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THIRD DOUBLE-LAYER POTENTIAL FOR A GENERALIZED

BI-AXIALLY SYMMETRIC HELMHOLTZ EQUATION

T.G. ERGASHEV

Abstract. The double-layer potential plays an important role in solving boundary value
problems for elliptic equations, and in studying this potential, the properties of the fun-
damental solutions of the given equation are used. At present, all fundamental solutions
to the generalized bi-axially symmetric Helmholtz equation are known but nevertheless,
only for the first of them the potential theory was constructed. In this paper we study the
double layer potential corresponding to the third fundamental solution. By using properties
of Appell hypergeometric functions of two variables, we prove limiting theorems and derive
integral equations involving the density of double-layer potentials in their kernels.
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1. Introduction

Numerous applications of potential theory can be found in fluid mechanics, elastodynamics,
electromagnetics and acoustics. By means of this theory one succeeds to reduce boundary value
problems to solving integral equations.

The double layer potential plays an important role in solving boundary value problems for
elliptic equations since the separation of variables and the Green’s function allows one to obtain
explicit solutions only for simplest domains. On one hand, the reducing of boundary value
problems by means of double layer potential to integral equations is convenient for theoretical
studies on solvability and uniqueness of solutions to boundary value problems. On the other
hand, this gives an opportunity for an effective numerical solving of boundary value problems
for domains of complicated shapes [1,2].

Applying the methods of complex analysis based on analytic functions, Hilbert [3] first con-
structed an integral representation for solutions of the following bi-axially symmetric Helmholtz
equations

𝐻𝜆
𝛼,𝛽(𝑢) ≡ 𝑢𝑥𝑥 + 𝑢𝑦𝑦 +

2𝛼

𝑥
𝑢𝑥 +

2𝛽

𝑦
𝑢𝑦 − 𝜆2𝑢 = 0, (𝐻𝜆

𝛼,𝛽)

where 𝛼, 𝛽 and 𝜆 are constants and 0 < 2𝛼, 2𝛽 < 1.
Fundamental solutions of equation (𝐻𝜆

𝛼,𝛽) were found in work [4]. As 𝜆 = 0, all four funda-

mental solutions 𝑞𝑖(𝑥, 𝑦;𝑥0, 𝑦0), 𝑖 = 1, 4 of the equation 𝐻0
𝛼,𝛽(𝑢) = 0 can be expressed by means
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of the Appell hypergeometric function of second kind of two variables 𝐹2 (𝑎, 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦)
defined by the formula [5,6,7]

𝐹2 (𝑎, 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦) =
∞∑︁

𝑚,𝑛=0

(𝑎)𝑚+𝑛(𝑏1)𝑚(𝑏2)𝑛
(𝑐1)𝑚(𝑐2)𝑛𝑚!𝑛!

𝑥𝑚𝑦𝑛,

where (𝑎)𝑛 is the Pochhammer symbol, (𝑎)0 = 1, (𝑎)𝑛 = 𝑎(𝑎 + 1)(𝑎 + 2) . . . (𝑎 + 𝑛 − 1),
𝑛 = 1, 2, . . . .

Work [8] belongs to this direction of the studies. In this work there were constructed funda-
mental solutions of 𝐵-elliptic equations with lower order terms of form

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 2𝛼𝑢𝑥 +
2𝛽

𝑦
𝑢𝑦 − 𝜆2𝑢 = 0.

In works [9] and [10], the potential theory was exposed for the simplest degenerating elliptic
equation 𝐻0

𝛼,𝛽(𝑢) = 0 as 𝛼 = 0 and 𝛽 = 0, respectively. In [11] the theory of double layer

potential was constructed for equation (𝐻𝜆
𝛼,𝛽) as 𝜆 = 0 in the domain

Ω ⊂ R+ = {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 > 0}
only for the first fundamental solution 𝑞1(𝑥, 𝑦;𝑥0, 𝑦0).

In the present work we study the double layer potential corresponding to the third funda-
mental solution

𝑞3(𝑥, 𝑦;𝑥0, 𝑦0) = 𝑘3
(︀
𝑟2
)︀−𝛼+𝛽−1

𝑦1−2𝛽𝑦1−2𝛽
0 𝐹2 (1 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂) , (1.1)

where

𝑘3 =
22+2𝛼−2𝛽

4𝜋

Γ(𝛼)Γ(1 − 𝛽)Γ(1 + 𝛼− 𝛽)

Γ(2𝛼)Γ(2 − 2𝛽)
, (1.2)

𝑟2

𝑟21
𝑟22

⎫⎬⎭ =

⎛⎝𝑥− 𝑥0
𝑥+ 𝑥0
𝑥− 𝑥0

⎞⎠2

+

⎛⎝𝑦 − 𝑦0
𝑦 − 𝑦0
𝑦 + 𝑦0

⎞⎠2

, 𝜉 =
𝑟2 − 𝑟21
𝑟2

, 𝜂 =
𝑟2 − 𝑟22
𝑟2

. (1.3)

It is straightforward to check that the function 𝑞3(𝑥, 𝑦;𝑥0, 𝑦0) possesses the following prop-
erties:

𝜕𝑞3(𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

= 0, (1.4)

𝑞3(𝑥, 𝑦;𝑥0, 𝑦0)

⃒⃒⃒⃒
𝑦=0

= 0.

2. Green’s formula

We consider the identity

𝑥2𝛼𝑦2𝛽
[︀
𝑢𝐻0

𝛼,𝛽(𝑣) − 𝑣𝐻0
𝛼,𝛽(𝑢)

]︀
=

𝜕

𝜕𝑥

[︀
𝑥2𝛼𝑦2𝛽 (𝑣𝑥𝑢− 𝑣𝑢𝑥)

]︀
+

𝜕

𝜕𝑦

[︀
𝑥2𝛼𝑦2𝛽 (𝑣𝑦𝑢− 𝑣𝑢𝑦)

]︀
.

Integrating both sides of this identity over a domain Ω located in the first quarter (𝑥 > 0, 𝑦 > 0)
and employing the Ostrogradsky formula, we get∫︁∫︁

Ω

𝑥2𝛼𝑦2𝛽
[︀
𝑢𝐻0

𝛼,𝛽(𝑣) − 𝑣𝐻0
𝛼,𝛽(𝑢)

]︀
𝑑𝑥𝑑𝑦 =

∫︁
𝑆

𝑥2𝛼𝑦2𝛽𝑢 (𝑣𝑥𝑑𝑦 − 𝑣𝑦𝑑𝑥) − 𝑥2𝛼𝑦2𝛽𝑣 (𝑢𝑥𝑑𝑦 − 𝑢𝑦𝑑𝑥) ,

(2.1)
where 𝑆 = 𝜕Ω is the boundary of the domain Ω.

Green’s formula (2.1) is obtained under the following assumptions: the functions 𝑢(𝑥, 𝑦),
𝑣(𝑥, 𝑦) and its first partial derivatives are continuous in the closed domain Ω, second order
partial derivatives are continuous inside Ω and the integrals over Ω involving 𝐻0

𝛼,𝛽(𝑢) and
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𝐻0
𝛼,𝛽(𝑣) are well-defined. If 𝐻0

𝛼,𝛽(𝑢) and 𝐻0
𝛼,𝛽(𝑣) are not continuous up to 𝑆, then these are

improper integrals obtained as limits over each sequence of domains Ω𝑛 located inside Ω as
they tend to Ω so that each internal point of Ω is also internal for domains Ω𝑛 starting with
some index 𝑛.

If 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) solve the equation 𝐻0
𝛼,𝛽(𝑢) = 0, by formula (2.1) we have∫︁

𝑆

𝑥2𝛼𝑦2𝛽
(︂
𝑢
𝜕𝑣

𝜕𝑛
− 𝑣

𝜕𝑢

𝜕𝑛

)︂
𝑑𝑠 = 0. (2.2)

Here
𝜕

𝜕𝑛
=
𝑑𝑦

𝜕𝑠

𝜕

𝜕𝑥
− 𝑑𝑥

𝜕𝑠

𝜕

𝜕𝑦
(2.3)

is the operator of differentiation along the outward normal 𝑛 to the curve 𝑆 and

𝑑𝑦

𝑑𝑠
= cos(𝑛, 𝑥),

𝑑𝑥

𝑑𝑠
= − cos(𝑛, 𝑦) (2.4)

are direction cosines for this normal.
Letting 𝑣 ≡ 1 in formula (2.1) and replacing 𝑢 by 𝑢2, we obtain∫︁∫︁

Ω

𝑥2𝛼𝑦2𝛽
[︀
𝑢2𝑥 + 𝑢2𝑦

]︀
𝑑𝑥𝑑𝑦 =

∫︁
𝑆

𝑥2𝛼𝑦2𝛽𝑢
𝜕𝑢

𝜕𝑛
𝑑𝑠,

where 𝑢(𝑥, 𝑦) is a solution of the equation 𝐻0
𝛼,𝛽(𝑢) = 0. Letting 𝑣 ≡ 1 in formula (2.2), we

obtain ∫︁
𝑆

𝑥2𝛼𝑦2𝛽
𝜕𝑢

𝜕𝑛
𝑑𝑠 = 0, (2.5)

that is, the integral of the normal derivative of a solution to the equation 𝐻0
𝛼,𝛽(𝑢) = 0 with the

weight 𝑥2𝛼𝑦2𝛽 over the boundary of the domain vanishes.

3. Double layer potential 𝑤(3)(𝑥0, 𝑦0)

Let Ω be a domain enveloped by the segments (0, 𝑎) and (0, 𝑏) in the axes 𝑥 and 𝑦, respectively,
and by a curve Γ with end-points 𝐴(𝑎, 0) and 𝐵(0, 𝑏) located in the first quarter 𝑥 > 0, 𝑦 > 0
in the plane R2. A parametric equation for the curve Γ is 𝑥 = 𝑥(𝑠) and 𝑦 = 𝑦(𝑠), 𝑠 ∈ [0, 𝑙],
where 𝑠 is the arc length measured from the point 𝐵. For the curve Γ we assume that

1) the functions 𝑥 = 𝑥(𝑠) and 𝑦 = 𝑦(𝑠) possess continuous derivatives 𝑥′(𝑠) and 𝑦′(𝑠) on the
segment [0, 𝑙] not vanishing simultaneously; the second derivatives 𝑥′′(𝑠) and 𝑦′′(𝑠) satisfy the
Hölder condition with an exponent 𝜀, 0 < 𝜀 < 1, on [0, 𝑙], where 𝑙 is the length of the curve Γ;

2) in the vicinities of the points 𝐴(𝑎, 0) and 𝐵(0, 𝑏) on the curve Γ the conditions hold:⃒⃒⃒⃒
𝑑𝑥

𝑑𝑠

⃒⃒⃒⃒
6 𝐶𝑦1+𝜀 (𝑠) ,

⃒⃒⃒⃒
𝑑𝑦

𝑑𝑠

⃒⃒⃒⃒
6 𝐶𝑥1+𝜀 (𝑠) , (3.1)

where 𝐶 = 𝑐𝑜𝑛𝑠𝑡. The coordinates of points in the curve Γ are denoted by (𝑥, 𝑦).
We consider the integral

𝑤(3)(𝑥0, 𝑦0) =

𝑙∫︁
0

𝑥2𝛼𝑦2𝛽𝜇3(𝑠)
𝜕𝑞3(𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠, (3.2)

where 𝜇3(𝑠) is a continuous function in the segment [0, 𝑙], and 𝑞3(𝑥, 𝑦;𝑥0, 𝑦0) is a fundamental
solution of the equation 𝐻0

𝛼,𝛽(𝑢) = 0 defined by formula (1.1).
Integral (3.2) is called third double layer potential with a density 𝜇3(𝑠). It is obvious that

𝑤(3)(𝑥0, 𝑦0) is a regular solution to the equation 𝐻0
𝛼,𝛽(𝑢) = 0 in each domain located in the
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first quarter having common points neither with Γ no with the axes 𝑥 and 𝑦. As in the case
of logarithmic potential, one can show the existence of the double layer potential (3.2) at the
points of the curve Γ for a bounded density 𝜇3(𝑠).

Lemma 1. The following formulae hold:

𝑤(3)(𝑥0, 𝑦0) =

⎧⎨⎩
𝑗(𝑥0, 𝑦0) − 1 if (𝑥0, 𝑦0) ∈ Ω,
𝑗(𝑥0, 𝑦0) − 1

2
if (𝑥0, 𝑦0) ∈ Γ,

𝑗(𝑥0, 𝑦0) if (𝑥0, 𝑦0) /∈ Ω,
(3.3)

where Ω := Ω ∪ Γ;

𝑗(𝑥0, 𝑦0) = (1 − 2𝛽)𝑘3𝑦
1−2𝛽
0

𝑎∫︁
0

𝑥2𝛼
(︀
(𝑥− 𝑥0)

2 + 𝑦20
)︀−𝛼+𝛽−1

𝐹

(︂
1 + 𝛼− 𝛽, 𝛼; 2𝛼;

−4𝑥𝑥0
(𝑥− 𝑥0)2 + 𝑦20

)︂
𝑑𝑥.

(3.4)

Here

𝐹 (𝑎, 𝑏; 𝑐; 𝑧) =
∞∑︁
𝑘=0

(𝑎)𝑘(𝑏)𝑘
(𝑐)𝑘𝑘!

𝑧𝑘

is the Gauss hypergeometric function.

Proof. Case 1. Assume that the point (𝑥0, 𝑦0) is located inside Ω. We cut out a circle of a
small radius 𝜌 centered at (𝑥0, 𝑦0) from the domain Ω and by Ω𝜌 we denote the remaining part
of the domain Ω, while 𝐶𝜌 stands for the circumference of the cut circle. In the domain Ω𝜌

the function 𝑞3(𝑥, 𝑦;𝑥0, 𝑦0) is a regular solution of the equation 𝐻0
𝛼,𝛽(𝑢) = 0. Employing the

formula for the derivative of the Appell hypergeometric function [12]

𝜕𝑚+𝑛𝐹2(𝑎; 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦)

𝜕𝑥𝑚𝜕𝑦𝑛
=

(𝑎)𝑚+𝑛(𝑏1)𝑚(𝑏2)𝑛
(𝑐1)𝑚(𝑐2)𝑛

𝐹2(𝑎+𝑚+𝑛; 𝑏1 +𝑚, 𝑏2 +𝑛; 𝑐1 +𝑚, 𝑐2 +𝑛;𝑥, 𝑦),

(3.5)
we obtain

𝜕𝑞3(𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑥
= −2(1 + 𝛼− 𝛽)𝑘3

(︀
𝑟2
)︀−𝛼+𝛽−2

𝑦1−2𝛽𝑦1−2𝛽
0 𝑃 (𝑥, 𝑦;𝑥0, 𝑦0), (3.6)

where

𝑃 (𝑥, 𝑦;𝑥0, 𝑦0) = (𝑥− 𝑥0)𝐹2(1 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)

+ 𝑥0𝐹2(2 + 𝛼− 𝛽; 1 + 𝛼, 1 − 𝛽; 1 + 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)

+ (𝑥− 𝑥0)

[︂
(1 + 𝛼− 𝛽)𝛼

2𝛼
𝜉𝐹2(2 + 𝛼− 𝛽; 1 + 𝛼, 1 − 𝛽; 1 + 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)

+
1 − 𝛽

2 − 2𝛽
𝜂𝐹2(2 + 𝛼− 𝛽;𝛼, 2 − 𝛽; 2𝛼, 3 − 2𝛽; 𝜉, 𝜂)

]︂
.

(3.7)

Applying then a known relation [5]

𝑏1
𝑐1
𝑥𝐹2

(︀
𝑎+ 1; 𝑏1 + 1, 𝑏2;𝑐1 + 1, 𝑐2;𝑥, 𝑦

)︀
+
𝑏2
𝑐2
𝑦𝐹2 (𝑎+ 1; 𝑏1, 𝑏2 + 1; 𝑐1, 𝑐2 + 1;𝑥, 𝑦)

= 𝐹2 (𝑎+ 1; 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦) − 𝐹2 (𝑎; 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦)
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to the square brackets in (3.7), we get:

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑥
= − 2(1 + 𝛼− 𝛽)𝑘3

(︀
𝑟2
)︀−𝛼+𝛽−2

𝑦1−2𝛽𝑦1−2𝛽
0

·
[︀
𝑥0𝐹2 (2 + 𝛼− 𝛽; 1 + 𝛼, 1 − 𝛽; 1 + 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)

+ (𝑥− 𝑥0)𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
]︀
.

(3.8)

In the same way we find:

𝜕𝑞3 (𝑥, 𝑦; 𝑧0, 𝑦0)

𝜕𝑦
= − 2(1 + 𝛼− 𝛽)𝑘3

(︀
𝑟2
)︀−𝛼+𝛽−2

𝑦1−2𝛽𝑦1−2𝛽
0

·
[︀
𝑦0𝐹2 (2 + 𝛼− 𝛽;𝛼, 2 − 𝛽; 2𝛼, 3 − 2𝛽; 𝜉, 𝜂)

+ (𝑦 − 𝑦0)𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
]︀

+ (1 − 2𝛽)𝑘3
(︀
𝑟2
)︀−𝛼+𝛽−1

𝑦−2𝛽𝑦1−2𝛽
0

· 𝐹2 (1 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂) .

(3.9)

Employing (3.8) and (3.9), by (1.1), (2.3) and (2.4) we find:

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
= (1 + 𝛼− 𝛽)𝑘3

(︀
𝑟2
)︀−𝛼+𝛽−2

𝑦−2𝛽𝑦1−2𝛽
0 𝑄 (𝑥, 𝑦;𝑥0, 𝑦0) , (3.10)

where

𝑄 (𝑥, 𝑦;𝑥0, 𝑦0) = − 𝑟2𝑦𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
𝜕

𝜕𝑛

[︀
ln 𝑟2

]︀
− 2𝑦𝑦0𝐹2 (2 + 𝛼− 𝛽; 1 + 𝛼, 1 − 𝛽; 1 + 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)

𝑑𝑥

𝑑𝑠

+ 2𝑥0𝑦𝐹2 (2 + 𝛼− 𝛽;𝛼, 2 − 𝛽; 2𝛼, 3 − 2𝛽; 𝜉, 𝜂)
𝑑𝑦

𝑑𝑠

+ (1 − 2𝛽)𝑟2𝐹2 (1 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
𝑑𝑥

𝑑𝑠
.

We integrate the normal derivative 𝜕
𝜕𝑛
𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0) with the weight 𝑥2𝛼𝑦2𝛽 over the boundary

of the domain Ω𝜌 and by (2.5) we get

𝑎∫︁
0

𝑥2𝛼
[︂
𝑦2𝛽

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛

]︂⃒⃒⃒⃒
𝑦=0

𝑑𝑥+

𝑙∫︁
0

𝑥2𝛼𝑦2𝛽𝜇3(𝑠)
𝜕𝑞3(𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠

− lim
𝜌→0

∫︁
𝐶𝜌

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠−

𝑏∫︁
0

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛

⃒⃒⃒⃒
𝑥=0

𝑑𝑦 = 0.

Then in view of (3.2) and (1.4) we have

𝑤
(3)
1 (𝑥0, 𝑦0) = lim

𝜌→0

∫︁
𝐶𝜌

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠+

𝑎∫︁
0

𝑥2𝛼
[︂
𝑦2𝛽

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑦

]︂⃒⃒⃒⃒
𝑦=0

𝑑𝑥. (3.11)

Substituting (3.10) into (3.11), we find:

𝑤
(3)
1 (𝑥0, 𝑦0) = 𝑘3𝑦

1−2𝛽
0 lim

𝜌→0
{(1 + 𝛼− 𝛽) [−𝐽1 − 2𝑦0𝐽2 + 2𝑥0𝐽3] + 𝐽4} + 𝐽5, (3.12)

where

𝐽1 =

∫︁
𝐶𝜌

𝑥2𝛼𝑦
(︀
𝑟2
)︀−𝛼+𝛽−1

𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
𝜕

𝜕𝑛

[︀
ln 𝑟2

]︀
𝑑𝑠,
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𝐽2 =

∫︁
𝐶𝜌

𝑥2𝛼𝑦
(︀
𝑟2
)︀−𝛼+𝛽−2

𝐹2 (2 + 𝛼− 𝛽; 1 + 𝛼, 1 − 𝛽; 1 + 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
𝑑𝑥(𝑠)

𝑑𝑠
𝑑𝑠,

𝐽3 =

∫︁
𝐶𝜌

𝑥2𝛼𝑦
(︀
𝑟2
)︀−𝛼+𝛽−2

𝐹2 (2 + 𝛼− 𝛽;𝛼, 2 − 𝛽; 2𝛼, 3 − 2𝛽; 𝜉, 𝜂)
𝑑𝑦(𝑠)

𝑑𝑠
𝑑𝑠,

𝐽4 = (1 − 2𝛽)

∫︁
𝐶𝜌

𝑥2𝛼
(︀
𝑟2
)︀−𝛼+𝛽−1

𝐹2 (1 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂)
𝑑𝑥(𝑠)

𝑑𝑠
𝑑𝑠,

𝐽5 =

𝑎∫︁
0

𝑥2𝛼
[︂
𝑦2𝛽

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑦

]︂⃒⃒⃒⃒
𝑦=0

𝑑𝑥.

Passing to the polar coordinates

𝑥 = 𝑥0 + 𝜌 cos𝜙, 𝑦 = 𝑦0 + 𝜌 sin𝜙 (3.13)

in the integral 𝐽1, we obtain

𝐽1 =

2𝜋∫︁
0

(𝑥0 + 𝜌 cos𝜙)2𝛼(𝑦0 + 𝜌 sin𝜙)
(︀
𝜌2
)︀−𝛼+𝛽−1

𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂) 𝑑𝜙.

(3.14)
Let us study the integrand in (3.14). Applying successively the known formulae [13]

𝐹2 (𝑎; 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦) =
∞∑︁
𝑖=0

(𝑎)𝑖(𝑏1)𝑖(𝑏2)𝑖
(𝑐1)𝑖(𝑐2)𝑖𝑖!

𝑥𝑖𝑦𝑖𝐹 (𝑎+ 𝑖, 𝑏1 + 𝑖; 𝑐1 + 𝑖;𝑥)𝐹 (𝑎+ 𝑖, 𝑏2 + 𝑖; 𝑐2 + 𝑖; 𝑦)

and

𝐹 (𝑎, 𝑏; 𝑐, 𝑥) = (1 − 𝑥)−𝑏𝐹

(︂
𝑐− 𝑎, 𝑏; 𝑐,

𝑥

𝑥− 1

)︂
, (3.15)

we obtain

𝐹2 (𝑎; 𝑏1, 𝑏2; 𝑐1, 𝑐2;𝑥, 𝑦) =
(1 − 𝑥)−𝑏1

(1 − 𝑦)𝑏2

∞∑︁
𝑖=0

(𝑎)𝑖(𝑏1)𝑖(𝑏2)𝑖
(𝑐1)𝑖(𝑐2)𝑖𝑖!

(︂
𝑥

1 − 𝑥

)︂𝑖 (︂
𝑦

1 − 𝑦

)︂𝑖

· 𝐹
(︂
𝑐1 − 𝑎, 𝑏1 + 𝑖; 𝑐1 + 𝑖;

𝑥

𝑥− 1

)︂
· 𝐹

(︂
𝑐2 − 𝑎, 𝑏2 + 𝑖; 𝑐2 + 𝑖;

𝑦

𝑦 − 1

)︂
.

(3.16)

Employing now formula (3.16), we write out the hypergeometric Appell function
𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂) as

𝐹2 (2 + 𝛼− 𝛽;𝛼, 1 − 𝛽; 2𝛼, 2 − 2𝛽; 𝜉, 𝜂) =
(︀
𝜌2
)︀1+𝛼−𝛽(︀

𝜌2 + 4𝑥20 + 4𝑥0𝜌 cos 𝜙
)︀−𝛼

·
(︀
𝜌2 + 4𝑦20 + 4𝑦0𝜌 sin 𝜙

)︀𝛽−1
𝑃11,

(3.17)

where

𝑃11 =
∞∑︁
𝑖=0

(2 + 𝛼− 𝛽)𝑖(𝛼)𝑖(1 − 𝛽)𝑖
(2𝛼)𝑖(2 − 2𝛽)𝑖𝑖!

(︂
4𝑥20 + 4𝑥0𝜌 cos 𝜙

𝜌2 + 4𝑥20 + 4𝑥0𝜌 cos 𝜙

)︂𝑖(︂
4𝑦20 + 4𝑦0𝜌 sin 𝜙

𝜌2 + 4𝑦20 + 4𝑦0𝜌 sin 𝜙

)︂𝑖

· 𝐹
(︂
𝛼 + 𝛽 − 2, 𝛼 + 𝑖; 2𝛼 + 𝑖;

4𝑥20 + 4𝑥0𝜌 cos 𝜙

𝜌2 + 4𝑥20 + 4𝑥0𝜌 cos𝜙

)︂
· 𝐹

(︂
−𝛼− 𝛽, 1 − 𝛽 + 𝑖; 2 − 2𝛽 + 𝑖;

4𝑦20 + 4𝑦0𝜌 sin𝜙

𝜌2 + 4𝑦20 + 4𝑦0𝜌 sin 𝜙

)︂
.
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Employing the known formula for 𝐹 (𝑎, 𝑏; 𝑐; 1) [14]

𝐹 (𝑎, 𝑏; 𝑐; 1) =
Γ (𝑐) Γ (𝑐− 𝑎− 𝑏)

Γ (𝑐− 𝑎) Γ (𝑐− 𝑏)
, 𝑐 ̸= 0,−1,−2, . . . ,Re (𝑐− 𝑎− 𝑏) > 0, (3.18)

we obtain

lim
𝜌→0

𝑃11 =
Γ(2𝛼)Γ(2 − 2𝛽)

Γ(2 + 𝛼− 𝛽)Γ(1 − 𝛽)Γ(𝛼)
. (3.19)

Thus, by (3.14), (3.17) and (3.19), we finally get

−(1 + 𝛼− 𝛽)𝑘3
1−2𝛽
0 lim

𝜌→0
𝐽1 = −1. (3.20)

Since

lim
𝜌→0

𝜌 ln 𝜌 = 0, (3.21)

we have

lim
𝜌→0

𝐽2 = lim
𝜌→0

𝐽3 = lim
𝜌→0

𝐽4 = 0. (3.22)

Finally, we proceed to the integral 𝐽5, which in accordance with formula (3.9) can be reduced
to (3.4), that is,

𝐽5 = 𝑗(𝑥0, 𝑦0). (3.23)

Now, by (3.20)–(3.23), it follows from (3.12) that at the point (𝑥0, 𝑦0) ∈ Ω, the identity holds:

𝑤
(3)
1 (𝑥0, 𝑦0) = 𝑗(𝑥0, 𝑦0) − 1.

Case 2. Assume that point (𝑥0, 𝑦0) coincides with some point 𝑀0 on the curve Γ. We take
a circumference of a small radius 𝜌 centered at the point (𝑥0, 𝑦0) . This circumference cut out
a part Γ𝜌 of the curve Γ. The remaining part of the curve is denoted by Γ − Γ𝜌. We denote by
𝐶 ′

𝜌 a part of the circumference 𝐶𝜌 located inside the domain Ω and we consider the domain Ω𝜌

enveloped by the curves Γ − Γ𝜌, 𝐶
′
𝜌 and by the segments [0, 𝑎] and [0, 𝑏] on the axes 𝑥 and 𝑦,

respectively. Then we have

𝑤
(3)
1 (𝑥0, 𝑦0) ≡

𝑙∫︁
0

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠 = lim

𝜌→0

∫︁
Γ−Γ𝜌

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠. (3.24)

Since the point (𝑥0, 𝑦0) lies outside this domain, the function 𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0) is a regular
solution of the equation 𝐻0

𝛼,𝛽(𝑢) = 0 in this domain and by (2.5), the identity holds:∫︁
Γ−Γ𝜌

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠 =

𝑎∫︁
0

𝑥2𝛼
[︂
𝑦2𝛽

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑦

]︂⃒⃒⃒⃒
𝑦=0

𝑑𝑥

+

𝑏∫︁
0

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

𝑑𝑦

+

∫︁
𝐶𝜌

𝑥2𝛼𝑦2𝛽
𝜕

𝜕𝑛
{𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)} 𝑑𝑠.

(3.25)

Substituting (3.25) into (3.24) and taking into consideration (3.23) and (1.4), we obtain

𝑤
(3)
1 (𝑥0, 𝑦0) = 𝑗(𝑥0, 𝑦0) + lim

𝜌→0

∫︁
𝐶𝜌

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛
𝑑𝑠.
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Introducing once again polar coordinates (3.13) centered at the point (𝑥0, 𝑦0) in the integral∫︁
𝐶𝜌

𝑥2𝛼𝑦2𝛽
𝜕

𝜕𝑛
{𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)} 𝑑𝑠

and passing to the limit as 𝜌→ 0, we get

lim
𝜌→0

∫︁
𝐶𝜌

𝑥2𝛼𝑦2𝛽
𝜕

𝜕𝑛
{𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)} 𝑑𝑠 = −1

2
.

Thus,

𝑤
(3)
1 (𝑥0, 𝑦0) = 𝑗(𝑥0, 𝑦0) −

1

2
.

Case 3. Finally, suppose that the point (𝑥0, 𝑦0) is located outside the domainΩ. Then
𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0) is a regular solution to the equation 𝐻0

𝛼,𝛽(𝑢) = 0 inside the domain Ω possessing
continuous derivatives up to the contour Γ and by (2.5)

𝑤
(3)
1 (𝑥0, 𝑦0) ≡

𝑙∫︁
0

𝑥2𝛼𝑦2𝛽
𝜕

𝜕𝑛
{𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)} 𝑑𝑠 =

𝑎∫︁
0

𝑥2𝛼
[︂
𝑦2𝛽

𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑦

]︂⃒⃒⃒⃒
𝑦=0

𝑑𝑥 = 𝑗(𝑥0, 𝑦0).

Lemma 2. The following formulae hold true:

𝑤(2)(0, 𝑦0) =

⎧⎪⎪⎨⎪⎪⎩
𝑗(0, 𝑦0) − 1 if 𝑦0 ∈ (0, 𝑏),

𝑗(0, 𝑦0) −
1

2
if 𝑦0 = 0 or 𝑦0 = 𝑏,

𝑗(0, 𝑦0) if 𝑏 < 𝑦0,

where

𝑗 (0, 𝑦0) =
1 − 2𝛽

1 + 2𝛼

(︂
𝑎2

𝑦20 + 𝑎2

)︂ 1
2
+𝛼

𝑘3𝐹

(︂
1

2
+ 𝛽,

1

2
+ 𝛼;

3

2
+ 𝛼;

𝑎2

𝑦20 + 𝑎2

)︂
. (3.26)

Proof. First we study the function 𝑗(𝑥0, 𝑦0) defined by formula (3.4) at 𝑥0 = 0:

𝑗(0, 𝑦0) = (1 − 2𝛽)𝑘3𝑦
1−2𝛽
0

𝑎∫︁
0

𝑥2𝛼
(︀
𝑥2 + 𝑦20

)︀−𝛼+𝛽−1
𝑑𝑥.

Employing the known formula [14]
𝑎∫︁

0

𝑥𝜆−1
(︀
𝑥2 + 𝑏2

)︀𝜈
𝑑𝑥 =

1

𝜆
𝑏2𝜈𝑎𝜆𝐹

(︂
−𝜈, 𝜆

2
,
𝜆+ 2

2
;
−𝑎2

𝑏2

)︂
, (𝑎𝑏 > 0, 𝜆 > 0),

we get:

𝑗(0, 𝑦0) = (1 − 2𝛽)𝑘3𝑎
1+2𝛽𝑦−1−2𝛽

0 𝐹

(︂
𝛼− 𝛽 + 1,

1

2
+ 𝛼;

3

2
+ 𝛼;

−𝑎2

𝑦20

)︂
. (3.27)

Using formula (3.15), we get the function 𝑗(0, 𝑦0) introduced by formula (3.26). Taking into
consideration known formula (3.18) for 𝐹 (𝑎, 𝑏; 𝑐; 1) and the value 𝑘3 in formula (1.2), identity
(3.26) implies immediately that 𝑗(0, 0) = 1.

Suppose that the point (𝑥0, 𝑦0) is located on the axis 𝑦 and first we assume that 𝑦0 ∈ (0, 𝑏).
We draw the straight line 𝑥 = ℎ for a sufficiently small ℎ > 0 and consider the domain Ωℎ

being a part of the domain Ω located to the right of the line 𝑥 = ℎ. Applying formula (2.5), we
obtain

𝑤
(3)
1 (0, 𝑦0) = 𝐽6 + 𝐽7, (3.28)
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where

𝐽6 = lim
ℎ→0

𝑎∫︁
ℎ

𝑥2𝛼𝑦2𝛽
𝜕𝑞3 (𝑥, 𝑦; 0, 𝑦0)

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

𝑑𝑥, 𝐽7 = lim
ℎ→0

𝑦1∫︁
0

𝑦2𝛽𝑥2𝛼
𝜕𝑞3 (𝑥, 𝑦; 0, 𝑦0)

𝜕𝑥

⃒⃒⃒⃒
𝑥=ℎ

𝑑𝑥.

Here 𝑦1 is the ordinate of the intersection of the curve Γ with the line 𝑥 = ℎ.
It is easy to observe that

𝐽6 = 𝑗(0, 𝑦0). (3.29)

Now we consider the second term in (3.28), which (3.8) casts into the form

𝐽7 = −2(1 − 𝛼− 𝛽)𝑘3𝑦
1−2𝛽
0 𝐽8, (3.30)

where

𝐽8 = ℎ1+2𝛼

𝑦1∫︁
0

𝑦
𝐹
(︁

2 + 𝛼− 𝛽, 1 − 𝛽; 2 − 2𝛽;− 4𝑦𝑦0
(𝑦−𝑦0)2+ℎ2

)︁
[︀
(𝑦 − 𝑦0)

2 + ℎ2
]︀2+𝛼−𝛽

𝑑𝑦.

We are going to transform 𝐽8. Employing formula (3.15), we obtain:

𝐽8 = ℎ1+2𝛼

𝑦1∫︁
0

𝑦
𝐹
(︁
−𝛼− 𝛽, 1 − 𝛽; 2 − 2𝛽; 4𝑦𝑦0

(𝑦+𝑦0)
2+ℎ2

)︁
[︀
(𝑦 − 𝑦0)

2 + ℎ2
]︀1+𝛼[︀

(𝑦 + 𝑦0)
2 + ℎ2

]︀1−𝛽
𝑑𝑥.

We make the change of the variable replacing 𝑦 by 𝑦 = 𝑦0 + ℎ𝑡:

𝐽8(ℎ, 𝑦0) =

𝑙2∫︁
𝑙1

(𝑦0 + ℎ𝑡)
𝐹
(︁
−𝛼− 𝛽, 1 − 𝛽; 2 − 2𝛽, 4𝑦0(𝑦0+ℎ𝑡)

(2𝑦0+ℎ𝑡)2+ℎ2

)︁
(1 + 𝑡2)𝛼+1[︀(2𝑦0 + ℎ𝑡)2 + ℎ2

]︀1−𝛽
𝑑𝑡, (3.31)

where

𝑙1 = −𝑦0
ℎ
, 𝑙2 =

𝑦1 − 𝑦0
ℎ

.

Taking into consideration that

lim
ℎ→0

𝐹

(︂
−𝛼− 𝛽, 1 − 𝛽; 2 − 2𝛽,

4𝑦0 (𝑦0 + ℎ𝑡)

(2𝑦0 + ℎ𝑡)2 + ℎ2

)︂
=𝐹 (−𝛼− 𝛽, 1 − 𝛽; 2 − 2𝛽; 1)

=
Γ (2 − 2𝛽) Γ (1 + 𝛼)

Γ (2 + 𝛼− 𝛽) Γ (1 − 𝛽)

and
+∞∫︁

−∞

𝑑𝑡

(1 + 𝑡2)𝛼+1 =
𝜋Γ(2𝛼)

22𝛼−1𝛼Γ2(𝛼)
,

by (3.29)–(3.31) we find

𝑤
(3)
1 (0, 𝑦0) = 𝑗(0, 𝑦0) − 1.

The other three cases as 𝑦0 = 0, 𝑦0 = 𝑏 and 𝑦0 > 𝑏 can be treated in the same way as the
first case.

Lemma 3. For all points (𝑥, 𝑦) and (𝑥0, 𝑦0) ∈ 𝑅2
+ obeying 𝑥 ̸= 𝑥0 and 𝑦 ̸= 𝑦0, the inequality

holds:

|𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)| 6
Γ(𝛼)Γ(1 − 𝛽)

𝜋Γ(1 + 𝛼− 𝛽)

4𝛼−𝛽𝑦1−2𝛽𝑦1−2𝛽
0

(𝑟21)
𝛼
(𝑟22)

1−𝛽

· 𝐹
[︂
𝛼, 1 − 𝛽; 1 + 𝛼− 𝛽;

(︂
1 − 𝑟2

𝑟21

)︂(︂
1 − 𝑟2

𝑟22

)︂]︂
,

(3.32)

where 𝛼 and 𝛽 are real numbers and 0 < 2𝛼, 2𝛽 < 1, while 𝑟, 𝑟1 and 𝑟2 are expressions defined
in (1.3).
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Proof. It follows from (3.16) that

𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0) =𝑘3𝑦
1−2𝛽𝑦1−2𝛽

0

(︀
𝑟21
)︀−𝛼(︀

𝑟22
)︀𝛽−1

·
∞∑︁
𝑖=0

(1 + 𝛼− 𝛽)𝑖(𝛼)𝑖(1 − 𝛽)𝑖
(2𝛼)𝑖(2 − 2𝛽)𝑖𝑖!

(︂
1 − 𝑟2

𝑟21

)︂𝑖(︂
1 − 𝑟2

𝑟22

)︂𝑖

· 𝐹
(︂
𝛼 + 𝛽 − 1, 𝛼 + 𝑖; 2𝛼 + 𝑖; 1 − 𝑟2

𝑟21

)︂
· 𝐹

(︂
1 − 𝛼− 𝛽, 1 − 𝛽 + 𝑖; 2 − 2𝛽 + 𝑖; 1 − 𝑟2

𝑟22

)︂
,

(3.33)

Then in view of the inequalities

𝐹

(︂
𝛼 + 𝛽 − 1, 𝛼 + 𝑖; 2 − 2𝛼 + 𝑖; 1 − 𝑟2

𝑟21

)︂
6

(2𝛼)𝑖Γ(2𝛼)Γ(1 − 𝛽)

(1 + 𝛼− 𝛽)𝑖Γ(1 + 𝛼− 𝛽)Γ(𝛼)

and

𝐹

(︂
1 − 𝛼− 𝛽, 1 − 𝛽 + 𝑖; 2 − 2𝛽 + 𝑖; 1 − 𝑟2

𝑟22

)︂
6

(2 − 2𝛽)𝑖Γ(2 − 2𝛽)Γ(𝛼)

(1 + 𝛼− 𝛽)𝑖Γ(1 + 𝛼− 𝛽)Γ(1 − 𝛽)
,

by (3.33) we arrive at inequality (3.32).

By the known formula [6]

𝐹 (𝑎, 𝑏; 𝑎+ 𝑏; 𝑧) = − Γ (𝑎+ 𝑏)

Γ (𝑎) Γ (𝑏)
𝐹 (𝑎, 𝑏; 1; 1 − 𝑧) ln (1 − 𝑧)

+
Γ (𝑎+ 𝑏)

Γ2 (𝑎) Γ2 (𝑏)

∞∑︁
𝑗=0

Γ (𝑎+ 𝑗) Γ (𝑏+ 𝑗)

(𝑗!)2
[2𝜓 (1 + 𝑗) − 𝜓 (𝑎+ 𝑗) − 𝜓 (𝑏+ 𝑗)] (1 − 𝑧)𝑗,

(−𝜋 < arg (1 − 𝑧) < 𝜋, 𝑎, 𝑏 ̸= 0,−1,−2, . . .), it follows from (3.32) that [4] the function
𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0) has a logarithmic singularity at 𝑟 = 0.

Lemma 4. If the curve Γ satisfies the aforementioned conditions, then∫︁
Γ

𝑥2𝛼𝑦2𝛽
⃒⃒⃒⃒
𝜕𝑞3 (𝑥, 𝑦;𝑥0, 𝑦0)

𝜕𝑛

⃒⃒⃒⃒
𝑑𝑠 6 𝐶1, (3.34)

where 𝐶1 is a constant.

Proof. Inequality (3.34) follows conditions (3.1) and formula (3.10).

Formulae (3.3) show that as 𝜇3(𝑠) ≡ 1, the double layer potential has a discontinuity as the
point (𝑥, 𝑦) passes through the curve Γ. For an arbitrary continuous density 𝜇3(𝑠) the following
theorem holds.

Theorem 1. The double layer potential 𝑤(3)(𝑥0, 𝑦0) has limits as the point (𝑥0, 𝑦0) tends
to a point (𝑥(𝑠), 𝑦(𝑠)) at the curve Γ from inside or outside. We denote limit of the values

𝑤
(3)
𝑖 (𝑥0, 𝑦0) from inside by 𝑤(3)(𝑠), while the limit from outside is 𝑤

(3)
𝑒 (𝑠), and the formulae

hold:

𝑤
(3)
𝑖 (𝑡) = −1

2
𝜇3 (𝑡) +

𝑙∫︁
0

𝜇3 (𝑠)𝐾3 (𝑠, 𝑡) 𝑑𝑠

and

𝑤(3)
𝑒 (𝑡) =

1

2
𝜇3(𝑡) +

𝑙∫︁
0

𝜇3(𝑠)𝐾3(𝑠, 𝑡)𝑑𝑠,



THIRD DOUBLE-LAYER POTENTIAL . . . 121

where

𝐾3(𝑠, 𝑡) = [𝑥(𝑠)]2𝛼[𝑦(𝑠)]2𝛽
𝜕

𝜕𝑛
{𝑞3 [𝑥 (𝑠) , 𝑦 (𝑠) ;𝑥0(𝑡), 𝑦0(𝑡)]} .

Proof. The theorem follows Lemmata 1–4.

The function

𝑤
(3)
0 (𝑠) =

𝑙∫︁
0

𝜇3(𝑡)𝐾3(𝑠, 𝑡)𝑑𝑡

is continuous as 0 6 𝑠 6 𝑙 that is implied by the proof of Theorem 1. By Theorem 1 and the
continuity of the functions 𝑤3

0(𝑠) and 𝜇3(𝑠) as 0 6 𝑠 6 𝑙, we conclude that the double layer
potential 𝑤(3)(𝑥0, 𝑦0) is a continuous function inside the domain Ω up to the curve Γ. In the
same way, 𝑤(3)(𝑥0, 𝑦0) is continuous outside the domain 𝐷 up to the curve Γ.

In conclusion we observe that the results obtained in the present paper play important role
while solving boundary value problems for the equation 𝐻0

𝛼,𝛽(𝑢) = 0. At that, a solution of the
problem is sought as third double layer potential (3.2) with an unknown density 𝜇3(𝑠) and to
find this density, one can employ the known theorem of Fredholm equations of second kind.
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