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DIFFERENCE SCHEMES FOR PARTIAL DIFFERENTIAL

EQUATIONS OF FRACTIONAL ORDER

A.K. BAZZAEV, I.D. TSOPANOV

Abstract. Nowadays, fractional differential equations arise while describing physical sys-
tems with such properties as power nonlocality, long-term memory and fractal property.
The order of the fractional derivative is determined by the dimension of the fractal. Frac-
tional mathematical calculus in the theory of fractals and physical systems with memory
and non-locality becomes as important as classical analysis in continuum mechanics.

In this paper we consider higher order difference schemes of approximation for differential
equations with fractional-order derivatives with respect to both spatial and time variables.
Using the maximum principle, we obtain apriori estimates and prove the stability and the
uniform convergence of difference schemes.

Keywords: initial-boundary value problem, fractional differential equations, Caputo frac-
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Introduction

Integrals and derivatives of fractional order and fractional integro-differential equations are
widely used in modern studies in theoretical physics, mechanics and applied mathematics.
A fractional mathematical calculus is a powerful tool for describing physical systems with a
memory and nonlocality. Many processes in complex systems possess a nonlocality and a long-
term memory. Fractional integral and fractional differential operators allows us to describe
some of these characteristics. The employing of the fractional mathematical analysis can be
useful for obtaining dynamical models, in which integro-differential operators in time and spatial
variables describe a power long-term memory and a spatial nonlocality of complex media and
processes [1].

The presence of the fractional derivative in time in an equation is interpreted as a reflection of
a special property of the described process, a memory, or, for stochastic processes, a non-Markov
property. The fractional derivative in time usually reflects a self-similar inhomogeneity of a
structure or of a media, in which the process is going on. Such structures are called fractals. At
that, the order of the fractional derivative is determined by the dimension of the fractal. Simple
formulae relating the dimension of the fractal 𝑑𝑓 with the order of the fractional derivative were
obtained in work [2]. At present, partial differential equations with fractional derivatives in time
and spatial variables are treated as mathematical models of physical processes [3]–[6].

To describe the structure of disordered media and the processes in them, the fractal theory is
widely used, see [7]–[11]. Examples of disordered media are porous solids. At that, the fractals
can be a porous space, the skeleton of a rock, the surface of the skeleton of a rock, etc. In the

A.K. Bazzaev, I.D. Tsopanov, Difference schemes for partial differential equations of frac-
tional order.

c○ Bazzaev A.K., Tsopanov I.D. 2019.
Submitted May 31, 2018.

19

https://doi.org/10.13108/2019-11-2-19


20 A.K. BAZZAEV, I.D. TSOPANOV

case the cracks and solid porous blocks are homogeneous mutually penetrating continuums, the
filtration of a homogeneous liquid is usually described by the Barenblatt-Zheltov model, see
[12]. If the space is a fractal with Hausdorff-Besicovitch dimension 𝑑𝑓 embedded into a solid
media of dimension 𝑑, 𝑑 > 𝑑𝑓 , 𝑑 = 2, 3, the motion of an impurity in the flow of a homogeneous
liquid is described by a fractional order differential equation, see [13]. A fractional differential
equation arises also in studying physical processes of stochastic transfer, see [8].

Boundary value problems for fractional order differential equations arise also in studying of
many physical processes [14]–[15], in studying filtration of a liquid in a very porous (fractal)
media [16].

A transfer described by operators with fractional derivatives at large distances from the
sources gives rise to another behavior of small concentrations in comparison with a classic dif-
fusion. These small concentrations or far tails of distributions at fractional derivative exhibit a
power decay that insists on reconsidering the present concepts on a security based on exponen-
tial decay rate, see [17], [18]. As it was mentioned in [19], a fractional calculus in the fractal
theory and systems with memory becomes as important as a classical analysis in the continuum
mechanics.

There exist rather many evidences of the fact that a diffusion processes exhibit a nonlinear
growth of a mean-square deviation [20]. The violation are observed in many situations, in
particular, in motion of particles in plasma [21], a turbulent diffusion of particles [22]. The
mathematical models of such processes are described by partial differential equations with
fractional derivatives in time and spatial variables [3]–[5]. In work [6], a numerical modelling
of an anomalous diffusion in a multi-dimensional domain is made by means of the approximate
factorization method. The Dirichlet initial-boundary value problem for a partial differential
equations with fractional derivatives in time and spatial variables, there was studied an implicit
scheme based on the approximate factorization method and the stability of the scheme was
proved for the considered class of the problems.

In work [23], a special semi-discrete scheme based on the Galerkin method was considered
as well as a completely discrete scheme based on the Crank-Nicolson method for the Dirich-
let initial-boundary value problem for a one-dimensional parabolic equations with fractional
Riemann-Liouville derivative of order 𝛼 ∈ (1, 2) in a spatial variable:

𝑢𝑡 −𝒟𝛼
𝑥𝑢 = 𝑓, 𝑥 ∈ 𝐷 = (0, 1), 0 < 𝑡 6 𝑇,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 0 < 𝑡 6 𝑇, 𝑢(𝑥, 0) = 𝑣, 𝑥 ∈ 𝐷.

There were obtained the estimates for the errors in norms of 𝐿2(𝐷) and 𝐻
𝛼
2 (𝐷) for the semi-

discrete scheme and in the norm of 𝐿2(𝐷) for the completely discrete scheme. The variational
formulation of Petrov-Galerkin type for one-dimensional boundary value problems with a frac-
tional Riemann-Liouville derivative of order 𝛼 ∈

(︀
3
2
, 2
)︀

was considered in work [24]. In work
[25], there was considered an equation with fractional in time derivative subject to the Dirichlet
condition:

𝜕𝛼
0𝑡𝑢− ∆𝑢 = 𝑓, 𝑥 ∈ Ω, 0 < 𝑡 6 𝑇, 0 < 𝛼 < 1,

𝑢
⃒⃒
Γ

= 0, 0 < 𝑡 6 𝑇, Ω + Γ = Ω, 𝑢(𝑥, 0) = 𝑣, 𝑥 ∈ Ω.

Here a discrete analogue of the fractional derivative in time was obtained; the order of the
approximation was 𝑂(𝜏 2−𝛼). The convergence of the constructed scheme was proven in the
norm of 𝐿2(Ω).

In works [26] and [27] there were considered locally-one-dimensional schemes (LOS) for a
fractional order diffusion equation in a 𝑝-dimensional parallelepiped with Dirichlet and Robin
conditions, while in [28] the same was made for a fractional heat equation with a concentrated
heat capacity. In these works there was proved the convergence of LOS in the uniform metric
as 1

2
< 𝛼 6 1. In work [29] there were constructed multi-dimensional difference schemes
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for the fractional order diffusion equation and the convergence of the difference schemes was
proved for all 𝛼, 0 < 𝛼 6 1. Work [30] was devoted to considering locally-one-dimensional
difference schemes for a fractional order diffusion equation with variable coefficients in domains
of a complicated shape. The stability and the uniform convergence of locally-one-dimensional
schemes were proved for the considered problem.

It was shown in [31] that the method of energy inequalities can be employed for obtaining
apriori estimates in numerical solving fractional order diffusion equation. In work [32], an
algorithm of extrapolation type was proposed for numerical solving fractional order differential
equations based on the fact that the sequence of approximated solutions possesses an asymptotic
expansion in the step size. Work [33] was devoted to studying existence, uniqueness and
stability of solutions to nonlinear differential equations of fractional order in time. In works
[34]–[35] there were considered fractional order heat equations with Robin boundary conditions.
Work [36] was devoted to a numerical method of second order sharpness for a fractional order
diffusion equation. A numerical algorithm proposed in this work, was based on the classical
Crank-Nicolson method. The convergence of the proposed method was proved. The maximum
principle for a diffusion equation with a fractional in time derivative was established in works
by Yu. Luchko [37]–[40]. The results of these works were employed in works [41], [42] to prove
the maximum principle for a multi-term fractional differential equation. In work [43] there were
constructed difference schemes for partial differential equations with fractional derivatives in
time and spatial variables in one- and multi-dimensional cases. In the multi-dimensional case,
for the considered problems there were constructed locally-one-dimensional schemes. By means
of the maximum principle, apriori estimates were obtained in the uniform metric that implied
the convergence of difference schemes.

In work [44] there was proposed a discrete analogue of the fractional Caputo derivative 𝜕𝛼
0𝑡𝑢,

𝛼 ∈ (0, 1), and it was also shown that functions 𝑢(𝑡) ∈ 𝐶2[0, 𝑡] satisfy the identity

𝜕𝛼
0𝑡𝑗+1

𝑢 = ∆𝛼
0𝑡𝑗+1

𝑢 + 𝑂(𝜏),

where

𝜕𝛼
0𝑡𝑢 =

1

Γ(1 − 𝛼)

𝑡∫︁
0

𝑢̇(𝑥, 𝜂)

(𝑡− 𝜂)𝛼
𝑑𝜂

is a fractional Caputo derivative of order 𝛼, 0 < 𝛼 < 1, 𝑢̇ = 𝜕𝑢/𝜕𝑡, ∆𝛼
0𝑡𝑗+1

𝑢 is a discrete

analogue of the fractional Caputo derivative of order 𝛼, 𝛼 ∈ (0, 1),

∆𝛼
0𝑡𝑗+1

𝑢 =
1

Γ(2 − 𝛼)

𝑗∑︁
𝑠=1

(︀
𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀
𝑢𝑠
𝑡 , 𝑢𝑠

𝑡 =
𝑢𝑠+1 − 𝑢𝑠

𝜏
.

Later, in work [45], the following lemma was proved.

Lemma 1. If 𝑢(𝑡) ∈ 𝐶3[0, 𝑇 ], then

𝜕𝛼
0𝑡𝑗+1

𝑢 = ∆𝛼
0𝑡𝑗+1

𝑢 + 𝑂
(︀
𝜏 2−𝛼

)︀
, 𝛼 ∈ (0, 1). (1)

The present work is devoted to considering difference schemes of higher approximation order
for fractional order differential equations.

1. Fractional order diffusion equation with
fractional derivative in lower order terms

In work [28], implicit schemes and locally-one-dimensional schemes were considered for frac-
tional order diffusion equation subject to Robin condition in a multi-dimensional domain. By
means of the maximum principle, stability and uniform convergence of LOS were proved for
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1
2
< 𝛼 6 1, where 𝛼 was the order of the fractional derivative in time. In work [46], locally-

one-dimensional schemes were constructed for the diffusion equation with fractional derivative
in spatial variables in lower order terms. The stability and uniform convergence of LOS were
proved for 1

2
< 𝛼 6 1.

1.1. Formulation of problem. In a rectangle 𝑄𝑇 = {0 6 𝑥 6 ℓ, 0 < 𝑡 6 𝑇} we consider a
Robin initial-boundary value problem for a fractional order diffusion equation with a fractional
derivative 𝜕𝜈

0𝑥𝑢 in the spatial variable 𝑥 of order 𝜈, 0 < 𝜈 < 1, in the lower order terms:

𝜕𝛼
0𝑡𝑢 =

𝜕

𝜕𝑥

(︂
𝑘(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥

)︂
+ 𝑟(𝑥, 𝑡)𝜕𝛽

0𝑥𝑢− 𝑞(𝑥, 𝑡)𝑢 + 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 , (2)⎧⎪⎨⎪⎩
𝑘(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
= 𝜆−(𝑥, 𝑡)𝑢− 𝜇−(𝑥, 𝑡), 𝑥 = 0, 0 6 𝑡 6 𝑇,

−𝑘(𝑥, 𝑡)
𝜕𝑢

𝜕𝑥
= 𝜆+(𝑥, 𝑡)𝑢− 𝜇+(𝑥, 𝑡), 𝑥 = ℓ, 0 6 𝑡 6 𝑇,

(3)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ 𝐺, (4)

where 0 < 𝑐0 6 𝑘 6 𝑐1, 𝑟 6 0, |𝑟| 6 𝑐2, 𝑞 > 0, 𝜆± > 𝜆* > 0,

𝜕𝛼
0𝑡𝑢 =

1

Γ(1 − 𝛼)

𝑡∫︁
0

𝑢̇(𝑥, 𝜂)

(𝑡− 𝜂)𝛼
𝑑𝜂, 0 < 𝛼 < 1,

𝜕𝛽
0𝑥𝑢 =

1

Γ(1 − 𝛽)

𝑥∫︁
0

𝑢′(𝜉, 𝑡)

(𝑥− 𝜉)𝛽
𝑑𝜉, 0 < 𝛽 < 1,

are the Caputo fractional derivatives of orders 𝛼 and 𝛽; the latter is in the variable 𝑥, and
𝑢̇ = 𝜕𝑢/𝜕𝑡, 𝑢′ = 𝜕𝑢/𝜕𝑥, 𝑐0, 𝑐1, 𝑐2 are positive constants, 𝑄𝑇 = {0 6 𝑥 6 ℓ, 0 6 𝑡 6 𝑇}.

1.2. Difference scheme. In a closed domain 𝑄𝑇 we introduce a uniform grid. A spatial
grid is chosen to be uniform with the step ℎ = ℓ/𝑁 :

𝜔ℎ = {𝑥𝑖 = 𝑖ℎ : 𝑖 = 0, 1, . . . , 𝑁, ℎ = ℓ/𝑁}.
By 𝜔ℎ we denote the set of all interior nodes of the grid 𝜔ℎ. On the segment 0 6 𝑡 6 𝑇 we
choose the uniform grid

𝜔′
𝜏 = {0, 𝑡𝑗+1 = (𝑗 + 1) 𝜏, 𝑗 = 0, 1, . . . , 𝑗0 − 1}.

By 𝜔′
𝜏 we denote the set of the nodes of the grid 𝜔′

𝜏 , for which 𝑡 > 0.
Similar to [47], for equation (2), we are going to obtain a monotone scheme of second order

of approximation in ℎ, for which the maximum principle should hold for all 𝜏 and ℎ. In order
to do this, we consider equation (2) with a perturbed operator

̃︀𝐿 = κ
𝜕

𝜕𝑥

(︂
𝑘(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥

)︂
+ 𝑟(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
− 𝑞(𝑥, 𝑡)𝑢,

namely,

𝜕𝛼
0𝑡𝑢 = ̃︀𝐿𝑢 + 𝑓 = 0, (5)

where κ = 1
1+𝑅

, 𝑅 = 0.5ℎ|𝑟|
𝑘

is a difference Reynolds number.

For a fixed 𝑡 = 𝑡 = 𝑡𝑗+ 1
2
, we approximate the operator ̃︀𝐿 by the difference operator̃︀Λ𝑢 = κ (𝑎𝑢𝑥)𝑥 + 𝑏+𝑎(+1)𝑢𝑥 + 𝑏−𝑎𝑢𝑥 − 𝑑𝑢,

where

𝑎 = 𝐴[𝑘(𝑥 + 𝑖ℎ, 𝑡)], 𝑑 = 𝐹 [𝑞(𝑥 + 𝑖ℎ, 𝑡)], 𝑎(+1) = 𝑎(𝑥 + 𝑖ℎ, 𝑡), 𝑏± = 𝐹 [̃︀𝑟±(𝑥 + 𝑖ℎ, 𝑡)],
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̃︀𝑟± =
𝑟±

𝑘
, 𝑟+ = 0.5(𝑟 + |𝑟|) > 0, 𝑟− = 0.5(𝑟 − |𝑟|) 6 0,

𝐴 and 𝐹 are pattern functionals employed for calculating the coefficients 𝑎, 𝑑 and 𝜙 and ensuring
the second order of the approximation. For instance, we can let 𝑏± = 𝑟±

𝑘
.

With differential problem (2)—(4), we associate an implicit difference scheme:

∆𝛼
0𝑡𝑗+1

𝑦 = Λ𝑦𝑗+1 + Φ𝑗+1, 𝑦(𝑥, 0) = 𝑢0(𝑥), (6)

Λ𝑦 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ𝑦 = (𝑎𝑦𝑥)𝑥 +
𝑟𝑖

Γ(2 − 𝛽)

𝑖∑︁
𝑠=0

(︀
𝑥1−𝛽
𝑖−𝑠+1 − 𝑥1−𝛽

𝑖−𝑠

)︀
𝑦𝑥,𝑠 − 𝑑𝑦, 𝑥 ∈ 𝜔ℎ,

Λ−𝑦 =
𝑎(1)𝑦𝑥,0 − 𝜆−𝑦0

0.5ℎ
, 𝑥 = 0,

Λ+𝑦 = −𝑎(𝑁)𝑦𝑥,𝑁 + 𝜆+𝑦𝑁
0.5ℎ

+ 0.5ℎ𝑟𝑁∆𝛽
0𝑥𝑁−1

𝑦, 𝑥 = ℓ,

Φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜙, 𝑥 ∈ 𝜔ℎ,

𝜇−

0.5ℎ
, 𝑥 = 0,

𝜇+

0.5ℎ
, 𝑥 = ℓ,

where

𝑎(1) = 𝑎(1) +
0.5ℎ2−𝛽

Γ(2 − 𝛽)
𝑟0, 𝑎(𝑁) = 𝑎(𝑁) − 0.5ℎ2−𝛽

Γ(2 − 𝛽)
𝑟𝑁 , 𝜆− = 𝜆− + 0.5ℎ𝑑(0),

𝜆+ = 𝜆+ + 0.5ℎ𝑑(𝑁), 𝜇− = 𝜇− + 0.5ℎ𝑓0, 𝜇+ = 𝜇+ + 0.5ℎ𝑓𝑁 ,

∆𝛼
0𝑡𝑗+1

𝑦 =
1

Γ(2 − 𝛼)

𝑗∑︁
𝑠=0

(︀
𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀
𝑦𝑠𝑡 , 𝑦𝑠𝑡 =

𝑦𝑠+1 − 𝑦𝑠

𝜏
,

∆𝛽
0𝑥𝑁−1

𝑦 =
1

Γ(2 − 𝛽)

𝑁−1∑︁
𝑠=1

(︁
𝑥1−𝛽
𝑁−𝑠+1 − 𝑥1−𝛽

𝑁−𝑠

)︁
𝑦𝑥,𝑠, 𝑦𝑥,𝑠 =

𝑦𝑠 − 𝑦𝑠−1

ℎ
.

As the solution and the data of problem (2)–(4) is smooth enough, by Lemma 1, difference
scheme (6) has the approximation order 𝑂(ℎ2−𝛽 + 𝜏 2−𝛼).

1.3. Stability and uniform convergence of difference scheme. The following theorem
holds.

Theorem 1. Difference scheme (6) is stable with respect to the initial data and the right
hand side and the solution of problem (6) satisfies the apriori estimate

‖𝑦𝑗+1‖𝐶 6 ‖𝑦0‖𝐶 +
1

𝜆* max
0<𝑡′6𝑗𝜏

(︀
|𝜇−(𝑥, 𝑡′)| + |𝜇+(𝑥, 𝑡′)|

)︀
+ Γ(2 − 𝛼)

𝑗∑︁
𝑗′=0

𝜏𝛼‖𝜙𝑗′‖𝐶 , (7)

which implies the convergence of scheme (6) in the uniform metric with the rate 𝑂(ℎ2−𝛽+𝜏 2−𝛼).

Proof. We rewrite difference problem (6) as follows:

∆𝛼
0𝑡𝑗+1

𝑦𝑖 =
(︀
𝑎𝑦𝑗+1

𝑥

)︀
𝑥,𝑖

+ 𝑟𝑖∆
𝛽
0𝑥,𝑖𝑦

𝑗+1 − 𝑑𝑖𝑦
𝑗+1
𝑖 + 𝜙𝑗+1

𝑖 , 𝑖 = 1, . . . , 𝑁 − 1, (8)

∆𝛼
0𝑡𝑗+1

𝑦0 =
𝑎(1)𝑦𝑥,0 − 𝜆−𝑦0

0.5ℎ
+

𝜇−

0.5ℎ
, 𝑥 = 0, (9)

∆𝛼
0𝑡𝑗+1

𝑦𝑁 = −𝑎(𝑁)𝑦𝑥,𝑁 + 𝜆+𝑦𝑁
0.5ℎ

+ 0, 5ℎ𝑟𝑁∆𝛽
0𝑥𝑁−1

𝑦 +
𝜇+

0.5ℎ
, 𝑥 = ℓ, (10)
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𝑦(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ 𝜔ℎ. (11)

We obtain apriori estimate for problem (8)–(11) by means of the maximum principle proved
in [48] for a grid equation of general form:

𝐴(𝑃 ) =
∑︁

𝑄∈III′(𝑃 )

𝐵(𝑃,𝑄)𝑦(𝑄) + 𝐹 (𝑃 ),

where

𝐴(𝑃 ) > 0, 𝐵(𝑃,𝑄) > 0,

𝐷(𝑃 ) = 𝐴(𝑃 ) −
∑︁

𝑄∈III′(𝑃 )

𝐵(𝑃,𝑄)𝑦(𝑄) > 0, (12)

𝑃 , 𝑄 are the nodes of the grid 𝜔ℎ, III′(𝑃 ) is a vicinity of a node 𝑃 not containing the node 𝑃
itself.

By 𝑃 (𝑥, 𝑡′), 𝑥 ∈ 𝜔ℎ, 𝑡 ∈ 𝜔′
𝜏 we denote a note of (𝑝 + 1)-dimensional grid Ω = 𝜔ℎ × 𝜔𝜏 , and

by 𝑆 we denote the boundary of Ω consisting of the nodes 𝑃 (𝑥, 0) as 𝑥 ∈ 𝜔ℎ and the nodes
𝑃 (𝑥, 𝑡𝑗+1) as 𝑡𝑗+1 ∈ 𝜔′

𝜏 and 𝑥 ∈ 𝛾ℎ, 𝑗 = 0, 1, . . . , 𝑗0.
We represent the solution of problem (8) — (11) as the sum

𝑦 =
⋆
𝑦 + 𝑦̊,

where
⋆
𝑦 is the solution of homogeneous equations (8) with inhomogeneous boundary conditions

(11) and homogeneous initial conditions (11):

∆𝛼
0𝑡𝑗+1

⋆
𝑦𝑖 =

(︀
𝑎

⋆
𝑦𝑗+1
𝑥

)︀
𝑥,𝑖

+ 𝑟𝑖∆
𝛽
0𝑥,𝑖

⋆
𝑦𝑗+1 − 𝑑𝑖

⋆
𝑦𝑗+1
𝑖 , 𝑖 = 1, . . . , 𝑁 − 1, (13)

∆𝛼
0𝑡𝑗+1

⋆
𝑦0 =

𝑎(1)
⋆
𝑦𝑥,0 − 𝜆−

⋆
𝑦0

0.5ℎ
+

𝜇−

0.5ℎ
, 𝑥 = 0, (14)

∆𝛼
0𝑡𝑗+1

⋆
𝑦𝑁 = −𝑎(𝑁) ⋆

𝑦𝑥,𝑁 + 𝜆+
⋆
𝑦𝑁

0.5ℎ
+ 0.5ℎ𝑟𝑁∆𝛽

0𝑥𝑁−1

⋆
𝑦 +

𝜇+

0.5ℎ
, 𝑥 = ℓ, (15)

⋆
𝑦(𝑥, 0) = 0, (16)

and 𝑦̊ is the solution of inhomogeneous equations (8) with homogeneous boundary conditions
(11) and inhomogeneous initial conditions (11):

∆𝛼
0𝑡𝑗+1

𝑦̊𝑖 =
(︀
𝑎𝑦̊𝑗+1

𝑥

)︀
𝑥,𝑖

+ 𝑟𝑖∆
𝛽
0𝑥,𝑖𝑦̊

𝑗+1 − 𝑑𝑖
⋆
𝑦𝑗+1
𝑖 − 𝑑𝑖𝑦̊

𝑗+1
𝑖 + 𝜙𝑗+1

𝑖 , 𝑖 = 1, . . . , 𝑁 − 1, (17)

∆𝛼
0𝑡𝑗+1

𝑦̊0 =
𝑎(1)𝑦̊𝑥,0 − 𝜆−𝑦̊0

0.5ℎ
, 𝑥 = 0, (18)

∆𝛼
0𝑡𝑗+1

𝑦̊𝑁 = −𝑎(𝑁)𝑦̊𝑥,𝑁 + 𝜆+𝑦̊𝑁
0.5ℎ

+ 0.5ℎ𝑟𝑁∆𝛽
0𝑥𝑁−1

𝑦̊, 𝑥 = ℓ, (19)

𝑦̊(𝑥, 0) = 𝑢0(𝑥). (20)

We write problem (13)–(16) in the canonical form: at a point 𝑃 (𝑥𝑖, 𝑡𝑗+1), 𝑖 = 1, . . . , 𝑁 − 1:[︂
1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎𝑖+1 + 𝑎𝑖
ℎ2

− 𝑟𝑖
Γ(2 − 𝛽)

1

ℎ𝛽
+ 𝑑𝑖

]︂
⋆
𝑦𝑗+1
𝑖 =

𝑎𝑖+1

ℎ2

⋆
𝑦𝑗+1
𝑖+1 +

[︂
𝑎𝑖
ℎ2

− 𝑟𝑖(2 − 21−𝛽)

Γ(2 − 𝛽)ℎ𝛽

]︂
⋆
𝑦𝑗+1
𝑖−1

− 𝑟𝑖
Γ(2 − 𝛽)ℎ

𝑖−2∑︁
𝑠=1

(︁
−𝑥1−𝛽

𝑖−𝑠+1 + 2𝑥1−𝛽
𝑖−𝑠 − 𝑥1−𝛽

𝑖−𝑠−1

)︁
⋆
𝑦𝑗+1
𝑠 − 𝑟𝑖

Γ(2 − 𝛽)ℎ

(︁
𝑥1−𝛽
𝑖 − 𝑥1−𝛽

𝑖−1

)︁
⋆
𝑦𝑗+1
0

+
(2 − 21−𝛼)

Γ(2 − 𝛼)𝜏𝛼
⋆
𝑦𝑗𝑖 +

1

Γ(2 − 𝛼)𝜏

𝑗−1∑︁
𝑠=1

(︀
−𝑡1−𝛼

𝑗−𝑠+2 + 2𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀
⋆
𝑦𝑠𝑖 + +

1

Γ(2 − 𝛼)𝜏
(𝑡1−𝛼

𝑗+1 − 𝑡1−𝛼
𝑗 )

⋆
𝑦0𝑖 ;
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at a point 𝑃 (𝑥0, 𝑡𝑗+1), 𝑗 = 1, 2, . . .:[︂
1

Γ(2 − 𝛼)𝜏𝛼
+

𝑎(1)

0.5ℎ2
+

𝜆−

0.5ℎ

]︂
⋆
𝑦𝑗+1
0 =

𝑎(1)

0.5ℎ2

⋆
𝑦𝑗+1
0 +

2 − 21−𝛼

Γ(2 − 𝛼)𝜏𝛼
⋆
𝑦𝑗0

+
1

Γ(2 − 𝛼)𝜏

𝑗−2∑︁
𝑠=0

(︀
−𝑡1−𝛼

𝑗−𝑠+1 + 2𝑡1−𝛼
𝑗−𝑠 − 𝑡1−𝛼

𝑗−𝑠−1

)︀
⋆
𝑦𝑠+1
0 +

1

Γ(2 − 𝛼)𝜏
(𝑡1−𝛼

𝑗+1 − 𝑡1−𝛼
𝑗 )

⋆
𝑦00 +

𝜇−

0.5ℎ
;

at a point 𝑃 (𝑥𝑁 , 𝑡𝑗+1), 𝑗 = 1, 2, . . .:[︂
1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎(𝑁)

0.5ℎ
+

𝜆+

0.5ℎ

]︂
⋆
𝑦𝑗+1
𝑁 =

[︂
𝑎(𝑁)

0.5ℎ
+

0.5ℎ𝑟𝑁(21−𝛽 − 1)

Γ(2 − 𝛽)ℎ𝛽

]︂
⋆
𝑦𝑗+1
𝑁−1

+
(2 − 21−𝛼)

Γ(2 − 𝛼)𝜏𝛼
⋆
𝑦𝑗𝑁 +

1

Γ(2 − 𝛼)𝜏

𝑗−1∑︁
𝑠=1

(︀
−𝑡1−𝛼

𝑗−𝑠+2 + 2𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀
⋆
𝑦𝑠𝑁 +

1

Γ(2 − 𝛼)𝜏
(𝑡1−𝛼

𝑗+1 − 𝑡1−𝛼
𝑗 )

⋆
𝑦0𝑁

− 𝑟𝑁
Γ(2 − 𝛽)ℎ

𝑁−2∑︁
𝑠=1

(︁
−𝑥1−𝛽

𝑖−𝑠+1 + 2𝑥1−𝛽
𝑖−𝑠 − 𝑥1−𝛽

𝑖−𝑠−1

)︁
⋆
𝑦𝑗+1
𝑠 − 𝑟𝑁

Γ(2 − 𝛽)ℎ

(︁
𝑥1−𝛽
𝑁 − 𝑥1−𝛽

𝑁−1

)︁
⋆
𝑦𝑗+1
0 .

Hence, 𝐴(𝑃 ) > 0, 𝐵(𝑃,𝑄) > 0, 𝐷(𝑃 ) > 0, and thanks for the maximum principle, for small ℎ,
the solution

⋆
𝑦 to problem (13)–(16) satisfies the estimate:

‖ ⋆
𝑦𝑗+1‖𝐶 6

1

𝜆* max
0<𝑡′6𝑗𝜏

(︀
|𝜇−(𝑥, 𝑡′)| + |𝜇+(𝑥, 𝑡′)|

)︀
. (21)

We proceed to estimating the function 𝑦̊. We rewrite equation (17) as

1

Γ(2 − 𝛼)
𝜏 1−𝛼𝑦̊𝑗𝑡 = Λ𝑦̊𝑗+1 + ̃︀𝜙𝑗+1, (22)

where

̃︀𝜙𝑗+1 = 𝜙𝑗+1 − 1

Γ(2 − 𝛼)

𝑗−1∑︁
𝑠=0

(︀
𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀
𝑦̊𝑠𝑡 .

We reduce equation (21) to the canonical form:[︂
1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎𝑖+1 + 𝑎𝑖
ℎ2

− 𝑟𝑖
Γ(2 − 𝛽)

1

ℎ𝛽
+ 𝑑𝑖

]︂
𝑦̊𝑗+1
𝑖 =

𝑎𝑖+1

ℎ2
𝑦̊𝑗+1
𝑖+1 +

[︂
𝑎𝑖
ℎ2

− 𝑟𝑖(2 − 21−𝛽)

Γ(2 − 𝛽)ℎ𝛽

]︂
𝑦̊𝑗+1
𝑖−1

− 𝑟𝑖
Γ(2 − 𝛽)ℎ

𝑖−2∑︁
𝑠=1

(︁
−𝑥1−𝛽

𝑖−𝑠+1 + 2𝑥1−𝛽
𝑖−𝑠 − 𝑥1−𝛽

𝑖−𝑠−1

)︁
𝑦̊𝑗+1
𝑠 − 𝑟𝑖

Γ(2 − 𝛽)ℎ

(︁
𝑥1−𝛽
𝑖 − 𝑥1−𝛽

𝑖−1

)︁
𝑦̊𝑗+1
0 + Φ𝑗+1,

where

Φ𝑗+1 =
(2 − 21−𝛼)

Γ(2 − 𝛼)𝜏𝛼
𝑦̊𝑗𝑖 + 𝜙𝑗+1,

𝜙𝑗+1 = 𝜙𝑗+1 +
1

Γ(2 − 𝛼)

1

𝜏

(︀
𝑡1−𝛼
2 − 𝑡1−𝛼

1

)︀
𝑦̊𝑗−1
𝑖 − 1

𝜏

1

Γ(2 − 𝛼)

𝑗−1∑︁
𝑠=0

(︀
𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀ (︀
𝑦̊𝑠𝑖 − 𝑦̊𝑠−1

𝑖

)︀
.

Let us check the assumptions of Theorem 4 in [48, Ch. V, App., Sect. 2, Eqs. (25)–(27)]. At a
point 𝑃 𝑗+1

𝑖 = 𝑃 (𝑥𝑖, 𝑡𝑗+1) we have

𝐴(𝑃 𝑗+1
𝑖 ) =

[︂
1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎𝑖+1 + 𝑎𝑖
ℎ2

− 𝑟𝑖
Γ(2 − 𝛽)

1

ℎ𝛽
+ 𝑑𝑖

]︂
> 0,

𝐵(𝑃 𝑗+1
𝑖 , 𝑄) =

{︂
𝑎𝑖+1

ℎ2
;

(︂
𝑎𝑖
ℎ2

− 𝑟𝑖(2 − 21−𝛽)

Γ(2 − 𝛽)ℎ𝛽

)︂
;
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− 𝑟𝑖
Γ(2 − 𝛽)ℎ

(︁
−𝑥1−𝛽

𝑖−𝑠+1 + 2𝑥1−𝛽
𝑖−𝑠 − 𝑥1−𝛽

𝑖−𝑠−1

)︁
, 𝑠 = 1, . . . , 𝑖− 2;− 𝑟𝑖

Γ(2 − 𝛽)ℎ

(︁
𝑥1−𝛽
𝑖 − 𝑥1−𝛽

𝑖−1

)︁
;

𝐷′(𝑃 𝑗+1
𝑖 ) = 𝐴(𝑃 𝑗+1

𝑖 ) −
∑︁

𝑄∈III′(𝑃 𝑗+1
𝑖 )

𝐵(𝑃 𝑗+1
𝑖 , 𝑄) =

1 + Γ(2 − 𝛼)𝜏𝛼𝑑𝑖
Γ(2 − 𝛼)𝜏𝛼

> 0,

for all 𝑄 ∈ III′′, 𝑄 ∈ III′,∑︁
𝑄∈III′′

𝐵(𝑃𝑗+1, 𝑄) =
1

Γ(2 − 𝛼)𝜏𝛼
> 0, (23)

1

𝐷′(𝑃𝑗+1)

∑︁
𝑄∈III′′𝑗

𝐵(𝑃𝑗+1, 𝑄) =
1

1 + Γ(2 − 𝛼)𝜏𝛼𝑑𝑖
6 1, (24)

where

III′(𝑃 (𝑥,𝑡𝑗+1))
= III′𝑗+1 + III′′𝑗 ,

III′ is the set of nodes 𝑄 = 𝑄(𝜉, 𝑡) ∈ III′(𝑃 (𝑥,𝑡𝑗))
,

III′′𝑗 is the set of nodes 𝑄 = 𝑄(𝜉, 𝑡𝑗) ∈ III′(𝑃 (𝑥,𝑡𝑗))
.

Due to Theorem 4 in [48, Ch. V, App.] and (24) we obtain the estimate:

‖𝑦̊𝑗+1‖𝐶 6
2 − 21−𝛼

1 + Γ(2 − 𝛼)𝜏𝛼𝑑𝑖
‖𝑦̊𝑗‖𝐶 + Γ(2 − 𝛼)𝜏𝛼‖𝜙𝑗+1‖𝐶 . (25)

Let us estimate ‖𝜙𝑗+1‖𝐶 , where

𝜙𝑗+1 = 𝜙𝑗+1 +
1

Γ(2 − 𝛼)𝜏

𝑗−2∑︁
𝑠=0

(︀
−𝑡1−𝛼

𝑗−𝑠+1 + 2𝑡1−𝛼
𝑗−𝑠 − 𝑡1−𝛼

𝑗−𝑠−1

)︀
𝑦̊𝑠+1 + +

1

Γ(2 − 𝛼)𝜏

(︀
𝑡1−𝛼
𝑗+1 − 𝑡1−𝛼

𝑗

)︀
𝑦̊0.

(26)
By (26) we obtain the estimate

‖𝜙𝑗+1‖𝐶 6 ‖𝜙𝑗+1‖𝐶 +
21−𝛼 − 1

𝜏𝛼Γ(2 − 𝛼)
max

06𝑠6𝑗−2
‖𝑦̊𝑠‖𝐶 . (27)

Therefore, for 𝑦̊ the estimate holds:

‖𝑦̊𝑗+1‖𝐶 6 ‖𝑦̊0‖𝐶 + Γ(2 − 𝛼)

𝑗∑︁
𝑗′=0

𝜏𝛼‖𝜙𝑗′‖𝐶 . (28)

Thus, estimates (21) and (28) imply the final estimate (7).

1.4. Fractional order diffusion equation with convection. While increasing the ap-
proximation order of Robin boundary condition up to 𝑂(ℎ2−𝛽 + 𝜏 2−𝛼) we have obtained a
difference scheme with a nonlocal in the spatial variable 𝑥 boundary condition, which is not
the case in problem if in problem (2)–(4) equation (2) is replaced by

𝜕𝛼
0𝑡𝑢 =

𝜕

𝜕𝑥

(︂
𝑘(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥

)︂
+ 𝑟(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
− 𝑞(𝑥, 𝑡)𝑢 + 𝑓(𝑥, 𝑡), 0 6 𝑥 6 ℓ, (29)

where

0 < 𝑐1 6 𝑘(𝑥, 𝑡) 6 𝑐2, 0 < 𝑞(𝑥, 𝑡) 6 𝑐3, 𝑟(0, 𝑡) > 0,

𝑟(ℓ, 𝑡) 6 0, |𝑟(𝑥, 𝑡)| 6 𝑐4, 𝜆± > 𝜆* > 0,

𝑐0, 𝑐1 are positive constants.
A difference scheme for problem (29), (3), (4) reads as

∆𝛼
0𝑡𝑗+1

𝑦 = Λ𝑦𝑗+1 + Φ𝑗+1, 𝑦(𝑥, 0) = 𝑢0(𝑥), (30)
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where

Λ𝑦 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

̃︀Λ𝑦 = κ (𝑎𝑦𝑥)𝑥 + 𝑏+𝑎(+1)𝑦𝑥 + 𝑏−𝑎𝑦𝑥 − 𝑑𝑦, 𝑥 ∈ 𝜔ℎ,

Λ−𝑦 =
𝑎(1)𝑦𝑥,0 − 𝜆−𝑦0

0.5ℎ
, 𝑥 = 0,

Λ+𝑦 = −𝑎(𝑁)𝑦𝑥,𝑁 + 𝜆+𝑦𝑁
0.5ℎ

, 𝑥 = ℓ,

Φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜙, 𝑥 ∈ 𝜔ℎ,

𝜇−

0.5ℎ
, 𝑥 = 0,

𝜇+

0.5ℎ
, 𝑥 = ℓ,

𝑎(1) = 𝑎(1) + 0.5ℎ𝑟0, 𝑎(𝑁) = 𝑎(𝑁) − 0.5ℎ𝑟𝑁 , 𝜆− = 𝜆− + 0.5ℎ𝑑(0),

𝜆+ = 𝜆+ + 0.5ℎ𝑑(𝑁), 𝜇− = 𝜇− + 0.5ℎ𝑓0, 𝜇+ = 𝜇+ + 0.5ℎ𝑓𝑁 .

As the solution and data of problem (29), (3), (4) are smooth enough, difference scheme (30)
has the approximation order 𝑂(ℎ2 + 𝜏 2−𝛼).

2. Fractional order heat equation with a concentrated heat capacity

When a concentrated heat capacity is located on the boundary of a domain, for a heat
equation the following boundary condition can be imposed at 𝑥 = 0:

𝑐0
𝜕𝑢

𝜕𝑡
= 𝑘

𝜕𝑢

𝜕𝑥
, 𝑐0 = 𝑐𝑜𝑛𝑠𝑡 > 0.

Such conditions arise in the case, when we consider a solid with a high heat capacity [49] and
solve a problem on temperature stabilization in a bounded media under the presence of a heater
treated as a concentrated heat capacity [50].

Similar problems arise also while controlling a salt regime of soil, when a disintegration of
the upper layer is achieved by the water drain from an area flooded for some period [51]. If a
water layer of a fixed ℎ is present on the area, on the upper boundary we should impose the
condition

ℎ
𝜕𝑐

𝜕𝑡
= 𝐷

𝜕𝑐

𝜕𝑥
,

where 𝑐 is a salt concentration in the soil solution, 𝐷 is the diffusion coefficient [51].
Before we proceed to formulation of the problem, let us provide an example [28], in which a

fractional derivative arises on the boundary without using the fractal conception.
On the half-strip 𝑥 > 0, 0 < 𝑡 < 𝑇 , we consider the problem

𝑢𝑡 = (𝑘𝑢𝑥)𝑥, (31)

𝑘1𝑢𝑥(0, 𝑡) = 𝛽1(𝑡)𝑢(0, 𝑡) − 𝜇1(𝑡), (32)

𝑢(𝑥, 0) = 0, |𝑢(𝑥, 𝑡)| 6 𝑀, 0 < 𝑥 < ∞, 0 6 𝑡 6 𝑇, (33)

𝑘(𝑥) =

{︂
𝑘1, 𝑥 6 𝑥1,

𝑘2, 𝑥 > 𝑥1.

At a discontinuity point of 𝑘(𝑥), the temperature and the heat flow should be continuous:

[𝑢]𝑥=𝑥1 = 𝑢(𝑥1 + 0, 𝑡) − 𝑢(𝑥1 − 0, 𝑡) = 0,

[︂
𝑘
𝑑𝑢

𝑑𝑥

]︂
𝑥=𝑥1

= 0. (34)

The solution 𝑢 = 𝑢+ of problem (31)–(33) in 𝑥1 > 0, 𝑡 > 0 is of the form:

𝑢+(𝑥, 𝑡) = − 1√
𝑘2𝜋

𝑡∫︁
0

𝜈(𝜏)√
𝑡− 𝜏

exp

(︂
− (𝑥− 𝑥1)

2

4𝑘2(𝑡− 𝜏)

)︂
𝑑𝜏, 𝜈(𝑡) = 𝑘2𝑢

+
𝑥 (𝑥1, 𝑡).
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As 𝑥 = 𝑥1 we get:

𝑢+(𝑥1 + 0, 𝑡) = − 1√
𝑘2𝜋

𝑡∫︁
0

𝑘2𝑢
+
𝑥 (𝑥1 + 0, 𝜏)√

𝑡− 𝜏
𝑑𝜏.

Due to (34) this implies

𝑢−(𝑥1 − 0, 𝑡) = − 1√
𝑘2𝜋

𝑡∫︁
0

𝑘1𝑢
−
𝑥 (𝑥1 − 0, 𝜏)√

𝑡− 𝜏
𝑑𝜏, (35)

where 𝑢−(𝑥, 𝑡) is a solution of problem (31)–(33) in the domain 0 < 𝑥 < 𝑥1, 0 < 𝑡 6 𝑇 .
Resolving Abel integral equation (35), we obtain

− 𝑘1𝑢
−
𝑥 (𝑥1 − 0, 𝜏) =

√︂
𝑘2
𝜋

𝑑

𝑑𝑡

𝑡∫︁
0

𝑢−(𝑥1, 𝜏)

(𝑡− 𝜏)
1
2

𝑑𝜏. (36)

Thus, while calculating the temperature field in the domain 0 < 𝑥 < 𝑥1, 𝑡 > 0, we can take
into consideration the influence of a semi-infinite domain 𝑥 > 𝑥1, 𝑡 > 0 by imposing non-local
condition (36) at 𝑥 = 𝑥1 with a fractional derivative of order 𝛼 = 1

2
.

We proceed to considering the difference scheme for a fractional order differential equation in
the case, when on the boundary a fractional order condition with a concentrated heat capacity
is imposed:

𝑐0𝜕
𝛼
𝑜𝑡𝑢 = 𝑘

𝜕𝑢

𝜕𝑥
, 𝑐0 = 𝑐𝑜𝑛𝑠𝑡 > 0,

where 𝜕𝛼
𝑜𝑡𝑢 is the Caputo fractional derivative of order 𝛼, 0 < 𝛼 < 1.

2.1. Formulation of problem. In the rectangle 𝑄𝑇 = {0 6 𝑥 6 ℓ, 0 < 𝑡 6 𝑇} we consider
the initial-boundary value problem

𝜕𝛼
0𝑡𝑢 =

𝜕

𝜕𝑥

(︂
𝑘(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥

)︂
+ 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 , (37)⎧⎪⎨⎪⎩

𝑘(𝑥, 𝑡)
𝜕𝑢

𝜕𝑥
= κ−𝜕

𝛼
0𝑡𝑢 + 𝛽−(𝑥, 𝑡)𝑢− 𝜇−(𝑥, 𝑡), 𝑥 = 0,

−𝑘(𝑥, 𝑡)
𝜕𝑢

𝜕𝑥
= κ+𝜕

𝛼
0𝑡𝑢 + 𝛽+(𝑥, 𝑡)𝑢− 𝜇+(𝑥, 𝑡), 𝑥 = ℓ,

(38)

𝑢(𝑥, 0) = 𝑢0(𝑥), (39)

where

0 < 𝑐0 6 𝑘 6 𝑐1, 𝛽±𝛼 > 𝛽* > 0, κ± = 𝑐𝑜𝑛𝑠𝑡 > 0,

and

𝜕𝛼
0𝑡𝑢 =

1

Γ(1 − 𝛼)

𝑡∫︁
0

𝑢̇(𝑥, 𝜂)

(𝑡− 𝜂)𝛼
𝑑𝜂, 𝑢̇ =

𝜕𝑢

𝜕𝑡
,

is the Caputo fractional derivative of order 𝛼, 0 < 𝛼 < 1.

2.2. Difference scheme. We choose an uniform spatial grid with the step ℎ = ℓ
𝑁

, 𝜔ℎ =
{𝑥𝑖 = 𝑖ℎ : 𝑖 = 0, 1, . . . , 𝑁}. On the segment [0, 𝑇 ] we choose an uniform grid

𝜔′
𝜏 = {0, 𝑡𝑗 = 𝑗𝜏, 𝑗 = 0, 1, . . . , 𝑗0},

𝜔′
𝜏 is the set of the nodes of the grid 𝜔′

𝜏 obeying 𝑡 > 0.
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Employing discrete analogue (1) of a regularized Caputo fractional derivative of order 𝛼,
0 < 𝛼 < 1, we approximate equation (37) by the implicit scheme. Then we obtain the difference
equation:

1

Γ(2 − 𝛼)

𝑗∑︁
𝑠=0

(︀
𝑡1−𝛼
𝑗−𝑠+1 − 𝑡1−𝛼

𝑗−𝑠

)︀
𝑦𝑠𝑡 = Λ𝑦𝑗+1 + 𝜙𝑗+1, 𝑥 ∈ 𝜔ℎ, (40)

where

Λ𝑦 = (𝑎𝑦𝑥)𝑥, 𝑦
𝑠
𝑡 =

𝑦𝑠+1 − 𝑦𝑠

𝜏
.

We also need to compete equation (40) by boundary and initial conditions; this will be done
later.

Let us write a difference analogue for boundary conditions (38):{︃
𝑎(1)𝑦𝑗+1

𝑥,0 = κ−∆𝛼
0𝑡𝑗+1

𝑦𝑗+1
0 + 𝛽−(𝑥, 𝑡)𝑦𝑗+1

0 − 𝜇−(𝑥, 𝑡), 𝑥 = 0,

−𝑎(𝑁)𝑦𝑗+1
𝑥,𝑁 = κ+∆𝛼

0𝑡𝑗+1
𝑦𝑗+1
0 + 𝛽+(𝑥, 𝑡)𝑦𝑗+1

0 − 𝜇+(𝑥, 𝑡), 𝑥 = ℓ.
(41)

Conditions (41) have approximation order 𝑂(ℎ). We increase the approximation order up to
𝑂(ℎ2 + 𝜏 2−𝛼) on solutions of equation (37). Since

𝑘
𝜕𝑢

𝜕𝑥
= 𝑎(1)𝑢𝑗+1

𝑥,0 − 0.5ℎ
(︁
𝜕𝛼
0𝑡𝑢− 𝑓 𝑗+1

)︁
0

+ 𝑂(ℎ2),

then

𝑎(1)𝑢𝑗+1
𝑥,0 − 0.5ℎ

(︁
∆𝛼

0𝑡𝑗+1
𝑢− 𝑓 𝑗+1

)︁
0

= κ−∆𝛼
0𝑡𝑗+1

𝑢0 + 𝛽−𝑢
𝑗+1
0 − 𝜇− + 𝑂(ℎ2) + 𝑂(ℎ𝜏 2−𝛼). (42)

Neglecting in the above identity the terms of order 𝑂(ℎ2) and 𝑂(ℎ𝜏 2−𝛼) and replacing 𝑢 by 𝑦,
we obtain:

∆𝛼
0𝑡𝑗+1

𝑦 =
𝑎(1)𝑦𝑗+1

𝑥,0 − 𝛽−𝑦
𝑗+1
0

κ− + 0.5ℎ
+ ̃︀𝜇−, 𝑥 = 0, ̃︀𝜇− =

𝜇−

κ− + 0.5ℎ
, 𝜇− = 𝜇− + 0.5ℎ𝑓0.

In the same way, as 𝑥 = ℓ, we get:

∆𝛼
0𝑡𝑗+1

𝑦 = −
𝑎(𝑁)𝑦𝑗+1

𝑥,𝑁 + 𝛽+𝑦
𝑗+1
𝑁

κ+ + 0.5ℎ
+ ̃︀𝜇+, 𝑥 = ℓ, ̃︀𝜇+ =

𝜇+

κ+ + 0.5ℎ
, 𝜇+ = 𝜇+ + 0.5ℎ𝑓𝑁 .

Thus, the difference analogue of problem (37)–(39) reads as

∆𝛼
0𝑡𝑗+1

𝑦 = Λ𝑦𝑗+1 + Φ𝑗+1, 𝑦(𝑥, 0) = 𝑢0(𝑥), (43)

where

Λ𝑦 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Λ𝑦 = (𝑎𝑦𝑥)𝑥, 𝑥 ∈ 𝜔ℎ,

Λ−𝑦 =
𝑎(1)𝑦𝑗+1

𝑥,0 − 𝛽−𝑦0

κ− + 0.5ℎ
, 𝑥 = 0,

Λ+𝑦𝑗+1 = −𝑎(𝑁)𝑦𝑥,𝑁 + 𝛽+𝑦𝑁
κ+ + 0.5ℎ

, 𝑥 = ℓ,

Φ =

⎧⎪⎨⎪⎩
𝜙, 𝑥 ∈ 𝜔ℎ,̃︀𝜇−, 𝑥 = 0,̃︀𝜇+, 𝑥 = ℓ,

̃︀𝜇− =
𝜇−

κ− + 0.5ℎ
, 𝜇− = 𝜇− + 0.5ℎ𝑓0, ̃︀𝜇+ =

𝜇+

κ+ + 0.5ℎ
, 𝜇+ = 𝜇+ + 0.5ℎ𝑓𝛼,𝑁 .
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2.3. Stability and uniform convergence of difference scheme. The following theorem
holds true.

Theorem 2. Difference scheme (43) is stable with respect to the initial data and right hand
side and the solution of problem (43) satisfies the estimate

‖𝑦𝑗+1‖𝐶 6 ‖𝑦0‖𝐶 + max
0<𝑡′6𝑗𝜏

1

𝛽*

(︀
|𝜇−(𝑥, 𝑡′)| + |𝜇+(𝑥, 𝑡′)|

)︀
+ Γ(2 − 𝛼)

𝑗∑︁
𝑗′=0

𝜏𝛼‖𝜙𝑗′‖𝐶 , (44)

which implies the convergence of scheme (43) in the uniform metric with the rate 𝑂(ℎ2 +𝜏 2−𝛼).

Proof. We again employ the maximum principle for the solution of a general grid equation. We
reduce difference equation and boundary conditions (43) to the canonical form:[︂

1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎𝑖+1 + 𝑎𝑖
ℎ2

]︂
𝑦𝑗+1
𝑖 =

𝑎𝑖+1

ℎ2
𝑦𝑗+1
𝑖+1 +

𝑎𝑖
ℎ2

𝑦𝑗+1
𝑖−1 +

2 − 21−𝛼

Γ(2 − 𝛼)𝜏𝛼
𝑦𝑗𝑖

+
1

𝜏

1

Γ(2 − 𝛼)

[︃ (︀
𝑡1−𝛼
𝑗+1 − 𝑡1−𝛼

𝑗

)︀
𝑦0𝑖 +

(︀
−𝑡1−𝛼

𝑗+1 + 2𝑡1−𝛼
𝑗 − 𝑡1−𝛼

𝑗−1

)︀
𝑦1𝑖

+ . . . +
(︀
−𝑡1−𝛼

3 + 2𝑡1−𝛼
2 − 𝑡1−𝛼

1

)︀
𝑦𝑗−1
𝑖

]︃
+ 𝜙𝑗+1,[︂

1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎1
(0.5ℎ + κ−)ℎ

+
𝛽−

0.5ℎ + κ−

]︂
𝑦𝑗+1
0 =

𝑎1
(0.5ℎ + κ−)ℎ

𝑦𝑗+1
1 +

(2 − 21−𝛼)

Γ(2 − 𝛼)𝜏𝛼
𝑦𝑗0

+
1

𝜏

1

Γ(2 − 𝛼)

[︃ (︀
𝑡1−𝛼
𝑗+1 − 𝑡1−𝛼

𝑗

)︀
𝑦00 +

(︀
−𝑡1−𝛼

𝑗+1 + 2𝑡1−𝛼
𝑗 − 𝑡1−𝛼

𝑗−1

)︀
𝑦10

+ . . . +
(︀
−𝑡1−𝛼

3 + 2𝑡1−𝛼
2 − 𝑡1−𝛼

1

)︀
𝑦𝑗−1
0

]︃
+ 𝜇−.

(45)

This implies

𝐷(𝑃 (𝑥, 𝑡𝑗+1)) = 0, 𝐷(𝑃 (0, 𝑡𝑗+1)) =
𝛽−

0.5ℎ + κ−
.

In the same way, as 𝑥 = ℓ, we get

𝐷(𝑃 (ℓ, 𝑡𝑗+1)) =
𝛽+

0.5ℎ + κ−
.

To estimate the solution of problem (43), we again represent the solution 𝑦 as the sum

𝑦 =
⋆
𝑦 + 𝑦̊,

where 𝑦̊ is the solution of the problem as 𝜇− = 𝜇+ = 0, and
⋆
𝑦 solves the problem as 𝑢0(𝑥) = 0,

𝜙(𝑥, 𝑡) = 0. By Theorem 3 in [48], for
⋆
𝑦 we obtain the estimate:

‖ ⋆
𝑦
𝑗+1‖𝐶 6 max

0<𝑡′6𝑗𝜏

1

𝛽*

(︀
|𝜇−(𝑥, 𝑡′)| + |𝜇+(𝑥, 𝑡′)|

)︀
. (46)

Since 𝐷(𝑃 (𝑥, 𝑡𝑗+1)) = 0, to estimate 𝑦̊, we rewrite equation (45) as[︂
1

Γ(2 − 𝛼)

1

𝜏𝛼
+

𝑎𝑖+1 + 𝑎𝑖

ℎ2

]︂
𝑦̊𝑗+1
𝑖 =

𝑎𝑖+1

ℎ2
𝑦̊𝑗+1
𝑖+1 +

𝑎𝑖
ℎ2

𝑦̊𝑗+1
𝑖−1 +

(2 − 21−𝛼)

Γ(2 − 𝛼)𝜏𝛼
𝑦̊𝑗𝑖 + Φ(𝑃𝑗+1),

where

Φ(𝑃 ) = 𝜙𝑗+1 +
1

𝜏

1

Γ(2 − 𝛼)

[︃ (︀
𝑡1−𝛼
𝑗+1 − 𝑡1−𝛼

𝑗

)︀
𝑦̊0𝑖 +

(︀
−𝑡1−𝛼

𝑗+1 + 2𝑡1−𝛼
𝑗 − 𝑡1−𝛼

𝑗−1

)︀
𝑦̊1𝑖 + . . .
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+
(︀
−𝑡1−𝛼

3 + 2𝑡1−𝛼
2 − 𝑡1−𝛼

1

)︀
𝑦̊𝑗−1
𝑖

]︃
.

Let us check the assumptions of Theorem 4 in [48]:

𝐷′(𝑃 ) =
1

Γ(2 − 𝛼)𝜏𝛼
> 0, 𝑃 = 𝑃 (𝑥, 𝑡𝑗+1), 𝐴(𝑃 ) > 0, 𝐵((𝑃 ), 𝑄) > 0

for all 𝑄 ∈ III′′𝑗 , 𝑄 ∈ III′, and∑︁
𝑄∈III′′𝑗

𝐵(𝑃,𝑄) =
2 − 21−𝛼

Γ(2 − 𝛼)𝜏𝛼
> 0,

1

𝐷′(𝑃 )

∑︁
𝑄∈III′′𝑗

𝐵(𝑃,𝑄) = 2 − 21−𝛼 6 1.

By Theorem 4 in [48], for 𝑦̊ the estimate holds:

‖𝑦̊𝑗+1‖𝐶 6 ‖𝑦̊0‖𝐶 + Γ(2 − 𝛼)

𝑗∑︁
𝑗′=0

𝜏𝛼‖𝜙𝑗′‖𝐶 . (47)

Estimates (46) and (47) imply final estimate (44).

Remark 1. If instead of implicit scheme we consider a more general difference equation with
weights Λ(𝜎𝑦𝑗+1 + (1−𝜎)𝑦𝑗) in the right hand side (40), then a condition for the step 𝜏 arises:

𝜏 6
(2 − 21−𝜈)ℎ2

2𝑐1Γ(2 − 𝜈)(1 − 𝜎)
, 0 6 𝜎 6 1,

which as 𝜈 → 1, becomes the known condition

𝜏 6
ℎ2

2𝑐1(1 − 𝜎)
, 0 6 𝜎 6 1.

Similar restrictions for the step 𝜏 arise in other problems considered in the paper.
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