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ON BARY–STECHKIN THEOREM

A.I. RUBINSHTEIN

Dedicated to professor Sergey Alexandrovich Telyakovsky

to his 85th anniversary

Abstract. In the beginning of the past century, N.N. Luzin proved almost everywhere

convergence of an improper integral representing the function 𝑓 conjugated to a 2𝜋-periodic

summable with a square function 𝑓(𝑥). A few years later I.I. Privalov proved a similar fact

for a summable function. V.I. Smirnov showed that if 𝑓 is summable, then its Fourier series

is conjugate to the Fourier series for 𝑓(𝑥). It is easy to see that if 𝑓(𝑥) ∈ Lip𝛼, 0 < 𝛼 < 1,

then 𝑓(𝑥) ∈ Lip𝛼. The Hilbert transformation for 𝑓(𝑥) differs from 𝑓(𝑥) by a bounded

function and has a simpler kernel. It is easy to show that the Hilbert transformation of

𝑓(𝑥) ∈ Lip𝛼, 0 < 𝛼 < 1, also belongs to Lip𝛼. In 1956 N.K.Bari and S.B. Stechkin found

the necessary and sufficient condition on the modulus of continuity 𝑓(𝑥) for the function

𝑓(𝑥) to have the same modulus of continuity. In 2016, the author introduced the concept

of conjugate function as Hilbert transformation for functions defined on a dyadic group. In

the present paper we show an analogue of the Bari–Stechkin (and Privalov) theorem fails

that for a conjugated in this sense function.
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As it is known, see, for instance, [1, Ch. VIII], the integral operator

(Φ𝑓)(𝑥) = lim
𝜀→+0

− 1

𝜋

∫︁ 𝜋

𝜀

𝑓(𝑥 + 𝑡) − 𝑓(𝑥− 𝑡)

2 tan 𝑡/2
𝑑𝑡 (1)

maps each 2𝜋-periodic function 𝑓(𝑥) ∈ 𝐿(−𝜋; 𝜋) into a function ̃︀𝑓(𝑥) called conjugate to 𝑓(𝑥)
and being the imaginary part of the power series on the circumference |𝑧| = 1. Integral (1)
exists almost everywhere on [−𝜋; 𝜋] for all 𝑓(𝑥) ∈ 𝐿2(−𝜋; 𝜋) [2] and for 𝑓(𝑥) ∈ 𝐿(−𝜋; 𝜋) [3].

In [3], I.I. Privalov showed that if |𝑓(𝑥+ℎ) − 𝑓(𝑥)| 6 𝐶 · |ℎ|𝛼, 0 < 𝛼 < 1, i.e., 𝑓(𝑥) ∈ Lip𝛼,
0 < 𝛼 < 1, then ̃︀𝑓(𝑥) = − 1

𝜋

∫︁ 𝜋

0

𝑓(𝑥 + 𝑡) − 𝑓(𝑥− 𝑡)

2 tan 𝑡
2

𝑑𝑡 (2)

everywhere and ̃︀𝑓(𝑥) also belongs to Lip𝛼.
In [4], N.K. Bari showed that if a continuous monotonically increasing function 𝜙(𝛿) obeys

the conditions: there exists a constant 𝐶 > 1 such that

1 < lim
𝛿→0

𝜙(𝐶𝛿)

𝜙(𝛿)
6 lim

𝛿→0

𝜙(𝐶𝛿)

𝜙(𝛿)
< 𝐶, (3)
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then it follows from the condition

𝜔(𝛿, 𝑓) = sup
|ℎ|6𝛿,𝑥∈[−𝜋;𝜋]

|𝑓(𝑥 + ℎ) − 𝑓(𝑥)| = 𝑂(𝜙(𝛿)) (4)

that

𝜔(𝛿, ̃︀𝑓) = 𝑂(𝜙(𝛿)). (5)

In [5], N.K. Bari and S.B. Stechkin showed that if in addition to the monotonicity of 𝜙(𝛿) we

also suppose that
𝜙(𝛿)

𝛿
is non-increasing, then (3) is also a necessary condition for (5). That is,

there was established criterion (3) for the functions 𝑓(𝑥) and ̃︀𝑓(𝑥) to belong to the same class,
i.e., the have the same smoothness.

It was mentioned many times (first by N.N. Luzin), that instead of the functions ̃︀𝑓(𝑥), (1),
(2), it is more convenient to consider the function

𝐹 (𝑥) =

∫︁ 𝜋

0

𝑓(𝑥 + 𝑡) − 𝑓(𝑥− 𝑡)

𝑡
𝑑𝑡, (6)

where the integral treated in the sense of the Cauchy principal value.
By almost literal reproducing of arguing from [1], one can confirm that if 𝑓(𝑥) ∈ Lip𝛼,

0 < 𝛼 < 1, then the function 𝐹 (𝑥) in (6) belongs to Lip𝛼, 0 < 𝛼 < 1.
Let 𝐺 be a set of sequence formed by 0 and 1, in which we introduce the operation “u” of

coordinate-wise addition modulo 2, that is,{︃
𝐺 =

{︀
𝑥 = (𝑥1, 𝑥2, . . . ), 𝑥𝑘 ∈ {0; 1}

}︀
,

𝑥u𝑦=(𝑥1, 𝑥2, . . . )u(𝑦1, 𝑦2, . . . )=𝑧=(𝑧1, 𝑧2, . . . ), where 𝑧𝑘=(𝑥𝑘+𝑦𝑘) (mod 2).
(7)

In view of (7) it is obvious that 𝐺 is an Abelian (commutative) group and becomes a topo-
logical commutative group if we define the topology by means of the system of neighbourhoods
of the zero element 𝑂 = (0, 0, . . . ) in the group 𝐺:

𝑈𝑘−1 =
{︁
𝑥 = ( 0, . . . , 0⏟  ⏞  

𝑘−1

, 𝑥𝑘, . . . )
}︁
, 𝑘 = 1, 2, . . . . (8)

It is easy to see that the sets 𝑈𝑘−1 in (8) are subgroups of 𝐺, and

𝐺 = 𝑈0 ⊃ 𝑈1 ⊃ . . . ,

∞⋂︁
𝑘=1

𝑈𝑘−1 = {𝑂}. (9)

If we define a measure 𝜇 so that

𝜇
(︀
𝑈𝑘−1

)︀
= 2−(𝑘−1), 𝑘 = 1, 2, . . . , (10)

then in a standard way, the measure 𝜇 becomes normalized invariant with respect to the group
operator “u”, the Haar-Lebesgue measure on 𝐺 (see, for instance [6] or [7]). A Lebesgue-Haar
integral of the functions 𝑓 : 𝐺 → R (or C) with respect to the measure 𝜇 arises naturally,∫︁

𝐺

𝑓(𝑥) 𝑑𝜇,

as well as the spaces 𝐿𝑝(𝐺), 1 6 𝑝 6 ∞.
A system of Pontryagin characters of the group 𝐺 turns out to be Walsh-Paley system

𝑊 = {𝑤𝑛(𝑥);𝑥 ∈ 𝐺, 𝑛 = 0, 1, . . . } (𝑤𝑛(𝑥 u 𝑦) = 𝑤𝑛(𝑥) · 𝑤𝑛(𝑦)). The smoothness of a function
𝑓(𝑥) ∈ 𝐿𝑝(𝐺) is determined by the continuity modulus

𝜔𝑝(𝑓) =

{︂
𝜔(𝑝)
𝑛 (𝑓) = sup

ℎ∈𝑈𝑛

(︁∫︁
𝐺

|𝑓(𝑥u𝑦)|𝑝𝑑𝜇(𝑥)
)︁1/𝑝

, 𝑛 = 0, 1, . . . ; 1 6 𝑝 6 ∞
}︂
. (11)
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It was shown in [8] and [9] that for each sequence the identity

𝜔0 > 𝜔1 > . . . , lim
𝑛→∞

𝜔𝑛 = 0 (12)

holds and for each 𝑝 ∈ [1;∞] there exists a function 𝑓(𝑥) ∈ 𝐿𝑝(𝐺) such that

𝜔(𝑝)
𝑛 (𝑓) = 𝜔𝑛, 𝑛 = 0, 1, . . . . (13)

For 𝐺, as an analogue of the function
1

𝑥
on (0; 𝜋), we can take the function

𝐾(𝑥) = 2𝑘, 𝑥 ∈ 𝑈𝑘−1 ∖ 𝑈𝑘, 𝑘 = 1, 2, . . . . (14)

It is obvious that the function 𝐹 (𝑥) in (6) can be written as

𝐹 (𝑥) = lim
𝜀→+0

∫︁
𝜀6|𝑡|6𝜋

𝑓(𝑥 + 𝑡)

𝑡
𝑑𝑡 = lim

𝜀→+0

∫︁
𝜀6|𝑡|6𝜋

𝑓(𝑥 + 𝑡) − 𝑓(𝑥)

𝑡
𝑑𝑡. (15)

Therefore, it is natural to consider the operator

(𝐾𝑓)(𝑥) = − lim
𝑚→∞

∫︁
𝐺∖𝑈𝑚

(︀
𝑓(𝑥u 𝑡) − 𝑓(𝑥)

)︀
𝐾(𝑡) 𝑑𝜇(𝑡), (16)

for 𝑓 : 𝐺 → R, where 𝐾(𝑡) is determined by (14), and the minus sign is similar to (1), (2)).
And it is natural to pose the question on relation 𝜔𝑝(𝑓) and 𝜔𝑝(𝐾𝑓): whether theorems by
Privalov in [3] and by Bari-Stechkin in [5] hold?

The operator 𝐾𝑓 in (16) was considered by the author in [10], [11]. It was established in [10]
that if

𝑓(𝑥) ∼ 𝑐0 +
∑︁
𝑛>0

∑︁
2𝑛6𝑘62𝑛+1−1

𝑐𝑘𝑤𝑘(𝑥), 𝑐𝑘 = 𝑐𝑘(𝑓) =

∫︁
𝐺

𝑓(𝑥)𝑤𝑘(𝑥) 𝑑𝜇(𝑥), (17)

then

(𝐾𝑓)(𝑥) ∼
∑︁
𝑛>0

(𝑛 + 2)
∑︁

2𝑛6𝑘62𝑛+1−1

𝑐𝑘𝑤𝑘(𝑥). (18)

Let

𝑔(𝑥) = 𝐴0 +
∑︁
𝑛>0

𝐴𝑛

∑︁
2𝑛6𝑘62𝑛+1−1

𝑤𝑘(𝑥). (19)

It was shown in [12, Lm. 3] that

𝜔(𝑝)
𝑛 (𝑔) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup
𝑘>𝑛

{︂
2

∑︁
𝑠>𝑘+1

⃒⃒⃒ ∑︁
𝑘+16𝜈6𝑠

2𝜈(𝐴𝜈−1 − 𝐴𝜈)
⃒⃒⃒𝑝
· 2−(𝑠+1)

}︂1/𝑝

as 1 6 𝑝 < ∞

sup
𝑛6𝑘6𝑙

⃒⃒⃒ ∑︁
𝑘+16𝜈6𝑙

2𝜈(𝐴𝜈−1 − 𝐴𝜈)
⃒⃒⃒

as 𝑝 = ∞.

(20)

Let 𝑝 = ∞ and 𝐴𝜈 ↘ 0. Then

𝜔(∞)
𝑛 (𝑔) =

∑︁
𝜈>𝑛+1

2𝜈(𝐴𝜈−1 − 𝐴𝜈)

and

𝜔(∞)
𝑛 (𝑔) − 𝜔

(∞)
𝑛+1(𝑔) = 2𝑛+1(𝐴𝑛 − 𝐴𝑛−1).

This yields

𝐴𝑛 =
∑︁
𝑘>𝑛

2−(𝑘+1)
(︀
𝜔
(∞)
𝑘 (𝑔) − 𝜔

(∞)
𝑘+1(𝑔)

)︀
.
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Thus, by [11], (18),

𝜔(∞)
𝑛 (𝐾𝑔) =

∑︁
𝜈>𝑛+1

2𝜈(𝐴𝜈−1 log(𝜈 − 1) − 𝐴𝜈 log 𝜈). (21)

Relations (21) show that there exist functions in 𝐿∞(𝑔), for which theorems by Privalov and
Bari-Stechkin do not hold in the space 𝐿∞(𝑔).

Let us consider another limiting case, 𝑝 = 1. Then as 𝐴𝜈 ↘ 0,

𝜔(1)
𝑛 (𝑔) = 𝐴𝑛

(we necessarily have 𝐴𝑛 = 𝑜
(︀
(log 𝑛)−1

)︀
) and

𝜔(1)
𝑛 (𝐾𝑔) = 𝐴𝑛 log 𝑛.

Hence, theorems by Privalov and Bari-Stechkin do not hold for 𝐿1(𝐺).
Let us consider the case 𝑝 = 2. It was shown in [13] that for each function 𝑓(𝑥) ∈ 𝐿2(𝐺)

possessing the Fourier-Walsh-Paley series (17) we have(︂∑︁
𝑘>2𝑛

⃒⃒
𝑐𝑘(𝑓)

⃒⃒2)︂1/2

6
1√
2
𝜔(2)
𝑛 (𝑓),

and there exists a function 𝑔(𝑥) ∈ 𝐿2(𝐺), for which(︂∑︁
𝑘>2𝑛

⃒⃒
𝑐𝑘(𝑔)

⃒⃒2)︂1/2

=
1√
2
𝜔(2)
𝑛 (𝑔). (22)

Earlier for the trigonometric case these facts were established by N.I. Chernych in [14].
It follows from (22) and (18) that theorems by Privalov and Bari-Stechkin do not hold for

𝐿2(𝐺). If the sequence {𝐴𝜈} tends to zero quite fast for each 𝑝 ∈ [1;∞], by (20) we can obtain
that theorems by Privalov and Bari-Stechkin do not hold in 𝐿𝑝(𝐺).

The results of this paper were partially announced in [15].
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