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ORDER OF DIRICHLET SERIES WITH REGULAR

DISTRIBUTION OF EXPONENTS IN HALF-STRIPS

A.M. GAISIN, G.A. GAISINA

Abstract. We study the Dirichlet series 𝐹 (𝑠) =
∞∑︀
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 with positive and unboundedly

increasing exponents 𝜆𝑛. We assume that the sequence of the exponents Λ = {𝜆𝑛} has a
finite density; we denote this density by 𝑏. We suppose that the sequence Λ is regularly
distributed. This is understood in the following sense: there exists a positive concave
function 𝐻 in the convergence class such that

|Λ(𝑡)− 𝑏𝑡| 6 𝐻(𝑡) (𝑡 > 0).

Here Λ(𝑡) is the counting function of the sequence Λ. We show that if, in addition, the
growth of the function 𝐻 is not very high, the orders of the function 𝐹 in the sense of
Ritt in any closed semi-strips, the width of each of which is not less than 2𝜋𝑏, are equal.
Moreover, we do not impose additional restrictions for the nearness and concentration of
the points 𝜆𝑛. The corresponding result for open semi-strips was previously obtained by
A.M. Gaisin and N.N. Aitkuzhina.

It is shown that if the width of one of the two semi-strips is less than 2𝜋𝑏, then the Ritt
orders of the Dirichlet series in these semi-strips are not equal.
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Introduction

Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence obeying the condition

lim
𝑛→∞

ln𝑛

𝜆𝑛
= 𝐻 <∞. (0.1)

While studying entire functions defined by everywhere converging Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡), (0.2)

J.F. Ritt introduced the notion of 𝑅-order. Let us provide the definition of this quantity.
Ritt order (𝑅-order) of an entire function 𝐹 defined by series (0.2) is the quantity [1]

𝜌𝑅 = lim
𝜎→+∞

ln ln𝑀(𝜎)

𝜎
, 𝑀(𝜎) = sup

|𝑡|<∞
|𝐹 (𝜎 + 𝑖𝑡)|.

We consider a closed strip

𝑆(𝑎, 𝑡0) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡− 𝑡0| 6 𝑎}

A.M. Gaisin, G.A. Gaisina, The order of a Dirichlet series with a regular distribution of
the exponents in the half-strips.
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and we denote

𝑀𝑠(𝜎) = max
|𝑡−𝑡0|6𝑎

|𝐹 (𝜎 + 𝑖𝑡)|.

The quantity

𝜌𝑠 = lim
𝜎→+∞

ln+ ln𝑀𝑠(𝜎)

𝜎
(𝑎+ = max (𝑎, 0))

is called 𝑅-order of a function 𝐹 in the strip 𝑆(𝑎, 𝑡0).
Let

lim
𝑛→∞

𝑛

𝜆𝑛
= 𝐷 <∞, 𝐷* = lim

𝜆→+∞

1

𝜆

𝜆∫︁
0

𝐷(𝑥) 𝑑𝑥,

where 𝐷(𝑥) = Λ(𝑥)
𝑥

, Λ(𝑥) =
∑︀

𝜆𝑛6𝑥

1; 𝐷 is the upper density and 𝐷* is the averaged upper density

of the sequence Λ. We obviously have 𝐷* 6 𝐷.
It was proved in [2] that if

lim
𝑛→∞

(𝜆𝑛+1 − 𝜆𝑛) = ℎ > 0,

then as 𝑎 > 𝜋𝐷*, the 𝑅-order 𝜌𝑠 of the function 𝐹 in the strip 𝑆(𝑎, 𝑡0) is equal to the 𝑅-
order 𝜌𝑅 in the entire plane. The most general result on coinciding 𝑅-orders in different strip
𝑆𝑖 = 𝑆(𝑎𝑖, 𝑡𝑖) (𝑖 = 1, 2) was established by A.F. Leontiev in [3].

We are going to recall this result. Let 𝐹 be the sum of Dirichlet series (0.2) and 𝑆1 and 𝑆2

be open horizontal strip containing respectively 𝐷(𝛼1) and 𝐷(𝛼2), where 𝐷(𝛼) is the shift of
the conjugate diagram 𝐷 of the entire function

𝐿(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
(𝑧 = 𝑥+ 𝑖𝑦)

by a vector 𝛼. Then the 𝑅-orders of the function 𝐹 in these strip coincide [3, Ch. II, Sect. 5,
Subsect. 3]. For closed strip such result was proved by G.S. Sadykhov in [4].

We note that in [5], for entire Dirichlet series (0.2) of both arbitrary and prescribed order
there was made an attempt to obtain the relation

ln𝑀(𝜎) ∼ ln𝑀𝑆(𝜎) (0.3)

in the general case as 𝜎 → ∞ outside some set 𝐸 ⊂ R+, whereR+ is the positive semi-axis

(0,∞). This relation follows a statement in [5]1: if
∞∑︀
𝑛=1

𝜆−1
𝑛 < ∞ as 𝐹 has an arbitrary growth

or 𝑛 = 𝑜(𝜆𝑛) as 𝑛→ ∞ if 𝐹 is an entire function of a finite Ritt order, then for each horizontal
strip 𝑆1 ⊂ 𝑆2 as 𝜎 → ∞ outside some set 𝐸 of a finite or zero density respectively we have

ln𝑀𝑆2(𝜎) > ln𝑀𝑆1(𝜎) > ln {𝑀𝑆2(𝜎) − |𝑜(1)|𝜇(𝜎)} + 𝑜 (ln𝑀(𝜎)) , (0.4)

where 𝜇(𝜎) is the maximal term of the Dirichlet series.
However, the expression in curly brackets in (0.4) is generally speaking negative. But then

the right estimate in (0.4) makes no sense despite the exponents of the series obey rather strict
restrictions, Fejér or Fabri conditions. Nevertheless, if the coefficients 𝑎𝑛 of series (0.2) lie in
a fixed angle

{︀
𝑠 = 𝑟𝑒𝑖𝜃 : |𝜃| 6 𝛾 < 𝜋

2

}︀
, then |𝐹 (𝜎)| > 𝑀(𝜎) cos 𝛾 and under an appropriate

choice of the strip 𝑆2 relation (0.3) follows easily (0.4). We observe that this condition on 𝑎𝑛 is
not essential, for more details see [7], [8], where stronger results were obtained. The Fejér and

1A similar result in terms of the coefficients in the Newton majorant was provided in [6] for Dirichlet series
converging only in the half-plane.
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Fabri conditions are also not essential.1 For instance, in [7] the series
∞∑︀
𝑛=1

𝜆−1
𝑛 was not assumed

to be convergent even if 𝐹 has an arbitrarily high growth rate. Only the finiteness of a so-called
𝑊–density 𝐺(𝑊 ) was assumed, where 𝑊 is a convergence class and a condition of type

− lnℎ𝑛 6 𝑤(𝜆𝑛) (𝑛 > 1), 𝑤 ∈ 𝑊,

where ℎ𝑛 = min
𝑘 ̸=𝑛

|𝜆𝑛 − 𝜆𝑘| was supposed as well. Then, for instance, for each strip 𝑆(𝑎, 𝑡0) with

𝑎 > 𝜋𝐺(𝑊 ) relation (0.3) outside a set 𝐸 of a finite measure [7].
For entire Dirichlet series of finite Ritt order, in [8] there was even proved a criterion of

relation (0.3), namely, the sequence Λ should have a zero 𝛼-condensation and satisfy a weaker
growth condition than Farbi condition.

In paper [9] the aforementioned by result by A.F. Leontiev in [3] on coinciding Ritt orders
in open strips containing 𝐷 was extended to the case, when the convergence domain of series
(0.2) is the half-plane Π0 = {𝑠 = 𝜎 + 𝑖𝑡 : 𝜎 < 0}.

Assuming 𝐻 = 0 in (0.1), as in [9], we denote by 𝐷0(Λ) the class of all analytic functions
represented by Dirichlet series (0.2) converging only in the half-plane Π0. In the present work
we also consider a subclass of functions in 𝐷0(Λ) having a finite order similar to the Ritt order
in the classical case. The technique and ideas of work [7], where series of arbitrary growth were
treated, turn out to be applicable also in the present case [9].

Let 𝑆(𝑎, 𝑡0) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡− 𝑡0| 6 𝑎, 𝜎 < 0} be a closed half-strip. The quantities

𝜌𝑅 = lim
𝜎→0−

ln+ ln𝑀(𝜎)

|𝜎|−1
, 𝜌𝑠 = lim

𝜎→0−

ln+ ln𝑀𝑠(𝜎)

|𝜎|−1

are called Ritt orders of a function 𝐹 in the half-plane Π0 and the half-plane 𝑆(𝑎, 𝑡0) [10]. In
what follows, we call the quantities 𝜌𝑅 and 𝜌𝑠 simply by orders in the half-plane and half-strip.

It was shown in [8] that if

lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln𝑛 = 0,

then the order 𝜌𝑅 of each function 𝐹 ∈ 𝐷0(Λ) is

𝜌𝑅 = lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln+ |𝑎𝑛|; (0.5)

the above conditions are also necessary [11].
Let the sequence Λ have a finite upper density 𝐷, ℎ(𝜙) be a growth indicatrix of the function

𝐿(𝑧). Then 𝜏 = ℎ(±𝜋
2
) 6 𝜋𝐷* [2]. It is obvious that 𝜏 is the type of the function 𝐿.

If

|𝐿(𝑥)| 6 𝑒𝑔(𝑥) (𝑥 > 0), lim
𝑥→+∞

𝑔(𝑥) ln𝑥

𝑥
= 0, (0.6)

then the order 𝜌𝑠 in the strip 𝑆(𝑎, 𝑡0) as 𝑎 > 𝜏 and the order 𝜌𝑅 of each function 𝐹 ∈ 𝐷0(Λ) in
the half-plane Π0 satisfy the estimates [10]

𝜌𝑠 6 𝜌𝑅 6 𝜌𝑠 + 𝑞, (0.7)

1Usually one considers two independent problems:
1) the sequence of coefficients 𝐴 = {𝑎𝑛} is arbitrary and obeys only a natural conditions, but subject to a
considered problem, conditions on Λ = {𝜆𝑛} are imposed;
2) the sequence of exponents Λ is arbitrary and obeys only a natural conditions but on 𝐴 one again imposes
conditions motivated by a particular problem.

M.N. Sheremeta considered a combined problem imposing conditions on both 𝐴 and Λ and these conditions
are very strict.
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where

𝑞 = 𝑞(𝐿) = lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln

⃒⃒⃒⃒
1

𝐿′(𝜆𝑛)

⃒⃒⃒⃒
<∞. (0.8)

In [10] there was also considered a case, when the width of the strip 𝑆(𝑎, 𝑡0) is exactly 2𝜏 . This
implies that if 𝑞 < ∞, then the quantities 𝜌𝑠 and 𝜌𝑅 are finite or infinite simultaneously and
𝜌𝑠 = 𝜌𝑅 as 𝑞 = 0. In the general case we have 𝜌𝑠 ̸= 𝜌𝑅 [12]. However, it was established in [9]
that if the width of each half-strip 𝑆𝑖 = 𝑆(𝑎𝑖, 𝑡𝑖), 𝑖 = 1, 2, exceeds 2𝜋𝐺(𝑅), where 𝐺(𝑅) is the
𝑅-density, then the Ritt orders in these hafl-strips are equal.

As in work [4], a natural question arises: under which conditions each function 𝐹 in 𝐷0(Λ)
in different half-strips of width not less than 2𝜋𝐺(𝑅) have the same order?

The aim of the present work is to provide conditions for the sequences Λ, under which
𝜌𝑠1 = 𝜌𝑠2 , where 𝜌𝑠𝑖 are the orders in arbitrary half-strips 𝑆𝑖, 𝑖 = 1, 2, the width of each is
not less than 2𝜋𝑏. This is done in Theorem 1. As we shall see in the proof, the quantity 𝑞 in
Theorem 1 can be arbitrary but the theorem does not hold as 𝑎1 < 𝜋𝑏 < 𝑎2 even if 𝑞 <∞; we
provide an example of such situation.

1. Preliminaries

In what follows we shall need some additional distribution densities of the sequence Λ. Let
Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence possessing a finite upper density, 𝐿 be a class of positive
continuous unboundedly increasing on [0,∞) functions. By 𝐾 we denote a subclass of functions

ℎ in 𝐿 such that ℎ(0) = 0, ℎ(𝑡) = 𝑜(𝑡) as 𝑡 → ∞, ℎ(𝑡)
𝑡

↓ as 𝑡 ↑ ∞; the derivative ℎ(𝑡)
𝑡

decays
monotonically as 𝑡 > 𝑡0. In particular, if ℎ ∈ 𝐾, then ℎ(2𝑡) 6 2ℎ(𝑡), 𝑡 > 𝑡0.
The 𝐾-density of the sequence Λ is the quantity [12]

𝐺(𝐾) = inf
ℎ∈𝐾

lim
𝑡→∞

𝜇Λ(𝜔(𝑡))

ℎ(𝑡)
, (1.1)

where 𝜔(𝑡) = [𝑡, 𝑡 + ℎ(𝑡)) is a semi-interval, 𝜇Λ(𝜔(𝑡)) is number of points in Λ lying in the
semi-interval 𝜔(𝑡).

Let Ω = {𝜔} be a family of semi-intervals of form 𝜔 = [𝑎, 𝑏). By |𝜔| we denote the length of
𝜔. Each sequence Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞, generates an integer-valued counting measure 𝜇Λ:

𝜇Λ(𝜔) =
∑︁
𝜆𝑛∈𝜔

1, 𝜔 ∈ Ω.

Let 𝜇Γ be a counting measure generated by the sequence Γ = {𝜇𝑛}, 0 < 𝜇𝑛 ↑ ∞. Then
the inclusion Λ ⊂ Γ means that 𝜇Λ(𝜔) 6 𝜇Γ(𝜔) for each 𝜔 ∈ Ω. In this case we say that the
measure 𝜇Γ majorizes the measure 𝜇Λ.

By 𝐷(𝐾) we denote the infimum of the numbers 𝑏, (0 6 𝑏 < ∞), for which there exists the
measure 𝜇Γ majorizing 𝜇Λ such that for some function ℎ ∈ 𝐾 we have

|𝑀(𝑡) − 𝑏𝑡| 6 ℎ(𝑡) (𝑡 > 0). (1.2)

Here Λ = {𝜆𝑛}, Γ = {𝜇𝑛}, 𝑀(𝑡) =
∑︀
𝜇𝑛6𝑡

1.

Lemma 1 ([12]). The quantities 𝐷(𝐾) and 𝐺(𝐾) coincides: 𝐷(𝐾) = 𝐺(𝐾).

We consider also the following classes of functions:

𝐿0 = {ℎ ∈ 𝐿 : ℎ(𝑥) ln𝑥 = 𝑜(𝑥)} as 𝑥→ +∞

𝑅 = {ℎ ∈ 𝐾 : ℎ(𝑥) ln
𝑥

ℎ(𝑥)
= 𝑜

(︁ 𝑥

ln𝑥

)︁
, 𝑥→ +∞}.
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The literal reproducing of the proof of Lemma 1 shows that 𝐷(𝑅) = 𝐺(𝑅); here the quantities
𝐷(𝑅) and 𝐺(𝑅) are defined as above with the only differences that ℎ ∈ 𝑅 in (1.1) and (1.2).
It was shown in [12] that if a sequence Λ has a finite 𝐺(𝑅)-density, there exists an even entire
function 𝑄 with a regular in some sense behavior on the real axis. All zeroes of this functions
are real and simple and Λ is a subset of its zero zero. Taking into consideration this essentially
important fact, it was shown in [9] that 𝜌𝑆1 = 𝜌𝑆2 for all half-strips 𝑆𝑖 = 𝑆(𝑎𝑖, 𝑡𝑖), (𝑖 = 1, 2),
having the widths greater than 2𝜋𝐺(𝑅). The sequence Λ can be extended to the sequence 𝑀
of all positive zeroes of the function 𝑄 with the density 𝑏 > 𝐺(𝑅).

In the present work we assume that the sequence Λ has the density 𝑏 and satisfies a condition
of type (1.2). Our aim is to find out, under which additional assumptions for the function ℎ,
relation (1.2) implies the identity 𝜌𝑆1 = 𝜌𝑆2 for all closed half-strips 𝑆1 and 𝑆2 of width at least
2𝜋𝑏.

We shall need the following theorem.

Lemma 2 ([13]). Let 𝐶(𝑥) be a non-decaying function vanishing in the vicinity of zero.
Assume that

∞∫︁
0

𝐶(𝑥)

𝑥2
𝑑𝑥 <∞,

and for 𝑎 > 0 we let

𝑚(𝑎) =

∞∫︁
0

𝐶(𝑥)

𝑥2
𝑑𝑥.

Let 𝑝 and 𝑞 be two constants such that 𝑝 > 2, 0 6 𝑞 < 𝑝− 2. Then for each 𝑎 there exists an
even entire function 𝐹𝑎(𝑧), 𝑧 = 𝑥+ 𝑖𝑦, satisfying the conditions:

|𝐹𝑎(𝑧)| 6 𝑒𝑝 𝑒𝑚(𝑎)|𝑦|−𝐶(|𝑧|)𝐿𝑎(𝑥, 𝑦),

where

𝐿𝑎(𝑥, 𝑦) =

√
𝛽𝛾

𝜋

1

1 + 𝛽𝛾(𝑥2 + 𝑦2)
.

It is clear that ‖𝐿𝑎‖𝐿(R) = ‖𝐿𝑎‖𝐿(𝑖R) = 1.
In this lemma

𝛽 =
(𝑝− 𝑞 − 2)𝑒𝑚(𝑎)

2
, 𝛾 =

(𝑝+ 𝑞)𝑒𝑚(𝑎)

2
,

and the function 𝐹𝑎(𝑧) is of the form:

𝐹𝑎(𝑧) =
𝑒−𝐶(𝑎−0)

2𝜋𝑒

√︀
𝛽𝛾

sin 𝛽𝑧

𝛽𝑧

sin 𝛾𝑧

𝛾𝑧
𝜙(𝑧),

where

𝜙(𝑧) =
∞∏︁
𝑛=1

sin𝜇𝑛𝑧

𝜇𝑛𝑧
(𝜇𝑛 > 0),

and
∞∑︁
𝑛=1

𝜇𝑛 6 𝑒𝑚(𝑎).

In our case Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞), is the set of all positive zeroes of the function 𝑄, that
is,

𝑄(𝑧) = 𝐿(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
(𝑧 = 𝑥+ 𝑖𝑦). (1.3)



ORDER OF DIRICHLET SERIES WITH REGULAR DISTRIBUTION. . . 55

Let 𝛾𝑄 be a function associated in the Borel sense with an entire function 𝑄. Then the
following lemma holds.

Lemma 3. The function 𝑄 satisfies condition (0.6) if and only if

lim
𝛿→0+

𝛿 ln+ ln |𝛾𝑄(𝑡)| 6 0, 𝛿 = |Re 𝑡|.

The necessary condition was proven in [10], and the sufficient condition was established in
[12].

Lemma 4. Let a sequence Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞), satisfy the condition

|Λ(𝑡) − 𝑏𝑡| 6 𝐻(𝑡) (𝑡 > 0), (1.4)

where the function 𝐻 belongs to the class 𝐾 and moreover,
∞∫︁
1

𝐻(𝑡)

𝑡2
𝑑𝑡 <∞. (1.5)

Then the entire function 𝑄 defined by formula (1.3) satisfy the estimates:
1) there exist 𝐴 > 0, 𝐵 > 0 such that

ln |𝑄(𝑥)| 6 𝐴𝐻(|𝑥|) ln+ |𝑥|
ln(|𝑥|)

+𝐵 (1.6)

on the real axis;
2) on the imaginary axis we have

ln |𝑄(𝑖𝑦)| 6 𝜋𝑏|𝑦| + 2𝑁𝐻(|𝑦|) +
𝜋

2
𝐻(|𝑦|), (1.7)

where

𝑁𝐻(𝑟) =

⎧⎪⎪⎨⎪⎪⎩
𝑟∫︁

𝜆1

𝐻(𝑡)

𝑡
𝑑𝑡 if 𝑟 > 𝜆1,

0 if 0 6 𝑟 < 𝜆1.

Estimate (1.6) was proved in [14], while (1.7) follows immediately the representation

ln |𝑄(𝑖𝑦)| = 2𝑦2
∞∫︁
0

Λ(𝑡)𝑑𝑡

𝑡(𝑡2 + 𝑟2)
.

In Lemma 2, we replace 𝑧 by 𝑖𝑧 and we let

𝐶(𝑦) =

{︃
2𝑁𝐻(𝑦)+

𝜋

2
𝐻(𝑦) +

√
𝑦 if 𝑦 > 𝜆1,

0 if 0 6 𝑦 < 𝜆1.

Thanks to the term
√
𝑦 we obviously have: ln𝐶(𝑦) ≍ ln 𝑦; we write 𝜙1(𝑦) ≍ 𝜙2(𝑦) if for some

𝑐1 > 0, 𝑐2 > 0 the estimates hold: 𝑐1𝜙1(𝑦) 6 𝜙2(𝑦) 6 𝑐2𝜙1(𝑦). Since the function 𝑁𝐻 also
satisfies condition (1.5), then the function 𝐶(𝑦) satisfies the assumptions of Lemma 2. Then
combining Lemmata 2 and 4, we obtain the following statement.

Lemma 5. Let 𝑄 be the function (1.3), 𝑄𝑎(𝑧) = 𝐹𝑎(𝑖𝑧)𝑄(𝑧), where 𝐹𝑎 is the function from
Lemma 2. Then for each 𝑎 > 0, the function 𝑄𝑎 satisfies the following estimates on the real
and imaginary axes:

1) |𝑄𝑎(𝑥)| 6 exp
[︁
𝐴𝐻(|𝑥|) ln+ |𝑥|

𝐻(|𝑥|) + 𝑝 𝑒𝑚(𝑎)|𝑥| − 𝐶(|𝑥|) +𝐵
]︁
𝐿𝑎(𝑥, 0);
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2) |𝑄𝑎(𝑖𝑦)| 6 𝑄(𝑖𝜆1)𝐿𝑎(0, 𝑦)𝑒𝜋𝑏|𝑦|;

3) the function 𝛾𝑎 associated with the function 𝑄𝑎 in the Borel sense is continuous on the
straight lines 𝑙± = {𝑡 : | Im 𝑡| = ±𝜋𝑏} and

sup
| Im 𝑡|=±𝜋𝑏

|𝛾𝑎(𝑡)| 6 𝑄(𝑖𝜆1).

All parameters in estimates 1) – 3) are defined in Lemmata 2 and 4.

The estimate in Statement 3) is implied by inequality 2) and the identity ‖𝐿𝑎‖𝐿(𝑖R) = 1. The
continuity of 𝛾𝑎 on the straight lines 𝑙± is a well-known fact, see, for instance, [3, Ch. III, Sect.
7]).

2. Main result

Let 𝐿0, 𝑅 be the classes of functions introduced above and 𝐺(𝑅) be the 𝑅-density of the
sequence Λ. The following theorem holds true.

Theorem 1. Let Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞), be a sequence obeying condition (1.4) and

lim
𝑎→∞

ln 𝑎

∞∫︁
𝑎

𝑁𝐻(𝑥)

𝑥2
𝑑𝑥 = 0. (1.8)

Given half-strips 𝑆1 = 𝑆(𝑎1, 𝑡1), 𝑆2 = 𝑆(𝑎2, 𝑡2)

𝑆(𝑎𝑖, 𝑡𝑖) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡− 𝑡𝑖| 6 𝑎𝑖, 𝜎 < 0}, (𝑖 = 1, 2),

of widths at least 2𝜋𝑏, for each function 𝐹 ∈ 𝐷0(Λ) we have 𝜌𝑆1 = 𝜌𝑆2. Here 𝜌𝑆1 and 𝜌𝑆2 are
𝑅-orders of the function 𝐹 in 𝑆1 and 𝑆2, respectively.

In the proof of Theorem 1 we shall make use one more statement, namely, the estimate for
the quantity 𝑚(𝜙) = − ln |𝑄(𝑟𝑒𝑖𝜙)| as 𝜙 → 0, where 𝑄 is Weierstrass product (1.3), whose
sequence of zeroes Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) has a positive density 𝑏 and for some function
𝐻 ∈ 𝑅 we have

|Λ(𝑡) − 𝑏𝑡| 6 𝐻(𝑡), Λ(𝑡) =
∑︁
𝜆𝑛6𝑡

1. (2.1)

Lemma 6 ([14]). Under condition (2.1), the entire function 𝑄 satisfies the following esti-
mate: there exists 𝜌 > 0 such that as 𝑟 > 𝜌, for all 𝜙, 0 < |𝜙| 6 𝜋

4
we have⃒⃒

ln |𝑄(𝑟𝑒𝑖𝜙)| − 𝜋𝑏| sin𝜙|𝑟
⃒⃒
6 6𝐻(𝑟) ln

𝑟

𝐻(𝑟)
+

8𝜋

|𝜙|
𝐻2(𝑟)

𝑟
+ 3𝜆1𝜏. (2.2)

3. Proof of Theorem 1

We have
|Λ(𝑡) − 𝑏𝑡| 6 𝐻(𝑡) (𝑡 > 0), 𝐻 ∈ 𝑅, (3.1)

and the averaged function 𝑁𝐻 satisfies condition (1.8). Then an entire function

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
(𝑧 = 𝑥+ 𝑖𝑦) (3.2)

of exponential type 𝜋𝑏 possesses the following properties [14]:
10. 𝑄(𝜆𝑛) = 0, 𝑄

′
(𝜆𝑛) ̸= 0 (𝑛 > 1);

20. ln |𝑄(𝑥)| 6 𝑔(𝑥) (𝑥 > 0), 𝑔 ∈ 𝐿0.
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Moreover, on some sequence of circumferences

𝐾𝑛 = {𝜆 : |𝜆| = 𝑟𝑛},
𝑟𝑛
𝑟𝑛+1

→ 1, 𝑛→ ∞,

the estimates hold true [3, Ch. I, Sect. 3, Subsect. 1]:

ln |𝑄(𝑧)| > −𝑉0(𝑟), 𝑟 = |𝑧| = 𝑟𝑛, (3.3)

where 0 < 𝑉0(𝑟) = 𝑜(𝑟) as 𝑟 → ∞. Without loss of generality we assume that 𝑛 = 𝑜(𝑟𝑛)
as 𝑛 → ∞. In order to see this, for instance, we can exclude some points from the sequence
{𝑟𝑛} keeping in each semi-interval [𝑛2, (𝑛 + 1)2) at most one term of the initial sequence. At
that, we choose 𝑟1 so that 0 < 𝑟1 < min(1, 𝜆1). Taking this into consideration, by Γ𝑛 we
denote a closed contour formed by the arcs of the circumferences 𝐾𝑛 = {𝜆 : |𝜆| = 𝑟𝑛},
𝐾𝑛+1 = {𝜆 : |𝜆| = 𝑟𝑛+1} and by the segments in the rays {𝜆 : arg 𝜆 = ±𝜙𝑛, 0 < 𝜙𝑛 <

𝜋
4
};

we shall choose 𝜙𝑛 later.
The following representation holds:

𝐹 (𝑠) =
∞∑︁
𝑛=1

⎛⎝∫︁
Γ𝑛

𝜔𝑄(𝜇, 𝛼, 𝐹 )

𝑄(𝜇)
𝑒𝜇𝑠 𝑑𝜇

⎞⎠ , 𝑠 = 𝜎 + 𝑖𝑡 ∈ Π0, (3.4)

where 𝐹 is the sum of the Dirichlet series (0.2) in the class 𝐷0(Λ), 𝑄 is entire function (3.2),
and

𝜔𝑄(𝜇, 𝛼, 𝐹 ) = 𝑒−𝜇𝛼 1

2𝜋𝑖

∫︁
𝐶

𝛾𝑄(𝑡)

⎛⎝ 𝑡∫︁
𝛼0

𝐹 (𝑡+ 𝛼− 𝜂)𝑒𝜇𝜂 𝑑𝜂

⎞⎠ 𝑑𝑡 (3.5)

is the Leontiev interpolating function, see, for instance, [3, Ch. I, Sect. 2, Subsect. 13]. In the
definition of the function 𝜔𝑄(𝜇, 𝛼, 𝐹 ), by 𝐶 we denote a closed Jordan contour enveloping the
conjugate diagram of the entire function 𝑄, 𝛾𝑄 is the function associated with 𝑄 in the Borel
sense, and 𝛼, 𝛼0 are complex parameters. If for instance, the contour 𝐶 is star-shaped with
respect to the origin, one usually lets 𝛼0 = 0. In this case 𝜂 in the internal integral in (3.5)
ranges in the segment [0, 𝑡]. Then 𝑡− 𝜂 also ranges in the same segment and (𝑡− 𝜂) ∈ 𝐺, where
𝐺 is the closure of the domain 𝐺 bounded by the contour 𝐶. Then (𝑡+𝛼− 𝜂) ∈ 𝐺𝛼, 𝐺𝛼 is the
shift of 𝐺 by a vector 𝛼. In view of this reason, the parameter 𝛼 in (3.5) is chosen so that the
function 𝐹 is regular in 𝐺𝛼 [3].

We proceed to proving the identity 𝜌𝑆1 = 𝜌𝑆2 . Let 𝑎1, 𝑎2 be arbitrary numbers, 𝑎1 > 𝜋𝑏,
𝑎2 > 𝜋𝑏, and 𝑆1 = 𝑆(𝑎1, 𝑡1) and 𝑆2 = 𝑆(𝑎2, 𝑡2) be half-strips. We let

𝑎 = sup
𝑛>1

𝑟𝑛+1

𝑟𝑛
, 𝑐 = |𝑡1| + |𝑡2| + 𝑎1 + 𝑎2, 𝜙𝑛 = 𝜀0

𝐻(𝑟𝑛)

𝑟𝑛
(𝑛 > 1).

Since 𝐻 ∈ 𝑅, then 𝜙𝑛 ↓ 0 as 𝑛→ ∞. We choose number 𝜀0 so that 0 < 𝜙𝑛 <
𝜋
4

(𝑛 > 1).
Taking into consideration the identity [15, Ch. IV, Sect. 2, Subsect. 2]

𝜔𝑄(𝜇, 𝛼, 𝐹 )

𝑄(𝜇)
=
𝜔𝑄𝑎(𝜇, 𝛼, 𝐹 )

𝑄𝑎(𝜇)
,

where 𝑄𝑎 is the function from Lemma 6, and introducing a simplified notation 𝜔𝑎 instead of
𝜔𝑄𝑎 , for each 𝑠 = 𝜎 + 𝑖𝑡 ∈ Π0 we get:

𝐹 (𝑠) =
∞∑︁
𝑛=1

⎛⎝∫︁
Γ𝑛

𝜔𝑎(𝜇, 𝛼, 𝐹 )

𝑄𝑎(𝜇)
𝑒𝜇𝑠 𝑑𝜇

⎞⎠ , (3.6)



58 A.M. GAISIN, G.A. GAISINA

where

𝜔𝑎(𝜇, 𝛼, 𝐹 ) = 𝑒−𝛼𝜇 1

2𝜋𝑖

∫︁
𝐶

𝛾𝑎(𝑡)

⎛⎝ 𝑡∫︁
0

𝐹 (𝑡+ 𝛼− 𝜂)𝑒𝜇𝜂 𝑑𝜂

⎞⎠ 𝑑𝑡, (3.7)

𝛾𝑎 = 𝛾𝑎(𝑡) is the function associated with the entire function 𝑄𝑎 in the Borel sense, 𝐶 is
a closed convex contour enveloping the conjugate diagram 𝐷𝑎 of the function 𝑄𝑎, 𝛼 is an
arbitrary complex parameter chosen so that 𝐶𝛼 ⊂ Π0, 𝐶𝛼 is the shift of 𝐶 by the vector 𝛼.

Let us specify the choice of the parameter 𝛼 and the contour 𝐶. Let 𝛾2 ∈ (0, 1), 𝛾1 = 2𝛾22
and 𝛼 = −𝜎(1 − 𝛾2) + 𝑖𝑡1, 𝜎 = Re 𝑠 < 0. As the estimate in Lemma show, 𝐷𝑎 is contained in
the rectangle {︁

𝑧 = 𝑥+ 𝑖𝑦 : |𝑥| 6 ℎ𝑎(0) 6 𝑝 𝑒𝑚(𝑎), |𝑦| 6 ℎ𝑎(±
𝜋

2
) = 𝜋𝑏

}︁
,

where ℎ𝑎(𝜙) is the growth indicatrix of the function 𝑄𝑎. As 𝐶, we take the boundary of
the rectangle 𝑃 = {𝑧 : |Re 𝑧| 6 2𝑝 𝑒𝑚(𝑎), | Im 𝑧| 6 𝑎1}, where 𝑎1 = 𝜋𝑏. Taking into
consideration that 𝑚(𝑎) is a continuous function, 𝑚(𝑎) ↓ 0 as 𝑎→ ∞, we choose the parameter
𝑎 > 0 as the root to the equation

2𝑝 𝑒𝑚(𝑎) = 𝛾1|𝜎|. (3.8)

Hence, for 𝑧 ∈ 𝑃 we obtain: |Re 𝑧| 6 𝛾1|𝜎|. For the convenience we assume that 𝛾1|𝜎| 6 1.
Our aim is to estimate |𝐹 (𝑠)| in the half-strip 𝑆2 by the maximum of the absolute value of the

function 𝐹 in the half-strip 𝑆1 by employing some representation of form (3.7). The problem
is that 𝑉0 /∈ 𝐿0 in estimate (3.3). In order to overcome this difficulty, we first prove a lemma.

Lemma 7. Let 𝑠 = 𝜎+ 𝑖𝑡 ∈ 𝑆2, 𝜇 ∈ Γ𝑛, 𝜂 ∈ 𝐶, 𝛾2 be an arbitrary but fixed number in (0, 1).
Then ⃒⃒

𝑒−𝜇(𝛼−𝑠−𝜂)
⃒⃒
6 𝐴(𝛾2)𝑒

−𝛾2(1+𝛾2)𝑟𝑛|𝜎|+𝑎𝑐𝐻(𝑟𝑛) (𝑛 > 1), (3.9)

𝑎, 𝑐 are above introduced numbers and 𝐻 ∈ 𝑅.

Proof. Letting 𝜂 = 𝜂1 + 𝑖𝜂2, we have

𝛼− 𝑠− 𝜂 = −𝛾2𝜎 − 𝜂1 − 𝑖(−𝑡1 + 𝑡+ 𝜂2).

If 𝜇 = 𝑟𝑒𝑖𝜙 = 𝜇1 + 𝑖𝜇2, 𝑅 = Re [−𝜇(𝛼− 𝑠− 𝜂)], then

𝑅 = 𝜇1𝛾2𝜎 + 𝜇1𝜂1 − 𝜇2(−𝑡1 + 𝑡+ 𝜂2).

This implies that

𝑅 6 −𝑟𝛾2|𝜎| cos𝜙+ 𝑟𝛾1|𝜎| cos𝜙+ 𝑟| sin𝜙|𝑐, 𝑟𝑛 6 𝑟 6 𝑟𝑛+1, 0 < |𝜙| 6 𝜙𝑛 <
𝜋

4
.

Hence,

𝑅 6 −𝑟𝑛𝛾2|𝜎|(1 + 2𝛾2) cos𝜙𝑛 + 𝑐𝜙𝑛𝑟𝑛+1, 𝑛 > 1.

Since 𝑟𝑛+1 6 𝑎𝑟𝑛 (𝑛 > 1), 𝜙𝑛 ↓ 0 as 𝑛→ ∞, then

𝑅 6 −𝛾2(1 + 𝛾2)𝑟𝑛|𝜎| + 𝑎𝑐𝐻(𝑟𝑛)

as 𝑛 > 𝑛0(𝛾2) and this proves estimate (3.9).

We return back to proving Theorem 1. For 𝑠 ∈ 𝑆2, 𝜇 ∈ Γ𝑛 we are going to estimate the
expression ⃒⃒⃒⃒

𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)

⃒⃒⃒⃒
.

Since 𝛾1|𝜎| 6 1, then

|𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠| 6 (1 + 𝑎21)|𝑒−𝜇(𝛼−𝑠) |max
𝜂∈𝑃

|𝑒𝜇𝜂| max
𝑡∈𝐶

|𝛾𝑎(𝑡)| max
𝑢∈𝐶𝛼

|𝐹 (𝑢)|.
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Since the maximum max
𝜂∈𝑃

|𝑒𝜇𝜂| is attained on the contour 𝐶, by applying Lemma 7 we get:

|𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠| 6 𝐵(𝛾2)𝑒
−𝛾2(1+𝛾2)𝑟𝑛|𝜎|+𝑎𝑐𝐻(𝑟𝑛) max

𝑡∈𝐶
|𝛾(𝑡)| max

𝑢∈𝐶𝛼

|𝐹 (𝑢)|. (3.10)

Here 𝐵(𝛾2) = (1 + 𝑎21)𝐴(𝛾2), 𝜇 ∈ Γ𝑛, (𝑛 > 1), 𝛾2 ∈ (0, 1).
Taking into consideration relation (3.8), by estimate 1) in Lemma 5 we obtain that

max
𝑡∈𝐶

|Re 𝑡|=𝛾1|𝜎|

|𝛾𝑎(𝑡)| 6 𝑒𝐵 exp

[︂
max
𝑥>0

(︂
𝐴𝐻(𝑥) ln+ 𝑥

𝐻(𝑥)
− 𝛾1

2
|𝜎|𝑥

)︂]︂
.

Since 𝐻 ∈ 𝑅, this implies easily (cf., for instance, [12]) that

lim
|Re 𝑡|↓0

|Re 𝑡| ln+ ln |𝛾𝑎(𝑡)| 6 0

on the vertical parts of the contour 𝐶; we observe that for the function 𝛾𝑄 associated with 𝑄
in the Borel sense, the latter relation is implied by Lemma 3. Therefore, for each , 𝛾3 > 0, as
|𝜎| < 𝜀0 = 𝜀0(𝛾3), on the vertical parts of the contour 𝐶 we get the estimate

|𝛾𝑎(𝑡)| 6 exp exp[𝛾3𝛾
−1
1 |𝜎|−1], |Re 𝑡| = 𝛾1|𝜎|. (3.11)

Since |𝛾𝑎(𝑡)| 6 𝑄(𝑖𝜆1) on the horizontal parts of the contour, letting 𝛾3 = 𝛾42 and taking into
consideration (3.11) and 𝛾1 = 2𝛾22 , we obtain

max
𝑡∈𝐶

|𝛾𝑎(𝑡)| 6 exp exp[𝛾22 |𝜎|−1], |𝜎| < 𝜀1 = 𝜀1(𝛾2). (3.12)

Thus, it follows from (3.10), (3.12) for 𝑠 ∈ 𝑆2 and 𝜇 ∈ Γ𝑛 that

|𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠| 6 𝐶(𝛾2) exp exp [𝛾22 |𝜎|−1]𝑒−𝛾2(1+𝛾2)𝑟𝑛|𝜎|+𝑎𝑐𝐻(𝑟𝑛) max
𝑢∈𝐶𝛼

|𝐹 (𝑢)|, (3.13)

where 𝛾1|𝜎| 6 1, (𝑛 > 1).
Since for each 𝜈 > 0 ⃒⃒⃒⃒

sin 𝜈𝑧

𝜈𝑧

⃒⃒⃒⃒
> 1

as | arg 𝑧| 6 𝜋
4
, then for such 𝑧

|𝐹𝑎(𝑖𝑧)| >
√
𝛽𝛾

2𝜋𝑒
𝑒−𝐶(𝑎), 𝐶(𝑎− 0) = 𝐶(𝑎).

for each fixed 𝑎 > 0.
On arcs of the circumferences𝐾𝑛 and𝐾𝑛+1 in the contour Γ𝑛, estimate (3.3) holds. Therefore,

in view of the previous estimate, on the same arcs we have

− ln |𝑄𝑎(𝑧)| 6 𝑉 (𝑟), 𝑉 (𝑟) = 𝑜(𝑟) as 𝑟 → ∞. (3.14)

Let 𝛾𝑛 be the part of the contour Γ𝑛 without the arcs 𝐶𝑛, 𝐶𝑛+1, (𝑛 > 2), where 𝐶𝑛 stands
for the common part of the contours Γ𝑛 and Γ𝑛+1 (𝑛 > 1). We assume that 𝛾1 = Γ1 ∖𝐶1, where
𝐶1 = {𝑧 : |𝑧| = 𝑟1, | arg 𝑧| 6 𝜙1}. In view (3.13), (3.14) we see that for each fixed 𝑠 ∈ 𝑆2 we
have ⃒⃒⃒⃒

𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)

⃒⃒⃒⃒
6 𝑒−𝛾2|𝜎|𝑟𝑛 , 𝜇 ∈ 𝛾𝑛, 𝑛 > 𝑛1.

Hence, for each fixed 𝑠 ∈ 𝑆2,

𝐼𝑛 =

∫︁
𝐶𝑛

𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)
𝑑𝜇→ 0
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as 𝑛→ ∞. And since

𝑛∑︁
𝑘=1

⎛⎝∫︁
Γ𝑘

𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)
𝑑𝜇

⎞⎠ =
𝑛∑︁

𝑘=1

⎛⎝∫︁
𝛾𝑘

𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)
𝑑𝜇

⎞⎠ + 𝐼𝑛,

instead of (3.6), the following representation is satisfied in half-strip 𝑆2:

𝐹 (𝑠) =
∞∑︁
𝑛=1

⎛⎝∫︁
𝛾𝑛

𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)
𝑑𝜇

⎞⎠ . (3.15)

We first estimate |𝑄(𝜇)| on 𝛾𝑛 from below uniformly in 𝜙, 𝜙𝑛+1 6 |𝜙| 6 𝜙𝑛. In order to do
this, we employ Lemma 7, according to which, there exists 𝜌 > 0 such that

− ln |𝑄(𝑟𝑒𝑖𝜙)| 6 6𝐻(𝑟) ln
𝑟

𝐻(𝑟)
+

8𝜋

|𝜙|
𝐻2(𝑟)

𝑟
+ 3𝜆1𝑏

as 𝑟 > 𝜌, where

𝑟𝑛 6 𝑟 6 𝑟𝑛+1,
𝑟𝑛+1

𝑟𝑛
→ 1 as 𝑛→ ∞, 𝑟𝑛+1 6 𝑎𝑟𝑛, 𝑛 > 1, 𝜙𝑛+1 6 |𝜙| 6 𝜙𝑛,

𝑏 is the density of the sequence Λ = {𝜆𝑛}, 𝑎1 = 𝜋𝑏. Since

𝐻(𝑟) ↑ ∞,
𝐻(𝑟)

𝑟
↓ 0 as 𝑟 ↑ ∞, 𝜙𝑛 = 𝜀0

𝐻(𝑟𝑛)

𝑟𝑛
,

as 𝑛 > 𝑛2, for 𝜇 = 𝑟𝑒𝑖𝜙 ∈ 𝛾𝑛 we have:

1) 6𝐻(𝑟) ln
𝑟

𝐻(𝑟)
6 12𝐻(𝑟𝑛) ln

𝑟𝑛
𝐻(𝑟𝑛)

,

2)
8𝜋

|𝜙|
𝐻2(𝑟)

𝑟
6

16𝜋

𝜀0
𝐻(𝑟𝑛).

Thus, in view of the above lower bound for |𝐹𝑎(𝑖𝑧)| in the angle {𝑧 : | arg 𝑧| 6 𝜋
4
}, we have:

− ln |𝑄𝑎(𝜇)| 6 12𝐻(𝑟𝑛) ln
𝑟𝑛
𝐻(𝑟𝑛

+
16𝜋

𝜀0
𝐻(𝑟𝑛) + 𝐶(𝑎) + ln

2𝜋𝑒√
𝛽𝛾

(𝑛 > 𝑛2) (3.16)

on the contour 𝛾𝑛. Since 𝐻 ∈ 𝑅, the function 𝐻(𝑟) ln 𝑟
𝐻(𝑟)

belongs to 𝐿0. Therefore, by (3.13),

(3.16) we finally have⃒⃒⃒⃒
𝜔𝑎(𝜇, 𝛼, 𝐹 )𝑒𝜇𝑠

𝑄𝑎(𝜇)
𝑒𝜇𝑠

⃒⃒⃒⃒
6𝐷(𝛾2)𝑒

𝐶(𝑎) exp exp [𝛾22 |𝜎|−1]

· exp [−𝛾2(1 + 𝛾2)𝑟𝑛|𝜎| + 𝑤(𝑟𝑛)] max
𝑢∈𝐶𝛼

|𝐹 (𝑢)|,
(3.17)

where 𝑤 is a some function in 𝐿0, 𝛾1|𝜎| 6 1, 𝜇 ∈ 𝛾𝑛, (𝑛 > 1).
Now we can estimate 𝑀𝑠2(𝜎) by 𝑀𝑠1(𝜎) from above. By (3.15) and (3.17) we obtain:

𝑀𝑠2(𝜎) = max
|𝑡−𝑡2|6𝑎2

|𝐹 (𝜎 + 𝑖𝑡)|

6𝐷(𝛾2)𝑒
𝐶(𝑎) exp exp [𝛾22 |𝜎|−1] max

𝑢∈𝐶𝛼

|𝐹 (𝑢)|
∞∑︁
𝑛=1

|𝛾𝑛| exp [𝑤(𝑟𝑛) − 𝛾2𝑟𝑛|𝜎|],
(3.18)

where 𝑤 ∈ 𝐿0, |𝛾𝑛| is the length of 𝛾𝑛.
We consider the Dirichlet series

Φ(𝑠) =
∞∑︁
𝑛=1

𝑏𝑛𝑒
𝜈𝑛𝑠, (3.19)
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where 𝜈𝑛 = 𝛾2𝑟𝑛 (𝑛 > 1), 𝑏𝑛 = |𝛾𝑛| exp [𝑤(𝜈𝑛
𝛾2

)], and 𝑛 = 𝑜(𝜈𝑛) as 𝑛 → ∞ according the choice

of 𝑟𝑛. It is obvious that series (3.19) converges absolutely in Π0, and since 𝑤 ∈ 𝐿0, the order
of the function Φ in the half-plane Π0 is zero (see [10] and (0.5)):

𝜌(Φ) = lim
𝑛→∞

ln 𝜈𝑛
𝜈𝑛

ln+ |𝑏𝑛| = 0.

Since according condition (1.8) we have 𝑚(𝑎) ln 𝑎 → 0 as 𝑎 → ∞, and ln𝐶(𝑎) ≍ ln 𝑎, then in
view of identity (3.8) we conclude that |𝜎| ln𝐶(𝑎(|𝜎|)) → 0 as 𝜎 ↑ 0; it is also obvious that
𝑎(|𝜎|) ↑ ∞. In view of the above fact, by (3.18) we obtain

𝑀𝑠2(𝜎) 6 max
𝑢∈𝐶𝛼

|𝐹 (𝑢)| exp exp [2𝛾22 |𝜎|−1], 0 < |𝜎| < 𝜀2(𝛾2). (3.20)

We choose 𝛾2 ∈ (0, 1
2
). Since 𝛼 = |𝜎|(1 − 𝛾2) + 𝑖𝑡1, then

| Im𝑢− 𝑡1| 6 𝑎1, |𝜎|(1− 𝛾2− 𝛾1) 6 Re𝑢 6 |𝜎|(1− 𝛾2 + 𝛾1), 𝛾1 = 2𝛾22 < 𝛾2 as 0 < 𝛾2 <
1

2

if 𝑢 ∈ 𝐶𝛼. Therefore, if in the half-strip 𝑆1 the function 𝐹 has an order equal to 𝜌𝑠1 , then by
(3.20) we finally have

𝑀𝑠2(𝜎) 6 exp exp [2𝛾22 |𝜎|−1] exp exp [(𝜌𝑠1 + 𝛾2)(1 − 𝛾2 − 𝛾1)
−1|𝜎|−1], 0 < |𝜎| < 𝜀3(𝛾2).

This yields

𝑀𝑠2(𝜎) 6 exp exp [(𝜌𝑠1 + 3𝛾2)(1 − 𝛾2 − 𝛾1)
−1|𝜎|−1], 0 < |𝜎| < 𝜀4(𝛾2).

This means that the order 𝜌𝑠2 in the half-strip 𝑆2 satisfies the estimate

𝜌𝑠2 6
𝜌𝑠1 + 3𝛾2

1 − 𝛾2 − 𝛾1
, 𝛾1 = 2𝛾22 , 0 < 𝛾2 <

1

2
.

Since 𝛾2 ∈ (0, 1
2
) is arbitrary, then 𝜌𝑠2 6 𝜌𝑠1 if 𝑎2 > 𝜋𝑏, 𝑎1 = 𝜋𝑏, and of course, as 𝑎1 > 𝜋𝑏. In

the same way we prove the inverse inequality. Thus, 𝜌𝑠1 = 𝜌𝑠2 for all half-strips 𝑆(𝑎1, 𝑡1) and
𝑆(𝑎2, 𝑡2) if 𝑎1 > 𝜋𝑏, 𝑎2 > 𝜋𝑏.

Remark 1. In the proven theorem 𝐺(𝑅) < ∞ although this statement makes sense also in
the case 𝐺(𝑅) = ∞; we just need to consider the half-strips of form 𝑆(∞, 𝑡0) coinciding with
the half-strip Π0 and then again 𝜌𝑠1 = 𝜌𝑠2. But Theorem 1 is not reduced to the simple case
𝜌𝑠 = 𝜌𝑅, where 𝜌𝑅 is the order of the function 𝐹 in the half-plane Π0 calculated by formulae
(0.5) via the coefficients, and 𝜌𝑠 is the order in the half-strip 𝑆(𝑎, 𝑡0), 𝑎 > 𝜋𝑏, see [9], [10].

Remark 2. Under assumptions of Theorem 1 as 𝑏 = 0, the identity 𝜌𝑠1 = 𝜌𝑠2 holds for all
half-strips 𝑆(𝑎1, 𝑡1), 𝑆(𝑎2, 𝑡2), 𝑎1 > 0, 𝑎2 > 0 are arbitrary. However we note that an analogue
of Theorem 1 for horizontal rays is not true [16].

It turns out that as only one of the half-strips has a width less than 2𝜋𝑏, the theorem is no
longer true as well even if we assume that 𝑞 <∞.

Let us adduce an appropriate example. Let Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞), be an arbitrary
sequence with a finite density 𝑏 satisfying assumptions of Theorem 1.

We let

𝜓(𝜆) =
∞∏︁
𝑘=1

(︂
1 +

𝜆2

𝑏2𝑘

)︂
,

where the numbers 𝑏𝑘 with 𝑘 > 𝑁 are determined by the identities

𝑘

𝑏
𝜌(𝑏𝑘)
𝑘

= ∆, ∆ > 0,
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and at that, the numbers 𝑏𝑘, (𝑘 6 𝑁), are arbitrary, 0 < 𝑏1 < 𝑏2 < . . . < 𝑏𝑁 , 𝜌(𝑟) = 1 − ln ln 𝑟
ln 𝑟

,
𝑟 > 𝑒𝑒; this is obviously a specified order. An entire function 𝜓 has a minimal type at order 1
and

(𝜋∆ − 𝜀)|𝑥|𝜌(|𝑥|) 6 ln |𝜓(𝑥)| 6 (𝜋∆ + 𝜀)|𝑥|𝜌(|𝑥|)

on the real axis [15] as |𝑥| > 𝑟0(𝜀), 𝜀 > 0 is arbitrary.
We consider the Dirichlet series

Ψ(𝑠) =
∞∑︁
𝑘=1

𝑒𝜆𝑘𝑠

𝑄′(𝜆𝑘)
(𝑠 = 𝜎 + 𝑖𝑡). (3.21)

For this series the convergence domain is the half-plane Π0; since 𝑞 < ∞, the condensation
index of the sequence Λ is equal to 0. It is easy to confirm that the integral

𝐼(𝑠) =
1

2𝜋𝑖

∞𝑖∫︁
−∞𝑖

𝑒𝜉𝑠

𝑄(𝜉)
𝑑𝜉 (3.22)

converges uniformly inside the strip

𝑆 = {𝑧 : | Im 𝑧| < 𝜋𝑏}

and defines an analytic in 𝑆 function 𝐼(𝑠) bounded in each strip {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡| 6 𝑎 < 𝜋𝑏},
𝑎 > 0.

In an usual way one can show that by means of the integral (3.22), the sum of series (3.21)
is analytically continued in the strip 𝑆 through the interval (−𝜋𝑏𝑖, 𝜋𝑏𝑖), see, for instance, [3]
and [17, Thm. 2.1.4]. But then the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑘=1

𝜓(𝜆𝑘)

𝑄′(𝜆𝑘)
𝑒𝜆𝑘𝑠

also converges in the half-plane Π0 and is continued analytically over all curves along with
the function Φ can be continued [15, Thm. 2.4.1]. Therefore, the function 𝐹 is bounded in
the half-strip 𝑆1 = 𝑆(𝑎1, 0), (0 < 𝑎1 < 𝜋𝑏), and this is why 𝜌𝑠1 = 0. Its Ritt order 𝜌𝑅 is
obviously equal to 𝜋∆ + 𝑞. Since under the assumptions of Theorem 1, the function 𝑄 satisfies
conditions (0.6), as it follows from (0.7), for each half-strip 𝑆2 = 𝑆(𝑎2, 𝑡0) (𝑎2 > 𝜋𝑏) we have
𝜌𝑠2 > 𝜌𝑅 − 𝑞 = 𝜋∆ > 0.

On the other hand, as it has been shown in Theorem 1, 𝜌𝑆2 = 𝜌𝑏, where 𝜌𝑏 is the order in
the half-strip 𝑆(𝑏, 𝑡0) and hence, 𝜌𝑏 > 0.

Theorem 2. Let a sequence Λ satisfies assumptions of Theorem 1. Then for each function
𝐹 ∈ 𝐷0(Λ), its orders 𝜌𝑆1 and 𝜌𝑆2 in the half-strips 𝑆(𝑎1, 𝑡1) and 𝑆(𝑎2, 𝑡2) are equal if and only
if the width of each strip is not less than 2𝜋𝑏.
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