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CONFORMAL INVARIANTS OF

HYPERBOLIC PLANAR DOMAINS

F.G. AVKHADIEV, R.G. NASIBULLIN, I.K. SHAFIGULLIN

Abstract. We consider planar hyperbolic domains and conformally invariant functionals
defined as sharp constants for Hardy type inequalities. We study relationships between
these functionals and optimal constants in hyperbolic isoperimetric inequalities. The stud-
ied Hardy type inequalities involve weight functions depending on a hyperbolic radius of a
domain and are conformally invariant. We prove that the positivity of Hardy constants is
connected with existence of some hyperbolic isoperimetric inequalities of a special kind. We
also prove a comparison theorem for Hardy constants with different numerical parameters
and we study the relationships between the linear hyperbolic isoperimetric inequality in a
domain and Euclidean maximum modulus of this domain. In the proofs, an essential role is
played by characteristics of domains with uniformly perfect boundary. In addition, we gen-
eralize certain results from the papers J.L. Fernández, J.M. Rodŕıguez, “The exponent of
convergence of Riemann surfaces, bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Series A.
I. Mathematica. 15, 165–183 (1990); V. Alvarez, D. Pestana, J.M. Rodŕıguez, “Isoperimet-
ric inequalities in Riemann surfaces of infinite type”, Revista Matemática Iberoamericana,
15:2, 353–425 (1999).

Keywords: Poincaré metric, hyperbolic isoperimetric inequality, uniformly perfect set,
Hardy type inequality.

Mathematics Subject Classification: 30F45, 30A10

1. Introduction

Let Ω be a hyperbolic domain, that is, it contains at least three boundary points on the
extended complex plane C. By 𝐶1

0(Ω) we denote the family of continuously differentiable
functions 𝑢 : Ω → R compactly supported in Ω. If ∞ ∈ Ω, then the smoothness of 𝑢(𝑧) at the
infinity 𝑧 = ∞ is understood as the smoothness of 𝑢(1

𝑧
) at the point 𝑧 = 0.

At each point 𝑧 = 𝑥 + 𝑖𝑦 ∈ Ω we define a hyperbolic radius by the formula

𝑅(𝑧,Ω) =
1

𝜆Ω(𝑧)
,

where 𝜆Ω is the coefficient of the Poincaré metric of the domain Ω with the Gaussian curvature
𝑘 = −4, see, for instance, [1], [2].

According Ch. Pommerenke [3], we say that a hyperbolic domain Ω ⊂ C has a uniformly
perfect boundary if 𝑀(Ω) < ∞, where 𝑀(Ω) is the supremum of the moduli of two-connected
domain lying in the domain Ω and separating its boundary. We recall that the modulus of a
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two-connected domain Ω′ is defined as follows. We take an annulus 𝐴 defined by the inequality
𝑟(𝐴) < |𝑧| < 𝑅(𝐴) and conformally equivalent to the domain Ω′. The number

𝑀(Ω′) =
1

2𝜋
log

𝑅(𝐴)

𝑟(𝐴)

is called the modulus of the two-connected domain Ω′. We say that a two-connected domain
Ω′ separates the boundary of the domain Ω if Ω′ ⊂ Ω and each component of the set C ∖ Ω′

possesses points in 𝜕Ω.
Apart of the maximal modulus 𝑀(Ω), we shall need the following scalar characteristics of a

hyperbolic domain Ω:

ℎ(Ω) = sup
𝐺

∫︁∫︁
𝐺

1

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦

(︂∫︁
𝜕𝐺

1

𝑅(𝑧,Ω)
|𝑑𝑧|
)︂−1

,

where the upper bound is taken over all domains 𝐺 enveloped by piecewise-smooth curves
such that 𝐺 ⊂ Ω. We also mention that a hyperbolic area

∫︀∫︀
𝐺
𝑅−2(𝑧,Ω)𝑑𝑥𝑑𝑦 and a hyperbolic

length
∫︀
𝜕𝐺

𝑅−1(𝑧,Ω)|𝑑𝑧| are dimensionless quantities. It is obvious that the condition ℎ(Ω) < ∞
means that a linear hyperbolic isoperimetric inequality holds in the domain Ω ⊂ C.

The present work is devoted to studying new conformally invariant quantities (functionals)
defined as sharp constants in variational inequalities of special form for the functions 𝑢 ∈ 𝐶1

0(Ω)
in planar hyperbolic domains.

The main conformally invariant functional 𝑐𝑝,𝑞(Ω) of a domain we consider is defined as the
maximal among possible constants in the following Hardy type variational inequality(︂∫︁∫︁

Ω

|∇𝑢|𝑝𝑑𝑥𝑑𝑦
𝑅2−𝑝(𝑧,Ω)

)︂ 1
𝑝

> 𝑐𝑝,𝑞(Ω)

(︂∫︁∫︁
Ω

|𝑢|𝑞𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

)︂ 1
𝑞

for all 𝑢 ∈ 𝐶1
0(Ω), (1)

where 1 < 𝑝 6 𝑞 < ∞, 𝑧 = 𝑥 + 𝑖𝑦, ∇𝑢 is the gradient of the function 𝑢. Thus, the considered
functional 𝑐𝑝,𝑞(Ω) is defined by the formula

𝑐𝑝,𝑞(Ω) = inf
𝑢∈𝐶1

0 (Ω),𝑢 ̸≡0

(︂∫︁∫︁
Ω

|∇𝑢|𝑝𝑑𝑥𝑑𝑦
𝑅2−𝑝(𝑧,Ω)

)︂ 1
𝑝
(︂∫︁∫︁

Ω

|𝑢|𝑞𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

)︂− 1
𝑞

. (2)

The conformal invariance for the functional defined by formula (2) can be easily confirmed.
Indeed, let 𝐹 : Ω → Ω𝜁 be a univalent conformal mapping of a domain Ω on some other domain
Ω𝜁 ⊂ C. We denote

𝜁 = 𝐹 (𝑧) = 𝜉 + 𝑖𝜂 ∈ Ω𝜁 , 𝑈 := 𝑢 ∘ 𝐹−1,

where 𝑧 = 𝑥 + 𝑖𝑦 ∈ Ω and 𝑢 ∈ 𝐶1
0(Ω). Then 𝑈 := 𝑢 ∘ 𝐹−1 ∈ 𝐶1

0(Ω𝜁) and the formulae hold:

𝜆Ω(𝑧)|𝑑𝑧| ≡ 𝜆Ω𝜁
(𝑧)|𝑑𝜁|, 𝜆2

Ω(𝑧)𝑑𝑥𝑑𝑦 = 𝜆2
Ω𝜁

(𝑧)𝑑𝜉𝑑𝜂,

|𝐹 ′(𝑧)|2𝑑𝑥𝑑𝑦 = 𝑑𝜉𝑑𝜂, ∇𝑈 = 2
𝜕𝑈𝜁

𝜕𝜁
= 2

𝜕𝑢(𝑧)

𝜕𝑧
𝐹 ′(𝑧) = (∇𝑢)𝐹 ′(𝑧).

Introducing 𝑐𝑝,𝑞(Ω𝜁) by formula (2) the domain Ω replaced by the domain Ω𝜁 and the function
𝑢 replaced by the function 𝑈 , we obtain:

𝑐𝑝,𝑞(Ω) = 𝑐𝑝,𝑞(Ω𝜁).

The basic results we use are well-known results by D. Sullivan [4], J.L. Fernández [5],
J.L. Fernández and J.M. Rodŕıguez [6] on the spectral theory of the Laplace-Beltrami operator
on Riemannian manifolds of a constant negative curvature. The cited papers were devoted to
studying a particular case of inequality (1) corresponding to the case 𝑝 = 𝑞 = 2, namely, the
inequality ∫︁∫︁

Ω

|∇𝑢|2𝑑𝑥𝑑𝑦 > 𝑐2(Ω)

∫︁∫︁
Ω

|𝑢|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦, ∀𝑢 ∈ 𝐶1

0(Ω), (3)
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where

𝑐2(Ω) = inf
𝑢∈𝐶1

0 (Ω),𝑢̸≡0

∫︁∫︁
Ω

|∇𝑢|2𝑑𝑥𝑑𝑦
(︂∫︁∫︁

Ω

|𝑢|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦

)︂−1

. (4)

It is obvious that 𝑐2(Ω) = 𝑐22,2(Ω). It is known, [4], [5], that 𝑐2(Ω) = 1 for each simply-connected
or two-connected hyperbolic domain and also 𝑐2(Ω) ∈ [0, 1] for each hyperbolic domain. There
exist domains, for which 𝑐2(Ω) = 0, that is, as 𝑝 = 𝑞 = 2, there exist domains, for which
inequality (1) is trivial. These statements are corollaries of well-known facts in the hyperbolic
geometry and the Elstrodt-Patterson-Sullivan formula [4]:

𝑐2(Ω) =
{︀

1 as 0 6 𝛽 6 1
2
; 4𝛽 (1 − 𝛽) as 1

2
6 𝛽 6 1

}︀
,

where 𝛽 = 𝛽(Ω) is the critical convergence exponent of the Poincaré-Dirichlet series for the
group of fundamental transformations of Ω.

In [5], Fernández proved that condition 𝑀(Ω) < ∞ implies the positivity of the quantity
𝑐2(Ω). The key result of paper [6] by Fernández and Rodgriquez are the estimates

1

(2ℎ(Ω))2
6 𝑐2(Ω) 6

3

ℎ(Ω)
.

F.G. Avkhadiev [7]–[9] studied the following generalization of (3):∫︁∫︁
Ω

|∇𝑢|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 > 𝑐𝑝(Ω)

∫︁∫︁
Ω

|𝑢|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦, ∀𝑢 ∈ 𝐶1

0(Ω), (5)

where 𝑝 ∈ [1,∞) is a fixed number and

𝑐𝑝(Ω) = inf
𝑢∈𝐶1

0 (Ω),𝑢̸≡0

∫︁∫︁
Ω

|∇𝑢|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦

∫︁∫︁
Ω

|𝑢|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦. (6)

It was proved in [7]–[9] that the condition 𝑀(Ω) < ∞ implies the positivity of the quantity 𝑐𝑝(Ω)
for each 𝑝 ∈ [1,∞) and the identity 𝑐𝑝(Ω) = 2𝑝/𝑝𝑝 was established for each simply-connected
or two-connected hyperbolic domain for each 𝑝 ∈ [1,∞). Moreover, in [9], there were proved
the estimates for the constant 𝑐𝑝(Ω) depending on the maximal Euclidean modulus 𝑀0(Ω) and
the exponent 𝑝 ∈ [1,∞). We note that

𝑀0(Ω) 6 𝑀(Ω) 6 𝑀0(Ω) + 1/2

for domains Ω ⊂ C, see [2] for more details, and

𝑀0(Ω) 6 𝑀(Ω) 6 2𝑀0(Ω) + 1

for domains Ω ⊂ C, ∞ ∈ Ω, see [9], where 𝑀(Ω) is the maximal modulus introduced above.
In the present paper we obtain some new estimates for the constant 𝑐𝑝(Ω) and we generalize

them for 𝑐𝑝,𝑞(Ω) as 1 6 𝑝 6 𝑞 < ∞. In particular, we show that for 𝑝 ∈ [1, 2), the inequality
𝑐𝑝(Ω) > 0 holds if and only if the coefficient ℎ(Ω) of the linear isoperimetric inequality for the
hyperbolic metric is positive. We also prove that if the quantity

ℎ𝑝,𝑞(Ω) = sup
𝐺

(︂∫︁∫︁
𝐺

1

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦

)︂ 1
𝑞
− 1

𝑝
+1(︂∫︁

𝜕𝐺

1

𝑅(𝑧,Ω)
|𝑑𝑧|
)︂−1

is finite as 1
𝑝
−1/2 6 1

𝑞
6 1

𝑝
6 1, this implies the positivity of the constant 𝑐𝑝,𝑞(Ω). We note that

some results concerning 𝑐𝑝(Ω) and provided here with the full proofs, were announced before
in a short letter [10].

In the case ∞ /∈ Ω, several criterions for the complete perfectness of the boundary are known
in terms of the hyperbolic radius 𝑅(𝑧,Ω), its gradient ∇𝑅(𝑧,Ω) and the distance dist (𝑧, 𝜕Ω)



6 F.G. AVKHADIEV, R.G. NASIBULLIN, I.K. SHAFIGULLIN

to the boundary of the domain Ω, see [3], [9]. We shall estimate ℎ(Ω) in terms of these
characteristics. For instance, we shall prove that

√
3 sup

𝑧∈Ω
|∇𝑅(𝑧,Ω)| > 2

√︀
ℎ(Ω).

We observe the following fact. The weighted functions considered in the present paper involve
the hyperbolic radius 𝑅(𝑧,Ω). There are many close works devoted to Hardy type inequalities,
in which the weight function involves the distance dist (𝑧, 𝜕Ω) to the boundary of the domain, see
[11]–[20]. It should be also stressed that the one-dimensional Hardy inequality are not related
with the geometry. They are regarded as some tool from the theory of functions employed in the
proofs of embedding theorems for functional spaces, cf. the monographs by S.L. Sobolev [21]
and V.G. Maz’ya [22]. In contrast to the one-dimensional case, the Hardy type inequality
on planar domains are a part of the geometric analysis since they are essentially related with
various geometric characteristics.

For the reader’s convenience, in the next section we provide known results, which will be
employed essentially in our proofs.

2. Auxiliary statements and definitions

In the proofs, the approach by V.M. Miklyukov and M.K. Vuorinen [23] plays an essential
role; this approach is related with an isoperimetric profile of a domain.

Let Ω be a hyperbolic domain on the extended plane and let 𝛼, 𝛽 : Ω → (0,∞) be some
continuous functions. We consider fixed parameters 𝑝 and 𝑞 satisfying the condition 1 < 𝑝 6
𝑞 < ∞. On the set of the domains 𝐺 ⊂ Ω such that the boundary 𝜕𝐺 consists of piece-wise
smooth curves and 𝐺 ⊂ Ω, we define a weighted area

𝑉 (𝐺) =

∫︁∫︁
𝐺

𝛼(𝑧)𝑞𝑑𝑥𝑑𝑦

and a weighted length

𝐴(𝐺) =

∫︁
𝜕𝐺

𝛽(𝑧)𝛼(𝑧)(𝑝−1)𝑞/𝑝|𝑑𝑧|.

An isoperimetric profile of a planar domain Ω is the best possible (maximal) function

𝜃 : [0, 𝑉 (Ω)) → [0,∞), 𝜃(0) = 0,

obeying the condition

𝜃(𝑉 (𝐺)) 6 𝐴(𝐺)

for each admissible domain 𝐺, i.e., for each domain with a piece-wise smooth boundary such
that 𝐺 ⊂ Ω.

Let us provide the formulation of the main statement in paper [23] by V.M. Miklyukov and
M.K. Vuorinen [23] in a generality we need. It should be noted that in paper [23], more special
conditions for the functions 𝛼 and 𝛽 are assumed which are not employed in the proof but
simplify the description of various applications.

Theorem A. Let 1 < 𝑝 6 𝑞 < ∞ and let Ω be a hyperbolic domain on the extended plane
C. If for the domain Ω there exists an isoperimetric profile satisfying the relation

𝐵 := sup
𝑟∈(0,𝑉 (Ω))

𝑟
1
𝑞

(︃∫︁ 𝑉 (Ω)

𝑟

𝜃(𝑡)−
𝑝

𝑝−1𝑑𝑡

)︃ 𝑝−1
𝑝

< ∞,
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then for each function 𝑢 ∈ 𝐶1
0(Ω), the following inequality⎛⎝∫︁∫︁

Ω

|𝛼(𝑧)𝑢(𝑧)|𝑞𝑑𝑥𝑑𝑦

⎞⎠ 1
𝑞

6 𝜆

⎛⎝∫︁∫︁
Ω

(𝛽(𝑧)|∇𝑢(𝑧)|)𝑝𝑑𝑥𝑑𝑦

⎞⎠ 1
𝑝

holds true, where 𝑧 = 𝑥 + 𝑖𝑦 and 𝜆 is a positive constant satisfying the estimates:

𝐵 6 𝜆 6 𝐵𝑞
1
𝑞

(︂
𝑞

(𝑞 − 1)

)︂ 𝑝−1
𝑝

.

We shall also need the following three theorems by Fernández and Rodŕıguez.

Theorem B. (J.L. Fernández, J.M. Rodŕıguez [6]) Let Ω be a hyperbolic domain. The
inequality ℎ(Ω) < ∞ is true if and only if 𝑐2(Ω) > 0, moreover,

1

(2ℎ(Ω))2
6 𝑐2(Ω) 6

3

ℎ(Ω)
.

The next theorem is devoted to the domain with uniformly perfect boundary.

Theorem C. (J.L. Fernández, J.M. Rodŕıguez [6]) Let Ω ⊂ C be a hyperbolic domain such
that 𝑀(Ω) < ∞. Let 𝐴 ⊂ Ω be a domain consisting of finitely many or countably many points
such that

inf
𝑧∈𝐴,𝑤∈𝐴∖{𝑧}

𝑑Ω(𝑧, 𝑤) > 0,

where 𝑑Ω(𝑧, 𝑤) is the hyperbolic distance between the points 𝑧, 𝑤 ∈ Ω. Then

𝑐2(Ω ∖ 𝐴) > 0.

As it was pointed out in paper [24], as the set 𝐴 in this theorem, we can choose an arbitrary
set 𝐴 ⊂ Ω consisting of finitely many points.

Theorem D. (J.L. Fernández, J.M. Rodŕıguez [6]) Let Ω be a planar domain, ∞ ∈ Ω such
that 𝑐2(Ω) > 0 and 𝐼 is a set of isolated points in 𝜕Ω. Then the points 𝐼 are uniformly separated.

In [24], Alvarez, Pestana and Rodŕıguez obtained statements generalizing corresponding re-
sults by Fernández and Rodŕıguez from [6]. We note that they extended the results from [6] to
the case of hyperbolic Riemannian surfaces and some of these results are new even for planar
domains. Let us provide one of these statements.

Theorem E. (V. Alvarez, D. Pestana, J.M. Rodŕıguez, [24]). Let Ω be a hyperbolic domain,
𝐼 be a closed countable subset of Ω and 𝑅 = Ω ∖ 𝐼. The inequality ℎ(𝑅) < ∞ holds if and only
if ℎ(Ω) < ∞ and for some fixed number 𝑟0 > 0, at each point 𝑡 ∈ 𝐼 there exist simply-connected
and mutually disjoint hyperbolic balls 𝐵Ω(𝑡, 𝑟0) of radius 𝑟0 centered at 𝑡. The estimate holds:

ℎ(𝑅) 6
ℎ(Ω)

tanh2
(︀
𝑟0
4

)︀ +
2𝜋

𝑟0 log tanh 𝑟0
tanh( 𝑟0

4 )

.

Before we formulate the next results by F.G. Avkhadiev from [9], we introduce some nota-
tions. The maximal Euclidean modulus is introduced by the identity

𝑀0(Ω) := sup
1

2𝜋
log

𝑅(𝐴)

𝑟(𝐴)
,

where the supremum is taken over all annuli 𝐴 such that 𝐴 separates the boundary Ω,

𝐴 = {𝑧 ∈ C : 𝑟(𝐴) < |𝑧 − 𝑧0| < 𝑅(𝐴)} ⊂ Ω and 𝑧0 ∈ 𝜕Ω.

We let 𝑀0(Ω) = 0, if the set of all such annuli is an empty set.
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The following statement holds.
Theorem F. (F.G. Avkhadiev [9]) Let 1 6 𝑝 < ∞. If Ω ⊂ C is a domain with a uniformly

perfect boundary containing at least three components, then for each real-valued function 𝑢 ∈
𝐶1

0(Ω) the inequality holds:∫︁∫︁
Ω

|∇𝑢|𝑝𝑑𝑥𝑑𝑦
𝑅2−𝑝(𝑥 + 𝑖𝑦,Ω)

>
1

𝑝𝑝𝜇𝑝(Ω)

∫︁∫︁
Ω

|𝑢|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑥 + 𝑖𝑦,Ω)

,

where

𝜇(Ω) =

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑀0(Ω) +

Γ4(1
4
)

4𝜋2
, if ∞ /∈ Ω,

2𝜋𝑀0(Ω) + 𝜋 +
Γ4(1

4
)

4𝜋2
, if ∞ ∈ Ω.

Here Γ is the Euler gamma function.

3. Main results

First we prove the comparison theorem for the constants 𝑐𝑟(Ω) for different 𝑟. Close results
on Hardy inequalities of another type were presented in our papers [8] and [17].

Theorem 1. Let 1 6 𝑝 6 𝑟 < ∞ and let Ω ⊂ C be a hyperbolic domain. Then

𝑐𝑟(Ω) >
𝑝𝑟 [𝑐𝑝(Ω)]

𝑟
𝑝

𝑟𝑟
. (7)

Proof. As 𝑝 = 𝑟, relation (7) becomes an identity. This is why we consider only the case 𝑝 < 𝑟.
Let 𝑢 ∈ 𝐶1

0(Ω), 𝑢 ̸≡ 0 and 1 6 𝑝 < 𝑟 < ∞. We define a new function 𝜙 : Ω → R by the
identity 𝜙(𝑧) ≡ |𝑢(𝑧)|𝑟/𝑝, 𝑧 = 𝑥 + 𝑖𝑦 ∈ Ω. It is obvious that 𝜙 ∈ 𝐶0(Ω). We have

∇𝜙(𝑧) = (𝑟/𝑝)|𝑢(𝑧)|𝑟/𝑝−1(sign𝑢(𝑧))∇𝑢(𝑥).

Since 𝑟
𝑝
− 1 > 0 and 𝑢 ∈ 𝐶1

0(Ω), the function 𝜙 is continuously differentiable at the points

𝑧 ∈ Ω, where 𝑢(𝑧) ̸= 0. If 𝑢(𝑧0) = 0 at some point 𝑧0 ∈ Ω, then it is clear that ∇𝜙(𝑧0) = 0
and lim𝑧→𝑧0 ∇𝜙(𝑧) = 0 thanks to the relations 𝑟

𝑝
− 1 > 0 and since 𝑢 ∈ 𝐶1

0(Ω). Hence, we get:

𝜙 = |𝑢|
𝑟
𝑝 ∈ 𝐶1

0(Ω).
Applying inequality (5) to the function 𝜙, we obtain:

𝑟𝑝

𝑝𝑝

∫︁∫︁
Ω

|𝑢|𝑟−𝑝|∇𝑢|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 > 𝑐𝑝(Ω)

∫︁∫︁
Ω

|𝑢|𝑟

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦, 𝑢 ∈ 𝐶1

0(Ω).

Let us estimate from above the integral in the left hand side of this inequality. Letting

𝑝1 =
𝑟

𝑟 − 𝑝
, 𝑝2 =

𝑟

𝑝
, 𝑓1 =

|𝑢|𝑟−𝑝

𝑅2−2 𝑝
𝑟

, 𝑓2 =
|∇𝑢|𝑝

𝑅2 𝑝
𝑟
−𝑝

,

and applying the Hölder inequality∫︁∫︁
Ω

𝑓1𝑓2𝑑𝑥𝑑𝑦 6

(︂∫︁∫︁
Ω

𝑓𝑝1
1 𝑑𝑥𝑑𝑦

)︂ 1
𝑝1

(︂∫︁∫︁
Ω

𝑓𝑝2
2 𝑑𝑥𝑑𝑦

)︂𝑓𝑟𝑎𝑐1𝑝2

.

As a result, we arrive at the inequality

𝑟𝑝

𝑝𝑝

(︂∫︁∫︁
Ω

|𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

)︂1− 𝑝
𝑟
(︂∫︁∫︁

Ω

|∇𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2−𝑟(𝑧,Ω)

)︂ 𝑝
𝑟

> 𝑐𝑝(Ω)

∫︁∫︁
Ω

|𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

.

Since 𝑢 ∈ 𝐶1
0(Ω) and 𝑢 ̸≡ 0, this inequality is equivalent to the following one:∫︁∫︁
Ω

|∇𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2−𝑟(𝑧,Ω)

>
𝑝𝑟[𝑐𝑝(Ω)]

𝑟
𝑝

𝑟𝑟

∫︁∫︁
Ω

|𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

, for all 𝑢 ∈ 𝐶1
0(Ω), 𝑢 ̸≡ 0.
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This implies inequality (7) since in view of definition (6), as 𝑟 = 𝑝, the constant 𝑐𝑟(Ω) is the
maximal possible in the inequality∫︁∫︁

Ω

|∇𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2−𝑟(𝑧,Ω)

> 𝑐𝑟(Ω)

∫︁∫︁
Ω

|𝑢|𝑟𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

, for all 𝑢 ∈ 𝐶1
0(Ω).

The proof is complete.

The next two statements generalize Theorem B by Fernández and Rodŕıguez. We obtain
estimates for conformally invariant quantities 𝑐𝑝(Ω) and 𝑐𝑝,𝑞(Ω) under some restrictions for the
parameters 𝑝 and 𝑞. We recall that the quantities 𝑐𝑝(Ω) and 𝑐𝑝,𝑞(Ω) are comparable with the
constant 𝑐2(Ω) under the condition 𝑝 = 𝑞 = 2. In particular, as 𝑝 = 2, the next theorem
coincides with Theorem B by Fernández and Rodŕıguez.

Theorem 2. Let Ω ⊂ C be a hyperbolic domain with the coefficient in the linear isoperimetric
inequality defined by the identity:

ℎ(Ω) = sup
𝐺

∫︁∫︁
𝐺

𝑅−2(𝑧,Ω)𝑑𝑥𝑑𝑦

(︂∫︁
𝜕𝐺

𝑅−1(𝑧,Ω)|𝑑𝑧|
)︂−1

,

where the supremum is taken over all domains 𝐺 compactly embedded in the domain Ω and
enveloped by piece-wise smooth curves.

The following statements hold true.
1) If ℎ(Ω) < ∞, then the constant 𝑐𝑝(Ω) is a positive number for each 𝑝 ∈ [1,∞) and the

estimate holds: 𝑐𝑝(Ω) > 1
(𝑝ℎ(Ω))𝑝

.

2) For each 𝑝 ∈ [1, 2], the constant 𝑐𝑝(Ω) is positive if and only ℎ(Ω) < ∞. The estimates
holds:

1

ℎ𝑝(Ω)
6 𝑝𝑝𝑐𝑝(Ω) 6

12
𝑝
2

ℎ
𝑝
2 (Ω)

.

Proof. We begin with proving the first statement of the theorem. Assume that 𝑝 ∈ (1,∞) and
ℎ(Ω) < ∞. By the definition of the conformally invariant constant ℎ(Ω), for each domain 𝐺
compactly embedded into Ω and enveloped by piece-wise smooth curves we have

𝑉 (𝐺) :=

∫︁∫︁
𝐺

𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)
6 ℎ(Ω)

∫︁
𝜕𝐺

𝑑𝑠

𝑅(𝑧,Ω)
. (8)

Then we apply Theorem A by V.M. Miklyukov and M.K. Vuorinen letting 𝑞 = 𝑝 ∈ (1,∞),

𝛼(𝑧) = 𝑅− 2
𝑝 (𝑧,Ω), 𝛽(𝑧) = 𝑅− 2

𝑝
+1(𝑧,Ω).

It follows from the definition of the isoperimetric profile of the domain Ω that the profile satisfies
the inequality

𝜃(𝑡) >
𝑡

ℎ(Ω)

for each 𝑡 ∈ (0, 𝐼𝑝), where 𝐼𝑝 = sup𝐺 𝑉 (𝐺). This is why

𝐵 := sup
𝑟∈(0,𝐼𝑝)

𝑟
1
𝑝

(︂∫︁ 𝐼𝑝

𝑟

𝜃(𝑡)−
𝑝

𝑝−1𝑑𝑡

)︂ 𝑝−1
𝑝

6 ℎ(Ω) sup
𝑟∈(0,∞)

𝑟
1
𝑝

(︂∫︁ ∞

𝑟

𝑡−
𝑝

𝑝−1𝑑𝑡

)︂ 𝑝−1
𝑝

= ℎ(Ω) (𝑝− 1)1−
1
𝑝 .

The above identity has been obtained by means of straightforward calculations.
By Theorem A with 𝑞 = 𝑝 ∈ (1,∞), we have the inequality:∫︁∫︁

Ω

|∇𝑢|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 > 𝜆−𝑝

∫︁∫︁
Ω

|𝑢|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦, for all 𝑢 ∈ 𝐶1

0(Ω), (9)
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where the constant 𝜆 satisfies the inequality

𝜆 6 𝐵 𝑝
1
𝑝

(︂
𝑝

𝑝− 1

)︂ 𝑝−1
𝑝

6 𝑝ℎ(Ω). (10)

Now we observe that the constant 𝑐𝑝(Ω) is defined as the maximal constant in inequality (9).
Therefore,

𝑐𝑝(Ω) > 𝜆−𝑝.

This estimate and (10) lead us to the inequalities

𝑐𝑝(Ω) >
1

(𝑝ℎ(Ω))𝑝
> 0.

This proves the first statement of the theorem for each 𝑝 ∈ (1,∞).
It remains to consider the case 𝑝 = 1. We choose a function 𝑢 ∈ 𝐶1

0(Ω). For each 𝑝 ∈ (1,∞),
this function satisfies inequality (9) with a constant 𝜆 obeying estimate (10). Since the integrals
in inequalities (9) depend continuously on the parameter 𝑝 ∈ (1,∞) for a fixed function 𝑢 ∈
𝐶1

0(Ω), we can pass to the limit as 𝑝 → 1. It is clear that by passing to the limit as 𝑝 → 1 in
(9) and (10), we arrive at the estimate

𝑐1(Ω) >
1

ℎ(Ω)
> 0

in view of the definition of 𝑐1(Ω) as a maximal constant in the corresponding inequality.
Let us prove the second statement. Assume that 𝑝 ∈ [1, 2]. If ℎ(Ω) < ∞, the positivity of

𝑐𝑝(Ω) and the lower bound for this quantity follow the first statement of the theorem.
Assume that 𝑐𝑝(Ω) > 0 for a fixed 𝑝 ∈ [1, 2]. As 𝑝 = 2, the inequality ℎ(Ω) < ∞ and the

upper bound

𝑐2(Ω) 6
3

ℎ(Ω)

were proved by Fernández and Rodŕıguez, see Theorem 𝐵. Suppose that 𝑝 ∈ [1, 2) and 𝑐𝑝(Ω) >
0. Applying estimate (7) of Theorem 1 as 𝑟 = 2, we have:

𝑐2(Ω) >
𝑝2 [𝑐𝑝(Ω)]

2
𝑝

4
> 0.

Applying this estimate and Theorem B, we get that ℎ(Ω) < ∞ and

𝑐𝑝(Ω) 6

(︂
4𝑐2(Ω)

𝑝2

)︂ 𝑝
2

6

(︂
12

ℎ(Ω)𝑝2

)︂ 𝑝
2

.

The proof is complete.

We provide several corollaries of Theorem 2 and the aforementioned theorems by Fernández,
Rodŕıguez and Avkhadiev.

Corollary 1. Let Ω ⊂ C be a domain with a uniformly perfect boundary. Then the following
estimate holds true: √︀

ℎ(Ω) < 2
√

3𝜇(Ω),

where

𝜇(Ω) =

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑀0(Ω) +

Γ4(1
4
)

4𝜋2
as ∞ /∈ Ω,

2𝜋𝑀0(Ω) + 𝜋 +
Γ4(1

4
)

4𝜋2
, as ∞ ∈ Ω,

where Γ is the Euler gamma function.
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Proof. By Avkhadiev theorem F, for a hyperbolic domain with a uniformly perfect boundary
we obtain

𝑐𝑝(Ω) >
1

𝑝𝑝𝜇(Ω)
.

As 𝑝 ∈ [1, 2), by Theorem 2 we have(︂
12

𝑝2ℎ(Ω)

)︂ 𝑝
2

> 𝑐𝑝(Ω) >
1

𝑝𝑝𝜇𝑝(Ω)
.

Therefore, √︀
ℎ(Ω) <

√
12𝜇(Ω),

and this completes the proof.

In the next statement, the symbol 𝑑Ω(𝑧, 𝑤) denotes the hyperbolic distance between the
points 𝑧, 𝑤 ∈ Ω.

Corollary 2. Let Ω ⊂ C be a hyperbolic domain such that 𝑀(Ω) < ∞, that is, the boundary
of the domain Ω is a uniformly perfect set. Let 𝐴 ⊂ Ω be a set consisting of finitely many or
countably many points and 𝑅 = Ω ∖ 𝐴. If 𝐴 is a countable set, we assume that

inf
𝑧∈𝐴,𝑤∈𝐴∖{𝑧}

𝑑Ω(𝑧, 𝑤) > 0.

Then 𝑐𝑝(𝑅) > 0 as 1 6 𝑝 < ∞.

Proof. It follows from Fernández-Rodŕıguez theorem [6] that 𝑐2(𝑅) > 0. Hence, by Theorem B,
the isoperimetric constant satisfies ℎ(𝑅) < ∞. Applying now Theorem 2, we get

𝑐𝑝(𝑅) >
1

ℎ(𝑅)𝑝𝑝𝑝
> 0,

for each 1 6 𝑝 < ∞ and this completes the proof.

Corollary 3. Let 𝑝 ∈ [1, 2) and Ω ⊂ C be a hyperbolic domain ∞ ∈ Ω. By 𝐼 we denote the
set of isolated points in the boundary 𝜕Ω. Assume that 𝑐𝑝(Ω) > 0. Then the points of in the
set 𝐼 are uniformly separated in the hyperbolic metric of the domain 𝐺 = Ω ∪ 𝐼.

Proof. By the assumption, 𝑐𝑝(Ω) > 0 as 𝑝 ∈ [1, 2). Applying inequality (7), we obtain that
𝑐2(Ω) > 0. Now the statement follows Theorem D by Fernández and Rodŕıguez.

The next statement is a corollary of Theorem 2 and the above formulated theorem by Alvarez,
Pestana and Rodŕıguez in [24].

Corollary 4. Let 𝑝 ∈ [1, 2) and Ω ⊂ C be a hyperbolic domain, ∞ ∈ Ω, 𝐼 be a closed
countable subset of Ω and 𝑅 = Ω ∖ 𝐼. Then the following statements hold:

1. If 𝑐𝑝(𝑅) > 0, then ℎ(Ω) < ∞, 𝑐𝑝(Ω) > 0, and for some number 𝑟0 > 0, at each point 𝑡 ∈ 𝐼
there exist simply-connected and mutually disjoint hyperbolic circles 𝐵Ω(𝑡, 𝑟0) of radius 𝑟0
centered at 𝑡;

2. If 𝑐𝑝(Ω) > 0 and for some fixed number 𝑟0 > 0 at each point 𝑡 ∈ 𝐼 there exist simply-
connected and mutually disjoint hyperbolic circles 𝐵Ω(𝑡, 𝑟0) of radius 𝑟0 centered at 𝑡, then
ℎ(𝑅) < ∞ and 𝑐𝑝(𝑅) > 0. Moreover, the estimate holds:

𝑐𝑝(𝑅) >

⎡⎣ 𝑝
√︀
𝑐𝑝(Ω)

tanh2
(︀
𝑟0
4

)︀ +
2𝑝𝜋

𝑟0 log tanh 𝑟0
tanh( 𝑟0

4 )

⎤⎦−𝑝

.
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Proof. Let 𝑐𝑝(𝑅) > 0. Applying Theorem 2 with 𝑝 ∈ [1, 2), we get ℎ(𝑅) < ∞. Then we
employ Theorem E by Alvarez-Pestana-Rodŕıguez to obtain that ℎ(Ω) < ∞ and at each point
𝑡 ∈ 𝐼 there exist simply-connected and mutually disjoint hyperbolic circles 𝐵Ω(𝑡, 𝑟0) of radius
𝑟0 centered at 𝑡. It remains to apply Theorem 2 once again to obtain inequality 𝑐𝑝(Ω) > 0.

Let 𝑐𝑝(Ω) > 0. Then by Theorem 2 we have the inequality ℎ(Ω) < ∞ and the estimate

𝑝ℎ(Ω) > [𝑐𝑝(Ω)]
1
𝑝 . (11)

Since at each point 𝑡 ∈ 𝐼 there exist simply-connected and mutually disjoint hyperbolic circles
𝐵Ω(𝑡, 𝑟0) of radius 𝑟0 centered at 𝑡, by Theorem 𝐸 we obtain that ℎ(𝑅) < ∞ and moreover,
the relations hold:

ℎ(𝑅) 6
ℎ(Ω)

tanh2
(︀
𝑟0
4

)︀ +
2𝜋

𝑟0 log tanh 𝑟0
tanh( 𝑟0

4 )

, (12)

𝑐𝑝(𝑅) >
1

ℎ(𝑅)𝑝𝑝𝑝
> 0. (13)

Combining inequalities (11), (12) and (13), we obtain the needed statement.

Remark. According Theorem 2, if 𝑝 ∈ [1, 2] and 𝑐𝑝(Ω) > 0, then the coefficient ℎ(Ω) is
finite. The following question remains open: whether the positivity of the constant 𝑐𝑝(Ω) for
some 𝑝 ∈ (2,∞) ensures the finiteness of the coefficient ℎ(Ω)? This problem can be reformulated
as follows: whether there exists a hyperbolic domain Ω ⊂ C such that 𝑐2(Ω) = 0 but the constant
𝑐𝑝(Ω) is positive for some 𝑝 ∈ (2,∞).

The next theorem generalize the first statement of Theorem 2.

Theorem 3. Assume that Ω ⊂ C is a hyperbolic domain, numbers 𝑝 ∈ [1,∞) and 𝑞 ∈ [1,∞)
are fixed and satisfy the inequalities 1

𝑝
− 1

2
6 1

𝑞
6 1

𝑝
, while the quantity ℎ𝑝,𝑞(Ω) is defined by the

identity:

ℎ𝑝,𝑞(Ω) = sup
𝐺

(︂∫︁∫︁
𝐺

𝑅−2(𝑧,Ω)𝑑𝑥𝑑𝑦

)︂1
𝑞
−1
𝑝
+1(︂∫︁

𝜕𝐺

𝑅−1(𝑧,Ω)|𝑑𝑧|
)︂−1

,

where the supremum is taken over all domains 𝐺 compactly embedded into the domain Ω and
enveloped by piece-wise smooth curves.

If ℎ𝑝,𝑞(Ω) < ∞, then the constant 𝑐𝑝,𝑞(Ω) is positive and the estimates hold:

𝑐𝑝,𝑞(Ω) >
𝑞

1
𝑝
− 1

𝑞
−1

ℎ𝑝,𝑞(Ω)

(︂
𝑝(𝑞 − 1)

𝑞(𝑝− 1)

)︂ 𝑝−1
𝑝

as 𝑝 > 1, 𝑐1,𝑞(Ω) >
1

𝑞
1
𝑞ℎ1,𝑞(Ω)

as 𝑝 = 1.

Proof. We apply the same method as in the proof of the first statement in the previous theorem.
We define continuous functions 𝛼 : Ω → (0,∞) and 𝛽 : Ω → (0,∞) by the identities 𝛼(𝑧) =

𝑅− 2
𝑞 (𝑧,Ω) and 𝛽(𝑧) = 𝑅− 2

𝑝
+1(𝑧,Ω), where 𝑧 = 𝑥 + 𝑖𝑦 ∈ Ω.

Let 𝐺 be a domain enveloped by a piece-wise smooth curve and satisfying the condition
𝐺 ⊂ Ω. Employing Miklyukov-Vuorinen definitions for the chosen functions 𝛼 and 𝛽, we
obtain the following formulae for the weighted area of the domain

𝑉 (𝐺) =

∫︁∫︁
𝐺

𝛼(𝑧)𝑞𝑑𝑥𝑑𝑦 =

∫︁∫︁
𝐺

𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)

and the weighted length of the boundary

𝐴(𝐺) =

∫︁
𝜕𝐺

𝛽(𝑧)𝛼(𝑧)(𝑝−1)𝑞/𝑝|𝑑𝑧| =

∫︁
𝜕𝐺

|𝑑𝑧|
𝑅(𝑧,Ω)

.
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By the assumptions of the theorem, for each admissible domain we have the inequality

𝑉 𝛽(𝐺) 6 ℎ𝑝,𝑞(Ω)𝐴(𝐺),

where ℎ𝑝,𝑞(Ω) < ∞ and 𝛽 := 1
𝑞
− 1

𝑝
+ 1 ∈ [1/2, 1]. On the other hand, the isoperimetric profile

𝜃 : [0, 𝑉 (Ω)) → [0,∞), 𝜃(0) = 0,

of the domain Ω is the maximal function obeying the inequality

𝜃(𝑉 (𝐺)) 6 𝐴(𝐺)

on the set of all admissible domains 𝐺. Therefore,

𝜃(𝑡) > 𝑡𝛽/ℎ𝑝,𝑞(Ω).

Suppose that

𝑝 ∈ (1,∞), 𝐼𝑝 = sup
𝐺

𝑉 (𝐺),

and apply Miklyukov-Vuorinen theorem. Since

𝛽𝑝

𝑝− 1
= 1 +

𝑝

𝑞(𝑝− 1)
,

for each positive number 𝑟 we have(︂∫︁ ∞

𝑟

𝑡−
𝛽𝑝
𝑝−1𝑑𝑡

)︂ 𝑝−1
𝑝

=

(︂
𝑞

(︂
1 − 1

𝑝

)︂)︂ 𝑝−1
𝑝 1

𝑟
1
𝑞

.

The Miklyukov-Vuorinen characteristics 𝐵 admits the estimate

𝐵 6 sup
𝑟∈(0,𝐼𝑝)

𝑟
1
𝑞

(︂∫︁ 𝐼𝑝

𝑟

𝜃(𝑡)−
𝑝

𝑝−1𝑑𝑡

)︂ 𝑝−1
𝑝

6ℎ𝑝,𝑞(Ω) sup
𝑟∈(0,∞)

𝑟
1
𝑞

(︂∫︁ ∞

𝑟

𝑡−
𝛽𝑝
𝑝−1𝑑𝑡

)︂ 𝑝−1
𝑝

= ℎ𝑝,𝑞(Ω)

(︂
𝑞(𝑝− 1)

𝑝

)︂ 𝑝−1
𝑝

.

Therefore, by Theorem A, the following inequality holds:(︂∫︁∫︁
Ω

|∇𝑢|𝑝

𝑅2−𝑝(𝑧,Ω)

)︂ 1
𝑝

𝑑𝑥𝑑𝑦 >
1

𝜆

(︂∫︁∫︁
Ω

|𝑢|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦

)︂ 1
𝑞

for all 𝑢 ∈ 𝐶1
0(Ω). (14)

The constant in the latter inequality obeys the relation

𝜆 6 𝐵𝑞
1
𝑞

(︂
𝑞

𝑞 − 1

)︂ 𝑝−1
𝑝

6 ℎ𝑝,𝑞(Ω)𝑞
1
𝑞
− 1

𝑝
+1

(︂
𝑞(𝑝− 1)

𝑝(𝑞 − 1)

)︂ 𝑝−1
𝑝

. (15)

Since the constant 𝑐𝑝,𝑞(Ω) is introduced as the maximal in inequality (14), then 𝑐𝑝,𝑞(Ω) > 𝜆−1.
Due to estimate (15), we obtain the desired inequality for 𝑐𝑝,𝑞(Ω) in the case 𝑝 > 1.

The case 𝑝 = 1 can be proved by passing to the limit as in hte proof of the first statement in
the previous theorem since in inequalities (14) and (15) we can pass to the limit as 𝑝 → 1 for
a fixed function 𝑢 ∈ 𝐶1

0(Ω). The proof is complete.

We provide one more corollary of Theorem 3 on the case 𝑝 = 1.

Corollary 5. Assume that Ω ⊂ C is a hyperbolic domain. If 1 6 𝑞 6 2 and ℎ1,𝑞(Ω) < ∞,
then

ℎ1,𝑞(Ω)𝑞
1
𝑞

∫︁∫︁
Ω

|∇𝑢|
𝑅(𝑧,Ω)

𝑑𝑥𝑑𝑦 >

(︂∫︁∫︁
Ω

|𝑢|𝑞

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦

)︂ 1
𝑞

for all 𝑢 ∈ 𝐶1
0(Ω).
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Apart of the coefficient ℎ(Ω) and the Euclidean maximal modulus 𝑀0(Ω), in what follows
we shall need some other scalar characteristics of hyperbolic domains, namely, 𝛼(Ω), 𝛾(Ω) and
𝐶(Ω); we shall give their definitions below.

These characteristics are mutually related. It is known (see, for instance, [2], [3], [7]–[9]) that
a hyperbolic domain Ω ⊂ C possesses a uniformly perfect boundary if and only if

𝑀0(Ω) < ∞ ⇐⇒ 𝛼(Ω) > 0 ⇐⇒ 𝛾(Ω) < ∞ ⇐⇒ 𝐶(Ω) > 0,

where

𝛼(Ω) := inf
𝑧∈Ω

dist (𝑧, 𝜕Ω)

𝑅(𝑧,Ω)
, 𝛾(Ω) := sup

𝑧∈Ω
|∇𝑅(𝑧,Ω)|,

𝐶(Ω) := inf

{︂
cap ({|𝑧 − 𝑧0| 6 𝑟}) ∩ (C ∖ Ω)

𝑟
: 𝑧0 ∈ 𝜕Ω, 0 < 𝑟 < ∞

}︂
.

The symbol cap 𝐸 stands for the logarithmic capacity of a domain 𝐸, see, for instance, [3].

Theorem 4. Let Ω ⊂ C be a domain with a uniformly perfect boundary. Then√︀
ℎ(Ω) 6

√
3

(︂
log

1

𝐶(Ω)
+

Γ4(1
4
)

2𝜋2

)︂
,

√︀
ℎ(Ω) 6

√
3𝛾(Ω)

2
,

√︀
ℎ(Ω) <

√
3

𝛼(Ω)
.

Here Γ is the Euler gamma function.

Proof. In our notations, for 𝐶(Ω), the inequality holds:

𝑀0(Ω) 6
1

2𝜋
log

1

𝐶(Ω)
6 2𝑀0(Ω) +

4 log 2

𝜋
,

see [3], [7] for more details. Employing this relation and Corollary 1, we get:√︀
ℎ(Ω) 6 2

√
3

(︂
1

2
log

1

𝐶(Ω)
+

Γ4(1
4
)

4𝜋2

)︂
.

If Ω ⊂ C is a domain with a uniformly perfect boundary, then

𝛾(Ω) := sup
𝑧∈Ω

|∇𝑅(𝑧,Ω)| < ∞

and for each real-valued function 𝑓 ∈ 𝐶1
0(Ω) the inequality holds [9, Cor. 4.1]:∫︁∫︁

Ω

|∇𝑓 |𝑝𝑑𝑥𝑑𝑦
𝑅2−𝑝(𝑥 + 𝑖𝑦,Ω)

>
4𝑝

𝑝𝑝𝛾𝑝(Ω)

∫︁∫︁
Ω

|𝑓 |𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑥 + 𝑖𝑦,Ω)

.

Employing Theorem 2 and the definition of the constant 𝑐𝑝(Ω) as maximal in the corresponding
inequality, we obtain: (︂

12

𝑝2ℎ(Ω)

)︂𝑝
2

> 𝑐𝑝(Ω) >
4𝑝

𝑝𝑝𝛾𝑝(Ω)
.

Thus, √
3𝛾(Ω)

2
>
√︀
ℎ(Ω).

Combining this inequality with Osgood inequality [2, Ch. 3], [9],

𝛾(Ω) 6
2

𝛼(Ω)
,

we obtain the latter of the needed inequalities:
√

3

𝛼(Ω)
>
√︀
ℎ(Ω).

This completes the proof.
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4. Examples

It is assumed in Theorem 3 that the parameters 𝑝 ∈ [1,∞) ans 𝑞 ∈ [1,∞) are fixed and
satisfy the inequalities:

1

𝑝
− 1

2
6

1

𝑞
6

1

𝑝
.

Hence, we obtain:

𝛽 :=
1

𝑞
− 1

𝑝
+ 1 ∈

[︂
1

2
, 1

]︂
.

Such choice of the restrictions for the parameters 𝑝 and 𝑞 is due to the fact that for a given
domain, the inequality ℎ𝑝,𝑞(Ω) < ∞ can hold not for all values of the parameters obeying the
condition 1 6 𝑝 6 𝑞 < ∞.

Let us show that ℎ𝑝,𝑞(Ω) = ∞ for each simply-connected hyperbolic domain Ω under the
condition 𝛽 ̸∈ [1

2
, 1]. By the conformal invariance ℎ𝑝,𝑞(Ω), it is sufficient to consider the case,

when Ω is some circle.
Example 1 Let Ω = D = {𝑧 ∈ C : |𝑧| < 1}. We consider the circles

D𝑟 = {𝑧 ∈ C : |𝑧| < 𝑟}

of a radius 𝑟 ∈ (0, 1). Since

𝑅(𝑧,𝐷) = 1 − |𝑧|2,
the hyperbolic area 𝑉 (D𝑟) of the circle D𝑟 and the hyperbolic length 𝐴(D𝑟) of the circumference
|𝑧| = 𝑟 are found explicitly. We have:

𝑉 (D𝑟) = 4𝜋𝑟2(1 − 𝑟2)−1

and

𝐴(D𝑟) = 4𝜋𝑟(1 − 𝑟2)−1.

Therefore,

𝑉 𝛽(D𝑟)

𝐴(D𝑟)
= (4𝜋)𝛽−1𝑟2𝛽−1(1 − 𝑟2)1−𝛽.

If 𝛽 ̸∈ [1
2
, 1], then the considered quotient

𝑉 𝛽(D𝑟)

𝐴(D𝑟)
(0 < 𝑟 < 1)

is unbounded from above either in the vicinity of the point 𝑟 = 0 or in the vicinity of the point
𝑟 = 1. Thus,

sup
𝑟∈(0,1)

𝑉 𝛽(D𝑟)

𝐴(D𝑟)
= ∞

under the assumption 𝛽 ̸∈ [1
2
, 1].

If Ω ⊂ C is a domain with a uniformly perfect boundary, then 𝑐𝑝(Ω) > 0 for each 𝑝 ∈ [1,∞).
As it was mentioned above, for 𝑝 = 2 this fact was proved first by Fernández [5], while the
general case is due to Avkhadiev [7]–[9]. If the boundary of the domain is not uniformly perfect,
the issue on positivity of the constant 𝑐𝑝(Ω) becomes complicated. Namely, there exist domains
Ω0 and Ω1, whose boundaries are not uniformly perfect, possessing the properties: 𝑐𝑝(Ω0) > 0
and 𝑐𝑝(Ω1) = 0. Appropriate examples of the domains Ω0 and Ω1 were given in [6]. For the
completeness, we describe shortly these examples.

Example 2. Let

Ω0 = D ∖
{︂

1 − 1

2𝑛

}︂∞

𝑛=1

,
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where D = {𝑧 ∈ C : |𝑧| < 1} [6]. It is known that in the unit circle the hyperbolic distance
𝑑D(𝑧𝑚, 𝑧𝑛) between points 𝑧𝑚, 𝑧𝑛 ∈ D is determined by the formula

𝑑D(𝑧𝑚, 𝑧𝑛) =
1

2
log

1 + 𝑡

1 − 𝑡
, 𝑡 =

⃒⃒⃒⃒
𝑧𝑛 − 𝑧𝑚
1 − 𝑧𝑛𝑧𝑚

⃒⃒⃒⃒
.

This is why the distance 𝑑D(𝑧𝑚, 𝑧𝑛) between the points 𝑧𝑚 = 1− 1
2𝑚

and 𝑧𝑛 = 1− 1
2𝑛

as 𝑛 > 𝑚+1
is given by the formula

𝑑D(𝑧𝑚, 𝑧𝑛) =
1

2
log

1 − 𝑧𝑛𝑧𝑚 + 𝑧𝑛 − 𝑧𝑚
1 − 𝑧𝑛𝑧𝑚 − 𝑧𝑛 + 𝑧𝑚

=
1

2
log

1 − (1 − 1
2𝑚

)(1 − 1
2𝑛

) − 1
2𝑛

+ 1
2𝑚

1 − (1 − 1
2𝑚

)(1 − 1
2𝑛

) + 1
2𝑛

− 1
2𝑚

=
1

2
log

2𝑛+1 − 1

2𝑚+1 − 1
.

Therefore, we have

inf
𝑛∈N,𝑚∈N,𝑛̸=𝑚

𝑑D(𝑧𝑚, 𝑧𝑛) >
1

2
log 2 > 0.

Thanks to Corollary 2 we can state that for each 𝑝 ∈ [1,∞), the constant 𝑐𝑝(Ω0) is a positive
number.

This example is interesting, while comparing it with the next example also considered in
paper [6].

Example 3. Let

Ω1 = D ∖ {0} ∖
{︂

1

2𝑛

}︂∞

𝑛=1

,

where D = {𝑧 ∈ C : |𝑧| < 1}.
The hyperbolic distance 𝑑D(𝑧𝑚, 𝑧𝑛) between the points 𝑧𝑚 = 1

2𝑚
and 𝑧𝑛 = 1

2𝑛
as 𝑚 > 𝑛 + 1

is calculated explicitly by the formula:

𝑑D(𝑧𝑚, 𝑧𝑛) =
1

2
log

1 − 𝑧𝑛𝑧𝑚 + 𝑧𝑛 − 𝑧𝑚
1 − 𝑧𝑛𝑧𝑚 − 𝑧𝑛 + 𝑧𝑚

=
1

2
log

2𝑚+𝑚 + 2𝑚 − 2𝑛 + 1

2𝑚+𝑛 − 2𝑚 + 2𝑛 + 1
, 𝑛 < 𝑚.

As in the previous case, we have

inf
𝑛∈N,𝑚∈N,𝑛̸=𝑚

𝑑D(𝑧𝑚, 𝑧𝑛) >
1

2
log 2 > 0.

There is also a difference in comparison with the previous case; this is related with the point
0 ∈ 𝐴. Since the distance between the points 0 and 𝑧𝑛 is given by the formula

𝑑D(0, 𝑧𝑛) =
1

2
log

1 + 𝑧𝑛
1 − 𝑧𝑛

,

we shall obviously have 𝑑D(0, 𝑧𝑛) → 0 as 𝑛 → ∞, i.e., the point 0 ∈ D is an accumulation point
of the sequence. Therefore,

inf
𝑧∈𝐴,𝑤∈𝐴∖{𝑧}

𝑑Ω(𝑧, 𝑤) = 0, 𝐴 = {0} ∪
{︂

1

2𝑛

}︂∞

𝑛=1

.

In contrast to the previous case, we can not apply Corollary 2 to obtain inequality 𝑐𝑝(Ω1) > 0.
On the contrary, as it was shown in paper [6], the identity 𝑐2(Ω1) = 0 holds. Employing
Theorem 1, we obtain that 𝑐𝑝(Ω1) = 0 for all 𝑝 ∈ [1, 2).
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