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INVERSE PROBLEMS FOR A DEGENERATE MIXED

PARABOLIC-HYPERBOLIC EQUATION ON FINDING

TIME-DEPENDING FACTORS IN RIGHT HAND SIDES

S.N. SIDOROV

Abstract. We consider direct and inverse problems on determining time-dependent fac-
tors in the right hand sides for a mixed parabolic-hyperbolic equation with a degenerate
hyperbolic part in a rectangular area. As a preliminary, we study a direct initial boundary
problem for this equation. By the method of spectral analysis we establish the uniqueness
criterion for the solution and the solution is constructed as a sum over the system of the
eigenfunctions of the corresponding one-dimensional Sturm-Liouville spectral problem. In
justifying the convergence of the series, the problem of small denominators arises. Because
of this, we prove the estimates for the distance from the zero to the small denominators
with a corresponding asymptotics. These estimates allow us to justify the convergence of
the constructed series in the class of regular solutions of this equation. On the base of the
solution to the direct problem, we formulate and study three inverse problems on finding
time-dependent factors in the right hand side only by the parabolic or hyperbolic part of
the equation, and also as the factors in the both sides of the equation are unknown. Using
the formula of solution to the direct initial boundary problem, the solution of inverse prob-
lems is equivalently reduced to the solvability of loaded integral equations. By means of the
theory of integral equations, the corresponding theorems of uniqueness and the existence
of solutions of the stated inverse problems are proved. At that, the solutions of inverse
problems are constructed explicitly, as sums of orthogonal series.

Keywords: equation of mixed parabolic-hyperbolic type, initial boundary value problem,
inverse problems, uniqueness, existence, series, small denominators, integral equations.

Mathematics Subjects Classifications: 35M10 + 35R30

1. Formulation of problem

We consider a mixed type equation

𝐿𝑢 = 𝐹 (𝑥, 𝑡) (1.1)

in a rectangular domain

𝐷 = {(𝑥, 𝑡)| 0 < 𝑥 < 𝑙, −𝛼 < 𝑡 < 𝛽},
where 𝑚 > 0, 𝑙 > 0, 𝛼 > 0, 𝛽 > 0 are given real numbers and 𝑏 is a prescribed real number,
and

𝐿𝑢 =

{︃
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑏𝑢,

(−𝑡)𝑚𝑢𝑥𝑥 − 𝑢𝑡𝑡 − 𝑏(−𝑡)𝑚𝑢,
𝐹 (𝑥, 𝑡) =

{︃
𝑓1(𝑥)𝑔1(𝑡), 𝑡 > 0,

𝑓2(𝑥)𝑔2(𝑡), 𝑡 < 0,
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Problem 1. Find a function 𝑢(𝑥, 𝑡) satisfying the conditions

𝑢(𝑥, 𝑡) ∈ 𝐶(𝐷) ∩ 𝐶1
𝑡 (𝐷) ∩ 𝐶1

𝑥(𝐷) ∩ 𝐶2
𝑥(𝐷+) ∩ 𝐶2(𝐷−); (1.2)

𝐿𝑢(𝑥, 𝑡) ≡ 𝐹 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝐷+ ∪𝐷−; (1.3)

𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0, −𝛼 6 𝑡 6 𝛽; (1.4)

𝑢(𝑥,−𝛼) = 0, 0 6 𝑥 6 𝑙, (1.5)

where 𝐹 (𝑥, 𝑡) is a given sufficiently smooth function, 𝐷+ = 𝐷 ∩ {𝑡 > 0}, 𝐷− = 𝐷 ∩ {𝑡 < 0}.
Problem 2. Find functions 𝑢(𝑥, 𝑡) and 𝑔1(𝑡) satisfying conditions (1.2)–(1.5) and

𝑔1(𝑡) ∈ 𝐶[0, 𝛽]; (1.6)

𝑢(𝑥0, 𝑡) = ℎ1(𝑡), 0 < 𝑥0 < 𝑙, 0 6 𝑡 6 𝛽, (1.7)

where 𝑓𝑖(𝑥), 𝑖 = 1, 2, 𝑔2(𝑡), ℎ1(𝑡) are given functions, 𝑥0 is a given point in the interval (0, 𝑙),
𝐷+ = 𝐷 ∩ {𝑡 > 0}, 𝐷− = 𝐷 ∩ {𝑡 < 0}.

Problem 3. Find functions 𝑢(𝑥, 𝑡) and 𝑔2(𝑡) satisfying conditions (1.2)–(1.5) and

𝑔2(𝑡) ∈ 𝐶[−𝛼, 0], (1.8)

𝑢(𝑥0, 𝑡) = ℎ2(𝑡), 0 < 𝑥0 < 𝑙, −𝛼 6 𝑡 6 0, (1.9)

where 𝑓𝑖(𝑥), 𝑖 = 1, 2, 𝑔1(𝑡), ℎ2(𝑡) are known functions.
Problem 4. Find functions 𝑢(𝑥, 𝑡), 𝑔1(𝑡), 𝑔2(𝑡), satisfying conditions (1.2)–(1.9), where

𝑓𝑖(𝑥), ℎ𝑖(𝑡), 𝑖 = 1, 2, are given functions.
We note that in Problems 2–4 conditions (1.7) and (1.9) are additional for determining the

functions 𝑔1(𝑡) and 𝑔2(𝑡).
One of the first studies of interface problem with a parabolic equation on one part of a domain

and a hyperbolic equation on the other part is work by I.M. Gel’fand [1]. He considered an
example a gas motion in a channel surrounded by a porous medium and at that, the gas motion
in a channel was described by a wave equation, while outside the channel the diffusion equation
was posed. Ya.S. Uflyand [2,3] considered a problem on propagation of electric oscillations in
compound lines, when the losses on a semi-infinite line were neglected and the rest of the line
was treated as a cable with no leaks. He reduced this problem a mixed parabolic-hyperbolic
type equation. This problem for a more general equation was considered in monograph by
T.D. Dzhuraev [4].

O.A. Ladyzhenskaya and L. Stupjalis [5,6] considered initial boundary value problems in a
multi-dimensional space with interface for parabolic-hyperbolic equations arising in studying
problem on motion of a conducting liquid in an electromagnetic field.

In works by N.Yu. Kapustin [7], the methods of functional analysis were employed for prov-
ing the unique solvability of an analogue of Tricomi problem in the space 𝐿2 for equation (1.1)
as 𝑏 = 0, 0 < 𝑚 6 1 and 𝐹 (𝑥, 𝑡) ≡ 0 in a mixed domain, whose parabolic part coincided
with 𝐷+, while the hyperbolic part was a characteristic triangle with a base on the degen-
eration line. In a similar domain, E.I. Moiseev and N.Yu. Kapustin [8] studied problems for
parablic-hyperbolic equations and corresponding one-dimensional spectral problems by using
the methods of spectral analysis.

Earlier problems 1–4 we first posed and studied in works by K.B. Sabitov [9], [10] for equation
(1.1) with 𝑚 = 0. Initial boundary value problem (1.2)–(1.5) for homogeneous equation (1.1)
with 𝐹𝑖(𝑥, 𝑡) ≡ 0, 𝑖 = 1, 2, was studied in work [11–14], while the case 𝐹𝑖(𝑥, 𝑡) ̸= 0 was
considered in work [15]. In works [16–18] there were studied inverse problems on finding the
functions 𝑢(𝑥, 𝑡) and 𝑓𝑖(𝑥) as 𝑔𝑖(𝑡) ≡ 1.

Inverse problem arise in many fields of natural sciences: electrodynamics, acoustics, quantum
scattering theory, geophysics (in inverse problems of electrical exploration, seismicity, potential
theory), astronomy and other fields. This relates to the fact that the values of the parameters
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can be obtained from the observed data, while the properties of the medium are often unknown
in practice.

Various inverse problems for particular types of partial differential equations, that is, for
parabolic, hyperbolic and elliptic equations were studied quite well, see works [19–25] and
the references therein. For instance, in [22, 25], there were studied inverse problems for heat
equation in finding the time dependent right hand side; this was done by means of integral
equations method.

In works by A.I. Prilepko and his pupils [26–28] there were considered inverse problems
on determining the right hand side for particular types of partial differential equations. In
works by V.V. Solov’ev [29,30], inverse problems on determining the right hand side 𝐹 (𝑥, 𝑡) =
ℎ(𝑥, 𝑡)𝑓(𝑡) + 𝑔(𝑥, 𝑡) were considered for a parabolic equation, where the unknown was the
function 𝑓(𝑡). Work [31] by A.B. Kostin was devoted for studying the inverse problem for a
parabolic equation on recovering a source, a right hand side 𝐹 (𝑥, 𝑡) = ℎ(𝑥, 𝑡)𝑓(𝑥), where the
unknown was the function 𝑓(𝑥). A.I. Kozhanov and R.R. Safiullova [32,33] studied inverse
problem on determining both a solution to a parabolic equation and an unknown external
source (right hand side).

In the present paper we first pose and study inverse Problems 2–4 on finding the factors in
the right hand side of a mixed parabolic-hyperbolic equation with a degenerating hyperbolic
part. The study is based on a solution to a direct initial boundary value Problem 1. As it
was mentioned above, in works [11–15], a solution of this problem was constructed as a sum
of orthogonal series and in justifying its convergence, the small denominators problem arisen.
Because of this, we establish estimates on separation of the denominators from zero with an
appropriate asymptotics and this allows us to justify the convergence of the series in the class
of regular solutions of equation (1.1). On the base of the formula for solution to this problem,
the resolving of inverse problems 2–4 is equivalently reduced to solvability of loaded integral
equations. Employing the theory of integral equations, we prove appropriate theorems on
existence and uniqueness of solutions to the posed problem and provide explicit formulae for
the solutions.

2. Direct initial boundary value problem

According [15], a solution of direct problem (1.2)–(1.5) is given by the series

𝑢(𝑥, 𝑡) =

√︂
2

𝑙

∞∑︁
𝑘=1

𝑇𝑘(𝑡) sin𝜇𝑘𝑥, 𝜇𝑘 =
𝜋𝑘

𝑙
, (2.1)

where

𝑇𝑘(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩

𝜔𝑘(𝛼)

∆𝑘(𝛼)
𝑒−𝜆2

𝑘𝑡 + 𝑓1𝑘
𝑡∫︀
0

𝑔1(𝑠)𝑒
−𝜆2

𝑘(𝑡−𝑠) 𝑑𝑠, 𝑡 > 0,

𝜔𝑘(𝛼)

∆𝑘(𝛼)
∆𝑘(−𝑡) − 𝜔𝑘(−𝑡), 𝑡 < 0,

⎫⎪⎪⎬⎪⎪⎭ (2.2)

∆𝑘(−𝑡) = 𝜆2
𝑘𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞) + 𝛾− 1

2𝑞
(𝑘)

√
−𝑡𝐽− 1

2𝑞
(𝑝𝑘(−𝑡)𝑞),

𝛾 1
2𝑞

(𝑘) =
1

2𝑞
Γ

(︂
1

2𝑞

)︂(︂
2

𝑝𝑘

)︂ 1
2𝑞

, 𝛾− 1
2𝑞

(𝑘) = − 1

2𝑞
Γ

(︂
− 1

2𝑞

)︂(︂
2

𝑝𝑘

)︂− 1
2𝑞

,

𝑓𝑖𝑘 =

√︂
2

𝑙

𝑙∫︁
0

𝑓𝑖(𝑥) sin𝜇𝑘𝑥 𝑑𝑥, 𝑖 = 1, 2,

𝜔𝑘(−𝑡) = 𝑓1𝑘𝑔1(0)𝛾 1
2𝑞

(𝑘)
√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞) − 𝑓2𝑘𝑊𝑘(−𝑡),
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𝑊𝑘(−𝑡) =
𝜋

2𝑞 sin 𝜋
2𝑞

0∫︁
𝑡

𝑔2(𝑠)
√
𝑠 𝑡𝑊 (𝑠,−𝑡) 𝑑𝑠, (2.3)

𝑊 (𝑠,−𝑡) = 𝐽 1
2𝑞

(𝑝𝑘(−𝑡)𝑞)𝐽− 1
2𝑞

(𝑝𝑘(−𝑠)𝑞) − 𝐽− 1
2𝑞

(𝑝𝑘(−𝑡)𝑞)𝐽 1
2𝑞

(𝑝𝑘(−𝑠)𝑞),

and 𝐽 1
2𝑞

(𝑧) and 𝐽− 1
2𝑞

(𝑧) are the Bessel function of first kind, Γ(·) is the Gamma function,

𝜆2
𝑘 = 𝑏 + 𝜇2

𝑘, 𝑝𝑘 =
𝜆𝑘

𝑞
, 𝑞 =

𝑚 + 2

2
, ̃︀𝜆𝑘 = 𝜆𝑘𝑙, 𝛼𝑞𝑙 =

𝛼𝑞

(𝑞 𝑙)
,

under the assumption that

∆𝑘(𝛼) = 𝜆2
𝑘𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(̃︀𝜆𝑘𝛼𝑞𝑙) + 𝛾− 1

2𝑞
(𝑘)

√
𝛼𝐽− 1

2𝑞
(̃︀𝜆𝑘𝛼𝑞𝑙) ̸= 0. (2.4)

for all 𝑘 ∈ N.
In what follows we suppose that 𝑏 = 𝜇2 > 0, 𝜇 > 0, since if 𝑏 < 0, then starting with some

index 𝑘0, for all 𝑘 > 𝑘0, we have 𝑏 + 𝜇2
𝑘 > 0, that is, the sign of 𝑏 makes no influence on the

obtained results.
It was shown in works [14, 15] that ∆𝑘(𝛼) has countably many zeroes. This set coincides with

the zero set of a linear combination of the Bessel functions 𝐽 1
2𝑞

(̃︀𝜆𝑘𝛼𝑞𝑙) and 𝐽− 1
2𝑞

(̃︀𝜆𝑘𝛼𝑞𝑙). Since

∆𝑘(𝛼) is involved into the denominators of the coefficients of series (2.1), the small denominator
problem arises [34, 14, 15]. This is why to justify the convergence of series (2.1), we need to
show the existence of numbers 𝛼, 𝑙, 𝑚 and 𝑏, under which the expression ∆𝑘(𝛼) is separated
from the zero.

Lemma 2.1. If 𝛼𝑞𝑙 = 𝑝/𝑡 is an arbitrary fractional number, where 𝑝 and 𝑡 are coprime
natural numbers and 𝑟

𝑡
̸= 3𝑞+1

4𝑞
as 𝑟 = 1, 𝑡− 1, then there exist positive constants 𝑘0 ∈ N and

𝐶0 such that for all 𝑘 > 𝑘0 and fixed 𝜇 > 0 the estimate

|𝑘−1−𝜆∆𝑘(𝛼)| > 𝐶0 > 0, 𝜆 =
1

2
− 1

2𝑞
. (2.5)

holds true.

The proof was given in work [15].
On the base of this lemma, we establish the following statement.

Theorem 2.1. Let the assumptions of Lemma 2.1 hold, 𝑔1(𝑡) ∈ 𝐶[0, 𝛽], 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0],
𝑓𝑖(𝑥) ∈ 𝐶3[0, 𝑙], 𝑓𝑖(0) = 𝑓𝑖(𝑙) = 𝑓 ′′

𝑖 (0) = 𝑓 ′′
𝑖 (𝑙) = 0, 𝑖 = 1, 2. If ∆𝑘(𝛼) ̸= 0 as 𝑘 = 1, 𝑘0,

then there exists the unique solution of problem (1.2)–(1.5) determined by series (2.1) with
coefficients given by formula (2.2).

The proof is similar to work [15].

3. Inverse Problem 2

On the base of the formula for solution of direct problem studied in Section 2, we consider
Inverse Problem 2. Supposing that function (2.1) satisfies condition (1.7), we get√︂

2

𝑙

∞∑︁
𝑘=1

⎡⎣ 𝜔𝑘(𝛼)

∆𝑘(𝛼)
𝑒−𝜆2

𝑘𝑡 + 𝑓1𝑘

𝑡∫︁
0

𝑔1(𝑠)𝑒
−𝜆2

𝑘(𝑡−𝑠) 𝑑𝑠

⎤⎦ sin𝜇𝑘𝑥0 = ℎ1(𝑡), 0 6 𝑡 6 𝛽,

or

𝑔1(0)

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓1𝑘𝛾 1
2𝑞

(𝑘)
√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
𝑒−𝜆2

𝑘𝑡 sin𝜇𝑘𝑥0 −
√︂

2

𝑙

∞∑︁
𝑘=1

𝑓2𝑘𝑊𝑘(𝛼)

∆𝑘(𝛼)
𝑒−𝜆2

𝑘𝑡 sin𝜇𝑘𝑥0
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+

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓1𝑘

𝑡∫︁
0

𝑔1(𝑠)𝑒
−𝜆2

𝑘(𝑡−𝑠) 𝑑𝑠 sin𝜇𝑘𝑥0 = ℎ1(𝑡).

In the latter term we interchange the integration and summation that is possible by the uniform
convergence of series (2.1) on 𝐷 [15]. Then for the function 𝑔1(𝑡) we obtain a loaded first kind
Volterra equation:

𝑡∫︁
0

𝑔1(𝑠)𝐾1(𝑠, 𝑡) 𝑑𝑠 = ̃︀ℎ1(𝑡), 0 6 𝑡 6 𝛽, (3.1)

with the kernel

𝐾1(𝑠, 𝑡) =

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓1𝑘𝑒
−𝜆2

𝑘(𝑡−𝑠) sin𝜇𝑘𝑥0, (3.2)

and the right hand side ̃︀ℎ1(𝑡) = ℎ1(𝑡) − 𝑔1(0)𝐻1(𝑡) + 𝐻2(𝑡). (3.3)

Here

𝐻1(𝑡) =

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓1𝑘𝑒
−𝜆2

𝑘𝑡

∆𝑘(𝛼)
𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞) sin𝜇𝑘𝑥0, (3.4)

𝐻2(𝑡) =

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓2𝑘𝑒
−𝜆2

𝑘𝑡

∆𝑘(𝛼)
𝑊𝑘(𝛼) sin𝜇𝑘𝑥0. (3.5)

Lemma 3.1. If the functions 𝑓𝑖(𝑥), 𝑖 = 1, 2, obey the assumptions of Theorem 2.1, then
series (3.2), (3.4) and (3.5) and their derivatives in 𝑡 converge uniformly on a closed set
0 6 𝑠 6 𝑡 6 𝛽.

Proof. As 0 6 𝑠 6 𝑡 6 𝛽, series (3.2) and its derivative in 𝑡 are majorized respectively by the
series

𝑀1

∞∑︁
𝑘=1

|𝑓1𝑘| and 𝑀2

∞∑︁
𝑘=1

𝑘2|𝑓1𝑘|.

Hereinafter 𝑀𝑖 are positive constants.
Thanks to Lemma 2.1, Lemma 2.5 in [15] and asymptotic estimate [35]

𝐽𝜈(𝑧) =

√︂
2

𝜋𝑧
cos

(︁
𝑧 − 𝜋

2
𝜈 − 𝜋

4

)︁
+ 𝑂(𝑧−5/2), 𝑧 → ∞, (3.6)

we can estimate the expressions in the sum in (3.4) and (3.5) for large 𝑘:

|𝑓1𝑘𝑒−𝜆2
𝑘𝑡||𝛾 1

2𝑞
(𝑘)|

√
𝛼 |𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)|
|∆𝑘(𝛼)|

6
𝑀3|𝑓1𝑘|𝑘−1+𝜆

𝑘1+𝜆𝐶0

6 𝑀4𝑘
−2|𝑓1𝑘|,

|𝑓2𝑘𝑒−𝜆2
𝑘𝑡||𝑊𝑘(𝛼)|

|∆𝑘(𝛼)|
6

𝑀5|𝑓2𝑘|𝑘−1+𝜆

𝑘1+𝜆𝐶0

6 𝑀6𝑘
−2|𝑓2𝑘|.

For the expressions in the sum in the derivatives 𝐻 ′
1(𝑡) and 𝐻 ′

2(𝑡), we obtain the following
estimates:

|𝑓1𝑘𝜆2
𝑘𝑒

−𝜆2
𝑘𝑡||𝛾 1

2𝑞
(𝑘)|

√
𝛼 |𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)|
|∆𝑘(𝛼)|

6 𝑀7|𝑓1𝑘|,
|𝑓1𝑘𝜆2

𝑘𝑒
−𝜆2

𝑘𝑡||𝑊𝑘(𝛼)|
|∆𝑘(𝛼)|

6 𝑀8|𝑓2𝑘|.
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This implies that on the closed set 0 6 𝑠 6 𝑡 6 𝛽, series (3.2), (3.4) and (3.5) and their first
derivatives are majorized respectively by the series

𝑀9

∞∑︁
𝑘=1

|𝑓1𝑘|, 𝑀10

∞∑︁
𝑘=1

𝑘2|𝑓2𝑘|. (3.7)

Then under the made assumptions series (3.7) converge. This is why series (3.2), (3.4), (3.5) and
the series obtained by termwise differentiation in 𝑡 converge uniformly an 0 6 𝑠 6 𝑡 6 𝛽.

Differentiating equation (3.1) in 𝑡, we have

𝐾1(𝑡, 𝑡)𝑔1(𝑡) +

𝑡∫︁
0

𝑔1(𝑠)
𝜕𝐾1(𝑠, 𝑡)

𝜕𝑡
𝑑𝑠 = ̃︀ℎ′

1(𝑡). (3.8)

Letting 𝑠 = 𝑡 in (3.2), we get

𝐾1(𝑡, 𝑡) =
+∞∑︁
𝑘=1

𝑓1𝑘 sin𝜇𝑘𝑥0 = 𝑓1(𝑥0). (3.9)

The right hand in identity (3.9) is the expansion of the function 𝑓1(𝑥) into the series{︁√︁
2
𝑙

sin𝜇𝑘𝑥
}︁

𝑘>1
at the point 𝑥 = 𝑥0. If 𝑓1(𝑥0) ̸= 0, then by equation (3.8) we get the in-

tegral equation

𝑔1(𝑡) − 𝜆

𝑡∫︁
0

𝑔1(𝑠)
𝜕𝐾1(𝑠, 𝑡)

𝜕𝑡
𝑑𝑠 =

̃︀ℎ′
1(𝑡)

𝑓1(𝑥0)
, (3.10)

where

𝜆 = − 1

𝑓1(𝑥0)
.

Equation (3.10) is an integral second kind Volterra equation with a continuous kernel and a
continuous right hand side. As it is known, see, for instance, [37], such equation possesses the
unique solution in the class 𝐶[0, 𝛽] for each 𝑔1(0). Let us find this constant involved in the
right hand side of equation (3.10). In order to do this, we let 𝑡 = 0 in equation (3.10) and we
obtain

𝑓1(𝑥0)𝑔1(0) = ℎ′
1(0) − 𝑔1(0)𝐻 ′

1(0) + 𝐻 ′
2(0).

This implies

𝑔1(0) =
ℎ′
1(0) + 𝐻 ′

2(0)

𝑓1(𝑥0) + 𝐻 ′
1(0)

(3.11)

under the condition

𝑓1(𝑥0) + 𝐻 ′
1(0) =

√︂
2

𝑙

+∞∑︁
𝑘=1

𝑓1𝑘 sin𝜇𝑘𝑥0 −
√︂

2

𝑙

+∞∑︁
𝑘=1

𝑓1𝑘𝜆
2
𝑘𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
sin𝜇𝑘𝑥0

=

√︂
2

𝑙

+∞∑︁
𝑘=1

𝑓1𝑘

[︃
1 −

𝜆2
𝑘𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)

]︃
sin𝜇𝑘𝑥0

=

√︂
2

𝑙

+∞∑︁
𝑘=1

𝑓1𝑘𝛾− 1
2𝑞

(𝑘)
√
𝛼𝐽− 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
sin𝜇𝑘𝑥0 ̸= 0.

(3.12)

For instance, let 𝑞 = 1 and 𝜇 = 0. Then condition (3.12) becomes√︂
2

𝑙

+∞∑︁
𝑘=1

𝑓1𝑘 cos𝜆𝑘𝛼

𝜆𝑘 sin𝜆𝑘𝛼 + cos𝜆𝑘𝛼
sin𝜇𝑘𝑥0 ̸= 0,



INVERSE PROBLEMS FOR A DEGENERATE MIXED. . . 81

and this holds as 𝛼𝑙 = 𝛼/𝑙 = 𝑝 ∈ N.
Equation (3.8) with 𝑔1(0) defined by formula (3.11) is a classical second kind Volterra equa-

tion, whose solution is constructed easily by the successive approximations method.
Thus, we have proved the following theorem.

Theorem 3.1. Suppose that the assumptions of Lemma 2.1 hold true, the functions 𝑓𝑖(𝑥),
𝑖 = 1, 2, and 𝑔2(𝑡) satisfy the assumptions of Theorem 2.1, ℎ1(𝑡) ∈ 𝐶1[0, 𝛽], 𝑓1(𝑥0) ̸= 0. If
condition (3.12) is satisfied, then integral equation (3.8) has a unique solution 𝑔1(𝑡) ∈ 𝐶[0, 𝛽]
and Problem 2 also has a unique solution. If condition (3.12) fails, integral equation (3.8) and
Problem 2 has solution unique to a term, whose factor is an unknown number 𝑔1(0).

Now we are going to show that condition 𝑓1(𝑥0) ̸= 0 is essential for the unique solvability of
Problem 2. Indeed, there exists a function 𝑓1(𝑥) = sin𝜇𝑚𝑥 = sin 𝜋𝑚̃︀𝑥, where 𝑚 is some fixed
natural number and ̃︀𝑥 = 𝑥/𝑙 such that 𝑓1(𝑥0) = sin𝜋𝑚̃︀𝑥0 = 0. For such function, arbitrary
𝑔1(𝑡) ∈ 𝐶[0, 𝛽] and ℎ1(𝑡) ≡ 0, there exists a nonzero solution to Problem 2

𝑢1𝑚(𝑥, 𝑡) = 𝑇1𝑚(𝑡) sin𝜇𝑚𝑥, (3.13)

where

𝑇1𝑚(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔1𝑚(𝛼)

∆𝑚(𝛼)
𝑒−𝜆2

𝑚𝑡 +

𝑡∫︁
0

𝑔1(𝑠)𝑒
−𝜆2

𝑚(𝑡−𝑠) 𝑑𝑠, 𝑡 > 0,

𝜔1𝑚(𝛼)

∆𝑚(𝛼)
∆𝑚(−𝑡) − 𝜔1𝑚(−𝑡), 𝑡 < 0,

𝜔1𝑚(−𝑡) = 𝑔1(0)𝛾 1
2𝑞

(𝑚)
√
−𝑡𝐽 1

2𝑞
(𝑝𝑚(−𝑡)𝑞) − 𝑓2𝑚𝑊𝑚(−𝑡).

Indeed, function (3.13) satisfies conditions (1.2)–(1.7) with ℎ1(𝑡) ≡ 0. The belonging to the
class (1.2) is because thanks to the asymptotic formula [35]

𝐽𝜈(𝑧) ∼ 1

Γ(1 + 𝜈)

(︁𝑧
2

)︁𝜈

as 𝑧 → 0,

and Lemma 2.1 we have

lim
𝑡→0+0

𝑢1𝑚(𝑥, 𝑡) =
𝜔1𝑚(𝛼)

∆𝑚(𝛼)
sin𝜇𝑚𝑥 = lim

𝑡→0−0
𝑢1𝑚(𝑥, 𝑡)

= lim
𝑡→0−0

[︂
𝜔1𝑚(𝛼)

∆𝑚(𝛼)
∆𝑚(−𝑡) − 𝜔1𝑚(−𝑡)

]︂
sin𝜇𝑚𝑥

= sin𝜇𝑚𝑥 lim
𝑡→0−0

𝜔1𝑚(𝛼)

∆𝑚(𝛼)

[︁
𝜆2
𝑚

√
−𝑡𝛾 1

2𝑞
(𝑠)𝐽 1

2𝑞
(𝑝𝑚(−𝑡)𝑞)+

+
√
−𝑡𝛾− 1

2𝑞
(𝑚)𝐽− 1

2𝑞
(𝑝𝑚(−𝑡)𝑞)

]︁
−

− sin𝜇𝑚𝑥 lim
𝑡→0−0

[︁
𝑔1(0)𝛾 1

2𝑞
(𝑚)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑚(−𝑡)𝑞) − 𝑓2𝑚𝑊𝑚(−𝑡)

]︁
= sin𝜇𝑚𝑥 lim

𝑡→0−0

[︁𝜔1𝑚(𝛼)

∆𝑚(𝛼)
(−𝜆2

𝑚𝑡 + 1) + 𝑔1(0)𝑡− 𝑓2𝑚𝑊𝑚(−𝑡)
]︁

=
𝜔1𝑚(𝛼)

∆𝑚(𝛼)
sin𝜇𝑚𝑥.

Thanks to the differentiability of the asymptotic estimate for the Bessel function, it is easy to
show that the normal derivatives at the type changing line:

lim
𝑡→0+0

𝜕𝑢1𝑚(𝑥, 𝑡)

𝜕𝑡
=

[︁
− 𝜔1𝑚(𝛼)

∆𝑚(𝛼)
𝜆2
𝑚 + 𝑔1(0)

]︁
sin𝜇𝑚𝑥 = lim

𝑡→0−0

𝜕𝑢𝑚(𝑥, 𝑡)

𝜕𝑡
.
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Conditions (1.4) and (1.5) are also satisfied since

𝑢1𝑚(𝑥,−𝛼) =
[︁𝜔1𝑚(𝛼)

∆𝑚(𝛼)
∆𝑚(𝛼) − 𝜔1𝑚(𝛼)

]︁
sin𝜇𝑚𝑥 = 0,

𝑢1𝑚(𝑥0, 𝑡) = 𝑇1𝑚(𝑡) sin𝜇𝑚𝑥0 = 0.

It follows from the construction of function (3.13) that on the set 𝐷− ∪𝐷+, the function solves
equation (1.1).

Let us find out for which points ̃︀𝑥0 in (0, 1) the identity

sin 𝜋𝑚̃︀𝑥0 = 0 ⇐⇒ ̃︀𝑥0 =
𝑘

𝑚
, 𝑘,𝑚 ∈ N, 𝑘 < 𝑚,

holds. We see that as ̃︀𝑥0 is irrational, the condition 𝑓1(𝑥0) ̸= 0 fails.

4. Problem 3

Here we consider Problem 3 on finding a factor in the time-dependent right hand side in
equation (1.1). Similar to Section 3, letting 𝑥 = 𝑥0 in formula (2.1) and supposing that a
function satisfies condition (1.9), we obtain:√︂

2

𝑙

∞∑︁
𝑘=1

[︁ 𝜔𝑘(𝛼)

∆𝑘(𝛼)
∆𝑘(−𝑡) sin𝜇𝑘𝑥0 − 𝜔𝑘(−𝑡)

]︁
sin𝜇𝑘𝑥0

=

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓1𝑘𝑔1(0)𝛾 1
2𝑞

(𝑘)
√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞) − 𝑓2𝑘𝑊𝑘(𝛼)

∆𝑘(𝛼)
∆𝑘(−𝑡) sin𝜇𝑘𝑥0

−
√︂

2

𝑙

∞∑︁
𝑘=1

[︁
𝑓1𝑘𝑔1(0)𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞) − 𝑓2𝑘𝑊𝑘(−𝑡)

]︁
sin𝜇𝑘𝑥0 = ℎ2(𝑡)

or
0∫︁

𝑡

𝑔2(𝑠)𝐾2(𝑠, 𝑡) 𝑑𝑠−
0∫︁

−𝛼

𝑔2(𝑠)𝐾3(𝑠, 𝑡) 𝑑𝑠 = ̃︀ℎ2(𝑡), −𝛼 6 𝑡 6 0. (4.1)

Here

𝐾2(𝑠, 𝑡) =

√︂
2

𝑙

𝜋

2𝑞 sin 𝜋
2𝑞

∞∑︁
𝑘=1

𝑓2𝑘
√
𝑠𝑡𝑊 (𝑠,−𝑡) sin𝜇𝑘𝑥0, −𝛼 6 𝑡 6 𝑠 6 0, (4.2)

𝐾3(𝑠, 𝑡) =

√︂
2

𝑙

𝜋

2𝑞 sin 𝜋
2𝑞

∞∑︁
𝑘=1

𝑓2𝑘
∆𝑘(𝛼)

∆𝑘(−𝑡)
√
−𝑠𝛼𝑊 (𝑠, 𝛼) sin𝜇𝑘𝑥0, (4.3)

̃︀ℎ2(𝑡) = ℎ2(𝑡) − 𝑔1(0)𝐻3(𝑡), −𝛼 6 𝑡 6 0, (4.4)

𝐻3(𝑡) =

√︂
2

𝑙

∞∑︁
𝑘=1

𝑓1𝑘

[︂𝛾 1
2𝑞

(𝑘)
√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
∆𝑘(−𝑡) − 𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)

]︂
sin𝜇𝑘𝑥0. (4.5)

Lemma 4.1. Let the functions 𝑓𝑖(𝑥), 𝑖 = 1, 2, satisfy the assumptions of Theorem 2.1, then
series (4.2), (4.3) and (4.5) and their derivatives in 𝑡 up to the second order converge uniformly
on the set −𝛼 6 𝑡 6 𝑠 6 0.

Proof. By Lemma 2.1 and asymptotic estimate (3.6), we estimates the expressions in the sum
in (4.2), (4.3) and (4.5). The expression 𝑊 (𝑠,−𝑡) in (2.3) and its derivatives in 𝑡 up to the
second order are estimated as follows:

|
√
𝑠𝑡𝑊 (𝑠,−𝑡)| 6

⃒⃒⃒√
𝑠𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)𝐽− 1

2𝑞
(𝑝𝑘(−𝑠)𝑞)

⃒⃒⃒
+
⃒⃒⃒√

𝑠𝑡𝐽− 1
2𝑞

(𝑝𝑘(−𝑡)𝑞)𝐽 1
2𝑞

(𝑝𝑘(−𝑠)𝑞)
⃒⃒⃒

6𝑀11𝑘
− 1

2
− 1

2 + 𝑀12𝑘
− 1

2
− 1

2 6 𝑀13𝑘
−1,

(4.6)
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|[
√
𝑠𝑡𝑊 (𝑠,−𝑡)]′𝑡| 6𝜆𝑘

⃒⃒⃒√
−𝑠(−𝑡)𝑞−

1
2𝐽 1

2𝑞
−1(𝑝𝑘(−𝑡)𝑞)𝐽− 1

2𝑞
(𝑝𝑘(−𝑠)𝑞)

⃒⃒⃒
+ 𝜆𝑘

⃒⃒⃒√
−𝑠(−𝑡)𝑞−

1
2𝐽1− 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)𝐽 1

2𝑞
(𝑝𝑘(−𝑠)𝑞)

⃒⃒⃒
6𝑀14𝑘

1− 1
2
− 1

2 + 𝑀15𝑘
1− 1

2
− 1

2 6 𝑀16.

(4.7)

Since 𝑊 ′′
𝑡 (𝑠,−𝑡) = −𝜆2

𝑘(−𝑡)𝑚𝑊 (𝑠,−𝑡), thanks to estimate (4.6) we get⃒⃒
[
√
𝑠𝑡𝑊 (𝑠,−𝑡)]′′𝑡𝑡

⃒⃒
6 𝑀17𝑘. (4.8)

Similar to [15], we estimate the expression ∆𝑘(𝑡) in (2.2) and its derivatives up to the second
order:

|∆𝑘(−𝑡)| 6𝜆2
𝑘

⃒⃒⃒
𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
+
⃒⃒⃒
𝛾− 1

2𝑞
(𝑘)

√
−𝑡𝐽− 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
6𝑀18𝑘

2− 1
2𝑞

− 1
2 + 𝑀19𝑘

1
2𝑞

− 1
2 6 𝑀20𝑘

1+𝜆,
(4.9)

|∆′
𝑘(−𝑡)| 6𝜆3

𝑘

⃒⃒⃒
𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
−1(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
+ 𝜆𝑘

⃒⃒⃒
𝛾− 1

2𝑞
(𝑘)

√
−𝑡𝐽1− 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
6𝑀21𝑘

3− 1
2𝑞

− 1
2 + 𝑀22𝑘

1+ 1
2𝑞

− 1
2 6 𝑀23𝑘

2+𝜆.
(4.10)

Since ∆′′
𝑘(−𝑡) = −𝜆2

𝑘(−𝑡)𝑚∆𝑘(−𝑡), by estimate (4.9) we obtain

|∆′′
𝑘(−𝑡)| 6 𝑀24𝑘

3+𝜆. (4.11)

In view of obtained estimates (4.6)–(4.11), for expression in the sum (4.3) we obtain the
following estimates⃒⃒⃒⃒

𝑓2𝑘
∆𝑘(𝛼)

∆𝑘(−𝑡)
√
−𝑠𝛼𝑊 (𝑠, 𝛼)

⃒⃒⃒⃒
6 𝑀25|𝑓2𝑘|

𝑘1+𝜆−1

𝑘1+𝜆
6 𝑀26|𝑓2𝑘|𝑘−1, (4.12)⃒⃒⃒⃒

𝑓2𝑘
∆𝑘(𝛼)

∆′
𝑘(−𝑡)

√
−𝑠𝛼𝑊 (𝑠, 𝛼)

⃒⃒⃒⃒
6 𝑀27|𝑓2𝑘|

𝑘2+𝜆−1

𝑘1+𝜆
6 𝑀28|𝑓2𝑘|, (4.13)⃒⃒⃒⃒

𝑓2𝑘
∆𝑘(𝛼)

∆′′
𝑘(−𝑡)

√
−𝑠𝛼𝑊 (𝑠, 𝛼)

⃒⃒⃒⃒
6 𝑀29|𝑓2𝑘|

𝑘3+𝜆−1

𝑘1+𝜆
6 𝑀30|𝑓2𝑘|𝑘. (4.14)

In the same way, estimating the expression in the sum in (4.5), we obtain

|𝑓1𝑘|

⃒⃒⃒⃒
⃒𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
∆𝑘(−𝑡)

⃒⃒⃒⃒
⃒ + |𝑓1𝑘|

⃒⃒⃒
𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
6 𝑀31|𝑓1𝑘|

𝑘−1+𝜆

𝑘1+𝜆
𝑘1+𝜆 + 𝑀32|𝑓1𝑘|𝑘−1+𝜆 6 𝑀33|𝑓1𝑘|𝑘−1+𝜆,

(4.15)

|𝑓1𝑘|

⃒⃒⃒⃒
⃒𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
∆′

𝑘(−𝑡)

⃒⃒⃒⃒
⃒ + |𝑓1𝑘|𝜆𝑘

⃒⃒⃒
𝛾 1

2𝑞
(𝑘)(−𝑡)𝑞−

1
2𝐽 1

2𝑞
−1(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
6𝑀34|𝑓1𝑘|

𝑘−1+𝜆

𝑘1+𝜆
𝑘2+𝜆 + 𝑀35|𝑓1𝑘|𝑘1−1+𝜆 6 𝑀36|𝑓1𝑘|𝑘𝜆,

(4.16)

|𝑓1𝑘|

⃒⃒⃒⃒
⃒𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞)

∆𝑘(𝛼)
∆′′

𝑘(−𝑡)

⃒⃒⃒⃒
⃒ + |𝑓1𝑘|𝜆2

𝑘(−𝑡)𝑚
⃒⃒⃒
𝛾 1

2𝑞
(𝑘)

√
−𝑡𝐽 1

2𝑞
(𝑝𝑘(−𝑡)𝑞)

⃒⃒⃒
6𝑀37|𝑓1𝑘|

𝑘−1+𝜆

𝑘1+𝜆
𝑘3+𝜆 + 𝑀38|𝑓1𝑘|𝑘2−1+𝜆 6 𝑀39|𝑓1𝑘|𝑘1+𝜆.

(4.17)
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This yields that on the closed set −𝛼 6 𝑡 6 𝑠 6 0, series (4.2), (4.3) and (4.5) and their
derivatives in up to the second order are majorized respectively by the series

𝑀40

∞∑︁
𝑘=1

𝑘1+𝜆|𝑓1𝑘|, 𝑀42

∞∑︁
𝑘=1

𝑘|𝑓2𝑘|. (4.18)

Under the made assumptions, series (4.18) converge. Then series (4.2), (4.3), (4.5) and the series
obtained by twise termwise differentiation in 𝑡 converge uniformly on −𝛼 6 𝑡 6 𝑠 6 0.

We differentiate equation (4.1) in 𝑡 and we obtain:

− 𝑔2(𝑡)𝐾2(𝑡, 𝑡) +

0∫︁
𝑡

𝑔2(𝑠)
𝜕𝐾2(𝑠, 𝑡)

𝜕𝑡
𝑑𝑠−

0∫︁
−𝛼

𝑔2(𝑠)
𝜕𝐾3(𝑠, 𝑡)

𝜕𝑡
𝑑𝑠 = ̃︀ℎ′

2(𝑡). (4.19)

By identity we see (4.2) that

𝐾2(𝑠, 𝑡)
⃒⃒⃒
𝑠=𝑡

= 0 since 𝑊 (𝑠,−𝑡)
⃒⃒⃒
𝑠=𝑡

= 0.

Then differentiating equation (4.19) once again, we get

− 𝑔2(𝑡)
𝜕𝐾2(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑠=𝑡

+

0∫︁
𝑡

𝑔2(𝑠)
𝜕2𝐾2(𝑠, 𝑡)

𝜕𝑡2
𝑑𝑠−

0∫︁
−𝛼

𝑔2(𝑠)
𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2
𝑑𝑠 = ̃︀ℎ′′

2(𝑡). (4.20)

By (4.2) we calculate

𝜕𝐾2(𝑠, 𝑡)

𝜕𝑡
=

√︂
2

𝑙

𝜋

2𝑞 sin 𝜋
2𝑞

∞∑︁
𝑘=1

𝑓2𝑘
√
−𝑠

[︀√
−𝑡𝑊 (𝑠,−𝑡)

]︀′
𝑡
sin𝜇𝑘𝑥0

=

√︂
2

𝑙

𝜋

2𝑞 sin 𝜋
2𝑞

∞∑︁
𝑘=1

𝑓2𝑘
√
−𝑠

[︁
− 𝜆𝑘(−𝑡)𝑞−1/2𝐽 1

2𝑞
−1(𝑝𝑘(−𝑡)𝑞)𝐽− 1

2𝑞
(𝑝𝑘(−𝑠)𝑞)

− 𝜆𝑘(−𝑡)𝑞−1/2𝐽1− 1
2𝑞

(𝑝𝑘(−𝑡)𝑞)𝐽 1
2𝑞

(𝑝𝑘(−𝑠)𝑞)
]︁

sin𝜇𝑘𝑥0.

Employing the identity [35]

𝐽𝜈(𝑧)𝐽1−𝜈(𝑧) + 𝐽−𝜈(𝑧)𝐽𝜈−1(𝑧) =
2

𝜋𝑧
sin 𝜈𝜋,

we find
𝜕𝐾2(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑠=𝑡

= −
√︂

2

𝑙

+∞∑︁
𝑘=1

𝑓2𝑘 sin𝜇𝑘𝑥0 = −𝑓2(𝑥0). (4.21)

If we suppse 𝑓2(𝑥0) ̸= 0, then by (4.20) and (4.21) we obtain a second kind Fredholm integral
equation

𝑔2(𝑡) − 𝜆

0∫︁
−𝛼

𝑔2(𝑠)𝐻(𝑠, 𝑡) 𝑑𝑡 = 𝜇(𝑡), (4.22)

where

𝐻(𝑠, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2
, − 𝛼 6 𝑠 6 𝑡,

𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2
− 𝜕2𝐾2(𝑠, 𝑡)

𝜕𝑡2
, 𝑡 6 𝑠 6 0,

(4.23)

𝜆 =
1

𝑓2(𝑥0)
, 𝜇(𝑡) =

̃︀ℎ′′
2(𝑡)

𝑓2(𝑥0)
.
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The kernel 𝐻(𝑠, 𝑡) of integral equation (4.22) defined by formula (4.23) is continuous on a closed
square −𝛼 6 𝑠, 𝑡 6 0. If ℎ2(𝑡) ∈ 𝐶2[−𝛼, 0], then the right hand side 𝜇(𝑡) is also continuous
on [−𝛼, 0]. Therefore, equation (4.22) is a second kind Fredholm integral equation with a
continuous kernel and continuous right hand side, to which the Fredholm theorems can be
applied. This means the Fredholm property of Problem 2. Let us select cases, when equation
(4.22) has the unique solution [36]. By the successive approximation methods we can prove the
unique solvability of this equation in the class of continuous on [−𝛼, 0] function as

|𝜆| < 1

𝑀𝛼
, 𝑀 = max

−𝛼6𝑠, 𝑡60
|𝐻(𝑠, 𝑡)|.

It also follows from the Fredholm theory that if 𝜆 is not a characteristic number of the kernel
𝐻(𝑠, 𝑡), then integral equation (4.22) has the unique continuous on [−𝛼, 0] solution.

Thus, we have proved the following theorem.

Theorem 4.1. Let the assumptions of Lemma 2.1 be satisfied, the functions 𝑓𝑖(𝑥), 𝑖 = 1, 2,
and 𝑔1(𝑡) satisfy the assumptions of Theorem 2.1, ℎ2(𝑡) ∈ 𝐶2[−𝛼, 0], 𝑓2(𝑥0) ̸= 0. Then under
one of the following conditions: a) |𝑓2(𝑥0)| > 𝑀𝛼; b) the number 𝑓−1

2 (𝑥0) is not a characteristic
number of the kernel 𝐻(𝑠, 𝑡), there exists a unique solution to Problem 3. At that, the function
𝑔2(𝑡) is introduced as the solution of integral equation (4.22), and then the function 𝑢(𝑥, 𝑡) is
determined by formula (2.1).

We also note that the condition 𝑓2(𝑥0) ̸= 0 is essential for the unique solvability of Problem 3.
Indeed, there exists a function 𝑓2(𝑥) = sin𝜇𝑛𝑥 = sin𝜋𝑛̃︀𝑥, where 𝑛 is some fixed natural number,̃︀𝑥 = 𝑥/𝑙, such that 𝑓2(𝑥0) = sin 𝜋𝑛̃︀𝑥0 = 0. Then for such function, all 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0] and
ℎ2(𝑡) ≡ 0 we can construct a non-zero solution to Problem 3:

𝑢2𝑛(𝑥, 𝑡) = 𝑇2𝑛(𝑡) sin𝜇𝑛𝑥, (4.24)

where

𝑇1𝑛(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔2𝑛(𝛼)

∆𝑛(𝛼)
𝑒−𝜆2

𝑛𝑡 + 𝑓1𝑛

𝑡∫︁
0

𝑔1(𝑠)𝑒
−𝜆2

𝑛(𝑡−𝑠) 𝑑𝑠, 𝑡 > 0,

𝜔2𝑛(𝛼)

∆𝑛(𝛼)
∆𝑛(−𝑡) − 𝜔2𝑛(−𝑡), 𝑡 < 0,

𝜔2𝑛(−𝑡) = 𝑓1𝑛𝑔1(0)𝛾 1
2𝑞

(𝑛)
√
−𝑡𝐽 1

2𝑞
(𝑝𝑛(−𝑡)𝑞) −𝑊𝑛(−𝑡).

Similar to function (3.13), we prove that function (4.24) satisfies the conditions of Problem 3
for ℎ2(𝑡) = 0 and arbitrary function 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0].

5. Problem 4

Supposing that function (2.1) satisfies conditions (1.7) and (1.9), we obtain the system of
integral equations with loaded terms:

𝑡∫︁
0

𝑔1(𝑠)𝐾1(𝑠, 𝑡) 𝑑𝑠−
0∫︁

−𝛼

𝑔2(𝑠) ̃︀𝐾1(𝑠, 𝑡) 𝑑𝑠 = ℎ1(𝑡) − 𝑔1(0)𝐻1(𝑡) =
̃︀̃︀ℎ1(𝑡), (5.1)

0∫︁
𝑡

𝑔2(𝑠)𝐾2(𝑠, 𝑡) 𝑑𝑡−
0∫︁

−𝛼

𝑔2(𝑠)𝐾3(𝑠, 𝑡) 𝑑𝑠 = ℎ2(𝑡) − 𝑔1(0)𝐻3(𝑡) = ̃︀ℎ2(𝑡), (5.2)
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where 𝐾1(𝑠, 𝑡), 𝐻1(𝑡), 𝐾2(𝑠, 𝑡), 𝐾3(𝑠, 𝑡) and 𝐻3(𝑡) are introduced by formulae (3.2), (3.4), (4.2),
(4.3) and (4.5),

̃︀𝐾1(𝑠, 𝑡) =

√︂
2

𝑙

𝜋

2𝑞 sin 𝜋
2𝑞

+∞∑︁
𝑘=1

𝑓2𝑘𝑒
−𝜆2

𝑘𝑡

∆𝑘(𝛼)

√
−𝑠𝛼𝑊 (𝑠, 𝛼) sin𝜇𝑘𝑥0. (5.3)

Following Sections 3 and 4, we differentiate equation (5.1) once, and twice equation (5.2).
As a result we have

𝑔1(𝑡)𝑓1(𝑥0) −
𝑡∫︁

0

𝑔1(𝑠)
𝜕𝐾1(𝑠, 𝑡)

𝜕𝑡
𝑑𝑠−

0∫︁
−𝛼

𝑔2(𝑠)
𝜕 ̃︀𝐾1(𝑠, 𝑡)

𝜕𝑡
𝑑𝑠 =

̃︀̃︀ℎ′

1(𝑡), (5.4)

−𝑔2(𝑡)𝑓2(𝑥0) +

0∫︁
𝑡

𝑔2(𝑠)
𝜕2𝐾2(𝑠, 𝑡)

𝜕𝑡2
𝑑𝑠−

0∫︁
−𝛼

𝑔2(𝑠)
𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2
𝑑𝑠 = ̃︀ℎ′′

2(𝑡). (5.5)

Letting 𝑡 = 0 in identities (5.4) and (5.5), we obtain

𝑔1(0)𝑓1(𝑥0) −
0∫︁

−𝛼

𝑔2(𝑠)
𝜕 ̃︀𝐾1(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

𝑑𝑠 = ℎ′
1(0) − 𝑔1(0)𝐻 ′

1(0), (5.6)

−𝑔2(0)𝑓2(𝑥0) −
0∫︁

−𝛼

𝑔2(𝑠)
𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2

⃒⃒⃒⃒
𝑡=0

𝑑𝑠 = ℎ′′
2(0) − 𝑔1(0)𝐻 ′′

3 (0). (5.7)

Thanks to formulae (5.3), (4.3), (3.4) and (4.5), we calculate

𝜕 ̃︀𝐾1(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= −
√︂

2

𝑙

𝜋

2𝑞 sin 𝜋
2𝑞

+∞∑︁
𝑘=1

𝑓2𝑘𝜆
2
𝑘

∆𝑘(𝛼)

√
−𝑠𝛼𝑊 (𝑠, 𝛼) sin𝜇𝑘𝑥0,

𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2

⃒⃒⃒⃒
𝑡=0

= −𝜆2
𝑘(−𝑡)𝑚𝐾3(𝑠, 𝑡)

⃒⃒
𝑡=0

= 0,

𝐻 ′
1(0) = −

√︂
2

𝑙

∞∑︁
𝑘=1

𝜆2
𝑘𝑓1𝑘

∆𝑘(𝛼)
𝛾 1

2𝑞
(𝑘)

√
𝛼𝐽 1

2𝑞
(𝑝𝑘𝛼

𝑞) sin𝜇𝑘𝑥0,

𝐻 ′′
3 (𝑡)

⃒⃒
𝑡=0

= −𝜆2
𝑘(−𝑡)𝑚𝐻 ′′

3 (𝑡)
⃒⃒
𝑡=0

= 0.

By equation (5.6) we find

𝑔1(0) =
(︁
𝑓1(𝑥0) + 𝐻 ′

1(0)
)︁−1

⎡⎣ℎ′
1(0) +

0∫︁
−𝛼

𝑔2(𝑠)
𝜕 ̃︀𝐾1(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

𝑑𝑠

⎤⎦
under the condition 𝑓1(𝑥0)+𝐻 ′

1(0) ̸= 0 and we substitute this in the right hand side in equation
(5.5). Then if 𝑓2(𝑥0) ̸= 0, by (5.5) we obtain the integral equation

𝑔2(𝑡) − 𝜆

0∫︁
−𝛼

𝑔2(𝑠) ̃︀𝐻(𝑠, 𝑡) 𝑑𝑡 = ̃︀𝜇(𝑡), (5.8)

where

̃︀𝐻(𝑠, 𝑡) =

𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2
− 𝐻 ′′

3 (𝑡)

𝑓1(𝑥0) + 𝐻 ′
1(0)

𝜕 ̃︀𝐾1(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

, − 𝛼 6 𝑠 6 𝑡,

𝜕2𝐾3(𝑠, 𝑡)

𝜕𝑡2
− 𝐻 ′′

3 (𝑡)

𝑓1(𝑥0) + 𝐻 ′
1(0)

𝜕 ̃︀𝐾1(𝑠, 𝑡)

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

+
𝜕2𝐾2(𝑠, 𝑡)

𝜕𝑡2
, 𝑡 6 𝑠 6 0,

(5.9)
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𝜆 =
1

𝑓2(𝑥0)
, ̃︀𝜇(𝑡) =

𝐻 ′′
3 (𝑡)ℎ′

1(0)

𝑓2(𝑥0)(𝑓1(𝑥0) + 𝐻 ′
1(0))

− ℎ′′
2(𝑡)

𝑓2(𝑥0)
.

Equation (5.8) is a second kind Fredholm integral equation with a continuous kernel and con-
tinuous right hand side, to which we can apply the Fredholm theory [36].

Once we find the function 𝑔2(𝑠) by equation (5.8), we can find the function 𝑔1(𝑠) by (5.4) as
a solution of a second kind Volterra integral equation with a continuous kernel and continuous
right hand side under the condition 𝑓1(𝑥0) ̸= 0 and (3.12).

Thus, we arrive at the following statement.

Theorem 5.1. Let the assumptions of Lemma 2.1 hold, the functions 𝑓𝑖(𝑥), 𝑖 = 1, 2, satisfy
the assumptions of Theorem 2.1, ℎ1(𝑡) ∈ 𝐶1[0, 𝛽], ℎ2(𝑡) ∈ 𝐶2[−𝛼, 0], 𝑓1(𝑥0) ̸= 0, 𝑓2(𝑥0) ̸= 0,
inequality (3.12) hold as well as one of the following conditions: a) |𝑓2(𝑥0)| > 𝑀𝛼, where

𝑀 = max
−𝛼6𝑠,𝑡60

| ̃︀𝐻(𝑠, 𝑡)|; b) the number 𝑓−1
2 (𝑥0) is not a characteristic number of the kernel̃︀𝐻(𝑠, 𝑡). Then system of integral equations (5.4) and (5.5) has the unique solution 𝑔1(𝑡) ∈ 𝐶[0, 𝛽]

and 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0], and then the function 𝑢(𝑥, 𝑡) is found by formula (2.1). If condition (3.12)
fails, system of integral equations (5.4) and (5.5) has a solution up to a term, whose factor is
an unknown number 𝑔1(0) and the same is true for Problem 4.

Let us show that conditions 𝑓1(𝑥0) ̸= 0 or 𝑓2(𝑥0) ̸= 0 are essential for the unique solvability
of Problem 4.

Let 𝑓1(𝑥0) = 0, and 𝑓2(𝑥0) ̸= 0. Then there exists a function 𝑓1(𝑥) = sin𝜇𝑚𝑥 = sin 𝜋𝑛̃︀𝑥,
where 𝑚 is some fixed natural number, ̃︀𝑥 = 𝑥/𝑙, such that 𝑓1(𝑥0) = sin 𝜋𝑚𝑥0 = 0. For the
function 𝑓1(𝑥) = sin𝜇𝑚𝑥 and arbitrary 𝑔1(𝑡) ∈ 𝐶[0, 𝛽], 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0], there exists a non-zero
solution of Problem 4 as ℎ1(𝑡) ≡ 0, ℎ2(𝑡) ≡ 0, which is determined by formula (3.13).

Let 𝑓2(𝑥0) = 0, and 𝑓1(𝑥0) ̸= 0. Then there exists a function 𝑓2(𝑥) = sin𝜇𝑛𝑥 = sin𝜋𝑛̃︀𝑥,
where 𝑛 is some fixed natural number, such that 𝑓2(𝑥0) = sin 𝜋𝑛̃︀𝑥0 = 0. Then for the function
𝑓2(𝑥) = sin𝜇𝑛𝑥 and all 𝑔1(𝑡) ∈ 𝐶[0, 𝛽], 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0], there exits a non-zero solution of
Problem 4 as ℎ1(𝑡) ≡ 0, ℎ2(𝑡) ≡ 0, which is determined by formula (4.24).

Let 𝑓1(𝑥) = 𝑓2(𝑥) = sin𝜇𝑚𝑥, where 𝑚 is some fixed natural number be such that 𝑓1(𝑥0) =
𝑓2(𝑥0) = sin𝜇𝑚𝑥0 = 0. Then for the functions 𝑓1(𝑥) = 𝑓2(𝑥) = sin𝜇𝑚𝑥 and arbitrary 𝑔1(𝑡) ∈
𝐶[0, 𝛽], 𝑔2(𝑡) ∈ 𝐶[−𝛼, 0] there exists a non-zero solution of Problem 4 as ℎ1(𝑡) ≡ 0, ℎ2(𝑡) ≡ 0:

𝑢3𝑚(𝑥, 𝑡) = 𝑇3𝑚(𝑡) sin𝜇𝑚𝑥, (5.10)

where

𝑇3𝑚(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔3𝑚(𝛼)

∆𝑚(𝛼)
𝑒−𝜆2

𝑚𝑡 +

𝑡∫︁
0

𝑔1(𝑠)𝑒
−𝜆2

𝑚(𝑡−𝑠) 𝑑𝑠, 𝑡 > 0,

𝜔3𝑚(𝛼)

∆𝑚(𝛼)
∆𝑚(−𝑡) − 𝜔3𝑚(−𝑡), 𝑡 < 0,

𝜔3𝑚(−𝑡) = 𝑔1(0)𝛾 1
2𝑞

(𝑚)
√
−𝑡𝐽 1

2𝑞
(𝑝𝑚(−𝑡)𝑞) −𝑊𝑚(−𝑡).

Similar to Section 3 we can show that function (5.10) satisfies conditions (1.2)–(1.9).
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