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EQUIVALENCE OF NORMS OF ANALYTICAL FUNCTIONS

ON EXTERIOR OF CONVEX DOMAIN

N.F. ABUZYAROVA, K.P. ISAEV, R.S. YULMUKHAMETOV

Abstract. We study the spaces of functions holomorphic in the exterior of a bounded
domain 𝐷 and vanishing at infinity. For each 𝛼 > −1

2 we introduce the integral weighted
normed space 𝐵𝛼

2 (𝐺) with the weight 𝑑𝛼(𝑧), where 𝑑(𝑧) denotes the distance from a point
𝑧 to the boundary of 𝐺 := C ∖𝐷. For 𝛼 = −1

2 , the space 𝐵𝛼
2 is chosen to be the Smirnov

space. We prove that for a convex domain 𝐷, the norms in these spaces are equivalent to
other norms defined in terms of the derivatives. For instance, the norm in the Smirnov space
calculated as an integral with respect to the arc length over the boundary is equivalent to
some norm defined by an integral with respect to the Lebesgue plane measure. In particular
cases the proved results were obtained while studying the problem on describing the classes
of Cauchy transforms of the functionals on the Bergman space on 𝐷. The general results
may be applied in the study of Cauchy transforms of functionals on weighted Bergman
spaces.
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1. Introduction

Let 𝐷 be a bounded simply-connected Jordan domain in the complex plane and 𝐺 = C ∖𝐷.
By 𝑑(𝜁), 𝜁 ∈ 𝐺, we denote the distance from a point 𝜁 to the boundary of 𝐷 :

𝑑(𝜁) = dist (𝜁, 𝜕𝐷) = inf
𝑧∈𝜕𝐷

|𝜁 − 𝑧|, 𝜁 ∈ 𝐺.

Let 𝐻0(𝐺) be the space of functions analytic in 𝐺 and vanishing at infinity. For 𝛼 > −1
2
, by

𝐵𝛼
2 (𝐺) we denote the space of the functions 𝛾 ∈ 𝐻0(𝐺) with a finite norm

‖𝛾‖𝛼 =

⎛⎝∫︁
𝐺

|𝛾(𝜁)|2𝑑2𝛼(𝜁) 𝑑𝑣(𝜁)

⎞⎠ 1
2

,

where 𝑑𝑣(𝜁) is the area differential. For 𝛼 = −1
2
, the space 𝐵𝛼

2 (𝐺) is identified with the Smirnov
space. Without loss of generality we assume that 0 ∈ 𝐷 and then the Smirnov space 𝐸2(𝐺)
can be defined as the completion of the space (see [1])⎧⎨⎩𝑝(𝜁) is a polynomial : 𝑝(0) = 0,

∫︁
𝜕𝐺

⃒⃒⃒⃒
𝑝

(︂
1

𝜁

)︂⃒⃒⃒⃒2
𝑑𝑠(𝜁) < ∞

⎫⎬⎭ ,
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where 𝑑𝑠(𝜁) is the arc differential of the boundary. We introduce a natural number 𝑛 and by

𝐵
(𝑛,𝛼)
2 (𝐺) we denote the space of the functions 𝛾 ∈ 𝐻0(𝐺) obeying 𝛾(𝑛) ∈ 𝐵𝛼

2 (𝐺). In the space

𝐵
(𝑛,𝛼)
2 (𝐺) we consider the norm ‖𝛾‖𝑛,𝛼 = ‖𝛾(𝑛)‖𝛼.
The main result of the present work is the following theorem.

Theorem 1. Let 𝐷 be a bounded convex domain containing the origin. If 𝛼 > −1
2
, then

there exists a constant 𝐶(𝛼) > 0 independent of the domain 𝐷 such that√︂
(𝛼 + 1)(2𝛼 + 1)

2
‖𝛾‖𝑛,𝛼 6 ‖𝛾‖𝑛+1,𝛼+1 6 𝐶(𝛼)‖𝛾‖𝑛,𝛼.

For 𝛼 = −1
2
, there exists a constant 𝐶(𝑛) > 0 independent of the domain 𝐷 such that

1

2
‖𝛾‖𝑛,− 1

2
6 ‖𝛾‖𝑛+1, 1

2
6 𝐶(𝑛)‖𝛾‖𝑛,− 1

2
.

Thus, the spaces 𝐵
(𝑛+1,𝛼+1)
2 (𝐺) and 𝐵

(𝑛,𝛼)
2 (𝐺) coincide and the norms in these spaces are

equivalent.

In particular cases, the theorem was proved in works [2], [3].
Given non-negative functions 𝑓 and 𝑔, the writing 𝑓(𝑥) ≺ 𝑔(𝑥), 𝑥 ∈ 𝑋, stands for the

inequality 𝑓(𝑥) 6 𝐶𝑔(𝑥), 𝑥 ∈ 𝑋, with some constant. The symbols ≻ and ≍ have corresponding
meanings.

2. Proof of Theorem 1

Proposition 1. If the function

𝛾(𝑧) =
∞∑︁
𝑘=0

𝛾𝑘
𝑧𝑘+1

belongs to the space 𝐵
(𝑛,𝛼)
2 (𝐺) and 𝑘𝛾 = min{𝑘 : 𝛾𝑘 ̸= 0}, then 𝑘𝛾 + 𝑛 > 𝛼.

Proof. Since 𝑑(𝑧) ≍ |𝑧| and |𝛾(𝑛)(𝑧)| ≍ |𝑧|−(𝑛+1+𝑘𝛾) as |𝑧| → ∞, then∫︁ ∞

𝑅

𝑟2𝛼+1𝑑𝑟

𝑟2(𝑛+1+𝑘𝛾)
≍

∫︁
|𝑧|>𝑅

|𝛾(𝑛)(𝑧)|2𝑑2𝛼𝑑𝑣(𝑧) → 0, 𝑅 → ∞,

and hence, 𝑘𝛾 + 𝑛 > 𝛼.

Let us prove the right inequality in Theorem 1 for 𝛼 > −1
2
. We make use of Whitney type

continuation theorem (see [4]):

Theorem A. Let 𝐹 be an arbitrary closed set in R𝑛. There exists a function 𝛿(𝑥) = 𝛿(𝑥, 𝐹 )
defined on R𝑛 ∖ 𝐹 such that

1) the inequalities hold:

𝑐1𝛿(𝑥) 6 dist (𝑥, 𝐹 ) 6 𝑐2𝛿(𝑥), 𝑥 ∈ R𝑛 ∖ 𝐹,

where 𝑐1, 𝑐2 are independent of the set 𝐹 ;
2) the function 𝛿(𝑥) is infinitely differentiable and on R𝑛 ∖ 𝐹 , the estimates hold:⃒⃒⃒⃒

𝜕𝛽 𝛿(𝑥)

𝜕𝑥𝛽

⃒⃒⃒⃒
6 𝐵𝛽(dist (𝑥, 𝐹 ))1−|𝛽|,

where 𝐵𝛽 is independent of the set 𝐹 .
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Lemma 1. Let 𝐷 be a bounded simply-connected Jordan domain. If 𝛼 > −1
2
, 𝛾 ∈ 𝐵

(𝑛,𝛼)
2 (𝐺),

then

‖𝛾‖2𝑛+1,𝛼+1 6 𝐶(𝛼)‖𝛾‖2𝑛,𝛼,
where 𝐶(𝛼) is independent of the domain 𝐷.

Proof. We choose a bounded simply-connected Jordan domain 𝐷′ with a smooth boundary
containing the set 𝐷. We apply Theorem A to the set 𝐷′. The obtained function 𝛿(𝑧) is

extended by zero on 𝐷′ and is denoted by ̃︀𝛿(𝑧). Then it follows from Theorem A that ̃︀𝛿2𝛼 ∈
𝐶1(C) as 𝛼 > −1

2
. We observe that an analytic function 𝑓 satisfies the formula |𝑓 ′|2 = 1

4
∆|𝑓 |2,

where ∆ = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2
is the Laplace operator. We choose a number 𝑅 large enough so that

𝐷′ ⊂ 𝐵(0, 𝑅), and by 𝐺′
𝑅 we denote the intersection 𝐺′∩𝐵(0, 𝑅) (𝐺′ = C∖𝐷′). By the Green’s

formula [8] applied to the functions |𝛾(𝑛+1)|2 and ̃︀𝛿2(𝛼+1) in the domain 𝐺′
𝑅 we have∫︁

𝐺′
𝑅

|𝛾(𝑛+1)(𝜁)|2̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁) =
1

4

∫︁
𝐺′

𝑅

∆|𝛾(𝑛)(𝜁)|2̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁)

=
1

4

∫︁
𝜕𝐺′

𝑅

(︂
𝜕

𝜕−→𝑛
|𝛾(𝑛)(𝜁)|2𝛿2(𝛼+1)(𝜁) − |𝛾(𝑛)(𝜁)|2 𝜕

𝜕−→𝑛
̃︀𝛿2(𝛼+1)(𝜁)

)︂
𝑑𝑠(𝜁)

+
1

4

∫︁
𝐺′

𝑅

|𝛾(𝑛)(𝜁)|2∆̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁).

(1)

Since ̃︀𝛿 ∈ 𝐶1 and ̃︀𝛿 ≡ 0 on 𝐺′, the integrand in the first integral in the right hand side of (1)
vanishes on 𝜕𝐺′:∫︁
𝐺′

𝑅

|𝛾(𝑛+1)(𝜁)|2̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁)

=
1

4

∫︁
|𝜁|=𝑅

(︂
𝜕

𝜕−→𝑛
|𝛾(𝑛)(𝜁)|2𝛿2(𝛼+1)(𝜁) − |𝛾(𝑛)(𝜁)|2 𝜕

𝜕−→𝑛
̃︀𝛿2(𝛼+1)(𝜁)

)︂
𝑑𝑠(𝜁)

+
1

4

∫︁
𝐺′

𝑅

|𝛾(𝑛)(𝜁)|2∆̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁).

(2)

The relations

|𝛾(𝑛)(𝜁)|2 ≍ 𝑅−2(𝑛+𝑘𝛾+1),

⃒⃒⃒⃒
𝜕

𝜕−→𝑛
|𝛾(𝑛)(𝜁)|2

⃒⃒⃒⃒
≍ 𝑅−2(𝑛+𝑘𝛾)+3,

hold true on the circumference |𝜁| = 𝑅 and by Theorem A,

̃︀𝛿(𝜁)2(𝛼+1) ≍ 𝑅2(𝛼+1),

⃒⃒⃒⃒
𝜕

𝜕−→𝑛
̃︀𝛿2(𝛼+1)(𝜁)

⃒⃒⃒⃒
≍ 𝑅2𝛼+1.

Hence, as 𝑅 → ∞, the first integral in the right hand side in (2) tends to zero. Passing to the
limit, we obtain∫︁

𝐺′

|𝛾(𝑛+1)(𝜁)|2̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁) =
1

4

∫︁
𝐺′

|𝛾(𝑛)(𝜁)|2∆̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁).

We apply the obtained formula to a sequence of domains 𝐷𝑚 with the properties:

𝐷𝑚+1 ⊂ 𝐷𝑚,
⋂︁
𝑚

𝐷𝑚 = 𝐷.
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By the Lebesgue theorem, we can pass to the limit as 𝑚 → ∞:∫︁
𝐺

|𝛾(𝑛+1)(𝜁)|2̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁) =
1

4

∫︁
𝐺

|𝛾(𝑛)(𝜁)|2∆̃︀𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁).

Estimating now ̃︀𝛿 and ∆̃︀𝛿 by Theorem A, we complete the proof of the lemma.

Let us prove the right inequality in Theorem 1 for convex domains.
We shall need the following simple properties of the function of the distance to convex

domains.

Proposition 2. If 𝐷 is a bounded convex domain in the plane, then the distance function
𝑑(𝑧) = inf{|𝑧 − 𝜁|, 𝜁 ∈ 𝐷}, 𝑧 /∈ 𝐷, possesses the properties:

1. The distance function 𝑑(𝜁) is convex, in particular, is subharmonic, and satisfies the
Lipschitz condition:

|𝑑(𝜁1) − 𝑑(𝜁2)| < |𝜁1 − 𝜁2| for all 𝜁1, 𝜁2 ∈ 𝐺.

2. The normal derivative of the distance function is identically equal to −1. If 𝑑(𝜁) is
differentiable at a point 𝜁0, then |grad 𝑑(𝜁0)| = 1.

3. If 𝐷 is a convex polygon, then 𝑑(𝜁) is continuously differentiable in 𝐺.

Proof. 1. By 𝐵(𝑧, 𝑟), 𝑟 > 0, we denote a ball of radius 𝑟 centered at a point 𝑧. Let 𝜁0 ∈ 𝐺 and
3𝑑0 = dist (𝜁0, 𝜕𝐷). We consider a family of straight lines {𝑙𝛼} separating the domain 𝐷 from
the ball 𝐵(𝜁0, 𝑑0) and let {𝑃𝛼} be the associated family of half-planes containing 𝐷. Then it is
obvious that for 𝜁 ∈ 𝐵(𝜁0, 𝑑0) we have:

dist (𝜁, 𝜕𝐷) = sup
𝛼

dist (𝜁, 𝑃𝛼).

Since dist (𝜁, 𝑃𝛼) is a linear function, then 𝑑(𝜁) = dist (𝜁, 𝜕𝐷) is a convex function. Let
𝜁1, 𝜁2 ∈ 𝐺 and 𝑧2 ∈ 𝜕𝐷 be the point of attaining the distance 𝑑(𝜁2), that is, 𝑑(𝜁2) = |𝑧2 − 𝜁2|.
Then

𝑑(𝜁1) − 𝑑(𝜁2) = inf
𝑧∈𝜕𝐷

|𝑧 − 𝜁1| − |𝑧2 − 𝜁2| 6 |𝑧2 − 𝜁1| − |𝑧2 − 𝜁2| 6 |𝜁1 − 𝜁2|.

Since 𝜁1 and 𝜁2 are of equal rights, then

|𝑑(𝜁1) − 𝑑(𝜁2)| 6 |𝜁1 − 𝜁2|.

2. In view of Statement 1, the absolute values of the directional derivatives of 𝑑(𝜁) do not
exceed 1: ⃒⃒⃒⃒

𝜕 𝑑(𝜁0)

𝜕𝑙

⃒⃒⃒⃒
6 1.

If 𝑧0 ∈ 𝜕𝐷 is a point of attaining the distance 𝑑(𝜁0), then the derivative of 𝑑(𝜁) in the direction
(𝜁0 − 𝑧0)/|𝜁0 − 𝑧0| at the point 𝜁0 is equal to 1. Since the modulus of the gradient is equal to
the maximal absolute value of the directional derivatives, then |grad 𝑑(𝜁0)| = 1.

3. The complement to a polygon is partitioned into half-strips, in which the distance is
achieved at one of the sides of the polygon, and into the angles with the vertices at one of the
vertices of the polygon. In these angles, the distance is attained at a corresponding side of the
polygon. It is obvious that the distance function is continuously differentiable in the interiors
of the strips and angles. It remains to check the continuous differentiability on the boundary
rays. By a translation and a rotation, we overlap one of these rays with a positive part of
the ordinate axis so that one of the sides of the polygon is located on the positive part of the
abscissa axis.
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Let 𝜁0 = 𝑖𝑦0, 𝑦0 > 0. To the left of 𝜁0, the distance is 𝑑(𝜁) = |𝜁|, while to the right, the
distance is 𝑑(𝜁) = Im 𝜁. If 𝜁 = 𝑥 + 𝑖𝑦, to the left of 𝜁0 we have

𝜕 dist (𝜁,𝐷)

𝜕𝑥
=

𝑥

|𝜁|
,

𝜕 dist (𝜁,𝐷)

𝜕𝑦
=

𝑦

|𝜁|
,

and to the right we obtain

𝜕 dist (𝜁,𝐷)

𝜕𝑥
≡ 0,

𝜕 dist (𝜁,𝐷)

𝜕𝑦
≡ 1.

Thus, we glue the first partial derivatives on the positive ordinate semi-axis.

Lemma 2. Let 𝐷 be a bounded convex domain containing the origin. If 𝛼 > −1
2
, then√︂

(𝛼 + 1)(2𝛼 + 1)

2
‖𝛾‖𝑛,𝛼 6 ‖𝛾‖𝑛+1,𝛼+1.

Proof. We choose an open convex polygon 𝐷′ ⊃ 𝐷. We let 𝐺′ = C ∖𝐷′
and the function

dist (𝜁,𝐷′), 𝜁 ∈ 𝐺′, is continued by zero on 𝐷
′
. We obtain a convex, in particular, subharmonic,

in C function; this function is denoted by 𝛿(𝜁).
We choose a radial smooth nonnegative mollifier 𝛼(𝜁) vanishing as |𝜁| > 1 and satisfying the

condition ∫︁
C

𝛼(𝜁) 𝑑𝑣(𝜁) = 1.

If a function 𝑢(𝜁) is continuous in the domain Ω and

𝑢𝜀(𝜁) =
1

𝜀2

∫︁
C

𝛼

(︂
𝜁 − 𝑧

𝜀

)︂
𝑢(𝑧) 𝑑𝑣(𝑧)

for 𝜀 > 0, then as 𝜀 → 0, the functions 𝑢𝜀(𝜁) converges to 𝑢(𝜁) uniformly on compact sets in Ω
and moreover, if 𝑢(𝜁) is subharmonic in Ω, then 𝑢𝜀(𝜁) is also subharmonic in the domain

Ω𝜀 = {𝜁 ∈ Ω : dist (𝜁,Ω) > 𝜀}.

The properties of smooth regularizations were described in [5].
We take 𝜀 < dist (𝜕𝐷′, 𝐷) and define the regularization 𝛿𝜀(𝜁). The functions 𝛿𝜀(𝜁) are

subharmonic, non-negative and 𝛿𝜀(𝜁) ≡ 0 in the domain

𝐷′
𝜀 = {𝜁 ∈ 𝐷′ : dist (𝜁, 𝜕𝐷′) > 𝜀}.

It is obvious that 𝐷′
𝜀 ⊂ 𝐷′ is a convex polygon with the sides parallel to the sides of 𝐷′

and separated from the corresponding sides of 𝐷′ by the distance 𝜀. Under the condition 𝜀 <
dist(𝜕𝐷′, 𝐷), the domain 𝐷′

𝜀 contains 𝐷 and therefore, the function 𝛾 ∈ 𝐻0(𝐺) is holomorphic

on 𝐺
′
𝜀 = C ∖𝐷′

𝜀. In the same way, as in the proof of Lemma 1, we apply the Green’s formula

to the functions |𝛾(𝑛)|2, 𝛿2(𝛼+1)
𝜀 in the domain 𝐺′

𝜀 ∩ 𝐵(0, 𝑅) and then we let 𝑅 to tend to ∞.
The integral over 𝜕𝐺′

𝜀 is equal to zero due to the function 𝛿𝜀(𝜁). We get:∫︁
𝐺′

𝜀

|𝛾(𝑛+1)(𝜁)|2𝛿2(𝛼+1)
𝜀 (𝜁) 𝑑𝑣(𝜁) =

1

4

∫︁
𝐺′

𝜀

|𝛾(𝑛)(𝜁)|2∆𝛿2(𝛼+1)
𝜀 (𝜁) 𝑑𝑣(𝜁).

By the properties of regularizations, the function 𝛿𝜀 is subharmonic and this is why

∆𝛿2(𝛼+1)
𝜀 (𝑧) =2(𝛼 + 1)(2𝛼 + 1)𝛿2𝛼𝜀 |grad 𝛿𝜀(z)|2 + 2(𝛼 + 1)𝛿2𝛼+1

𝜀 ∆𝛿𝜀(z)

>2(𝛼 + 1)(2𝛼 + 1)𝛿2𝛼𝜀 |grad 𝛿𝜀(𝜁)|2.
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Therefore,∫︁
𝐺′

𝜀

|𝛾(𝑛+1)(𝜁)|2𝛿2(𝛼+1)
𝜀 (𝜁) 𝑑𝑣(𝜁) >

2(𝛼 + 1)(2𝛼 + 1)

4

∫︁
𝐺′

𝜀

|𝛾(𝑛)(𝜁)|2𝛿2𝛼𝜀 |grad 𝛿𝜀(z)|2. (3)

Since 𝜕𝑢𝜀

𝜕𝑥
=

(︀
𝜕𝑢
𝜕𝑥

)︀
𝜀
, then |grad 𝛿𝜀(z)|2 tends uniformly to |grad 𝛿(z)|2 as 𝜀 → 0. Passing to the

limit in relation (3), we obtain:∫︁
𝐺′

|𝛾(𝑛+1)(𝜁)|2𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁) >
2(𝛼 + 1)(2𝛼 + 1)

4

∫︁
𝐺′

|𝛾(𝑛)(𝜁)|2𝛿2𝛼(𝜁)|grad 𝛿(𝜁)|2 dv(𝜁).

By Statement 2 in Proposition 2 we have |grad dist(𝜁,𝐷′)| ≡ 1 and hence,∫︁
𝐺′

|𝛾(𝑛+1)(𝜁)|2𝛿2(𝛼+1)(𝜁) 𝑑𝑣(𝜁) >
2(𝛼 + 1)(2𝛼 + 1)

4

∫︁
𝐺′

|𝛾(𝑛)(𝜁)|2𝛿2𝛼(𝜁) 𝑑𝑣(𝜁).

Now we choose a sequence of convex polygons contracting to 𝐷: 𝐷𝑛 ⊃ 𝐷. For each of them
we write the obtained inequality and pass to the limit as 𝑛 → ∞.

The results of Lemmata 1 and 2 prove Theorem 1 for 𝛼 > −1
2
. Let us prove Theorem 1 for

𝛼 = −1
2
.

Lemma 3. If 𝛾 ∈ 𝐸2(𝐺), then

1

2
‖𝛾‖2𝐸2(𝐺) 6 ‖𝛾‖21,1/2 6 𝐴(𝐷)‖𝛾‖2𝐸2(𝐷),

where 𝐴(𝐷) is a constant depending on the domain 𝐷.

Proof. By the definition, the subspace 𝐻0(𝐺) of 𝐸2(𝐺) consisting of the functions analytic
in 𝐺 and vanishing at infinity is everywhere dense. This is why it is sufficient to prove the
lemma for the functions 𝛾 in 𝐻0(𝐺). We again choose a polygon 𝐷′ ⊃ 𝐷 and by 𝛿(𝜁) we

denote the distance function dist (𝜁,𝐷′) on 𝐺′ = C ∖ 𝐷′
continued by zero on 𝐷′. We choose

𝜀 < 1
2
dist (𝜕𝐷′, 𝐷) and as in the proof of Lemma 2, we introduce the regularization 𝛿𝜀(𝜁). By

𝐺𝜀 denote the complement to the set

𝐷𝜀 = {𝜁 ∈ 𝐷′ : dist (𝜁, 𝜕𝐷′) > 2𝜀}.

We observe that by condition 𝜀 < 1
2
dist (𝜕𝐷′, 𝐷), the inclusion holds: 𝐷𝜀 ⊃ 𝐷. This is why

𝛾 ∈ 𝐻0(𝐺𝜀). Moreover, 𝛿𝜀(𝜁) ≡ 0 in 𝐷𝜀. By the definition, 𝐷𝜀 is a polygon with the sides
parallel to sides of 𝐷′ separated from the corresponding sides by the distance 2𝜀.

We apply the Green’s formula to the function |𝛾′|2 = 1
4
∆|𝛾|2 and 𝛿𝜀 in the domain 𝐺𝜀. On

the boundary 𝐺𝜀, the function 𝛿𝜀 and 𝜕𝛿𝜀
𝜕𝑛

vanish. This is why we obtain∫︁
𝐺𝜀

|𝛾′(𝜁)|2𝛿𝜀(𝜁) 𝑑𝑣(𝜁) =
1

4

∫︁
𝐺𝜀

|𝛾(𝜁)|2∆𝛿𝜀(𝜁) 𝑑𝑣(𝜁).

As 𝜀 → 0, the functions 𝛿𝜀(𝜁) tend to 𝛿(𝜁) uniformly on compact sets. The functions ∆𝛿𝜀(𝜁) con-
verge weakly to the generalized function ∆𝛿(𝜁) being a non-negative Borel measure associated
with a subharmonic function 𝛿𝜀.

Let 𝑧1, . . . , 𝑧𝑘 be the vertices of the polygon 𝐷′ and 𝜃𝑠, 𝑠 = 1, 2, . . . , 𝑘−1, are the directions of
the outward normals to the segments [𝑧𝑠, 𝑧𝑠+1], 𝜃𝑘 is the direction of the outward to 𝐷′ normal
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to segment [𝑧𝑘, 𝑧1]. By 𝑙𝑠, 𝑙
′
𝑠 we denote the rays

𝑙𝑠 = {𝑧𝑠 + 𝑡𝑒𝑖𝜃𝑠 , 𝑡 > 0}, 𝑠 = 1, 2, . . . , 𝑘,

𝑙′𝑠 = {𝑧𝑠 + 𝑡𝑒𝑖𝜃𝑠−1 , 𝑡 > 0}, 𝑠 = 2, 3, . . . , 𝑘,

𝑙′1 = {𝑧1 + 𝑡𝑒𝑖𝜃𝑘 , 𝑡 > 0}.

We denote by 𝑉𝑠 the acute closed angle between the rays 𝑙𝑠, 𝑙
′
𝑠 with the vertex at the point 𝑧𝑠,

𝑠 = 1, 2, . . . 𝑘. By 𝑃𝑠 we denote the half-strips in the exterior of 𝐷′ bounded by the rays 𝑙𝑠, 𝑙
′
𝑠+1

and the segments [𝑧𝑠, 𝑧𝑠+1]; here we identify 𝑘 + 1 and 1. Then

dist (𝜁,𝐷′) =

{︃
|𝜁 − 𝑧𝑠| as 𝜁 ∈ 𝑉𝑠,

Re (𝜁 − 𝑧𝑠)𝑒
−𝑖𝜃𝑠 as 𝜁 ∈ 𝑃𝑠.

It is also easy to calculate the derivatives. If 𝜁 = 𝑥 + 𝑖𝑦, 𝑧𝑠 = 𝑥𝑠 + 𝑖𝑦𝑠, then

𝜕

𝜕𝑥
dist (𝜁,𝐷′) =

⎧⎨⎩
𝑥− 𝑥𝑠

|𝜁 − 𝑧𝑠|
as 𝜁 ∈ 𝑉𝑠,

cos 𝜃𝑠 as 𝜁 ∈ 𝑃𝑠,

𝜕

𝜕𝑦
dist (𝜁,𝐷′) =

⎧⎨⎩
𝑦 − 𝑦𝑠
|𝜁 − 𝑧𝑠|

as 𝜁 ∈ 𝑉𝑠,

sin 𝜃𝑠 as 𝜁 ∈ 𝑃𝑠.

These formulae show that the first partial derivatives are continuous, the second partial deriva-
tives are well-defined on 𝐺′ and

∆dist (𝜁,𝐷′) =

⎧⎨⎩
1

|𝜁 − 𝑧𝑠|
if 𝜁 ∈ 𝑉𝑠, 𝜁 ̸= 𝑧𝑠,

0 as 𝜁 ∈ 𝑃𝑠.
(4)

Together with the formulae for the first partial derivatives this implies that the support of the
associated measure ∆𝛿(𝜁) is located in the union of the boundary of 𝐷′ and of the closed angles
𝑉 𝑠. At that, since the derivatives of the function 𝛿 along the outward normal to the boundary
𝐷′ have the unit jump,

∆𝛿(𝑧) = ∆dist (𝑧,𝐷′) + 𝑑𝑠(𝑧),

and ∫︁
𝐺′

|𝛾′(𝜁)|2dist (𝜁,𝐷′) 𝑑𝑣(𝜁) =
1

4

∫︁
𝐺′

|𝛾′(𝜁)|2∆dist (𝜁,𝐷′) 𝑑𝑣(𝜁) +
1

4

∫︁
𝜕𝐺′

|𝛾(𝜁)|2 𝑑𝑠(𝜁). (5)

In particular, ∫︁
𝐺′

|𝛾′(𝜁)|2dist (𝜁,𝐷′) 𝑑𝑣(𝜁) >
1

4

∫︁
𝜕𝐺′

|𝛾(𝜁)|2 𝑑𝑠(𝜁).

Thus, we have proved the left inequality in Lemma 3 for the polygon 𝐷′. For the domain 𝐷,
the needed inequality can be obtained by means of a sequence of polygons contracting to 𝐷.

In order to prove the right inequality in Lemma 3, let us estimate the first integral in the
right hand side in (5).

We choose the straight line 𝐿𝑠 = {𝑧′𝑠 + 𝑡𝑒𝑖𝜙𝑠 , 𝑡 ∈ (−∞;∞)} separating the domain 𝐷 from
the angle 𝑉𝑠 and let 𝑄𝑠 be the half-plane bounded by this line and containing the angle 𝑉𝑠. By
Lemma 2 in work [6] we have:

∞∫︁
−∞

|𝛾(𝑧′𝑠 + 𝑡𝑒𝑖𝜙𝑠)|2 𝑑𝑡 6 𝐶(𝐷)

∫︁
𝜕𝐷

|𝛾(𝜁)|2 𝑑𝑠(𝜁).
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Hence, the function 𝛾 belongs to the Hardy space in the half-plane 𝑄𝑠. By Carleson theorem [7],
the inequality

∞∫︁
0

|𝛾(𝑧𝑠 + 𝑡𝑒𝑖𝜃)|2 𝑑𝑡 6 𝐵

∞∫︁
−∞

|𝛾(𝑧′𝑠 + 𝑡𝑒𝑖𝜙𝑠)|2 𝑑𝑡

holds for 𝜃 ∈ [𝜃𝑠; 𝜃𝑠+1], where 𝐵 is an absolute constant. Two latter inequalities imply that
∞∫︁
0

|𝛾(𝑧𝑠 + 𝑡𝑒𝑖𝜃)|2 𝑑𝑡 6 𝐵 · 𝐶(𝐷)

∫︁
𝜕𝐷

|𝛾(𝜁)|2 𝑑𝑠(𝜁).

By formula (4) this implies:∫︁
𝑉𝑠

|𝛾(𝜁)|2∆dist (𝜁,𝐷′) 𝑑𝑣(𝜁) =

𝜃𝑠+1∫︁
𝜃𝑠

∞∫︁
0

|𝛾(𝑧𝑠 + 𝑡𝑒𝑖𝜃)|2∆dist (𝑧𝑠 + 𝑡𝑒𝑖𝜃, 𝐷′)𝑡 𝑑𝑡𝑑𝜃

6

𝜃𝑠+1∫︁
𝜃𝑠

∞∫︁
0

|𝛾(𝑧𝑠 + 𝑡𝑒𝑖𝜃)|2 𝑑𝑡𝑑𝜃

6𝐵 · 𝐶(𝐷)(𝜃𝑠+1 − 𝜃𝑠)

∫︁
𝜕𝐷

|𝛾(𝜁)|2 𝑑𝑠(𝜁).

Again by formula (4) and in view of the identity

𝑘∑︁
𝑠=1

(𝜃𝑠+1 − 𝜃𝑠) = 2𝜋,

where 𝜃𝑘+1 is identified with 𝜃1 + 2𝜋, we obtain:∫︁
𝐺′

|𝛾(𝜁)|2∆dist (𝜁,𝐷′) 𝑑𝑣(𝜁) 6 2𝜋𝐵 · 𝐶(𝐷)

∫︁
𝜕𝐷

|𝛾(𝜁)|2 𝑑𝑠(𝜁).

We substitute this estimate into (5) and passing to the limit along the sequence of convex
polygons, we obtain the right inequality in Lemma 3 with the constant

𝐴(𝐷) =

√︂
𝜋𝐵 · 𝐶(𝐷)

2
+

1

4
.

The proofs of Lemma 3 and Theorem 1 are complete.
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