− 1)

(𝑥 + (𝑘 + 𝜃)𝑇 )
1
𝑝

, 𝑘 → ∞ .

Hence, the sequence ∆𝑘 possesses the properties:
1) ∆𝑘 → 0 as 𝑘 → ∞, ∆𝑘 > 0,

2)
∞∑︀
𝑘=1

∆𝑘 = ∞,

3) if 𝑤𝑘 = 𝑦𝑘 + 𝑗(𝑘)𝑇 , 𝑗(𝑘) ∈ N, 𝑦𝑘 ∈ [0, 𝑇 ), then

𝑤𝑘+1 = 𝑦𝑘 + ∆𝑘 + (𝑗(𝑘) + 1)𝑇 . (4)

It follows from Properties 1), 2), 3) that the limiting set of the sequence 𝑦𝑘 as 𝑘 → ∞ is the
left-closed interval [0, 𝑇 ).

Indeed, let 𝜀 > 0 be an arbitrary number and 𝑦 ∈ [0, 𝑇 ). We denote 𝜀1 = min{𝜀, 𝑇 − 𝑦}.
Then 𝜀1 > 0. Let 𝑘0 be a number such that as 𝑘 > 𝑘0, the inequality holds ∆𝑘 < 𝜀1. By the
definition, 𝑦𝑘0 ∈ [0, 𝑇 ). It follows from (4) that

𝑤𝑘0+𝑚 = 𝑦𝑘0 + ∆𝑘0 + ∆𝑘0+1 + · · · + ∆𝑘0+𝑚−1 + (𝑗(𝑘0) + 𝑚)𝑇 ,

for each 𝑚 ∈ N. The divergence of the series ∆𝑘0 + ∆𝑘0+1 + . . . implies that there exists a
minimal 𝑚 such that the inequality 𝑦𝑘0 + ∆𝑘0 + · · · + ∆𝑘0+𝑚−1 > 𝑇 + 𝑦 holds. Then

𝑦𝑘0 + ∆𝑘0 + · · · + ∆𝑘0+𝑚−1 = 𝑇 + 𝑦 + 𝛿 ,

where 0 < ∆𝑘0+𝑚−1 < 𝜀1.
It is obvious that 0 < 𝑦 + 𝛿 < 𝑇 . Then

𝑤𝑘0+𝑚 = 𝑦𝑘0+𝑚 + (𝑗(𝑘0) + 𝑚 + 1)𝑇, 𝑦𝑘0+𝑚 = 𝑦 + 𝛿 .

Since 0 < 𝛿 < 𝜀1 < 𝜀, and 𝜀 > 0 is an arbitrary number, then 𝑦 belongs to the limiting set of
the sequence 𝑦𝑘. Since the number 𝑦 is arbitrary chosen in the left-closed interval [0, 𝑇 ), this
completes the proof.

Theotrm 2 follows Lemma 2 if we let 𝑥 = ln 𝑟 and observe that ln(𝑟𝑎) = ln 𝑟 + ln 𝑎.

Theorem 3. Let 𝑓(𝑡) be an absolutely continuous function on the segment [𝑎, 𝑏], 0 < 𝑎 <
𝑏 < ∞, and 𝑝 > 1. Then as 𝑟 → +∞,

𝑏∫︁
𝑎

𝑓(𝑡) cos[ln𝑝(𝑟𝑡)] 𝑑𝑡 =
1

𝑝 ln𝑝−1 𝑟
[𝑏𝑓(𝑏) sin[ln𝑝(𝑏𝑟)] − 𝑎𝑓(𝑎) sin[ln𝑝(𝑎𝑟)]] +

𝑜(1)

ln𝑝−1 𝑟
,

𝑏∫︁
𝑎

𝑓(𝑡) sin[ln𝑝(𝑟𝑡)] 𝑑𝑡 =
1

𝑝 ln𝑝−1 𝑟
[𝑎𝑓(𝑎) cos[ln𝑝(𝑎𝑟)] − 𝑏𝑓(𝑏) cos[ln𝑝(𝑏𝑟)]] +

𝑜(1)

ln𝑝−1 𝑟
.

(5)

In particular, the limiting set of the functions

𝑝 ln𝑝−1 𝑟

𝑏∫︁
𝑎

𝑓(𝑡) cos[ln𝑝(𝑟𝑡)] 𝑑𝑡, 𝑝 ln𝑝−1 𝑟

𝑏∫︁
𝑎

𝑓(𝑡) sin[ln𝑝(𝑟𝑡)] 𝑑𝑡

in the direction 𝑟 → +∞ is the segment

[−𝑎|𝑓(𝑎)| − 𝑏|𝑓(𝑏)|, 𝑎|𝑓(𝑎)| + 𝑏|𝑓(𝑏)|].
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This theorem can be proved in the same way as Theorems 1, 2.
If 𝑓(𝑡) possesses several derivatives, we can repeat integration by parts and we obtain the

following theorem.

Theorem 4. Let a function 𝑓(𝑡) possesses an absolutely continuous (𝑘 − 1)th derivative
𝑓 (𝑘−1)(𝑡) on [𝑎, 𝑏], 0 < 𝑎 < 𝑏 < ∞, 𝑘 > 1, and let 𝑝 > 1. Then

𝑏∫︁
𝑎

𝑓(𝑡) cos(ln 𝑟𝑡)𝑝 𝑑𝑡 =

⌊ 𝑘−1
2

⌋∑︁
𝑚=0

(−1)𝑚
𝑡Φ2𝑚(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
sin(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

⌊ |𝑘−2|
2

⌋∑︁
𝑚=0

(−1)𝑚
𝑡Φ2𝑚+1(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
cos(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

+
𝑜(1)

(ln 𝑟)𝑘(𝑝−1)
, 𝑟 → +∞ ,

(6)

where

Φ𝑚(𝑡) = 𝐿𝑚[𝑓(𝑡)], 𝐿[𝑓(𝑡)] =
1

𝑝

𝑑

𝑑𝑡

𝑡𝑓(𝑡)

(ln 𝑟𝑡)𝑝−1
.

Proof. Let us prove that

𝑏∫︁
𝑎

𝑓(𝑡) cos(ln 𝑟𝑡)𝑝 𝑑𝑡 =

𝑘−1
2∑︁

𝑚=0

(−1)𝑚
𝑡Φ2𝑚(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
sin(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

+

𝑘−2
2∑︁

𝑚=0

(−1)𝑚
𝑡Φ2𝑚+1(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
cos(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

+ (−1)
𝑘−1
2

𝑏∫︁
𝑎

𝑡Φ𝑘(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
𝑑 [cos(ln 𝑟𝑡)𝑝]

(7)

for odd 𝑘, while for even 𝑘 the latter term in the right hand side in (7) reads as

(−1)
𝑘
2

𝑏∫︁
𝑎

𝑡Φ𝑘(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
𝑑 [sin(ln 𝑟𝑡)𝑝] .

Integrating by parts and applying the identity

cos(ln 𝑟𝑡)𝑝 𝑑𝑡 =
𝑡 𝑑 [sin(ln 𝑟𝑡)𝑝]

𝑝(ln 𝑟𝑡)𝑝−1
, sin(ln 𝑟𝑡)𝑝 𝑑𝑡 = −𝑡 𝑑 [cos(ln 𝑟𝑡)𝑝]

𝑝(ln 𝑟𝑡)𝑝−1
, (8)

we obtain
𝑏∫︁

𝑎

𝑓(𝑡) cos(ln 𝑟𝑡)𝑝 𝑑𝑡 =
𝑡Φ0(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
sin(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

−
𝑏∫︁

𝑎

Φ1(𝑡) sin(ln 𝑟𝑡)𝑝 𝑑𝑡 .

This proves the formula (7) as 𝑘 = 1. Suppose that formula (7) is valid for all odd 𝑘 6 𝑚,
while the function 𝑓(𝑡) possesses (𝑚 + 1)th absolutely continuous derivative on the segment
[𝑎, 𝑏]. Integrating twice by parts and applying identity (8), we obtain:

(−1)
𝑚−1

2

𝑏∫︁
𝑎

𝑡Φ𝑚(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
𝑑 [cos(ln 𝑟𝑡)𝑝] = (−1)

𝑚−1
2

𝑡Φ𝑚(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
cos(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

+ (−1)
𝑚+1

2

𝑏∫︁
𝑎

𝑡Φ𝑚+1(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
𝑑 [sin(ln 𝑟𝑡)𝑝]
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= (−1)
𝑚+1

2
𝑡Φ𝑚+1(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
sin(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

+ (−1)
𝑚−1

2
𝑡Φ𝑚(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
cos(ln 𝑟𝑡)𝑝

⃒⃒⃒⃒𝑏
𝑎

+ (−1)
𝑚+1

2

𝑏∫︁
𝑎

𝑡Φ𝑚+2(𝑡)

𝑝(ln 𝑟𝑡)𝑝−1
𝑑 [cos(ln 𝑟𝑡)𝑝] .

Thus, formula (7) is valid also for 𝑘 = 𝑚 + 2. This proves it for all odd 𝑘 > 1. The proof of
even 𝑘 is similar. Formula (6) follows (7) since

Φ𝑘(𝑡) =
𝑂(1)

(ln 𝑟)(𝑘+1)(𝑝−1)
, 𝑟 → +∞ .

Remark 3. It is clear that an infinitely differentiable function 𝑓(𝑡) satisfies asymptotic for-
mula (6) for each 𝑘.

In the case 𝑝 ∈ (0, 1), asymptotic expansion for the integral is obtained not by integration
by parts, but by expanding the kernel.

Theorem 5. Let 𝑓(𝑡) ∈ 𝐿1([𝑎, 𝑏]), 0 < 𝑎 < 𝑏 < ∞ and 𝑝 ∈ (0, 1). Then as 𝑟 > max{𝑏, 1/𝑎},
the expansion holds true:

𝑏∫︁
𝑎

𝑓(𝑡) exp(𝑖𝜆(ln 𝑟𝑡)𝑝) 𝑑𝑡 = exp(𝑖𝜆 ln𝑝 𝑟)

(︃
𝛼0 +

∞∑︁
𝑘=1

∞∑︁
𝑛=0

𝛼𝑛,𝑘

(ln 𝑟)𝑘(1−𝑝)+𝑛

)︃
, (9)

where

𝛼0 =

𝑏∫︁
𝑎

𝑓(𝑡) 𝑑𝑡, 𝛼𝑛,𝑘 =
𝑖𝑘𝜆𝑘

𝑘!
𝑐𝑛,𝑘

𝑏∫︁
𝑎

𝑓(𝑡)(ln 𝑡)𝑛+𝑘 𝑑𝑡 ,

and the coefficients 𝑐𝑛,𝑘 are determined by the expansion(︂
1

𝑥
((1 + 𝑥)𝑝 − 1)

)︂𝑘

=
∞∑︁

𝑛=−𝑘+1

𝑐𝑛,𝑘 𝑥
𝑛 .

The double series in formula (9) is absolutely convergent for sufficiently large 𝑟. Expansion (9)
is true as an asymptotic expansion for 𝑎 = 0 and∫︁

0

𝑡−𝜀|𝑓(𝑡)| 𝑑𝑡 < ∞

for some 𝜀 > 0. This expansion holds as asymptotic expansion also in the case

𝑏 = ∞,

∞∫︁
𝑡𝜀|𝑓(𝑡)| 𝑑𝑡 < ∞ .

Proof. We employ the expansion of the function 𝑒𝑥 into the Taylor series and the identity

exp (𝑖𝜆(ln 𝑟𝑡)𝑝) = exp (𝑖𝜆 ln𝑝 𝑟) exp

(︂
𝑖𝜆 ln𝑝−1 𝑟 ln 𝑡

(︂
ln 𝑟

ln 𝑡

(︂
1 +

ln 𝑡

ln 𝑟

)︂𝑝

− 1

)︂)︂
to obtain

𝑏∫︁
𝑎

𝑓(𝑡) exp(𝑖𝜆(ln 𝑟𝑡)𝑝) 𝑑𝑡
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= exp (𝑖𝜆 ln𝑝 𝑟)

⎛⎝𝛼0 +
∞∑︁
𝑘=1

𝑖𝑘𝜆𝑘

ln𝑘(1−𝑝) 𝑟

𝑏∫︁
𝑎

𝑓(𝑡) ln𝑘 𝑡

(︂
ln 𝑟

ln 𝑡

(︂
1 +

ln 𝑡

ln 𝑟

)︂𝑝

− 1

)︂𝑘
⎞⎠ 𝑑𝑡 .

Denoting 𝑥 = ln 𝑡/ln 𝑟, we obtain expansion (9). The absolute convergence of the series is
implied by the inequality | ln 𝑡| < | ln 𝑟|, which holds as 𝑟 > max{𝑏, 1/𝑎}. The final part of the
theorem follows the fact that the convergence of the integral∫︁

0

𝑡−𝜀|𝑓(𝑡)| 𝑑𝑡 < ∞

⎛⎝ ∞∫︁
𝑡𝜀|𝑓(𝑡)| 𝑑𝑡 < ∞

⎞⎠
implies the convergence of the integral∫︁

0

𝑓(𝑡) (ln 𝑡)𝑘 𝑑𝑡 < ∞

⎛⎝ ∞∫︁
𝑓(𝑡) (ln 𝑡)𝑘 𝑑𝑡 < ∞

⎞⎠
for each 𝑘 > 0.

Remark 4. The coefficients 𝑐𝑛,𝑘 can be written in a closed form if we employ the binomial
theorem for ((1 + 𝑥)𝑝 − 1)𝑘 and then expand the function (1 + 𝑥)𝑚𝑝 into the Taylor series. As
a result, for all integer 𝑘 > 1 and 𝑛 > −𝑘 + 1 we get

𝑐𝑛,𝑘 =
𝑘∑︁

𝑚=1

(−1)𝑘−𝑚 𝑘!

𝑚!(𝑘 −𝑚)!

𝑚𝑝(𝑚𝑝− 1) · · · (𝑚𝑝− (𝑛 + 𝑘) + 1)

(𝑛 + 𝑘)!
.

4. Azarin limiting set for some functions

We consider the functions

𝑢1(𝑧, 𝑝, 𝜌, 𝜆) =
𝑟 sin 𝜃

𝜋

∞∫︁
0

𝜏 𝜌 exp(𝑖𝜆| ln 𝜏 |𝑝)
𝜏 2 − 2𝜏𝑟 cos 𝜃 + 𝑟2

𝑑𝜏 =
𝑟𝜌 sin 𝜃

𝜋

∞∫︁
0

𝑡𝜌 exp(𝑖𝜆| ln 𝑡𝑟|𝑝)
𝑡2 − 2𝑡 cos 𝜃 + 1

𝑑𝑡 , (10)

𝑢2(𝑧, 𝑝, 𝜌, 𝜆) =
1

𝜋

∞∫︁
0

𝜏 𝜌−1𝑟(𝑟 − 𝜏 cos 𝜃)

𝜏 2 − 2𝜏𝑟 cos 𝜃 + 𝑟2
exp(𝑖𝜆| ln 𝜏 |𝑝) 𝑑𝜏

=
𝑟𝜌

𝜋

∞∫︁
0

(1 − 𝑡 cos 𝜃)𝑡𝜌−1

𝑡2 − 2𝑡 cos 𝜃 + 1
exp(𝑖𝜆| ln 𝑡𝑟|𝑝) 𝑑𝑡 ,

(11)

𝑢3(𝑧, 𝑝, 𝜌, 𝜆) = Re𝑢1(𝑧, 𝑝, 𝜌, 𝜆), 𝑢4(𝑧, 𝑝, 𝜌, 𝜆) = Im𝑢1(𝑧, 𝑝, 𝜌, 𝜆),

𝑢5(𝑧, 𝑝, 𝜌, 𝜆) = Re𝑢2(𝑧, 𝑝, 𝜌, 𝜆), 𝑢6(𝑧, 𝑝) = Im𝑢2(𝑧, 𝑝, 𝜌, 𝜆),

where 𝑧 = 𝑟𝑒𝑖𝜃, 𝜌 ∈ (0, 1), 𝑝 > 0, 𝜆 > 0. As 𝑝 = 1, we omit the modulus sign to obtain a
simpler function.

The following integrals are calculated by means of complex integration:

sin 𝜃

𝜋

∞∫︁
0

𝑡𝜌 𝑑𝑡

𝑡2 − 2𝑡 cos 𝜃 + 1
=

sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
, 𝜃 ∈ (0, 2𝜋), 𝜌 ∈ (0, 1) , (12)

1

𝜋

∞∫︁
0

(1 − 𝑡 cos 𝜃)𝑡𝜌−1 𝑑𝑡

𝑡2 − 2𝑡 cos 𝜃 + 1
=

cos 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
, 𝜃 ∈ (0, 2𝜋), 𝜌 ∈ (0, 1) . (13)
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Theorem 5 can be applied for the cases 𝑎 = 0, 𝑏 = ∞,

𝑓(𝑡) =
sin 𝜃

𝜋

𝑡𝜌

𝑡2 − 2𝑡 cos 𝜃 + 1
or 𝑓(𝑡) =

1

𝜋

(1 − 𝑡 cos 𝜃)𝑡𝜌−1

𝑡2 − 2𝑡 cos 𝜃 + 1
,

where 𝜃 ∈ (0, 2𝜋), 𝜌 ∈ (0, 1). As 𝑝 ∈ (0, 1), 𝜃 ∈ (0, 2𝜋), 𝜌 ∈ (0, 1), 𝜆 > 0 according this theorem
we obtain the relations

𝑢3(𝑧, 𝑝, 𝜌, 𝜆) =
sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 cos(𝜆 ln𝑝 𝑟) +

𝑂(1)𝑟𝜌

ln1−𝑝 𝑟
, 𝑟 → +∞ , (14)

𝑢4(𝑧, 𝑝, 𝜌, 𝜆) =
sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 sin(𝜆 ln𝑝 𝑟) +

𝑂(1)𝑟𝜌

ln1−𝑝 𝑟
, 𝑟 → +∞ ,

and similar formulae for 𝑢5(𝑧, 𝑝, 𝜌, 𝜆), 𝑢6(𝑧, 𝑝, 𝜌, 𝜆) with sin 𝜌(𝜋 − 𝜃) replaced by cos 𝜌(𝜋 − 𝜃).
Namely,

𝑢5(𝑧, 𝑝, 𝜌, 𝜆) =
cos 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 cos(𝜆 ln𝑝 𝑟) +

𝑂(1)𝑟𝜌

ln1−𝑝 𝑟
, 𝑟 → +∞ ,

𝑢6(𝑧, 𝑝, 𝜌, 𝜆) =
cos 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 sin(𝜆 ln𝑝 𝑟) +

𝑂(1)𝑟𝜌

ln1−𝑝 𝑟
, 𝑟 → +∞ .

The Azarin limiting sets for the introduced functions are described by the relations

Fr 𝑢3 = Fr 𝑢4 =

{︂
𝛼

sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 : 𝛼 ∈ [−1, 1]

}︂
, (15)

Fr 𝑢5 = Fr 𝑢6 =

{︂
𝛼

cos 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 : 𝛼 ∈ [−1, 1]

}︂
for 𝜌 ∈ (0, 1), 𝑝 ∈ (0, 1), 𝜆 > 0.

As an example, let us prove relation (15). Let 𝛼 ∈ [−1, 1] be a fixed number. We introduce
the notations

𝑢𝑡(𝑧) =
𝑢3(𝑡𝑧, 𝑝)

𝑡𝜌
, 𝑡𝑛 = exp

(︃(︂
1

𝜆
(arccos𝛼 + 2𝜋𝑛)

)︂ 1
𝑝

)︃
.

It follows from (14) that for each fixed 𝑟 > 0 the asymptotic identity holds:⃒⃒⃒⃒
𝑢𝑡𝑛(𝑟𝑒𝑖𝜃) − 𝛼

sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌
⃒⃒⃒⃒

=
sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌
⃒⃒⃒⃒
cos (𝜆 ln𝑝 𝑡𝑛𝑟) − 𝛼 +

𝑂(1)𝑟𝜌

ln1−𝑝 𝑡𝑛𝑟

⃒⃒⃒⃒
, 𝑛 → ∞ .

(16)

It follows from the definition of sequence 𝑡𝑛 and an asymptotic identity

(𝑎 + 𝑥𝑛)𝑝 = 𝑥𝑝
𝑛 +

𝑝𝑎

𝑥1−𝑝
𝑛

+ 𝑂

(︂
1

𝑥2−𝑝
𝑛

)︂
, 𝑥𝑛 → ∞ ,

that for each fixed 𝑟 > 0

lim
𝑛→∞

(cos (𝜆 ln𝑝 𝑡𝑛𝑟) − 𝛼) = 0 .

By (16) this implies that in the circle {𝑧 : |𝑧| 6 𝑅}, the sequence 𝑢𝑡𝑛(𝑧) converges uniformly
to the function

𝑤𝛼(𝑟𝑒𝑖𝜃) = 𝛼
sin 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
𝑟𝜌 .

Hence, the convergence also holds in the sense of the topology of the space of tempered distribu-
tions on the plane. The definition of the limiting set implies that {𝑤𝛼(𝑧) : 𝛼 ∈ [−1, 1]} ⊂ Fr𝑢3.
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Since in each sequence 𝑡𝑛 → +∞ we can select a subsequence of the form

𝑡𝑛𝑘
= exp

(︃(︂
arccos𝛼𝑛𝑘

+ 2𝜋𝑛𝑘

𝜆

)︂ 1
𝑝

)︃
,

where 𝑛𝑘 are natural, 𝛼𝑛𝑘
→ 𝛼 ∈

[︀
− 𝜋

2
, 𝜋
2

]︀
, there are no other functions in the limiting set.

If ℎ𝑘(𝜃) is the Phragmén-Lindelöf indicator of the function 𝑢𝑘(𝑧, 𝑝), that is,

ℎ𝑘(𝜃) = lim sup
𝑟→+∞

𝑢𝑘(𝑟𝑒𝑖𝜃, 𝑝)

𝑟𝜌
,

then the identities hold:

ℎ3(𝜃) = ℎ4(𝜃) =
| sin 𝜌(𝜋 − 𝜃)|

sin 𝜌𝜋
, ℎ5(𝜃) = ℎ6(𝜃) =

| cos 𝜌(𝜋 − 𝜃)|
sin 𝜌𝜋

.

The structure of asymptotic formulae changes essentially while passing to the cases 𝑝 = 1 or
𝑝 > 1.

Theorem 6. Let 𝑝 = 1, 𝜌 ∈ (0, 1), 𝜆 > 0. Then

𝑢3(𝑧, 1, 𝜌, 𝜆) = [𝐴𝜌(𝜆, 𝜃) cos(𝜆 ln 𝑟) −𝐵𝜌(𝜆, 𝜃) sin(𝜆 ln 𝑟)]𝑟𝜌 , (17)

𝑢4(𝑧, 1, 𝜌, 𝜆) = [𝐵𝜌(𝜆, 𝜃) cos(𝜆 ln 𝑟) + 𝐴𝜌(𝜆, 𝜃) sin(𝜆 ln 𝑟)]𝑟𝜌 ,

𝑢5(𝑧, 1, 𝜌, 𝜆) = [𝐶𝜌(𝜆, 𝜃) cos(𝜆 ln 𝑟) −𝐷𝜌(𝜆, 𝜃) sin(𝜆 ln 𝑟)]𝑟𝜌 ,

𝑢6(𝑧, 1, 𝜌, 𝜆) = [𝐷𝜌(𝜆, 𝜃) cos(𝜆 ln 𝑟) + 𝐶𝜌(𝜆, 𝜃) sin(𝜆 ln 𝑟)]𝑟𝜌 ,

where

𝐴𝜌(𝜆, 𝜃) = Re
sin(𝜌 + 𝑖𝜆)(𝜋 − 𝜃)

sin(𝜌 + 𝑖𝜆)𝜋
, 𝐵𝜌(𝜆, 𝜃) = Im

sin(𝜌 + 𝑖𝜆)(𝜋 − 𝜃)

sin(𝜌 + 𝑖𝜆)𝜋
,

while similar formulae for the quantities 𝐶𝜌(𝜆, 𝜃) and 𝐷𝜌(𝜆, 𝜃) are obtained via replacing sin(𝜌+
𝑖𝜆)(𝜋 − 𝜃) by cos(𝜌 + 𝑖𝜆)(𝜋 − 𝜃), that is,

𝐶𝜌(𝜆, 𝜃) = Re
cos(𝜌 + 𝑖𝜆)(𝜋 − 𝜃)

sin(𝜌 + 𝑖𝜆)𝜋
, 𝐷𝜌(𝜆, 𝜃) = Im

cos(𝜌 + 𝑖𝜆)(𝜋 − 𝜃)

sin(𝜌 + 𝑖𝜆)𝜋
.

Proof. First we observe that the written identities imply immediately that the function
𝑢5(𝑧, 1, 𝜌, 𝜆) obeys the formulae:

Fr 𝑢5(𝑧, 1, 𝜌, 𝜆) = {(𝐶𝜌(𝜆, 𝜃) sin𝜙−𝐷𝜌(𝜆, 𝜃) cos𝜙)𝑟𝜌 : 𝜙 ∈ [0, 2𝜋]} , (18)

ℎ5(𝜃) =
√︁

𝐶2
𝜌(𝜆, 𝜃) + 𝐷2

𝜌(𝜆, 𝜃).

Similar formulae also hold for 𝑢3(𝑧, 1, 𝜌, 𝜆), 𝑢4(𝑧, 1, 𝜌, 𝜆), 𝑢6(𝑧, 1, 𝜌, 𝜆).
Let us prove one of these identities. We have:

𝑢3(𝑧, 1, 𝜌, 𝜆) =
𝑟𝜌 sin 𝜃

𝜋
Re 𝑟𝑖𝜆

∞∫︁
0

𝑡𝜌+𝑖𝜆

𝑡2 − 2𝑡 cos 𝜃 + 1
𝑑𝑡 .

In view of formula (12), by the method of analytic continuation in the parameter 𝜌 we obtain
the expression

∞∫︁
0

𝑡𝜌+𝑖𝜆

𝑡2 − 2𝑡 cos𝜆 + 1
𝑑𝑡 =

𝜋

sin 𝜃

sin(𝜋 − 𝜃)(𝜌 + 𝑖𝜆)

sin 𝜋(𝜌 + 𝑖𝜆)
,

and this implies formula (17). Identity (18) is obtained by the same arguing as for identity
(15).

Let us consider the functions 𝑢𝑘(𝑧, 𝑝, 𝜌, 𝜆) as 𝑝 > 1. We shall prove an asymptotic formula
for the function 𝑢1(𝑧, 𝑝, 𝜌, 𝜆) only.
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Theorem 7. Let 𝑝 > 1, 𝜌 ∈ (0, 1), 𝜆 > 0. Then as 𝑝 ∈ (1, 2] we have

𝑢1(𝑧, 𝑝, 𝜌, 𝜆) =
sin 𝜃

𝜋𝑟

0∫︁
−∞

exp [(𝜌 + 1)𝜏 + 𝑖𝜆|𝜏 |𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 +
sin 𝜃

𝜋𝑟

𝑖∞∫︁
0

exp [(𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏

+ 𝑟𝜌𝑒𝑖𝜌𝜃
∞∑︁
𝑛=0

exp(2𝜋𝑖𝜌𝑛) exp(𝑖𝜆(ln 𝑟 + 𝑖(𝜃 + 2𝜋𝑛))𝑝)

− 𝑟𝜌𝑒−𝑖𝜌𝜃

∞∑︁
𝑛=0

exp(2𝜋𝑖𝜌(𝑛 + 1)) exp(𝑖𝜆(ln 𝑟 + 𝑖(2𝜋(𝑛 + 1) − 𝜃))𝑝) ,

and each of the above series is convergent and asymptotic. As 𝑝 > 2, if the straight line Im 𝜏 = 𝑠
contains no poles of the denominator, the formula holds true:

𝑢1(𝑧, 𝑝, 𝜌, 𝜆) =
sin 𝜃

𝜋𝑟

0∫︁
−∞

exp [(𝜌 + 1)𝜏 + 𝑖𝜆|𝜏 |𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 +
sin 𝜃

𝜋𝑟

𝑖𝑠∫︁
0

exp [(𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏

+
sin 𝜃

𝜋𝑟

𝑖𝑠+∞∫︁
𝑖𝑠

exp [(𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏

+ 𝑟𝜌𝑒𝑖𝜌𝜃
∑︁

06𝑛< 𝑠−𝜃
2𝜋

exp(2𝜋𝑖𝜌𝑛 + 𝑖𝜆(ln 𝑟 + 𝑖(𝜃 + 2𝜋𝑛))𝑝)

− 𝑟𝜌𝑒𝑖𝜌𝜃
∑︁

06𝑛< 𝑠+𝜃
2𝜋

−1

exp(2𝜋𝑖𝜌(𝑛 + 1) + 𝑖𝜆(ln 𝑟 + 𝑖(2𝜋(𝑛 + 1) − 𝜃))𝑝) ,

and each term in the written sums tends to zero as 𝑧 → ∞ faster than any power of 𝑧. If in
the above integrals we expand the kernel(︂

𝑒2𝜏

𝑟2
− 2

𝑒𝜏

𝑟
cos 𝜃 + 1

)︂−1

into the powers of 𝑟−1, then a term-wise integration gives the expansion of the corresponding
integral in an asymptotic series in powers of 𝑟−1.

Proof. We make the change 𝑡 = exp 𝑣 in integral (10). Then

𝑢1(𝑧, 𝑝, 𝜌, 𝜆) =
𝑟𝜌 sin 𝜃

𝜋

∞∫︁
−∞

exp [(𝜌 + 1)𝑣 + 𝑖𝜆|𝑣 + ln 𝑟|𝑝]
𝑒2𝑣 − 2𝑒𝑣 cos 𝜃 + 1

𝑑𝑣 .

After the change 𝑣 = 𝜏 − ln 𝑟 we obtain

𝑢1(𝑧, 𝑝, 𝜌, 𝜆) =
sin 𝜃

𝜋𝑟

∞∫︁
−∞

exp [(𝜌 + 1)𝜏 + 𝑖𝜆|𝜏 |𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 .

The denominator in the latter integral vanishes at the points

𝜏 = ln 𝑟 ± 𝑖𝜃 + 2𝑛𝜋, 𝑛 = 0,±1,±2, . . . .

Let 𝐿𝑠 be a rectangle with vertices at the points 𝜃, 𝑅, 𝑅 + 𝑖𝑠, 𝑖𝑠, and the number 𝑠 is chosen
so that the boundary of the rectangle contains no aforementioned zeroes. The function

𝑓(𝜏) =
exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1
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is holomorphic inside the rectangle 𝐿𝑠 except finitely many poles 𝜏𝑘. By the theorems on the
residues

1

2𝜋𝑖

∫︁
𝜕𝐿𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 =
∑︁
𝜏𝑘∈𝐿𝑠

Res𝜏𝑘𝑓(𝜏) ,

where 𝜕𝐿𝑠 is the boundary of the rectangle 𝐿𝑠 passed in the positive direction. Since all poles
of the function 𝑓 are simple, then

Res𝜏𝑘𝑓(𝜏) =
exp ((𝜌 + 1)𝜏𝑘 + 𝑖𝜆𝜏 𝑝𝑘 )

𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

.

If 𝜏𝑘 = 𝜏1,𝑛 = ln 𝑟 + 𝑖(𝜃 + 2𝑛𝜋), then

Res𝜏1,𝑛𝑓(𝜏) =
𝑟𝜌+1𝑒𝑖(𝜌+1)𝜃 exp(2𝑛𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝1,𝑛)

2𝑒𝑖𝜃(𝑒𝑖𝜃 − cos 𝜃)
=

𝑟𝜌+1𝑒𝑖𝜌𝜃 exp(2𝑛𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝1,𝑛)

2𝑖 sin 𝜃
.

If 𝜏𝑘 = 𝜏2,𝑛 = ln 𝑟 + 𝑖(2(𝑛 + 1)𝜋 − 𝜃), then

Res𝜏2,𝑛𝑓(𝜏) =
𝑟𝜌+1𝑒−𝑖(𝜌+1)𝜃 exp(2(𝑛 + 1)𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝2,𝑛)

2𝑒−𝑖𝜃(𝑒−𝑖𝜃 − cos 𝜃)
=

𝑟𝜌+1𝑒−𝑖𝜌𝜃 exp(2(𝑛 + 1)𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝2,𝑛)

2𝑖 sin 𝜃
.

Hence,∫︁
𝜕𝐿𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 cos 𝜃 𝑒𝜏

𝑟
+ 1

𝑑𝜏 =𝜋
∑︁

06𝑛< 𝑠−𝜃
2𝜋

𝑟𝜌+1𝑒𝑖𝜌𝜃 exp(2𝑛𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝1,𝑛)

sin 𝜃

− 𝜋
∑︁

06𝑛< 𝑠+𝜃
2𝜋

−1

𝑟𝜌+1𝑒−𝑖𝜌𝜃 exp(2(𝑛 + 1)𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝2,𝑛)

sin 𝜃
,

where the sum over the empty set is adopted to the zero. We denote by 𝐼1 the segment [0, 𝑅],
by 𝐼2 we denote [𝑅,𝑅+𝑖𝑠], by 𝐼3 we denote the segment [0, 𝑖𝑠], and by 𝐼4 we denote the segment
[𝑖𝑠, 𝑅 + 𝑖𝑠]. Then∫︁

𝜕𝐿𝑠

𝑓(𝜏) 𝑑𝜏 =

∫︁
𝐼1

𝑓(𝜏) 𝑑𝜏 +

∫︁
𝐼2

𝑓(𝜏) 𝑑𝜏 −
∫︁
𝐼3

𝑓(𝜏) 𝑑𝜏 −
∫︁
𝐼4

𝑓(𝜏) 𝑑𝜏 .

If 𝜏 = 𝑅 + 𝑖𝑢, where 0 6 𝑢 6 𝑠, and the number 𝑅 is large enough, then 𝜏 𝑝 = 𝑅𝑝(1 + 𝑖𝑢𝑅−1)𝑝.
This implies Im 𝜏 𝑝 > 0. Moreover,⃒⃒⃒⃒

𝑒2𝜏

𝑟2
− 2 cos 𝜃

𝑒𝜏

𝑟
+ 1

⃒⃒⃒⃒
>

(︂
𝑒𝑅

𝑟
− 1

)︂2

.

This is why ⃒⃒⃒⃒
⃒⃒ ∫︁
𝐼2

𝑓(𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒⃒ 6 𝑒(𝜌+1)𝑅(︁

𝑒𝑅

𝑟
− 1
)︁2 𝑠, lim

𝑅→+∞

∫︁
𝐼2

𝑓(𝜏) 𝑑𝜏 = 0 .
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This implies
∞∫︁
0

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 =

𝑖𝑠∫︁
0

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 +

𝑖𝑠+∞∫︁
𝑖𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏

+ 𝜋𝑟𝜌+1𝑒𝑖𝜌𝜃
∑︁

06𝑛< 𝑠−𝜃
2𝜋

exp(2𝑛𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝1,𝑛)

sin 𝜃

− 𝑟𝜌+1𝑒−𝑖𝜌𝜃𝜋
∑︁

06𝑛< 𝑠+𝜃
2𝜋

−1

exp(2(𝑛 + 1)𝜋𝜌𝑖 + 𝑖𝜆𝜏 𝑝2,𝑛)

sin 𝜃
,

𝑢1(𝑧, 𝑝, 𝜌, 𝜆) =
sin 𝜃

𝜋

0∫︁
−∞

exp [(𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 +
sin 𝜃

𝜋

𝑖𝑠∫︁
0

exp [(𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏

+
sin 𝜃

𝜋

𝑖𝑠+∞∫︁
𝑖𝑠

exp [(𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝]
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 +

+ 𝑟𝜌𝑒𝑖𝜌𝜃
∑︁

06𝑛< 𝑠−𝑝
2𝜋

exp(2𝜋𝑖𝜌𝑛 + 𝑖𝜆(ln 𝑟 + 𝑖(𝜃 + 2𝜋𝑛))𝑝)

− 𝑟𝜌𝑒−𝑖𝜌𝜃
∑︁

06𝑛< 𝑠+𝑝
2𝜋

−1

exp(2𝜋𝑖𝜌(𝑛 + 1) + 𝑖𝜆(ln 𝑟 + 𝑖(2𝜋(𝑛 + 1) − 𝜃))𝑝) .

(19)

First we consider the case 𝑝 > 2. If 𝜏 = 𝑢 + 𝑖𝑠, then

| exp((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)| = exp((𝜌 + 1)𝑢 + 𝜙(𝑢)) , (20)

where 𝜙(𝑢) = Re 𝑖𝜆(𝑢 + 𝑖𝑠)𝑝. We have:

𝜙(𝑢) =Re

(︂
𝑖𝜆𝑢𝑝

(︂
1 +

𝑖𝑠

𝑢

)︂𝑝)︂
=Re

(︂
𝑖𝜆𝑢𝑝

(︂
1 + 𝑝

𝑖𝑠

𝑢
− 𝑝(𝑝− 1)

2

𝑠2

𝑢2
+ . . .

)︂)︂
∼ −𝜆𝑝𝑠𝑢𝑝−1, 𝑢 → +∞ .

(21)

We also observe that if we choose 𝑠 as follows: 𝑠 = 𝜋 + 2𝑚𝜋 as cos 𝜃 > 0 and 𝑠 = 2𝑚𝜋 as
cos 𝜃 < 0, then for 𝜏 = 𝑢 + 𝑖𝑠 the estimate holds:⃒⃒⃒⃒

𝑒2𝜏

𝑟2
− 2 cos 𝜃

𝑒𝜏

𝑟
+ 1

⃒⃒⃒⃒
>

𝑒2𝑢

𝑟2
+ 1 . (22)

We have: (︂
𝑒2𝜏

𝑟2
− 2 cos 𝜃

𝑒𝜏

𝑟
+ 1

)︂−1

=

(︂(︂
𝑒𝜏

𝑟
− 𝑒𝑖𝜃

)︂(︂
𝑒𝜏

𝑟
− 𝑒−𝑖𝜃

)︂)︂−1

=
1

2𝑖 sin 𝜃

⎛⎝ 1

𝑒−𝑖𝜃
(︁

1 − 𝑒𝜏+𝑖𝜃

𝑟

)︁ − 1

𝑒𝑖𝜃
(︁

1 − 𝑒𝜏−𝑖𝜃

𝑟

)︁
⎞⎠ .

(23)

Employing the identity
1

1 − 𝑧
= 1 + 𝑧 + · · · + 𝑧𝑛 +

𝑧𝑛+1

1 − 𝑧
and (23), we get:

1
𝑒2𝜏

𝑟2
− 2 cos 𝜃 𝑒𝜏

𝑟
+ 1

=
𝑛∑︁

𝑘=0

sin((𝑘 + 1)𝜃)

sin 𝜃

𝑒𝑘𝜏

𝑟𝑘
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+
1

sin 𝜃

𝑒(𝑛+1)𝜏

𝑟𝑛+1

sin((𝑛 + 2)𝜃) − sin((𝑛 + 1)𝜃) 𝑒
𝜏

𝑟
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

.

Employing this identity, we obtain:

sin 𝜃

𝜋

𝑖𝑠+∞∫︁
𝑖𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 =
1

𝜋

𝑛∑︁
𝑘=0

sin((𝑘 + 1)𝜃)

𝑟𝑘

𝑖𝑠+∞∫︁
𝑖𝑠

𝑒𝑘𝜏 exp((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)) 𝑑𝜏

+
1

𝜋𝑟𝑛+1

𝑖𝑠+∞∫︁
𝑖𝑠

(︀
sin((𝑛 + 2)𝜃) − 𝑒𝜏

𝑟
sin((𝑛 + 1)𝜃)

)︀
𝑒(𝑛+1)𝜏 exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)

𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 .

In what follows, 𝑠 is chosen in the above way. Then by relations (20), (21) and inequality (22)
we conclude that all written above integrals converge. Moreover, if 𝑟 > 1 and

𝑅𝑛 =
1

𝜋

𝑖𝑠+∞∫︁
𝑖𝑠

(︀
sin((𝑛 + 2)𝜃) − 𝑒𝜏

𝑟
) sin((𝑛 + 1)𝜃)

)︀
𝑒(𝑛+1)𝜏 exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)

𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 ,

we apply the above relations to obtain:

𝑅𝑛 6
1

𝜋

∞∫︁
0

(1 + 𝑒𝑢)𝑒(𝑛+1)𝑢 exp((𝜌 + 1)𝑢 + 𝜙(𝑢)) 𝑑𝑢 = 𝑐𝑛 < ∞ .

This yields that the series

1

𝜋

𝑛∑︁
𝑘=0

sin((𝑘 + 1)𝜃)

𝑟𝑘

𝑖𝑠+∞∫︁
𝑖𝑠

𝑒𝑘𝜏 exp((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)) 𝑑𝜏

is asymptotic in powers of 𝑟−1 for the integral

sin 𝜃

𝜋

𝑖𝑠+∞∫︁
𝑖𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 (cos 𝜃) 𝑒

𝜏

𝑟
+ 1

𝑑𝜏 .

We note that the statements of the theorem on other integrals can be proved in the same way.
We consider the expression

𝑏𝑛,1(𝑧) = exp(2𝜋𝑛𝜌𝑖 + 𝑖𝜆(ln 𝑟 + 𝑖𝜃 + 2𝜋𝑛)𝑝) .

We have:

|𝑏𝑛,1(𝑧)| = exp

(︂
Re 𝑖𝜆(ln 𝑟)𝑝

(︂
1 + 𝑖

𝜃 + 2𝜋𝑛

ln 𝑟

)︂𝑝)︂
= exp(−(1 + 𝑜(1))𝜆𝑝(𝜃 + 2𝜋𝑛)(ln 𝑟)𝑝−1), 𝑟 → +∞ .

This implies that 𝑏𝑛+1,1(𝑧) = 𝑜(1) 𝑏𝑛,1(𝑧).
In the case 𝑝 > 2, the quantity 𝑏𝑛,1(𝑧) decays faster than any power of 𝑧. Moreover,

|𝑏𝑛,1(𝑧)| = exp

(︂
Re 𝑖𝑒

𝑖𝜋𝑝
2 𝜆(𝜃 + 2𝜋𝑛)𝑝

(︂
1 − 𝑖

ln 𝑟

𝜃 + 2𝜋𝑛

)︂𝑝)︂
.

If 𝑝 ∈ (1, 2), then for sufficiently large 𝑛 the inequality

Re

(︂
𝑖𝑒𝑖𝜋𝑝/2

(︂
1 − 𝑖

ln 𝑟

𝜃 + 2𝜋𝑛

)︂𝑝)︂
6 𝛿 < 0

holds true. This is why for such 𝑝 the series
∞∑︀
𝑛=0

𝑏𝑛,1(𝑧) is convergent.
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If 𝑝 = 2, then

𝑏𝑛,1(𝑧) = exp(2𝜋𝑛𝜌𝑖 + 𝑖𝜆(ln2 𝑟 − (𝜃 + 2𝜋𝑛)2) − 2𝜆 ln 𝑟(𝜃 + 2𝜋𝑛)),

and in this case the series
∞∑︀
𝑛=0

𝑏𝑛,1(𝑧) is also convergent. Similar statements hold for the quantity

𝑏𝑛,2(𝑧) = exp(2𝜋(𝑛 + 1)𝜌𝑖 + 𝑖𝜆(ln 𝑟 + 𝑖(2𝜋(𝑛 + 1) − 𝜃))𝑝) .

We denote by 𝛾𝑠 the contour formed by the ray (−∞, 0), the segment [0, 𝑖𝑠] and the ray
[𝑖𝑠, 𝑖𝑠 + ∞). In the case 𝑝 > 2, we obtain an asymptotic expansion for the function 𝑢1(𝑧, 𝑝) as
follows. We expand the kernel

1
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

into the power series in 𝑟−1 (this series converges as 𝑟 > 𝑒Re 𝜏 ) and we substitute it into the
integral

sin 𝜃

𝜋

∫︁
𝛾𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 (cos 𝜃) 𝑒

𝜏

𝑟
+ 1

𝑑𝜏 .

Integrating then term-by-term, we obtain an asymptotic expansion for the function 𝑢1(𝑧, 𝑝).
We note that in the integrals for the coefficients the integration path can be replaced by the real
axis. Therefore, to obtain an asymptotic expansion, we can avoid employing the contour 𝛾𝑠. It
is needed only to justify the asymptotic expansion. In particular, as 𝑝 > 2, 𝜀 < arg 𝑧 < 2𝜋− 𝜀,
where 𝜀 is an arbitrary positive number, the function 𝑟𝑢1(𝑧, 𝑝) tends to the constant

sin 𝜃

𝜋

∞∫︁
−∞

exp ((𝜌 + 1)𝜏 + 𝑖𝜆|𝜏 |𝑝) 𝑑𝜏 .

uniformly as 𝑧 → ∞.
Let 𝑝 ∈ (1, 2]. We are going to show that in this case

lim
𝑠→+∞

𝑖𝑠+∞∫︁
𝑖𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏 = 0 ,

as 𝑠 tends to infinity passing the values, which we mentioned above.
Indeed, if 𝜏 = 𝑢 + 𝑖𝑠 and 𝑠 takes the mentioned values, then⃒⃒⃒⃒

⃒exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 (cos 𝜃) 𝑒

𝜏

𝑟
+ 1

⃒⃒⃒⃒
⃒ 6exp ((𝜌 + 1)𝑢 + Re 𝑖𝜆(𝑢 + 𝑖𝑠)𝑝)

𝑒2𝑢

𝑟2
+ 1

=
exp

(︀
(𝜌 + 1)𝑢− 𝜆(𝑢2 + 𝑠2)

𝑝
2 sin

(︀
𝑝 arctan 𝑠

𝑢

)︀)︀
𝑒2𝑢

𝑟2
+ 1

.

We obtain:⃒⃒⃒⃒
⃒⃒
𝑖𝑠+∞∫︁
𝑖𝑠

exp ((𝜌 + 1)𝜏 + 𝑖𝜆𝜏 𝑝)
𝑒2𝜏

𝑟2
− 2 𝑒𝜏

𝑟
cos 𝜃 + 1

𝑑𝜏

⃒⃒⃒⃒
⃒⃒ 6

∞∫︁
0

𝑒(𝜌+1)𝑢

𝑒2𝜏

𝑟2
+ 1

exp
(︁
−𝜆(𝑢2 + 𝑠2)

𝑝
2 sin

(︁
𝑝 arctan

𝑠

𝑢

)︁)︁
𝑑𝑢.

The first factor in the integral is an integrable function on the ray [0,∞), while the second
factor is less than one and tends to zero as 𝑠 → +∞. By the dominated convergence theorem,
the integral tends to zero. Passing to the limit as 𝑠 → ∞ in identity (19), in the case 𝑝 ∈ (1, 2]
we obtain a formula for 𝑢1(𝑧, 𝑝) given in the formulation of the theorem. One can also show
that the obtained series are not only converging but also asymptotic.
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Similar formulae can be written for other functions 𝑢𝑘(𝑧, 𝑝, 𝜌, 𝜆). It is also possible to write
more precise asymptotic formulae. Such formulae are obtained by applying a corresponding
technique of transformation of the integrals in the complex plane. We note that to study the
functions 𝑢𝑘(𝑧, 𝑝, 𝜌, 𝜆) as 𝑝 > 1, Theorem 4 is not applicable since all non-integral terms vanish.
We see that the structure of the asymptotic behavior of the functions 𝑢𝑘(𝑧, 𝑝, 𝜌, 𝜆) differ for the
cases 𝑝 ∈ (0, 1), 𝑝 = 1, 𝑝 > 1. In particular, as 𝑝 > 1, the function 𝑢𝑘(𝑧, 𝑝, 𝜌, 𝜆) have different
growth rate on different rays 𝜃1, 𝜃2, 0 < 𝜃1 < 𝜃2 6 𝜋. This is not the case as 𝑝 ∈ (0, 1]. The
behavior of the functions 𝑢𝑘(𝑧, 𝑝, 𝜌, 𝜆) as 𝑝 ∈ (0, 1) and as 𝑝 = 1 differs as well. This can be
seen be the structure of the Azarin limiting sets of such functions.

5. Asymptotic formulae for irregularly growing entire functions

Let 𝑓(𝑧) be an entire function of order 𝜌 ∈ (0, 1) with positive zeroes 𝑧𝑘, 𝑘 = 1, 2, . . . . We
shall consider the functions ln(1− 𝑧

𝑧𝑘
) in the plane cut along the ray [0,+∞) fixing the branch

by the positivity of the function for negative real 𝑧. Then

ln 𝑓(𝑧) =
∞∑︁
𝑘=1

ln

(︂
1 − 𝑧

𝑧𝑘

)︂
=

∞∫︁
0

ln
(︁

1 − 𝑧

𝑡

)︁
𝑑𝑛(𝑡) =

∞∫︁
0

𝑧

𝑧 − 𝑡

𝑛(𝑡)

𝑡
𝑑𝑡 ,

where 𝑛(𝑡) =
∑︀
𝑧𝑘6𝑡

1 is the counting functions of the zeroes of 𝑓 . We have:

ln |𝑓(𝑧)| =

∞∫︁
0

𝑟(𝑟 − 𝑡 cos 𝜃)

𝑡2 − 2𝑡𝑟 cos 𝜃 + 𝑟2
𝑛(𝑡)

𝑡
𝑑𝑡, 𝑧 = 𝑟𝑒𝑖𝜃 .

Let
𝜙(𝑡) = 𝑡𝜌(𝑎0 + 𝑎1 cos(𝜆 ln 𝑡) + 𝑏1 sin(𝜆 ln 𝑡)), 𝑡 > 0,

where 𝜌 ∈ (0, 1), 𝑎0 > 0, 𝜆 > 0, and 𝑎1, 𝑏1 are arbitrary real numbers. If

𝑎0 >

√︃
1 +

𝜆2

𝜌2

√︁
𝑎21 + 𝑏21,

then 𝜙(𝑡) is a strictly increasing function. Indeed,

𝜙′(𝑡) = 𝜌𝑡𝜌−1

[︂
𝑎0 +

(︂
𝑎1 +

𝜆

𝜌
𝑏1

)︂
cos(𝜆 ln 𝑡) +

(︂
𝑏1 −

𝜆

𝜌
𝑎1

)︂
sin(𝜆 ln 𝑡)

]︂
,

and by the elementary inequality

𝐶1 sin𝛼 + 𝐶2 cos𝛼 > −
√︁

𝐶2
1 + 𝐶2

2

we obtain

𝜙′(𝑡) > 𝜌𝑡𝜌−1

⎡⎣𝑎0 −
√︃(︂

𝑎1 +
𝜆

𝜌
𝑏1

)︂2

+

(︂
𝑏1 −

𝜆

𝜌
𝑎1

)︂2
⎤⎦ = 𝜌𝑡𝜌−1

(︃
𝑎0 −

√︃
1 +

𝜆2

𝜌2

√︁
𝑎21 + 𝑏21

)︃
> 0 .

In the definition of the function 𝑓 we let 𝑛(𝑡) = ⌊𝜙(𝑡)⌋; as in Theorem 4, here we employ a
standard notation for the integer part of a number. We observe that in fact, we deal not with a
particular entire function 𝑓 , but with a family of entire functions depending on five parameters
𝜌, 𝑎0, 𝜆, 𝑎1 and 𝑏1.

The Azarin limiting set Fr 𝑓 for an entire function 𝑓 is defined as the Azarin limiting set of
a subharmonic function ln |𝑓(𝑧)|. Theorem 6 shows that the Azaring limiting set Fr 𝑓 and the
indicator ℎ𝑓 (𝜃) of the function 𝑓 in the mentioned family are determined by the identities

Fr 𝑓 =

{︂(︂
𝑎0

cos 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
+ (𝑎1𝐶𝜌(𝜆, 𝜃) + 𝑏1𝐷𝜌(𝜆, 𝜃)) cos𝜙+
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+ (−𝑎1𝐷𝜌(𝜆, 𝜃) + 𝑏1𝐶𝜌(𝜆, 𝜃)) sin𝜙

)︂
𝑟𝜌 : 𝜙 ∈ [0, 2𝜋]

}︂
,

ℎ𝑓 (𝜃) = 𝑎0
cos 𝜌(𝜋 − 𝜃)

sin 𝜌𝜋
+
√︁
𝑎21 + 𝑏21

√︁
𝐶2

𝜌(𝜆, 𝜃) + 𝐷2
𝜌(𝜆, 𝜃) .

These relations hold also without the assumption

𝑎0 >

√︃
1 +

𝜆2

𝜌2

√︁
𝑎21 + 𝑏21 ,

but in the general case, the function 𝑓 is meromorphic.
If we take an auxiliary function of the form:

𝜙(𝑡) = 𝑡𝜌

(︃
𝑎0 +

𝑛∑︁
𝑘=1

(𝑎𝑘 cos(𝜆𝑘 ln 𝑡) + 𝑏𝑘 sin(𝜆𝑘 ln 𝑡))

)︃
, 𝑡 > 0,

and construct then the function 𝑓(𝑧) by the proposed scheme, then by means of Theorem 6 we
can obtain an asymptotic formula for ln |𝑓(𝑧)|. In the case, when 𝜙(𝑡) is an increasing function,
the function 𝑓 is entire. In this way one can obtain asymptotic formulae for a wide class of
irregularly growing entire functions. It would be interesting to compare such formulae with
general results of work [7], but this issue requires an independent study.
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