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SOLUTIONS TO ANALOGUES OF NON-STATIONARY
SCHRODINGER EQUATIONS DEFINED BY
ISOMONODROMIC HAMILTON SYSTEM H?2t1+1+!

V.A. PAVLENKO, B.I. SULEIMANOV

Abstract. We construct simultaneous solutions to two analogues of time-dependent
solutions to Schrédinger equations defined by the Hamiltonians HZ 14 (s1, 52, 41, g2, p1, p2)
(k = 1,2) to system H2?t'H1+1 This system is the first representative in a famous
degenerations hierarchy of the Garnier system described in 1986 by H. Kimura. By an
explicit symplectic transformation, this system reduces to a symmetric Hamilton system.
In the constructions of this paper we rely mostly on linear systems of equations in the
method of isomonodromic deformations for the system H2t!*1+1 written out in 2012
in a paper by A. Kavakami, A. Nakamura and H. Sakai. These analogues of the non-
stationary Schrodinger equations are evolution equations with times s; and s, which depend
of two spatial variables. From the canonical non-stationary Schrodinger equations, these
analogues arise as a result of the formal replacement of the Planck constant by —2mi.
We construct the exact solutions to the two evolution equations in terms of the solutions
to corresponding linear ordinary differential equations in the method of isomonodromic
deformations. We discuss further prospects for constructing similar solutions to analogues
of the non-stationary Schrédinger equations corresponding to the Hamiltonians of the entire
degeneracy hierarchy of the Garnier system.

Keywords: Hamilton systems, Schréodinger equation, Painlevé equations, method of
isomonodromic deformations.

Mathematics Subject Classification: 34M56, 35Q41

1. INTRODUCTION

Together with six classical ordinary differential (ODE) Painlevé equations of form ¢}, =
fi(s,q,4.), (j =1,...,6), which are integrable by isomonodromic deformations method (IDM)
[5], [27], there is an increasing interest of scientists to nonlinear higher order ODEs admitting
an application of IDM.

At present, a finite list of compatible pair of Hamiltonian systems of ODEs is known [§], [9],
[21]:

(qj);k = (HSk);)jv (pj),sk = _(HSk);j (k = 172)? (] = 172)7 (1)
with Hamiltonians H, (s1, S2, q1, ¢2, p1, D2), each being the compatibility condition of two linear
system of ODEs of form

V., =LV, (2)
V= AV, (3)

where square matrices Ly, and A are of the same dimension and are rational in the variable
n; the matrix A is the same for both Hamiltonian systems . Treating each of systems as

V.A. PAVLENKO, B.I. SULEIMANOV, SOLUTIONS TO ANALOGUES OF NON-STATIONARY SCHRODINGER
EQUATIONS DEFINED BY ISOMONODROMIC HAMILTON SYSTEM H2tT1+1+1

(©PAVLENKO V.A., SULEIMANOV B.I. 2018.

Submitted August 1, 2018.

92


http://dx.doi.org/10.13108/2018-10-4-92

SOLUTIONS TO ANALOGUES OF NON-STATIONARY SCHRODINGER EQUATIONS. .. 93

such compatibility condition is a base of application of IDM to them [27]. The corresponding
pairs of linear systems (2), are called matrix L — A IDM pairs and the solutions of ODEs
being the compatibility conditions are called isomonodromic.

The solutions to the hierarchy of Hamiltonian degenerations of Garnier systems written out
in a known paper by H. Kimura [10] are also among such solutions. The representatives of this
hierarchy can be written in several equivalent forms including compatible pairs of Hamiltonian
systems defined various pairs of Hamiltonians Hj, (s1, s, q1, ¢2, P1, p2) square in momenta
p1, p2 and polynomial in coordinates ¢, ¢o [9], [21], [22].

It was shown in [31] that for one of polynomial forms of the Garnier system, there can be
constructed solutions to two compatible linear evolution equations and this can be done by
explicit changes in terms of the solutions to IDM system (2), written in papers [9], [21]
and in Section 3.3 in paper [31]. These evolution equations can be symbolically represented as
(e=1)

52_;1:6 = H3k<81752,7",p, —g%’—gaﬁp)qf (k = 172)7 (4)
where the right hand sides are determined by the Hamiltonians Hs, = Hgars, (51, S2. G1, G2, P1,D2)
of a polynomial form for the Garnier system, whose isomonodromic solutions are exactly the
compatibility conditions of matrix L — A pairs (2), (3) written out in [9], [2I] and Section 3.3 in
[31]. From the corresponding quantum mechanical non-stationary Schrédinger equations of form
depending on the Planck constant h = 2mh = —2mie, these evolution equations are obtained
by a formal replacement of the parameter € by 1. Earlier, in paper [36], the solutions to such
compatible analogues of Schrédinger equations with € = 5/54 were constructed for compatible
Hamiltonian systems, which are equivalent to the last representative in the hierarchy of the
degenerate Garnier system in paper [10], a so-called system H%2. An assumption seemed to
be natural is that such constructing of solutions to evolution equations of form with some
particular values of the parameter € can be made for all representatives of this hierarchy of
degenerations.

In the present paper we construct such solutions as ¢ = 1 for first of the degenerations of
the Garnier system called system H2?T!*'*1 One of the equivalent forms of this system is a
pair of compatible Hamiltonian systems defined by Hamiltonians (v, x, k;, 6; are arbitrary
constants):

s1Hs, =q;(q1 — $1)pT + 2q1qap1p2 + q1q2(qa — $2)P3
—pil(ko + 02 — 1)g; + riqi(q — s1) +v512 + ¥(q1 — $1))] (5)
— p2l(k1 + Ko — 1)q1g2 + O2q1 (g2 — s2) — V(52 — 1)ga] + ke,

So(sg — 1
s2(s2 — 1) Hy, =q1q2p} + 2q102(q2 — S2)p1pa + <CJ2(Q2 —1)(q2 — s2) + D520 — °) 22 2 )> 2
1

— (k1 + ko — D)q1ge + O2¢1(q2 — s2) — Y(s2 — 1)ga]

( (6)

—p2| (ko — 1)ga(g2 — 1) + K1q2(g2 — $2) + b2(g2 — 1)(q2 — $2)
So(s9 — 1
M (021 + 7%)) + KQa-
S1

The compatible solutions of the pair of equations with € = 1 provided in the present paper
correspond exactly to this pair of Hamiltonians. These solutions are explicitly written in terms
of solutions to matrix L — A pairs (Z2)), from paper [9], whose compatibility condition are
exactly Hamiltonian ODE systems (L)) with Hamiltonians (53)), (6).
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Remark 1. For siz Painlevé ODEs, it was shown in [33], [34] that one can construct
explicitly solutions to the six evolution equations

ov 0
—=H —)V.
87_ (7—’177 an)

in terms of solutions V' of the corresponding pairs of linear equations of IDM

/
Vi = PO ANV, V= Bl A XY - DA Ay
written by R. Garnier in classical work [5].

The right hand sides of these evolution equations are determined by Hamiltonians H;(T,q,p)
of Hamiltonian systems with one degree of freedom, whose coordinates q are defined by solutions
of a corresponding Painlevé equation. In last 10 years the issue on relation of IDM equations
with evolution equations in quantum mechanics (and in quantum field theory after work [29])
was developed in many works, see, for instance, [I|-{4], [6], [7], [T1]-20], [24], [25], [26], [28]-

[31], [35], [37]-39].

Remark 2. In work 31|, there was formulated an opinion that after a generalization of a
known procedure of step-by-step degenerations of the terms in Garnier hierarchy on the quantum
level [9], [10], by the results in [3I] one should get immediately compatible solutions to pair of
equations for all representative of this hierarchy. However, as it was noted in |32], in this
way there are troubles related to the fact that in some of step-by-step degenerations given in [9],
[10] combinations of coordinate and momenta were employed.

2. VARIOUS FORMS OF SYSTEM H?T1+1*+1 AND EQUATIONS OF IDM FOR THIS SYSTEM

2.1. System H?T'1+1in paper [10] was written out in two forms: in the aforementioned form
of two compatible Hamiltonian systems (1) with polynomial Hamiltonians (5), (6) and in the

form of compatible Hamiltonian systems
8)\k 8Kj 8;% aKj .
. Y 87_] 8Ak (]7 ? )7 ( )

where the Hamiltonians K;(71, 72, A1, Ao, 11, f12) are given by the formulae
(M =1(A2—1) k
)" A — (Mg — 7
7_1(7_2 _ 1)(}\2 _ )\1) kl( ) k( k )( k 2) (8)

T2 Ko AT k1 — 1 0, K }
& SV vyl et v Ll wo v 1 £

Klz

Ky = ) g,y

TQ(TQ — 1)2()\1 — )\2) = (9)
2 (ko TN K1 0 — 1 k.
[Mk ()\k ()\k—l)2+/\k—1+)\k—7'2)'uk+>\k()\k—1)}7

there is a misprint in paper [10]: the Hamiltonian K5 is written with the opposite sign. These
two pairs of Hamiltonian systems are mutually related by the symplectic transform [10]

A—1D(A—1 Al — Ay — 1
Ch:—( - (% )7 QQZ( 1~ 7o)l 22T2), S1= —, 827 = . (10)
’7’1(7'2—1) 7’2(7'2—1) 1 7'2—1
Later Y. Sasano in paper [22] provided a bi-rational symplectic transform
1 q 1 s
Pi=—, Po=—2 Qi=ama+pe—v), Q=pq, t=— to=— (1)

a1 a1 S1 S1
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where
_/<50+/11+92+a—1

2 )
This transform reduces the pair of Hamiltonian system , , @ reduces to the pair of
compatible Hamiltonian systems

0 0H;. 0P OH;,
Qe _ Oy OB oM, G,k =1,2) (12)
(‘%j aPk (‘%j an
with other polynomial Hamiltonians H;,. As the constant v is non-zero, by means of the
rescaling

v = v(v+ o) = k.

P =P, Qi%%, ti — vt
f‘y

in all above formulae we can get
v =1
Under such value of v the Hamiltonians H;, are given by the formulae
tHy, =Q1(Q1 —1)°PE +1Qu P+ (65° — 0)Q1(Q1 — 1) P — (6° + 65°)(Q1 — ) A
= 0'05°(Q1 — 1) + PaQa(Q1 — 1)(PQ1 — P, — 0 (13)

(@ - @)~ (@~ @)+ 0,

taHy, =Qa(Qa2 — 1)° P} + t3Q2 P + (65° — 0)Q2(Q2 — 1) Py — (6° + 65°)(Q2 — 1) P
—0'05°(Q2 — 1) + P1Q1(Q2 — 1) (@2 — P> — 0) (14)

t % tQ(Pl(Ql — Q) — (P (Q — Q) + 6Y),

where the constants 6°, 61, 6%, 03°, 65° satisfy the so-called Fuchs-Hukuhara relation:
0° + 0" + 0" + 05° + 65° = 0.
These Hamiltonians are related by the changes t; <+ to, Q <> Qa, Py <> Py, 01 < 0.
2.2. On solutions to equations with Hamiltonians , , the system of linear ODEs

+

(oy (4, A A
O _ (A, A 4 Ax | Y =AY,
an no on—1 n-2
t A

Y ¢
N Emr+ )y =vy. (15)
oty n—i

1

14
o _ & LY =VY
\37&2 n—ﬁ

is compatible [9]. The coefficients of this system are

g [ PQuA PRy 460+ 65 —u(PiQy + PQy + 05°)
0 L(PIQ1+ PQa+ 00+ 0°)  —PiQi— PQy— 05 )

A - o' — PQ, uP1) A—( 0" — PoQy UP2)
AR - P PQ) T (0 - RQy) PQs)C

(00 (00 1 0 (Ao + A1 + A
Aoo - (0 tl)’ E2 - (O 1)7 Bl - tl ((AO+A1 +At)21 O

depending also on a simultaneous solution to following linear ODEs:

uy, = %<P1<Q1 — 1= 0" Qi — 1)+ 67 —60F), uy, = %(3@2 —1)2 = 04(Q, — 1)).
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It is easy to see that the change
Z =exp((nt; +0°Inn+ 0 In(n — 1) + 0" In(nt, — to) — 0'Inty)/2)Y
maps compatible systems of IDM into equivalent compatible systems

(07 (A A A A .

S A | Y =AZ,
o \n -1 p-&

ta A

YA R #A .
B+ B+ | v =0, (16)
oty n—z
07 LA .
L by — vy,
\3752 n—f

with matrix coeflicients

Ao—( PiQ + PQs + 0+9°o —u(P1Q1 + PQq + 63 ))

(P1Q1 + PQs + 90 + 900) —P1Q — P2Q2 90 — 05°
Al _ ( 7 — PlQl ) ( PQQQ UPQ t)
AL(0' — Q1) P1Q1 % L0 - PQy) PQy—%)
() ()
oo — 0 %1 ) 2 — 0 %

having zero trace. Exactly this matrix form of equations of IDM for system H?*™1+1+1 will be
employed in this system for constructing solutions to corresponding evolution equations of form

(4).

3. CONSTRUCTION OF SOLUTIONS TO ANALOGUE OF NON-STATIONARY SCHRODINGER
EQUATIONS

3.1. First of all by the simultaneous fundamental solution Z of linear systems of ODEs
we form the 2 x 2 matrix

M = Z 7 (t1,t2, () Z(t1, t2,7m). (17)

This matrix satisfies simultaneously two scalar spatial two-dimensional evolution equations: the
equation with the time variable ¢,

n(n =D =Dt —ta) ) CC— DGt —t2)(n — 1)
ti(ts — t2)(C — 1) " ti(ty —t2)(C — )

b<t17 t27 Ca U)Mé + C(th t27 47 U)Mg/“
(b= B)(C —n) +g1(t1,t2, ¢,y u, Py Po, Qq, Q2) M
in which the functions b, ¢ and ¢; are as follows:
b(¢ —n) =nti(n® — ¢ — 4+ 2¢°n +20) — t2(n* + 2P — (* — C =P+ C+n— 2(n),
(¢ =) = Cta(C® =0 —4Cn 4+ 2C0° + 2n) — 2(¢° + 200 — P — =1 + 4+ — 2(n),
(0°)%t2(C —1)(n — 1) | (0")*({nta — 2¢nty + 11 (¢ + 1) — t2)

M| =
(18)

N T At (6 — o) 4¢C—1D(n— Dt — t2)
(0= =Dty N ti(C =1 —D(t(C+n) —t2)
A(Cty — t2) (nt1 — 12)(t1 — t2) Aty — t2)

_ L@+ 207D —1) G Hn =t —ty)
2(t1 — tg) 2(t1 — tg)
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~ A ~ ~ ~ ~

2(Ao)11 (A1) 11 + (Ao)12(A1)21 + (Ao)21 (A1) 12
1

Q(At)ll(A1>11 + (At)IQ(Al)ﬂ + (At)21(A1)12 p
- tl _ t2 - 1Q17

and the equation with time variable t:

;o =1)(Ctr —t2)(nts —t2) -, C(C—1)(Ct —t2)(nt1 — t2)

e _ M//
2 tita(ta — 1) (¢ — 1) " tita(ta — t1)(C — ) ¢
(260 — C = )¢t — 1)t — 1) 19)
- - 1 — 02 1 — L2 / /
+ M+M + t,t,,,U,B, ZM
tth(tQ N tl)(c N 77)2 ( ¢ n) 92( 1,02 C n Q )
with the coefficient
_(0°)2(Ct — ta)(pts — t2) — (0")*(Ctr — t2) (nt1 — to)
4Cn(ts — t1)tits 4(C—1)(n = 1)(ta — t1)tats
(0")2(t3Cn — 21t +13(C+n — D)ty | t(C+n—1)(Cty — o) (nty — Lo)
4(Ct1 — tz)(T]tl — tg)tg(tg — tl) 4t2(t2 — tl)
_ (001 265°) (Gt — o) (s = ta) | O'(a(C+ = 1) — taCn)
2y (ts — 1) sty — t1)
B 2(A0)11(A)11 + (Ao)12(Ar)21 + (Ao)ar (Ai)io
ta
2(12115)11(1211)11 + (At)12(1211)21 + (At>21<A1)12
— — PQs.
to — 11
3.2. We make the change
W = eStut2) pf,
where the function S satisfies two compatible identities
IS _2(/10)11(/11)11 + (A0)12(A1)21 + (1210)21(/11)12
-
1 tl
2(A) 1 (A Ap)12(A Ay)ai (A
n (A1 (A1 + (Ap)2(Ar)2r + (A2 (Ar)i2 L PO
t1 — 1o
gl _2(1210)11(12%)11 + (AO>12<At)21 + (A0)21(At>12
=
2 to
2(A) 1 (A A)2(A Ay)ar (A
n (A)11 (A1) + (A)12(A1)a + (Ar)21 (Ar)rz + R0,
to — 11
This change relates solutions of equations , with solutions of evolution equations
! 77(77 - 1)<C - 1)(77t1 - t?) " C(C - 1)(Ct1 - t2)(77 - 1) "
W, = we — W
" ti(ts —t2)(C—n) " ti(ty —t2)(C — ) « (20)
b(tlv t27 C? 77>Wr,; + C(th t27 C7 n)WC/
+ t 7t bl ) W?
tl(tl—tg)(c—?]) 93(1 2 C 77)
/ 77(77 - 1)(Ct1 - t2)<77t1 - t2) " C(C - 1)(Ct1 - tQ)(ntl - t2) "
W, = we — %%
2 tita(ta —t1)(C — 1) " tita(ta — t1)(C —n) ¢ (21)
2n—C—n)(Cti —to)(nts — )
+ ( C77 C 77)(C 1 2)(77 1 2) (WC + Wn> +94(t1,t27C,77)W

tita(ta — t1)(C —n)?
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which depend on the functions

(0°)*t2(C — 1)(n —1) | (61)*(Cntz2 — 2Cnts + (¢ + 1) — t2)

B4 (h — ) 4C—1)(n — Dta(ts — t)
(=D = Dty N (=D =1t +n) —t)
A(Cty — t2) (nt1 — t2)(t1 — t2) Aty — t2)
(0" + 0 +20°)(C-D(n—1)  O((C+n— Nt — 1y
2(t1 — tg) Q(tl - t2> ’
(092t = ta)(nts —ta)  (01)*(Cti — L) (s — o)
9= 4¢n(ta — t1)taty 4C—=1)(n—1)(te — t1)tats
L O = 2titaCn + 65(C + 0 = D)ty | ta(C+n = D(Ct = t2) (its = to)
4(Ct1 — tg)(ntl — tg)tg(tg — tl) 4t2(t2 — tl)
(6° + 6" +203°)(Cty — to)(nty — ta) | O't1(t2(C +n— 1) — t1(n)
B 2ty (ty — t1) 2ty (ty — t1) '

The latter pair of equations is independent of ); and P;.

3.3. In equations , we pass to the independent variables

123 ¢ Ui

n==0t, To=—7—,
! ! 2 tg—tl C—l 7]—]_

and make the change

W = (g = 2)((@ = Dy = 1)) (& = 2}y = 7)) () 202 7y — 12l Sy,

where ¢; are constants and

. T1 1 91 + Ht — 2(61 -+ CQ)TlTQ (Cl + co + Cg)Tl
UG TPy Sl T 2(ry — 1) -1
N (2 —c2—c2—(0H)*/4)rInn N (=2 + A+ (0°)2/4+ (0M)?/4) In7y
7'2—]_ 7'2—1 '

This gives the pair of equations

T1(m0 — 1)V :y(y — 1Dz -1y —m)

y—x
2 1 2 1 2 1
<‘Ifgy—|—\I/;< Cl+ 4 CQ+ 4 03+ . T1 2))
y—1 y y—7m  (y—1)
2@ =1y - D@ —n) (22)
y—x
‘ \Ifgx—i-‘l’; 201+1+202—|—1+203+1_ T
r—1 x r—T1y (x—1)2

+ 95(7—1’ T2, T, y)\lja
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s 1y T P =) =)

y—x
201+2 2C2+1 203 T1
. \Ij// \IJ/ _
( zz T x(x—l + x +x—72 (x—1)2>)
Yy -1z —n)(y — ) (23)
y—x

201+2 202+1 2C3 T
(onfEp ot o)
(yy Y\y—1 y y—1o  (y—1)?

+ 96(7—17 T2, X, y)\II

Here the functions g5 and gg read as

o <(Cl Tt et 1) - (6:)2) e-Dy-1)+ 2

0\2
~ Oz +y—1)
dxy

(0 — 07 —2e)m(ma(r+y) — oy —2m+1) (L1 2)(ry — 1)2(2y — 7)
2(x —1)(y— 1) (2 — 1) (y — ™) ’

0= Dy~ D@D (e O
e (@+etary?-T0)@n-n

+

g6 =

(05° — 65° — 2yer)m(x — 12)(y — 72) N ((02)2 — )z +y— 1)
2 =1)(y—1) Yy
PR Gl SO G el [ G Vi G k1
S C-m)y—m)
Letting now
0 (gt
=7 2c; = 05° — 67°, 3=, k= (c+co+1)
K1 — 2 Ko — 1 6, — 1
0122702:2703227
we obtain that thanks to the relations
0 0 0 0
%x—xgzl, a—yy—ya—yzl,

the pair of evolutions equations (22 , can be symbolically written as the following analogues
of non-stationary Schrodinger equations (e=1):

ov 0 0
= K.,-.<7'1,T2,$, Y,

88—73 = g _€8_137 —8a—y
defined by Hamiltonians , @D of Hamiltonian system .

oo (G=12), (24)

3.4. If in this pair of evolution equations we make the changes

r—1)(y—1 T — —
S 7 R et [ Ve ) -
7‘1(7‘2—1) (7‘2—1)
being quantum analogues of two first parts of symplectic transform and we pass from times
7; to times s; according transform , these analogues of Schrodinger equations transform to

the equations
S%\Iﬂsl =r (T — 81)\11// + 2r p\lf//p + rp(p — SQ)WZP
+ W (Ko + 02 — 1)r? 4 w17 (r — 51) + s1p + (1 — 51)]
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+ W [(k1 4 Ko — 1)rp + Oar(p — 52) — (59 — 1)p] + k1T,

rpSo(Se — 1
s2(s2 — 1)U, =r°pWy, + 2rp(p — 55) W7, + (p(p —1)(p—s2) + %) vy,

+ Ul [(k1 4+ ko — 1)rp+ O21(p — 52) — (52 — 1)p]

+ 9, (50 = Dplp = 1)+ kplp — 2) + balp = 1)(p — s2)

4 82(82 — 1)

" (Oor + p) ) + kpW.

Thanks to the operator relations
0 0 0 0
= " oy 1
the same pair of equations can be symbolically written as analogues of non-stationary
Schrédinger equations () with ¢ = 1 defined by polynomial Hamiltonians (5)) and (6)).

4. CONCLUSIONS

The constructed solutions to analogues of non-stationary Schrédinger and are
expressed via solutions Z to matrix L — A pairs of IDM depending explicitly on solutions to
nonlinear Hamiltonian systems of ODEs with Hamiltonians , . By means of known
symplectic transforms and , solutions of these Hamiltonian systems can be expressed
both via solutions of Hamiltonian systems (1) with polynomial Hamiltonians (f)), (€], and via
solutions of Hamiltonian systems (7)) with Hamiltonians (8], (9). Thus, the described solutions
to these analogues of Schrédinger equations are related in two ways with corresponding classical
Hamiltonian systems.

It should bhe stressed that the issue on similar analogues to Schrodinger equation
corresponding to Hamiltonian systems presented by various forms of systems H2*H1H1+l ig
not completely solved by the results of the present paper. In particular, the authors did
not succeed to construct solutions of any analogues of non-stationary Schrédinger equations
corresponding to Hamiltonians ,. The same concerns a series of equivalent Hamiltonian
systems described in paper [22].

In constructions of the present paper, change plays an important role. Earlier, the same
change was successfully applied in papers [31], [32] and [36], in which there were constructed
solutions to analogues of non-stationary Schrodinger equations defined by the Hamiltonians of
Garnier system as well as by some of its degenerations. Earlier, for other purposes, this change
was employed by D.P. Novikov in [29]. D.P. Novikov observed a similarity of this change with
formula (2.3.36) in [23]. For system H?*"'*1T1 this justifies an assumption of paper [32] that
this change can be useful in constructing analogues of non-stationary Schrédinger equations
defined by the Hamiltonians of all degenerations of Garnier system.

Apart of such change, it is useful to have in mind the changes being quantum analogues
of known classical transformations. For instance, such change turned out to be rather useful
in constructions in [3I], see equations (46) and (56). In the present work, a similar change is
provided by formula ([25).
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