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ON SOLVABILITY OF CLASS OF NONLINEAR INTEGRAL

EQUATIONS IN 𝑝-ADIC STRING THEORY

S.M. ANDRIYAN, A.K. KROYAN, Kh.A. KHACHATRYAN

Abstract. In this paper, we study a class of integral equations with power nonlinearity
on the entire real line. This class of equations arises in the 𝑝-adic theory of open-closed
strings. Using the method of successive approximations and justifying their convergence,
we prove the existence of a nontrivial continuous odd bounded solution on the entire line.
The asymptotic behavior of the solution is studied as the argument increases unboundedly.
We obtain integral estimates and some properties of approximations of the solution to the
considered equation. Under some additional restrictions, we also establish the uniqueness
of the constructed solution in a certain class of continuous functions. We provide examples
of integral kernels of the equation satisfying all assumptions of the formulated theorems.
As the nuclear function is a Gaussian distribution, from the proven results we obtain
Vladimirov-Volovich theorem as a special case.
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1. Introduction

The present work is devoted to studying the following nonlinear integral equation on the
entire real line

𝜙𝑝(𝑥) =

∞∫︁
−∞

𝜆
(︀
|𝑥|, |𝑡|

)︀
𝐾(𝑥− 𝑡)𝜙(𝑡) 𝑑𝑡, 𝑥 ∈ R (1.1)

for an unknown odd continuous on R function 𝜙(𝑥). Here 𝑝 > 2 is an arbitrary odd number
and the functions 𝜆 and 𝐾 possess the following properties:

(𝑎) 𝜆 ∈ 𝐶(R+ ×R+); 𝐾 ∈ 𝐶(R), R+ ≡ [0,∞);

(𝑏) 𝐾 ∈ 𝐿1(R)
⋂︁

𝐿∞(R); 𝐾(𝜏) > 0, 𝜏 ∈ R;

∞∫︁
−∞

𝐾(𝜏) 𝑑𝜏 = 1;

(𝑐) 𝐾(−𝜏) = 𝐾(𝜏), 𝜏 ∈ R+;

∞∫︁
−∞

𝑡2𝐾(𝑡) 𝑑𝑡 < +∞; 𝐾(𝜏) ↓ in 𝜏 on R+;

(𝑑) 0 6 𝜆(𝑥, 𝑡) 6 1, (𝑥, 𝑡) ∈ R+ ×R+;

∞∫︁
0

𝑡 sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡 < +∞.
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Equation (1.1) arises in 𝑝-adic string theory and describes the dynamics of tachyon of open-
closed 𝑝-adic strings, see [1]-[3]. The considered equation is in some sense a further generaliza-
tion of the equation with 𝜆(𝑥, 𝑡) ≡ 1 and with the kernel

𝐾(𝑥) =
1√
𝜋
𝑒−𝑥2

studied by academician V.S. Vladimirov and Ya.I. Volovich in work [2]. In work [4] by one of
the authors, this equation (and the corresponding two-dimensional equation) was studied also
in the case 𝜆(𝑥, 𝑡) ≡ 1, but with the kernel 𝐾 satisfying only conditions (a)-(c).

In the present work we prove the existence of a nontrivial odd bounded solution on the entire
real line. We calculate the limiting values of the constructed solution at ±∞. Under some
additional restrictions we establish the uniqueness of the constructed solution in a certain class
of continuous functions. In the end of the work, we provide examples of the functions 𝜆(𝑥, 𝑡)
and 𝐾(𝑥) obeying all assumptions of the formulated theorems.

2. Existence of a nontrivial continuous bounded solution
on the entire real line

We begin with a key lemma, which will be used in proving the theorem on existence of a
nontrivial continuous bounded solution to equation (1.1) on the entire real line. In order to do
this, we consider the following auxiliary linear homogeneous Volterra equation:

B(𝑥) =

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝑉 (𝑡− 𝑥) − 𝑉 (𝑥+ 𝑡)

)︀
B(𝑡) 𝑑𝑡, 𝑥 ∈ R+ (2.1)

for a function B(𝑥), where
𝑉 (𝜏) = 2𝐾(𝜏), 𝜏 ∈ R+. (2.2)

Lemma 2.1. Under conditions (a)-(d), equation (2.1) possesses a non-negative nontrivial
continuous bounded on the half-line R+ solution B(𝑥) with the following asymptotics at infinity:
lim

𝑥→+∞
B(𝑥) = 1.

Proof. We consider the following linear inhomogeneous Volterra equation:

𝜓(𝑥) = 𝑔(𝑥) +

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝑉 (𝑡− 𝑥) − 𝑉 (𝑡+ 𝑥)

)︀
𝜓(𝑡) 𝑑𝑡, 𝑥 ∈ R+, (2.3)

with a special free term:

𝑔(𝑥) ≡
∞∫︁
𝑥

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑉 (𝑡− 𝑥) 𝑑𝑡+

∞∫︁
𝑥

𝑉 (𝑡+ 𝑥)𝜆(𝑥, 𝑡) 𝑑𝑡, 𝑥 ∈ R+. (2.4)

It follows easily from properties (b) and (c) of the kernel 𝐾 that

𝐾(𝑥− 𝑡) > 𝐾(𝑥+ 𝑡) for all (𝑥, 𝑡) ∈ R+ ×R+. (2.5)

Due to (2.2), (2.5) and first property of the kernel 𝐾 in (c) we have:

𝑉 (𝑡− 𝑥) > 𝑉 (𝑥+ 𝑡) for all (𝑥, 𝑡) ∈ R+ ×R+. (2.6)

In view of properties (c) and (d) and (2.4), it is easy to confirm that the free term possesses
the following properties:

𝑔 ∈ 𝐿1(R
+) ∩ 𝐿∞(R+); 𝑚1(𝑔) ≡

∞∫︁
0

𝑥𝑔(𝑥)𝑑𝑥 < +∞. (2.7)
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By straightforward calculations we confirm that 𝜓0(𝑥) ≡ 1 is a solution to equation (2.3). Let
us prove that apart of this solution, this equation possesses also a summable bounded on R+

solution 𝜓1(𝑥). In order to do this, we consider the following successive approximations:

𝜓(𝑛+1)(𝑥) = 𝑔(𝑥) +

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝑉 (𝑡− 𝑥) − 𝑉 (𝑡+ 𝑥)

)︀
𝜓(𝑛)(𝑡) 𝑑𝑡, 𝑛 = 0, 1, 2, . . . (2.8)

with the zero approximation 𝜓(0)(𝑥) = 0, 𝑥 ∈ R+. By induction in 𝑛 one can prove easily that
the sequence of the functions {𝜓(𝑛)(𝑥)}∞𝑛=0 as 𝑥 ∈ R+ increases in 𝑛:

𝜓(𝑛)(𝑥) ↑ in 𝑛. (2.9)

In what follows we shall show that this sequence of function is bounded from above by some
summable on R+ function. Together with equation (2.3), we consider the following conservative
recovering equation:

𝜓(𝑥) = 𝑔(𝑥) +

∞∫︁
𝑥

𝑉 (𝑡− 𝑥)𝜓(𝑡) 𝑑𝑡, 𝑥 ∈ R+. (2.10)

Taking into consideration the results of work [5], we conclude that equation (2.10) with the free
term 𝑔 of structure (2.4) and with properties (2.7) and with the kernel 𝑉 of structure (2.2) and

with properties (a)-(c) possesses a nonnegative summable bounded on R+ solution 𝜓(𝑥).
By induction in 𝑛, we are going to show that for all 𝑥 ∈ R+, the estimate holds:

𝜓(𝑛)(𝑥) 6 𝜓(𝑥), 𝑛 = 0, 1, 2, . . . (2.11)

Indeed, in the case 𝑛 = 0, inequality (2.11) follows immediately (2.10) by the non-negativity

of the functions 𝑉 and 𝜓. Assume that (2.11) holds for some 𝑛 ∈ N. Then in view of property
(𝑑), inequality (2.6) and the non-negativity of the kernel function 𝑉 , by (2.8) we get:

𝜓(𝑛+1)(𝑥) 6 𝑔(𝑥) +

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝑉 (𝑡− 𝑥) − 𝑉 (𝑡+ 𝑥)

)︀
𝜓(𝑡) 𝑑𝑡 6 𝑔(𝑥) +

∞∫︁
𝑥

𝑉 (𝑡− 𝑥)𝜓(𝑡) 𝑑𝑡 = 𝜓(𝑥).

Applying again the induction in 𝑛, we easily confirm that

𝜓(𝑛)(𝑥) 6 1, 𝑥 ∈ R+ and 𝜓(𝑛) ∈ 𝐶(R+), 𝑛 = 0, 1, 2, . . .

Therefore, due to (2.9) and (2.11) we conclude that the sequence of continuous functions
{𝜓(𝑛)(𝑥)}∞𝑛=0 has a pointwise limit as 𝑛→ ∞:

lim
𝑛→+∞

𝜓(𝑛)(𝑥) = 𝜓(𝑥).

Moreover, the limiting function satisfies the estimates

𝜓(𝑥) 6 1, 𝑔(𝑥) 6 𝜓(𝑥) 6 𝜓(𝑥), 𝑥 ∈ R+. (2.12)

Since the pointwise limit of measurable function is measurable (see [6]), the limiting function 𝜓

is also measurable. Since 𝜓 ∈ 𝐿1(R
+)∩𝐿∞(R+), according inequality (2.12) we can state that

𝜓 ∈ 𝐿1(R
+) ∩ 𝐿∞(R+). (2.13)

It is obvious that the function

B(𝑥) = 1 − 𝜓(𝑥) > 0, 𝑥 ∈ R+, (2.14)

is a non-trivial solution to homogeneous equation (2.1). Taking into consideration that 𝜆 ∈
𝐶(R+ ×R+), 𝑉 ∈ 𝐶(R+), by (2.1), (2.13) and (2.14) we infer that

B ∈ 𝐶(R+), (2.15)

and 1 − B ∈ 𝐿1(R
+) ∩ 𝐿∞(R+).
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Let us check that lim
𝑥→+∞

B(𝑥) = 1. Indeed, due to formula (2.2) and properties (b), (d), it

follows from equation (2.1) that

0 61 − B(𝑥) =

∞∫︁
𝑥

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑉 (𝑡− 𝑥) 𝑑𝑡+

∞∫︁
2𝑥

𝑉 (𝜏) 𝑑𝜏

6

∞∫︁
𝑥

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑉 (𝑡− 𝑥) 𝑑𝑡+

∞∫︁
2𝑥

𝑉 (𝜏) 𝑑𝜏

6𝐶

∞∫︁
𝑥

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+

∞∫︁
2𝑥

𝑉 (𝜏) 𝑑𝜏 −−−−→
𝑥→+∞

0,

where 𝐶 ≡ sup
𝑥∈R+

𝑉 (𝑥). The proof is complete.

We proceed to formulating and proving the first main result.

Theorem 2.1. If conditions (a)-(d) hold, then equation (1.1) possesses a nontrivial odd
continuous bounded solution on the entire real line R and

lim
𝑥→±∞

𝜙(𝑥) = ±1.

Moreover, if the function 𝐾 satisfies the strict inequality 𝐾(𝜏) > 0, 𝜏 ∈ R, then
1 − 𝜙 ∈ 𝐿1(0,+∞), 1 + 𝜙 ∈ 𝐿1(−∞, 0).

Proof. Step I. By straightforward calculations one can easily check that if 𝑓(𝑥) is a continuous
on R+ solution to the following nonlinear integral equation

𝑓𝑝(𝑥) =

∞∫︁
0

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑥− 𝑡) −𝐾(𝑥+ 𝑡)

)︀
𝑓(𝑡) 𝑑𝑡, 𝑥 ∈ R+, (2.16)

then

𝜙(𝑥) =

{︂
𝑓(𝑥) if 𝑥 > 0,

−𝑓(−𝑥) if 𝑥 < 0,
(2.17)

is an odd continuous solution to equation (1.1). Letting

𝑆(𝑥) = 𝑓𝑝(𝑥), 𝑥 ∈ R+, (2.18)

we reduce the study of equation (2.16) to studying a nonlinear integral equation with a sum-
difference kernel on the half-line for the function 𝑆(𝑥):

𝑆(𝑥) =

∞∫︁
0

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑥− 𝑡) −𝐾(𝑥+ 𝑡)

)︀
𝑆𝛼(𝑡) 𝑑𝑡, 𝑥 ∈ R+, (2.19)

where

𝛼 =
1

𝑝
∈
(︂

0,
1

2

)︂
. (2.20)

Step II. For equation (2.19), we consider the following successive approximations:

𝑆𝑛+1(𝑥) =

∞∫︁
0

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑥− 𝑡) −𝐾(𝑥+ 𝑡)

)︀
𝑆𝛼
𝑛 (𝑡) 𝑑𝑡,

𝑆0(𝑥) ≡ 1, 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.

(2.21)
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Employing (2.5) and conditions (b)-(d), by induction in 𝑛 we easily check that

𝑆𝑛(𝑥) ↓ in 𝑛. (2.22)

Now we are going to prove that for each 𝑛 = 0, 1, 2, . . . the following inequality holds:

𝑆𝑛(𝑥) >

(︂
1

2

)︂ 1
1−𝛼

B(𝑥), 𝑥 ∈ R+. (2.23)

In the case 𝑛 = 0, the validity of inequality (2.23) is implied immediately by (2.14). Assume
that (2.23) holds for some 𝑛 ∈ N. Then in view of (2.5), (2.2), (2.14) and (2.1), by (2.21) we
get

𝑆𝑛+1(𝑥) >

(︂
1

2

)︂ 𝛼
1−𝛼

∞∫︁
0

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑥− 𝑡) −𝐾(𝑥+ 𝑡)

)︀
B 𝛼(𝑡) 𝑑𝑡

>

(︂
1

2

)︂ 𝛼
1−𝛼

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑥− 𝑡) −𝐾(𝑥+ 𝑡)

)︀
B(𝑡) 𝑑𝑡

>

(︂
1

2

)︂ 𝛼
1−𝛼

· 1

2
B(𝑥) =

(︂
1

2

)︂ 1
1−𝛼

B(𝑥).

By induction in 𝑛 one can check that

𝑆𝑛 ∈ 𝐶(R+), 𝑛 = 0, 1, 2, . . . (2.24)

Therefore, due to (2.22) and (2.23), the sequence of functions {𝑆𝑛(𝑥)}∞𝑛=0 possesses a pointwise
limit as 𝑛→ ∞ : lim

𝑛→∞
𝑆𝑛(𝑥) = 𝑆(𝑥) and according Levi theorem (see [6]), the limiting function

solves equation (2.19) and satisfies the following two-sided inequality:(︂
1

2

)︂ 1
1−𝛼

B(𝑥) 6 𝑆(𝑥) 6 1, 𝑥 ∈ R+. (2.25)

Taking into consideration condition (a), by (2.19) and (2.24) we arrive at

𝑆 ∈ 𝐶(R+). (2.26)

Then thanks to (2.24), (2.26) and Dini theorem, the convergence of the sequence of the functions
{𝑆𝑛(𝑥)}∞𝑛=0 in each compact set in R+ is uniform.

Step III. Here the aim is to prove an additional property of the constructed solution 𝑆:

1 − 𝑆 ∈ 𝐿1(R
+). (2.27)

First, in view of inequality (2.23), we observe that

𝑆
1
𝑝
𝑛 (𝑡) + 𝑆

2
𝑝
𝑛 (𝑡) + · · · + 𝑆

𝑝−1
𝑝

𝑛 (𝑡) >

(︂
1

2

)︂ 1
𝑝−1

B
1
𝑝 (𝑡) +

(︂
1

2

)︂ 2
𝑝−1

B
2
𝑝 (𝑡) + . . .+

1

2
B

𝑝−1
𝑝 (𝑡). (2.28)

Now we employ Lemma 2.1. Since lim
𝑡→+∞

B(𝑡) = 1, B(𝑡) 6 1 and B ∈ 𝐶(R+), then for each

𝜀 > 0 there exists a number 𝑟 > 0 such that the inequality |1 − B(𝑡)| 6 𝜀 is satisfied as 𝑡 > 𝑟.
Then, in particular, for 𝜀 = 1

2
there exists a number 𝑟0 > 0 such that

0 6 1 − B(𝑡) 6
1

2
and 𝑡 > 𝑟0

or
1

2
6 B(𝑡) 6 1 as 𝑡 > 𝑟0. (2.29)
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Taking into consideration inequality (2.29), by (2.28) we get that as 𝑡 > 𝑟0,

1 + 𝑆
1
𝑝
𝑛 (𝑡)+𝑆

2
𝑝
𝑛 (𝑡) + · · · + 𝑆

𝑝−1
𝑝

𝑛 (𝑡)

>1 +

(︂
1

2

)︂ 1
𝑝−1
(︂

1

2

)︂ 1
𝑝

+

(︂
1

2

)︂ 2
𝑝−1
(︂

1

2

)︂ 2
𝑝

+ . . .+
1

2

(︂
1

2

)︂ 𝑝−1
𝑝

=

(︃
1 −

(︂
1

2

)︂ 2𝑝−1
𝑝−1

)︃(︃
1 −

(︂
1

2

)︂ 2𝑝−1
𝑝(𝑝−1)

)︃−1

≡ 𝜌1 > 1.

(2.30)

By induction in 𝑛 we can check easily that

1 − 𝑆𝑛 ∈ 𝐿1(R
+), 𝑛 = 0, 1, 2, . . . (2.31)

In view of property (b) of the kernel 𝐾, we rewrite iterations (2.21) as follows:

1 − 𝑆𝑛+1(𝑥) =

∞∫︁
0

(︀
1 − 𝜆(𝑥, 𝑡)𝑆𝛼

𝑛 (𝑡)
)︀
𝐾(𝑥− 𝑡) 𝑑𝑡

+

∞∫︁
0

𝜆(𝑥, 𝑡)𝐾(𝑥+ 𝑡)𝑆𝛼
𝑛 (𝑡) 𝑑𝑡+

∞∫︁
𝑥

𝐾(𝜏) 𝑑𝜏,

𝑆0(𝑥) =1, 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.

(2.32)

Since
∞∫︁

−∞

𝐾(𝑥)𝑑𝑥 = 1 and 𝐾(𝑥) > 0, 𝑥 ∈ R,

the inequality holds true:

𝜌0 ≡
𝑟0∫︁

−∞

𝐾(𝑦)𝑑𝑦 < 1. (2.33)

Taking into consideration (2.30), (2.31), (2.33) and conditions (b)-(d), by (2.32) and Fubini
theorem we have:
∞∫︁
0

(︀
1 − 𝑆𝑛+1(𝑥)

)︀
𝑑𝑥 =

∞∫︁
0

∞∫︁
0

(︀
1 − 𝜆(𝑥, 𝑡)𝑆𝛼

𝑛 (𝑡)
)︀
𝐾(𝑥− 𝑡) 𝑑𝑡 𝑑𝑥

+

∞∫︁
0

∞∫︁
0

𝜆(𝑥, 𝑡)𝐾(𝑥+ 𝑡)𝑆𝛼
𝑛 (𝑡) 𝑑𝑡 𝑑𝑥+

∞∫︁
0

∞∫︁
𝑥

𝐾(𝑡) 𝑑𝑡 𝑑𝑥

6

∞∫︁
0

∞∫︁
0

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝐾(𝑥− 𝑡) 𝑑𝑡 𝑑𝑥+

∞∫︁
0

∞∫︁
0

𝜆(𝑥, 𝑡)𝐾(𝑥− 𝑡)
(︀
1 − 𝑆𝛼

𝑛 (𝑡)
)︀
𝑑𝑡 𝑑𝑥

+

∞∫︁
0

∞∫︁
0

𝐾(𝑥+ 𝑡) 𝑑𝑡 𝑑𝑥+

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

6

∞∫︁
0

∞∫︁
0

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝐾(𝑥− 𝑡) 𝑑𝑥 𝑑𝑡
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+

∞∫︁
0

∞∫︁
0

𝐾(𝑥− 𝑡)
(︀
1 − 𝑆𝛼

𝑛 (𝑡)
)︀
𝑑𝑥 𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

6

∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀ ∞∫︁
0

𝐾(𝑥− 𝑡) 𝑑𝑥 𝑑𝑡

+

∞∫︁
0

(︀
1 − 𝑆𝛼

𝑛 (𝑡)
)︀ 𝑡∫︁
−∞

𝐾(𝑢) 𝑑𝑢 𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

6

∞∫︁
0

1 − 𝑆𝑛(𝑡)

1 + 𝑆
1
𝑝
𝑛 (𝑡) + 𝑆

2
𝑝
𝑛 (𝑡) + · · · + 𝑆

𝑝−1
𝑝

𝑛 (𝑡)

𝑡∫︁
−∞

𝐾(𝑢) 𝑑𝑢 𝑑𝑡

+

∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

=

𝑟0∫︁
0

1 − 𝑆𝑛(𝑡)

1 + 𝑆
1
𝑝
𝑛 (𝑡) + 𝑆

2
𝑝
𝑛 (𝑡) + · · · + 𝑆

𝑝−1
𝑝

𝑛 (𝑡)

𝑡∫︁
−∞

𝐾(𝑢) 𝑑𝑢 𝑑𝑡

+

∞∫︁
𝑟0

1 − 𝑆𝑛(𝑡)

1 + 𝑆
1
𝑝
𝑛 (𝑡) + 𝑆

2
𝑝
𝑛 (𝑡) + · · · + 𝑆

𝑝−1
𝑝

𝑛 (𝑡)

𝑡∫︁
−∞

𝐾(𝑢) 𝑑𝑢 𝑑𝑡

+

∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

6𝜌0

𝑟0∫︁
0

(︀
1 − 𝑆𝑛(𝑡)

)︀
𝑑𝑡+

1

𝜌1

∞∫︁
𝑟0

(︀
1 − 𝑆𝑛(𝑡)

)︀
𝑑𝑡

+

∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

6max

(︂
𝜌0,

1

𝜌1

)︂ ∞∫︁
0

(︀
1 − 𝑆𝑛+1(𝑡)

)︀
𝑑𝑡

+

∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡.

This yields:

∞∫︁
0

(︀
1 − 𝑆𝑛+1(𝑥)

)︀
𝑑𝑥 6

(︂
1 − max

(︂
𝜌0,

1

𝜌1

)︂)︂−1

·

⎛⎝ ∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾 (𝑡) 𝑑𝑡

⎞⎠ , 𝑛 = 0, 1, 2, . . .

(2.34)
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Thus, in view of (2.22), (2.34) and Levi theorem, we confirm that (2.27) is true. We also obtain
the following upper bound:

∞∫︁
0

(︀
1 − 𝑆(𝑥)

)︀
𝑑𝑥 6

(︂
1 − max

(︂
𝜌0,

1

𝜌1

)︂)︂−1
⎛⎝ ∞∫︁

0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
0

𝑡𝐾(𝑡) 𝑑𝑡

⎞⎠ . (2.35)

Step IV. At the last step we prove the last statement of the theorem:

lim
𝑥→±∞

𝜙(𝑥) = ±1, 1 − 𝜙 ∈ 𝐿1(0,+∞), 1 + 𝜙 ∈ 𝐿1(−∞, 0). (2.36)

This is why we first show that lim
𝑥→+∞

𝑆(𝑥) = 1. Indeed, in view of (2.25), (2.27) and (b)-(d), by

(2.19) we infer that

0 61 − 𝑆(𝑥) 6

∞∫︁
0

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝐾(𝑥− 𝑡) 𝑑𝑡+

∞∫︁
0

𝜆(𝑥, 𝑡)𝐾(𝑥− 𝑡)
(︀
1 − 𝑆𝛼(𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
𝑥

𝐾(𝑢) 𝑑𝑢

6

∞∫︁
0

sup
𝑥∈R+

(︀
1 − 𝜆(𝑥, 𝑡)

)︀
𝐾(𝑥− 𝑡) 𝑑𝑡+

∞∫︁
0

𝐾(𝑥− 𝑡)
(︀
1 − 𝑆(𝑡)

)︀
𝑑𝑡+ 2

∞∫︁
𝑥

𝐾(𝑢) 𝑑𝑢 −−−−→
𝑥→+∞

0,

since the convolution of summable and bounded functions tends to zero at infinity, see [7].
Therefore, lim

𝑥→+∞
𝑆(𝑥) = 1. Then by (2.18) we get that

lim
𝑥→+∞

𝑓(𝑥) = 1. (2.37)

Moreover, in view of (2.18), (2.27) and the following simple inequality

0 6 1 − 𝑓(𝑥) 6 1 − 𝑓𝑝(𝑥), 𝑥 ∈ R+,

we conclude that 1 − 𝑓 ∈ 𝐿1(R
+).

Finally, taking into consideration the continuity of the function 𝑓(𝑥) on R+ as well as the
formulae (2.17) and (2.37), we arrive at (2.36). The proof is complete.

3. Uniqueness of solution to equation (1.1) in a particular case

In what follows we prove three auxiliary lemmata employed in what follows.
We consider the following integral Hammerstein-Volterra equation with a power nonlinearity:

ℎ(𝑥) =

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑡− 𝑥) −𝐾(𝑡+ 𝑥)

)︀
ℎ𝛼(𝑡)𝑑𝑡, 𝑥 ∈ R+, (3.1)

for an unknown function ℎ(𝑥). The following lemma holds.

Lemma 3.1. Under assumptions of Theorem 2.1, equation (3.1) possesses a non-negative
continuous bounded solution ℎ(𝑥).

Proof. We consider the following successive approximations:

ℎ𝑛+1(𝑥) =

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑡− 𝑥) −𝐾(𝑡+ 𝑥)

)︀
ℎ𝛼𝑛(𝑡)𝑑𝑡;

ℎ0(𝑥) =

(︂
1

2

)︂ 1
1−𝛼

, 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.

(3.2)
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By induction one can show easily that the functions in the sequence {ℎ𝑛(𝑥)}∞𝑛=0 possess the
following properties:

ℎ𝑛(𝑥) ↓ in 𝑛, (3.3)

ℎ𝑛(𝑥) >

(︂
1

2

)︂ 1
1−𝛼

B(𝑥), 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+, (3.4)

ℎ𝑛 ∈ 𝐶(R+), 𝑛 = 0, 1, 2, . . . , (3.5)

where B(𝑥) is a solution to homogeneous equation (2.1) with the following asymptotics at
infinity: lim

𝑥→+∞
B(𝑥) = 1. Therefore, the sequence of continuous functions {ℎ𝑛(𝑥)}∞𝑛=0 possesses

a pointwise limit as 𝑛 → +∞: lim
𝑛→+∞

ℎ𝑛(𝑥) = ℎ(𝑥). According Levi theorem, the limiting

function ℎ(𝑥) satisfies equation (3.1) and the upper and lower bounds hold:(︂
1

2

)︂ 1
1−𝛼

B(𝑥) 6 ℎ(𝑥) 6

(︂
1

2

)︂ 1
1−𝛼

, 𝑥 ∈ R+. (3.6)

Then, in view of (3.6) and the continuity of the functions 𝜆 and 𝐾, it follows from (3.1) that
ℎ ∈ 𝐶(R+). The proof is complete.

Now let us confirm that if 𝜆 is monotonically non-decreasing function in the variables (𝑥, 𝑡),
that is, as (𝑥𝑖, 𝑡𝑖) ∈ R+ ×R+, 𝑖 = 1, 2, and 𝑥1 > 𝑥2, 𝑡1 > 𝑡2, the inequality

𝜆(𝑥1, 𝑡1) > 𝜆(𝑥2, 𝑡2)

holds, then the constructed solution is also monotonically non-decreasing. Namely, the following
lemma is true.

Lemma 3.2. If the assumptions of Lemma 3.1 hold and the function 𝜆 is monotonically
non-decreasing in its variables, then the constructed solution ℎ(𝑥) of equation (3.1) is also
monotonically non-decreasing and the following lower bound holds:

ℎ
𝑝−1
𝑝 (𝑥) > 𝜆(𝑥, 𝑥)

(︂
1

2
−𝑄(2𝑥)

)︂
, 𝑥 ∈ R+, (3.7)

where

𝑄(𝜏) ≡
∞∫︁
𝜏

𝐾(𝑢)𝑑𝑢, 𝜏 ∈ R+. (3.8)

Proof. We rewrite iterations (3.2) as

ℎ𝑛+1(𝑥) =

∞∫︁
0

𝜆(𝑥, 𝑥+ 𝜏)
(︀
𝐾(𝜏) −𝐾(2𝑥+ 𝜏)

)︀
ℎ𝛼𝑛(𝑥+ 𝜏) 𝑑𝜏,

ℎ0(𝑥) =

(︂
1

2

)︂ 1
1−𝛼

, 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+.

(3.9)

The monotonicity of the zero approximation follows immediately (3.9). Assume that ℎ𝑛(𝑥) ↑
in 𝑥 for some fixed 𝑛 ∈ N. Then if 𝑥1, 𝑥2 ∈ R+ and 𝑥1 > 𝑥2, in view of the monotonicity of the
function 𝜆 in its variables, properties (b), (c) of the kernel 𝐾 and the induction assumption,
by (3.9) we have:

ℎ𝑛+1(𝑥1) − ℎ𝑛+1(𝑥2) =

∞∫︁
0

𝜆(𝑥1, 𝑥1 + 𝜏)
(︁
𝐾(𝜏) −𝐾(2𝑥1 + 𝜏)

)︁
ℎ𝛼𝑛(𝑥1 + 𝜏) 𝑑𝜏
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−
∞∫︁
0

𝜆(𝑥2, 𝑥2 + 𝜏)
(︁
𝐾(𝜏) −𝐾(2𝑥2 + 𝜏)

)︁
ℎ𝛼𝑛(𝑥2 + 𝜏)𝑑𝜏

>

∞∫︁
0

(︁
𝜆(𝑥1, 𝑥1 + 𝜏) − 𝜆(𝑥2, 𝑥2 + 𝜏)

)︁(︁
𝐾(𝜏) −𝐾(2𝑥2 + 𝜏)

)︁
ℎ𝛼𝑛(𝑥2 + 𝜏) 𝑑𝜏 > 0,

that is, ℎ𝑛+1(𝑥1) > ℎ𝑛+1(𝑥2). Thus, we have established the monotonicity in 𝑥 of each function
in the sequence {ℎ𝑛(𝑥)}∞𝑛=0. Then the limiting function ℎ is also monotonically non-decreasing.
In view of the monotonicity of the function 𝜆 in (3.1) we obtain:

ℎ(𝑥) > ℎ𝛼(𝑥)

∞∫︁
𝑥

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑡− 𝑥) −𝐾(𝑡+ 𝑥)

)︀
𝑑𝑡 > ℎ𝛼(𝑥)𝜆(𝑥, 𝑥)

(︂
1

2
−𝑄(2𝑥)

)︂

since
∞∫︀
0

𝐾(𝑡)𝑑𝑡 = 1
2
. By the latter inequality we arrive at (3.7). The proof is complete.

In the next lemma we prove that if the function 𝜆 is monotonically non-decreasing in its
variables, then the solution 𝑆(𝑥) constructed by successive approximations (2.21) satisfies the
lower bound:

𝑆(𝑥) >

(︃
𝜆(𝑥, 𝑥)

(︂
1

2
−𝑄(2𝑥)

)︂)︃ 𝑝
𝑝−1

, 𝑥 ∈ R+. (3.10)

The following lemma holds.

Lemma 3.3. Under assumptions of Lemma 3.2, the solution 𝑆(𝑥) to equation (2.19) con-
structed by means of iterations (2.21) satisfies estimate (3.10).

Proof. We consider iterations (2.21). By induction in 𝑛 we can show easily that

𝑆𝑛(𝑥) > ℎ(𝑥), 𝑛 = 0, 1, 2, . . . , 𝑥 ∈ R+. (3.11)

Therefore, the limiting function 𝑆(𝑥) = lim
𝑛→∞

𝑆𝑛(𝑥) satisfies the inequality:

𝑆(𝑥) > ℎ(𝑥), 𝑥 ∈ R+. (3.12)

By (3.12) and (3.7) we now complete the proof.

Now we can proceed to proving the uniqueness theorem, which is the second main result of
the present work.

Theorem 3.1. If under the assumptions of Lemma 3.2 the inequality

𝜆(𝑥, 𝑥)
(︁

1 − 2𝑄(2𝑥)
)︁
> 1 − 2𝑄(𝑥), 𝑥 > 0, (3.13)

holds, then a solution to equation (2.16) is unique in the following class of continuous on R+

functions:

M ≡

{︃
𝑓(𝑥)

⃒⃒⃒⃒
⃒
(︃
𝜆(𝑥, 𝑥)

(︂
1

2
−𝑄(2𝑥)

)︂)︃ 1
𝑝−1

6 𝑓(𝑥) 6 1, 𝑥 ∈ R+; 1 − 𝑓 ∈ 𝐿1(R
+)

}︃
. (3.14)

Proof. Suppose that equation (2.16) possesses two solutions 𝑓1, 𝑓2 ∈ M. Then according La-
grangue mean value theorem and (3.14), by (2.16) we have:

𝑝 𝜆(𝑥, 𝑥)

(︂
1

2
−𝑄(2𝑥)

)︂ ⃒⃒⃒
𝑓1(𝑥)−𝑓2(𝑥)

⃒⃒⃒
6

∞∫︁
0

𝜆(𝑥, 𝑡)
(︀
𝐾(𝑥−𝑡)−𝐾(𝑥+𝑡)

)︀ ⃒⃒⃒
𝑓1(𝑡)−𝑓2(𝑡)

⃒⃒⃒
𝑑𝑡. (3.15)
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It follows directly from (3.14) that 𝑓1− 𝑓2 ∈ 𝐿1(R
+). Integrating both sides of (3.15) in 𝑥 from

0 to +∞ and taking into consideration conditions (b)-(d) and Fubini theorem, we obtain

𝑝

∞∫︁
0

𝜆(𝑥, 𝑥)

(︂
1

2
−𝑄(2𝑥)

)︂ ⃒⃒⃒
𝑓1(𝑥) − 𝑓2(𝑥)

⃒⃒⃒
𝑑𝑥 6

∞∫︁
0

⃒⃒⃒
𝑓1(𝑡) − 𝑓2(𝑡)

⃒⃒⃒(︁
1 − 2𝑄(𝑡)

)︁
𝑑𝑡.

By condition 𝑝 > 2 this leads us to the inequality:
∞∫︁
0

⃒⃒⃒
𝑓1(𝑥) − 𝑓2(𝑥)

⃒⃒⃒ (︁
𝜆(𝑥, 𝑥)

(︀
1 − 2𝑄(2𝑥)

)︀
−
(︀
1 − 2𝑄(𝑥)

)︀)︁
𝑑𝑥 6 0. (3.16)

In view of (3.13), by (3.16) we obtain that 𝑓1(𝑥) = 𝑓2(𝑥) almost everywhere in R+. The proof
is complete.

Remark 3.1. Since the sought function in equation (1.1) is odd and satsifies the boundary
conditions lim

𝑥→±∞
𝜙(𝑥) = ±1, by formula (2.17) and Theorem 3.1 we conclude that the boundary

value problem for equation (1.1) for an odd on R function 𝜙⎧⎪⎪⎨⎪⎪⎩
𝜙𝑝(𝑥) =

∞∫︁
−∞

𝜆
(︀
|𝑥|, |𝑡|

)︀
𝐾(𝑥− 𝑡)𝜙(𝑡)𝑑𝑡, 𝑥 ∈ R,

𝜙(±∞) = ±1

possesses the unique solution in the following class of odd continuous functions:

P ≡

{︃
𝜙(𝑥)

⃒⃒⃒⃒
⃒ 𝜙 ∈ 𝐶(R); 𝜙(𝑥) =

{︂
𝑓(𝑥) if 𝑥 > 0,

−𝑓(−𝑥) if 𝑥 < 0;
𝑓 ∈ M

}︃
.

Remark 3.2. We note that a solution to equation (1.1) is non-negative on the non-negative
semi-axis.

Remark 3.3. Here we provide the examples of functions 𝜆(𝑥, 𝑡) and 𝐾(𝑥) obeying all as-
sumptions of the above theorems:

𝜆(𝑥, 𝑡) = 1 − 𝜀𝑒−𝑥𝑒−𝑡, 𝜀 ∈
(︂

0,
1

2

)︂
, (𝑥, 𝑡) ∈ R+ ×R+, (3.17)

𝐾(𝑥) =
1

2
𝑒−|𝑥|, 𝑥 ∈ R. (3.18)

It is obvious that the kernel 𝐾(𝑥) satisfies conditions (a)-(c). By straightforward calculations
one can confirm that 𝜆 satisfies conditions (a), (d) and is monotonous in its variables.

Below we show that the functions 𝜆 and 𝐾 given by (3.17) and (3.18) satisfy inequality
(3.13). We observe that in this case estimate (3.13) casts into the form:

(1 − 𝑒−2𝑥)(1 − 𝜀𝑒−2𝑥) > 1 − 𝑒−𝑥, 𝑥 > 0. (3.19)

This inequality is equivalent to

𝑒𝑥 + 𝜀𝑒−2𝑥 > 𝜀+ 1, 𝑥 > 0. (3.20)

We consider the function

𝐺(𝑥) = 𝑒𝑥 + 𝜀𝑒−2𝑥 − (𝜀+ 1), 𝑥 > 0.

It is obvious that

𝐺(+0) = 0, 𝐺 ′(𝑥) = 𝑒𝑥 − 2𝜀𝑒−2𝑥 = 𝑒−2𝑥(𝑒3𝑥 − 2𝜀) > 𝑒−2𝑥(1 − 2𝜀) > 0

as 𝑥 > 0 and 𝜀 ∈
(︁

0, 1
2

)︁
. Thus, inequality (3.20) holds and hence, the same is true for (3.19).
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Remark 3.4. In the case 𝐾(𝑥) = 1√
𝜋
𝑒−𝑥2

and 𝜆(𝑥, 𝑡) ≡ 1 we see easily that condition (3.13)

holds as well.

We thank the referee for valuable remarks.

BIBLIOGRAPHY

1. V.S. Vladimirov. Nonlinear equations for p-adic open, closed, and open-closed strings // Teor.
Matem. Fiz. 149:3, 354–367 (2006). [Theor. Math. Phys. 149:3, 1604–1616 (2006).]

2. V.S. Vladimirov, Y.I. Volovich. Nonlinear dynamics equation in 𝑝-adic string theory // Teor.
Matem. Fiz. 138:3, 355–368 (2004). [Theor. Math. Phys. 138:3, 297–309 (2004).]

3. V. Vladimirov The equation of the 𝑝−adic open string for the scalar tachyon field // Izv. Math-
ematics. 2005. V. 69. No. 3. P. 487–512.

4. Kh.A. Khachatryan. On the solvability of one class of two-dimensional Urysohn integral equations
// Matem. Trudy. 20:2, 193–205 (2017). [Siber. Adv. Math. 28:3, 166–174 (2018).]

5. L.G. Arabadzhyan, N.B. Engibaryan. Convolution equations and nonlinear functional equations
// Itogi nauki i tekhniki. Matem. analiz. 22, 175–242 (1984). [J. Soviet Math. 36:6, 745–791
(1987).]

6. A.N. Kolmogorov, V.S. Fomin. Elements of the theory of functions and functional analysis. Fiz-
matlit, Moscow (2005). [Dover Publication, New York (1999).]

7. L.G. Arabadzhyan, A.S. Khachatryan. A class of integral equations of convolution type // Matem.
Sborn. 198:7, 45–62 (2007). [Sb. Math. 198:7, 949–966 (2007).]

Silva Mikhailovna Andriyan,
Armenian National Agrarian University,
Teryan str. 73,
0009, Erevan, Republic of Armenia
E-mail: smandriyan@hotmail.com

Arpenik Kolyaevna Kroyan,
Armenian National Agrarian University,
Teryan str. 73,
0009, Erevan, Republic of Armenia
E-mail: arpi.kroyan.2013@mail.ru

Khachatur Agavardovich Khachatryan,
Institute of Matemathics
of National Academy of Sciences, RA
Marshal Bagramyan av. 24/5,
0009, Erevan, Republic of Armenia
E-mail: Khach82@rambler.ru


	to1. Introduction
	to2. Existence of a nontrivial continuous bounded solution  on the entire real line
	to3. Uniqueness of solution to equation (1.1) in a particular case
	 References

