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ON AN INTERPOLATION PROBLEM IN THE CLASS OF
FUNCTIONS OF EXPONENTIAL TYPE IN A HALF-PLANE

B.V. VYNNYTS’KYI, V.L. SHARAN, I.B. SHEPAROVYCH

Abstract. Solvability conditions for interpolation problem f(n) = d,, n € IN in the
class of entire functions satisfying the condition |f(z)| < el =l+e(lz a)| ,z — oo are well
known. In the presented paper we study the interpolation problem f(A n) = d,, in the class
of exponential type functions in the half-plane. We find sufficient solvability conditions for
the considerate problem. In particular, a sufficient part of Carleson’s interpolation theorem
is generalized and an analogue of a classic interpolation condition is found in the form

> A2 -1 Re ),
— ) <3, =
2 Re ( 5”/\ +A-> v 1+ |\

J=k J

The necessity of sufficient conditions is also discussed. The results are applied to studying a
problem on splitting and searching an analogue of the identity 2 cos z = exp(—iz) +exp(iz)
for each function of exponential type in the half-plane. We prove that each holomorphic in
the right-hand half-plane function f obeying the , estimate |f(z)| < O(exp(c|Imz|)) can
be represented in the form f = f; + fo and the functions f; and fs holomorphic in the
right-hand half-plane satisfy conditions

[f1(2)] < O(exp(|zlh—(¥))) and|f2(2)] < Olexp(|z|h+(#))),

where o € [0; +00), z = re’,

. T T
olsing|, ¢ € [O; 5} , 0, RS [0; 5] )
ha(p) = - h—(p) = m
0, o e [—5;0} : olsing|, ¢ € [—5;0} :

The paper uses methods works by L. Carleson, P. Jones, K. Kazaryan, K. Malyutin and
other mathematicians.
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1. INTRODUCTION

It is known that for each sequence d = (d,,) € [ there exists an entire function f such that
1]
f(n) =d,, n € NN, (1.1)
|f(2)] < erfm=ltelzh Z — 00. (1.2)
1

In (1.2), “o(|z|)” can not be omitted [1], [2]. Our aim is to prove the following statement.
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Theorem 1. For each sequence (d,,) € [ there exists a holomorphic in the half-plane C, =
{z :Rez > 0} function f such that (1.1) holds and

f(2)] S cre™™ 2 e Cy (1.3)

Hereinafter ¢; stand for positive constants.
We let h € C|—7/2;7/2], 0 € [0;+00), ho(p) = olsin¢|,

olsing|, @€ [O; g} ; 0, NS [0; g} ,
hi(p) = . h_(p) = .
0, Y E [—5;0} , olsingl, ¢ € [—5;0] i

and let H>°(C,;h) be the space of functions f holomorphic in C; obeying
Il f|| :== sup {|f(z)|e’Th(‘P) cz=x+iy=re¥ € Oy} < +oo.
We employ Theorem 1 and its modifications for proving the following statement.

Theorem 2. Let o € [0;+00). Then each function f € H®(C,y; ho) is represented as

f=h+ [ fr € H*(Cy;ho), fo € H*(Cy; hy). (1.4)

The problem on splitting (1.4), which is an analogue of the identity cosoz = %e""z + %e*"“,
arises in seeking analogue of Paley-Wiener theorem for some weighted spaces and studying
some convolution type equations (see [3, 4]). It was studied in works by V.M. Dilnyi [5, 6].
However, positive resolving is known mostly for spaces defined by Lo-metric. For the space
H>(Cy; hg), the issue remained open. Theorem 2 positively resolves this. A more complicated
and important similar question for the space of exponential type in the half-plane defined by
Lq-metric remains open.

Let A = (\,) = (|Mn|e®") be an arbitrary sequence of different complex numbers in the
complex half-plane C,, [*°(h; A) be the space of sequences d, for which

||d]| := sup {|dn\6_|’\”|h(“’“) :n € N} < 4oo0.

Let

1 1
1< A|<r k

Various interpolation problems in the classes of functions holomorphic in the half-plane were
considered in many works, see [7-9] and the references therein. However, the solvability crite-
rions of the interpolation problem

f(An) = d,, n € NN, (1.5)

in the class H*(Cy; hg) is not known.

We employ some ideas from [7-9] and obtain the above formulated theorems on the base of
the following statement, which in fact contains a sufficient part of the interpolation Carleson
theorem; its elementary proof for the half-plane was provided, for instance, in [9].
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Theorem 3. Let (\;) be a sequence of different complex numbers in the half-plane C, =
{z :Rez > 0} such that

> Rel; < 400, (1.6)
|)\k‘<1
SUp{S(T)—%lI]T:’/’G [1;—1—00)} < 400, (1.7)
> 1 Re \;

Re ( ¢ _) ey £im 2N (1.8)
; RIRRY S S Ve

Moreover, let the sequence (\) is a subsequence of zeroes of a holomorphic in Cy function
such that

Q(2) (2 + k)
(Z - )\k)Re /\kQ,()\k)

< cpeMo@ e Pulholen) =y — g iy = re® € €y, k€. (1.9)

Then for each sequence d € 1°(hg; ) there exists a function f € H®(Cy;hg) satisfying condi-
tion (1.5).

Remark 1. If o =0, then conditions (1.6) and (1.7) are equivalent to the condition

> Re A
Do < oo,
L+ |\ |

J=1

and if Q(z) = B(z) is the Blaschke product for C., then condition (1.9) is equivalent to the

Carleson condition
A, — A\
inf
{ H A + )\k

k=1,k#n
while the latter implies (1.8), see, for instance, [9]. The issue on necessity of conditions (1.8)
and (1.9) remains for us open. Some comments on this issues are given in the end of the paper.

GN}>6>Q

2. PROOF OF THEOREM 3

Let so(t) = >, ReAg. Since

1<|>\k|§t

then
ReAk 24 1 1
solr) <r* ) 7 <3 D < 2 2) g
1<|Ag|<r | Ar] 31<I>\k|<r | Ak] (2r)
4 1 1
<r?s Z (—2 2) Re Ay = =r=S(2r)
3 i< MART(2r)

00 2
This is why conditions (1.6) and (1.7) implies the convergence of the series ) ( 11};):\ J|2> and
=1 J

S Re; (1+ |>\j|2)73/2. Therefore, {; — 0. This is why, as in [7-9], in the proof of Theorem 3
=1
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we can assume that the sequence (&) is non-increasing. Let
22 -1

—&; — and Fi(z)=e \If
£]Z+)\j k Xp( Z >

The latter series converges uniformly on compact sets in C,. Let us show that the sought
function is

Zd 2) (2 + M) 142\ [2Re;\” &M Fy(2)
g z—)\k Q'(A)2Re Ay \ 1+ Ay A

24N ) e Fr(\)
Indeed,
il SENE O VIR L Ve (14 12[*) Re; + (1+ |A;°) Re
24 A Z+ N 24 A ‘z+)\_j|2
and ) )
1 Re“\; ;
Rew(s) = (DR  RedRes oy
() [+ A 2+ 2]
Hence,

> (1+ |2[%) Re2) ))
F <ex - — 9 + JR
| F(2)] ep(%( (G ) 1] ¢Rez

0o 2 2 .
<exp (§pRez) exp (Z (— <1+|Zl ) Re ﬁ2>) :
=\ (N |2+ A
Moreover, see [9],

’2ReAj 241

Re \;
S e (PR () Re
—4Re Re ) 1+z)\

L+ NP 2+
In addition, according condition (1.8),

[e.9]

|Fi(Ax)| = exp <—Jzk < fg)\k -I—)\ fg/\k +)\ )) Z C.

p Q(2) (2 + M) 142 \? [2ReX;\” 5™ Fy(2)
F (Z — Ak)Q’()\k)2Re A \ 1+ A z+ S\k e8k? Fk<)\k>
(Lt 2 [9Re A\ €M Fy(z)
3 1+ M Z+ j\k eSk? Fk()\k)
A 142X A 14z
Cy4 Re k2Re +Z_keX —Z( Re kQRe +2€> .
1+|/\k| Z+)\k >k 1+’)\k|

Z+ A
Z lak| exp (—Z |aj]> <1,
k=1

j=k
we arrive at the statement of Theorem 3

Therefore,

Since
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3. PROOF OF THEOREM 1

Lemma 3.1. Let 0 € [0;+00), the function Q € H>®(C,;hg) has the zeroes at the points
)\k € C+,

2= Tl /it

where 0, =1 if Re Ay <1 or if o =0, and o, = (Re)\k)_l if o >0 and Re A, > 1. Then

’Qk(z)

C2
< —exp (afyl)
Tk
as z € Cy, ke N.
Proof. Since 7, € (0;1) and &), = 2%, the circles
k
— | < Tk}
S+ Ak

are contained in C,. Then

S — Ak

Uk Z:{CE(D:

1+T]? 2 2 QTkRe/\k 2
1 T,fReAk) +(77—Im)\k) < 1_—7_]3

~ Q(z c z—A
Qi(2)] < [2G)] < —1€Xp(0'|y|) if kN> g
Tk Tk Z+ A
It % < Ty, then by the maximum principle we obtain
_ olImg| _ 1
Tk S+ g Tk
Since ogd,Re A\, < o, this completes the proof. n
We note that .
Tk 2 gRe /\k

if o > 0 and Re Ay > 1. Therefore, the proven lemma implies that the sequence A = (k) satisfies
all assumptions of Theorem 3 for ¢ = 7, and at that, we can take {)(z) = sinmz. In addition,
[° C 1%®°(hg; A) if A = (k). This is why Theorem 1 follows Theorem 3.

4. PROOF OF THEOREM 2

Lemma 4.1. Let (M) be a sequence of different complex numbers in the half-plane C, =
{z : Rez > 0} such that inequalities (1.6), (1.8) hold and

sup {S(r) — 211117* ‘T E [1;+oo)} < +o00.
T
Let also () be a subsequence of zeroes of a holomorphic in C, function Q such that

(Z - )\k)Re )\kQ/()\k)

< coe’ =P e ulh—(on) z=x+iy =re¥ € C,, k € IN.

Then for each sequence (dy) € 1°(hy; ) there exists a holomorphic in Cy function f €
H>(Cy; hy) satisfying condition (1.5).

The proof of this lemma reproduces literally the proof of Theorem 3.
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Lemma 4.2. Let o € [0; +00), a function Q € H*(C,; hy) has zeroes at the points N\, € C.

and —
u() = TN

Then

‘Qk(z)‘ < 9exp (rhy (¢)) as z=x+iy=re¥ cC,.
Tk

The proof of this lemma is similar to the proof of Lemma 3.1.

We proceed to proving Theorem 2. We assume that o = 7. Let Q(z) = e7'2(:=1 sin§ (z —1).
This functions has zeroes in C at the points A\, = 2k—1, k € N, and Q € H>*(C,;hy). At that,
|€Y(A\g)| = 7/2, and according Lemma 4.2, the sequence A\, = 2k — 1 satisfies all assumptions
of Lemma 4.1. Let dy = f (A\g). Then (di) € {®(hy; ). Hence, according Lemma 4.1, there
exists a function fo € H*(Cy;hy) such that fo (M) = f (M), k£ € N. Let f(z) = %
Since [10]

sing (z — 1)) > o exp <g|lm z\)

outside the circles |z — A\x| < € and therefore, outside these circles the estimate

/ (Z>‘ Seexp(rho(v),  z=ax+iy=re?,

holds true. Now by the maximum principle we infer that f € H*(C4;h_). Moreover,
7 1 |
F2)=F(2)Q) + fole) = 5 f (2) + folz) = e f (2).
Since fi(z) == %f(z) € H*(Cy;ho) and fo(2) == fo(z) — 5. '™ f(2) € H®(C,; hy), this

%

completes the proof of Theorem 2.

5. ADDENDA AND REMARKS

Conditions (1.6) and (1.7) are necessary for the statement of Theorem 3. Indeed, let Q(z) =
f(z)%, where f € H®(C,4; ho) is a function such that f(A;) = 1 and f(\y) = 0 if k # 1.
Then @ € H*(C,; hg) and () is a sequence of zeroes of the function @). This is why, by the
generalized Carleman formula [11] we obtain (1.6) and (1.7) [12]. If the sequence (\x) satisfies
conditions (1.6) and (1.7), then [10] there exists a function f € H*(Cy;hy), for which this is

a sequence of its zeroes. Each function f € H>®(C,;hy), f # 0, is represented as [11]

f(z) = ei“°+alzé(z)f(z), (5.1)
where ag € R and a; € R are constants,
Ql(t' Z) _ (tZ + Z)Q

(1+2)2(t +iz)

+oo
7(2) = exp{ = [ Qult2) (lAlit)lde+ dh(e) b, B() = [[ W),

fo(it) = f(it) are angular boundary values of f(z) on 0C,, h(t) is a non-increasing function (a
singular boundary function of the function f), whose derivative vanishes everywhere,

z = A N z z
Wj(z):2+)\_J as |\ <1, W/j(z)zl—i-ieXp(Y—i_)\:) as  |Aj| > L.
J by i A

In [13], the following statement was proved.
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Proposition 1. If f € H>(C.;hy) and f # 0, then 1,) log|fo] € LY(R), 2,)
foliy) exp (—aly|) € L>®(R), 1,)sup {K(r) : r € [1;400)} < 400, and (1.6) holds, where

K(r) =K (r) + Ks(r) + Kp(r), Kz(r):=2 3 <L2 _ %2) Re A,
1< A l<r

| Al
-t | G-t

tI<r

Kalr) = (W - ) s i) .

Vice versa, if the sequence ()\k) of the points in the half-plane C., a function fo : iR — C
and a non-increasing function h : R — R, whose derivative vanishes almost everywhere are
such that conditions 1,), 2,), 1p) and (1.6) hold, then the function f defined by identity (5.1)
is holomorphic in C, and satisfies the estimates |f(2)| < ciexp (o|y| + c1x). At that, if in the
product B(z) we omit some of the factors, the above estimate remains true and the constant ¢,
does not increase.

Employing this statement and some ideas from the proof of necessary part of Carleson intr-
erpolation theorem (see [14]), we confirm that each of the following conditions

H (W5 (Ak)| = csexp (—csReAg), ke NN,
JEN, j#k
(QRe ARe ), B 2Re Ay Re \;
€N, j£k |)\k +)\_j|2 142

) < yRe),, ke,

is necessary for the solvability of interpolation problem (1.5) in the class H>(C,; hg) for each
sequence d € [*(hg; A). However, we fail in trying to prove the necessity of conditions (1.8)
and (1.9). In view of this, it is useful to mention the inequality

o) o0 2 2

< i 2Re /\klie éj _ ReMrRe ?j .
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