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A TAYLOR-DIRICHLET SERIES WITH NO SINGULARITIES

ON ITS ABSCISSA OF CONVERGENCE

E. ZIKKOS

Abstract. G. Pólya proved that given a sequence of positive real numbers Λ = {𝜆𝑛}∞𝑛=1

of a density 𝑑 and satisfying the gap condition inf𝑛∈N(𝜆𝑛+1 − 𝜆𝑛) > 0, the Dirichlet series∑︀∞
𝑛=1 𝑐𝑛𝑒

𝜆𝑛𝑧 has at least one singularity in each open interval whose length exceeds 2𝜋𝑑
and lies on the abscissa of convergence. This raises the question whether the same result
holds for a Taylor-Dirichlet series of the form

𝑔(𝑧) =

∞∑︁
𝑛=1

(︃
𝜇𝑛−1∑︁
𝑘=0

𝑐𝑛,𝑘𝑧
𝑘

)︃
𝑒𝜆𝑛𝑧, 𝑐𝑛,𝑘 ∈ C

when its associated multiplicity-sequence Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1

{𝜆𝑛, 𝜇𝑛}∞𝑛=1 := {𝜆1, 𝜆1, . . . , 𝜆1⏟  ⏞  
𝜇1−𝑡𝑖𝑚𝑒𝑠

, 𝜆2, 𝜆2, . . . , 𝜆2⏟  ⏞  
𝜇2−𝑡𝑖𝑚𝑒𝑠

, . . . , 𝜆𝑘, 𝜆𝑘, . . . , 𝜆𝑘⏟  ⏞  
𝜇𝑘−𝑡𝑖𝑚𝑒𝑠

, . . . }

has the following two properties:
(1) Λ has density 𝑑, that is,

∑︀
𝜆𝑛6𝑡 𝜇𝑛/𝑡 → 𝑑 as 𝑡 → ∞,

(2) 𝜆𝑛 satisfy the gap condition inf𝑛∈N(𝜆𝑛+1 − 𝜆𝑛) > 0.
In this article we present a counterexample. We prove that for any non-negative real

number 𝑑 there exists a multiplicity-sequence Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 having properties (1) and
(2), but with unbounded multiplicities 𝜇𝑛, such that its Krivosheev characteristic 𝑆Λ is
negative. For this Λ, and based on a result obtained by O.A. Krivosheeva, we show that
for any 𝑎 ∈ R, there exists a Taylor-Dirichlet series 𝑔(𝑧) whose abscissa of convergence is
the line Re 𝑧 = 𝑎, such that 𝑔(𝑧) has no singularities on this line.
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1. Introduction and Result

The Fabry-Pólya gap theorem states that given a strictly increasing sequence Λ := {𝜆𝑛}∞𝑛=1

of non-negative integers diverging to infinity, such that 𝑛/𝜆𝑛 → 𝑑 as 𝑛 → ∞, each power series
of the form

∑︀∞
𝑛=1 𝑎𝑛𝑧

𝜆𝑛 with a finite radius of convergence 𝜌 has at least one singularity on each
open arc whose length exceeds 2𝜋𝜌𝑑 (see [1]). More recent related results have been obtained
in [2], [3], [4].

Pólya generalized the gap result for exponential Dirichlet series as follows. Suppose that
Λ := {𝜆𝑛}∞𝑛=1 is a strictly increasing sequence of positive real numbers diverging to infinity
having finite density 𝑑 and uniformly separated terms, that is,

lim
𝑛→∞

𝑛

𝜆𝑛

= 𝑑 < ∞, and inf
𝑛∈N

(𝜆𝑛+1 − 𝜆𝑛) > 0. (1.1)
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Consider then an exponential Dirichlet series of the form
∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜆𝑛𝑧, 𝑐𝑛 ∈ C,

and suppose that 𝜏 = lim sup𝑛→∞(log |𝑐𝑛|)/𝜆𝑛 is a real number. Assuming the above conditions
on Λ, such a series converges pointwise and absolutely in the half-plane 𝐻−𝜏 := {𝑧 : Re 𝑧 < −𝜏}
and uniformly on compact subsets of 𝐻−𝜏 , thus defining an analytic function in this half-plane.
The line Re 𝑧 = −𝜏 is called the abscissa of convergence. Pólya proved that such a Dirichlet
series has at least one singularity in each open interval whose length exceeds 2𝜋𝑑 and lies on the
abscissa of convergence. For a proof we refer the reader to Boas [5, Thm. 12.7.8] and Levinson
[6, Thm. XXIX] with similar results obtained in [7], [8]. We also point out that if the terms of
the sequence are not uniformly separated, then the Pólya result does not hold. In this case it is
possible that there exists a Dirichlet series with no singularities on the abscissa. A.F. Leont’ev
was the first to construct such an example and more general results on analytic continuation
across the abscissa were obtained by O. A. Krivosheeva [9, Thm. 3.1].

Inspired by Krivosheeva’s result, our goal in this article is to prove that given any non-
negative real number 𝑑, there exists a Taylor-Dirichlet series of the form

∞∑︁
𝑛=1

(︃
𝜇𝑛−1∑︁
𝑘=0

𝑐𝑛,𝑘𝑧
𝑘

)︃
𝑒𝜆𝑛𝑧, 𝑐𝑛,𝑘 ∈ C (1.2)

with no singularities on its abscissa of convergence such that its associated multiplicity-sequence
Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 has density 𝑑 and positive real uniformly separated terms, that is,

lim
𝑡→∞

𝑛Λ(𝑡)

𝑡
= 𝑑 < ∞ and inf

𝑛∈N
(𝜆𝑛+1 − 𝜆𝑛) > 0. (1.3)

where

𝑛Λ(𝑡) :=
∑︁
𝜆𝑛6𝑡

𝜇𝑛

is the counting function of Λ. By a multiplicity-sequence Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 we mean a set with
multiple terms

{𝜆𝑛, 𝜇𝑛}∞𝑛=1 = {𝜆1, 𝜆1, . . . , 𝜆1⏟  ⏞  
𝜇1−𝑡𝑖𝑚𝑒𝑠

, 𝜆2, 𝜆2, . . . , 𝜆2⏟  ⏞  
𝜇2−𝑡𝑖𝑚𝑒𝑠

, . . . , 𝜆𝑘, 𝜆𝑘, . . . , 𝜆𝑘⏟  ⏞  
𝜇𝑘−𝑡𝑖𝑚𝑒𝑠

, . . . }

where {𝜆𝑛}∞𝑛=1 is a strictly increasing sequence of positive real numbers diverging to infinity,
and {𝜇𝑛}∞𝑛=1 is a sequence of positive integers.

We point out that the density condition implies that

lim
𝑛→∞

log 𝑛

𝜆𝑛

= 0 and lim
𝑛→∞

𝜇𝑛

𝜆𝑛

= 0. (1.4)

(for a proof see the Appendix). Assuming (1.4), it then follows from the results by Valiron [10]
that the region of holomorphy of Taylor-Dirichlet series (1.2) is the same with that of the series

𝑓 *(𝑧) =
∞∑︁
𝑛=1

𝐶𝑛𝑒
𝜆𝑛𝑧, 𝐶𝑛 = max{|𝑐𝑛,𝑘| : 𝑘 = 0, 1, 2, . . . , 𝜇𝑛 − 1}.

Letting 𝜏 = lim sup𝑛→∞
log𝐶𝑛

𝜆𝑛
, this region is the half-plane Re 𝑧 < −𝜏 if 𝜏 ∈ R and the complex

plane C if 𝜏 = −∞. The line Re 𝑧 = −𝜏 is called the abscissa of convergence of series (1.2).
Therefore, a natural Fabry-Pólya type problem arises: if a multiplicity-sequence Λ satisfies

(1.3), does its associated Taylor-Dirichlet series (1.2) have at least one singular point in each
open interval whose length exceeds 2𝜋𝑑 and which lies on the abscissa of convergence?
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Of course, as 𝜇𝑛 = 1 for all 𝑛 ∈ N, the answer is affirmative due to Pólya. We will show
however this is not the case if the multiplicities 𝜇𝑛 are allowed to be unbounded. This is the
content of Theorem 1.1. We prove our result based on the work by Krivosheeva [9]. A crucial
role is played by the quantity 𝑆Λ of a multiplicity-sequence Λ, a notion introduced for the first
time by Krivosheev [11]. We point out that 𝑆Λ is similar in nature with the Bernstein-Leont’ev
condensation index and it measures in some sense how close the 𝜆𝑛’s are to each other. The
definition of 𝑆Λ follows below.

Let Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 be a multiplicity-sequence with real or complex 𝜆𝑛. Fix some 𝑤 ∈ C
and some positive real number 𝜂 < 1

10
. Consider the open disk

𝐵(𝑤, 𝜂|𝑤|) = {𝑧 : |𝑧 − 𝑤| < 𝜂|𝑤|}.

For such a disk, construct the polynomial

𝑞Λ(𝑧, 𝑤, 𝜂) =
∏︁

𝜆𝑛∈𝐵(𝑤,𝜂|𝑤|)

(︂
𝑧 − 𝜆𝑛

3𝜂|𝜆𝑛|

)︂𝜇𝑛

.

If 𝑤 = 𝜆𝑘 for some 𝑘 ∈ N, then

𝑞Λ(𝑧, 𝜆𝑘, 𝜂) =
∏︁

𝜆𝑛∈𝐵(𝜆𝑘,𝜂|𝜆𝑘|)

(︂
𝑧 − 𝜆𝑛

3𝜂|𝜆𝑛|

)︂𝜇𝑛

.

We may remove the factor corresponding to 𝑛 = 𝑘 thus obtaining the polynomial

𝑞𝑘Λ(𝑧, 𝜂) = 𝑞Λ(𝑧, 𝜆𝑘, 𝜂)

(︂
𝑧 − 𝜆𝑘

3𝜂|𝜆𝑘|

)︂−𝜇𝑘

=
∏︁

𝜆𝑛∈𝐵(𝜆𝑘,𝜂|𝜆𝑘|)
𝑛 ̸=𝑘

(︂
𝑧 − 𝜆𝑛

3𝜂|𝜆𝑛|

)︂𝜇𝑛

. (1.5)

Evaluating at 𝜆𝑘 gives

𝑞𝑘Λ(𝜆𝑘, 𝜂) =
∏︁

𝜆𝑛∈𝐵(𝜆𝑘,𝜂|𝜆𝑘|)
𝑛 ̸=𝑘

(︂
𝜆𝑘 − 𝜆𝑛

3𝜂|𝜆𝑛|

)︂𝜇𝑛

. (1.6)

We are now ready to define 𝑆Λ. We let

𝑆Λ := lim
𝜂→0

lim inf
𝑘→∞

log |𝑞𝑘Λ(𝜆𝑘, 𝜂)|
|𝜆𝑘|

. (1.7)

Remark 1.1. Since |𝑞𝑘Λ(𝜆𝑘, 𝜂)| < 1, the relation 𝑆Λ 6 0 is always true.

Theorem 1.1. Let 𝑑 be a non-negative real number and let 𝜉 be a real number. Then there
exists a multiplicity sequence Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 satisfying (1.3), and a Taylor-Dirichlet series of
the form

∞∑︁
𝑛=1

(︃
𝜇𝑛−1∑︁
𝑘=0

𝑐𝑛,𝑘𝑧
𝑘

)︃
𝑒𝜆𝑛𝑧,

with

lim sup
𝑛→∞

log𝐶𝑛

𝜆𝑛

= 𝜉, where 𝐶𝑛 = max{|𝑐𝑛,𝑘| : 𝑘 = 0, 1, . . . , 𝜇𝑛 − 1},

so that this series has no singularities on its abscissa of convergence Re 𝑧 = −𝜉.
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2. Proof of Theorem 1.1

Suppose that a multiplicity-sequence Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 has positive real terms and the Valiron
conditions (1.4) are satisfied. Suppose also that 𝑆Λ is negative. Let 𝜉 be a real number and
denote by 𝐶𝜉 the class of all the double-indexed sequences of the form {𝑐𝑛,𝑘 : 𝑛 ∈ N, 𝑘 =
0, 1, . . . 𝜇𝑛 − 1} so that

lim sup
𝑛→∞

log𝐶𝑛

𝜆𝑛

= 𝜉, where 𝐶𝑛 = max{|𝑐𝑛,𝑘| : 𝑘 = 0, 1, . . . , 𝜇𝑛 − 1}.

For each element in the class 𝐶𝜉 consider the Taylor-Dirichlet series (1.2). Since the Valiron
conditions are satisfied, then such a series is analytic in the half-plane Re 𝑧 < −𝜉 having the
line Re 𝑧 = −𝜉 as the abscissa of convergence. Assuming all of the above, O.A. Krivosheeva
proved [9, Thm. 3.1] that there exists a Taylor-Dirichlet series (1.2) having no singularities on
the abscissa and continued analytically in a half-plane Re 𝑧 < −𝜉 + 𝛽 for some 𝛽 > 0.

Hence, in order to prove Theorem 1.1, it suffices to construct a multiplicity-sequence Λ′′

with positive real terms, uniformly separated, having finite density 𝑑 > 0 and 𝑆Λ′′ < 0. Our
first step is to construct such a multiplicity-sequence Λ with density zero. Our second step
is to add a sequence Λ′ having positive density 𝑑, with positive real simple terms which are
uniformly separated. The union of Λ with Λ′ yields a new multiplicity-sequence Λ′′ with the
desired properties.

2.1. First step: an example of Λ with density zero and 𝑆Λ < 0. For each positive
integer 𝑛, consider the set with multiple terms

{𝑛2 · 10𝑛 + 𝑘, 10𝑛} 𝑘 = 1, 2, . . . , 𝑛.

That is:
for 𝑛 = 1 we have {11, 10}, meaning that the number 11 is repeated 10 times,
for 𝑛 = 2 we have {401, 100} and {402, 100},
for 𝑛 = 3 we have {9001, 1000}, {9002, 1000} and {9003, 1000},
and so on. Consider then the infinite set

{𝑛2 · 10𝑛 + 𝑘, 10𝑛} 𝑛 ∈ N 𝑘 = 1, 2, . . . , 𝑛,

and rewrite it as a multiplicity-sequence Λ = {𝜆𝑛, 𝜇𝑛}∞𝑛=1 such that

𝜆1 = 11, 𝜆2 = 401, 𝜆3 = 402, 𝜆4 = 9001, 𝜆5 = 9002, 𝜆6 = 9003, . . .

with respective multiplicities

𝜇1 = 10, 𝜇2 = 100, 𝜇3 = 100, 𝜇4 = 1000, 𝜇5 = 1000, 𝜇6 = 1000, . . .

We observe that for each 𝜆𝑛 there is some 𝑚 ∈ N and 𝑖 ∈ {1, 2, . . . ,𝑚} so that

𝜆𝑛 = 𝑚2 · 10𝑚 + 𝑖 and 𝜇𝑛 = 10𝑚.

Now, if 𝜆𝑛 = 𝑚2 · 10𝑚 + 1 with 𝜇𝑛 = 10𝑚, then its previous term 𝜆𝑛−1 will be 𝜆𝑛−1 =
(𝑚− 1)2 · 10𝑚−1 + 𝑚− 1 with 𝜇𝑛−1 = 10𝑚−1. If however 𝜆𝑛 = 𝑚2 · 10𝑚 + 𝑖 for 𝑖 > 1, then its
previous 𝑖 − 1 terms will be 𝜆𝑛−𝑘 = 𝑚2 · 10𝑚 + 𝑖 − 𝑘 for 𝑘 = 1, 2, . . . , 𝑖 − 1 with multiplicities
𝜇𝑛−𝑘 = 10𝑚.

We now claim that the following three conditions hold:
(1) 𝜇𝑛

𝜆𝑛
→ 0 as 𝑛 → ∞,

(2) Λ has density zero,
(3) 𝑆Λ < 0.
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Condition (1) is obvious and we proceed with (2). For each 𝑡 > 0, there is a unique 𝑛 ∈ N
such that 𝜆𝑛 6 𝑡 but 𝜆𝑛+1 > 𝑡. Write 𝑢𝑡,𝑛 = 𝑡− 𝜆𝑛. Then

𝑛Λ(𝑡)

𝑡
=

∑︀
𝜆𝑛6𝑡 𝜇𝑛

𝑡
=

𝜇1 + 𝜇2 + · · · + 𝜇𝑛

𝜆𝑛 + 𝑢𝑡,𝑛

=
10 + 2 · 102 + 3 · 103 + · · · + (𝑚− 1) · 10𝑚−1 + 𝑖 · 10𝑚

𝑚2 · 10𝑚 + 𝑖 + 𝑢𝑡,𝑛

.

Thus

𝑛Λ(𝑡)

𝑡
<

𝑚

𝑚2 · 10𝑚
(10 + 102 + 103 + · · · + 10𝑚) =

1

𝑚 · 10𝑚
· 10(10𝑚 − 1)

9
.

As 𝑡 → ∞, then 𝑛 and 𝑚 tend to infinity as well, hence, the right hand-side of this inequality
converges to 0, thus Λ has zero density.

Next we show that condition (3) holds as well. From (1.6) we get

log |𝑞𝑘Λ(𝜆𝑘, 𝜂)| =
∑︁

0<|𝜆𝑘−𝜆𝑛|<𝜂|𝜆𝑘|

𝜇𝑛 log

⃒⃒⃒⃒
𝜆𝑘 − 𝜆𝑛

3𝜂𝜆𝑛

⃒⃒⃒⃒
.

As before, we write 𝜆𝑘 = 𝑚2 · 10𝑚 + 𝑖 for some 𝑚 ∈ N and 𝑖 ∈ {1, 2, . . . ,𝑚}. Observe that for
𝜂 < 1/10 the only 𝜆𝑛 satisfying the inequality 0 < |𝜆𝑘 − 𝜆𝑛| < 𝜂|𝜆𝑘| are the ones of the form
𝜆𝑛 = 𝑚2 · 10𝑚 + 𝑗 for 𝑗 ∈ {1, 2, . . . ,𝑚} ∖ {𝑖} with multiplicity 𝜇𝑛 = 10𝑚. For these 𝜆𝑛 we have⃒⃒⃒⃒

𝜆𝑘 − 𝜆𝑛

3𝜂𝜆𝑛

⃒⃒⃒⃒
<

𝑚

3𝜂 ·𝑚2 · 10𝑚
=

1

3𝜂 ·𝑚 · 10𝑚

and

𝜇𝑛 log

⃒⃒⃒⃒
𝜆𝑘 − 𝜆𝑛

3𝜂𝜆𝑛

⃒⃒⃒⃒
< 10𝑚 · log

1

3𝜂 ·𝑚 · 10𝑚
.

Thus ∑︁
0<|𝜆𝑘−𝜆𝑛|<𝜂|𝜆𝑘|

𝜇𝑛 log

⃒⃒⃒⃒
𝜆𝑘 − 𝜆𝑛

3𝜂𝜆𝑛

⃒⃒⃒⃒
< 𝑚 · 10𝑚 · log

1

3𝜂 ·𝑚 · 10𝑚
.

Hence,

log |𝑞𝑘Λ(𝜆𝑘, 𝜂)|
𝜆𝑘

< −𝑚 · 10𝑚 · log 3𝜂

2 ·𝑚2 · 10𝑚
− 𝑚 · 10𝑚 · log𝑚

2 ·𝑚2 · 10𝑚
− 𝑚 · 10𝑚 · log 10𝑚

2 ·𝑚2 · 10𝑚
.

Therefore,

log |𝑞𝑘Λ(𝜆𝑘, 𝜂)|
𝜆𝑘

< − log 3𝜂

2𝑚
− log𝑚

2𝑚
− log

√
10.

As 𝑘 → ∞, we have 𝑚 → ∞ as well. Observe also that the right hand-side of this inequality
converges to − log

√
10 as 𝑚 → ∞. Therefore,

lim inf
𝑘→∞

log |𝑞𝑘Λ(𝜆𝑘, 𝜂)|
𝜆𝑘

6 − log
√

10, ∀ 𝜂 ∈ (0, 1/10).

By the definition of 𝑆Λ in (1.7) we get 𝑆Λ 6 − log
√

10, thus 𝑆Λ is negative.
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2.2. Second step: adding a sequence Λ′ with positive density. Consider now a se-
quence Λ′ = {𝜆′

𝑛}∞𝑛=1 with positive real terms, uniformly separated, having density 𝑑 > 0.
For example, let 𝜆′

𝑛 = 𝑛/𝑑 for all 𝑛 ∈ N. Let Λ be the multiplicity-sequence of the previous
subsection and let Λ′′ = {𝜆′′

𝑛, 𝜇
′′
𝑛}∞𝑛=1 where

Λ′′ = Λ ∪ Λ′.

Then Λ′′ has density equal to 𝑑 as well. One also deduces that 𝑆Λ′′ 6 inf{𝑆Λ′ , 𝑆Λ} therefore
𝑆Λ′′ < 0.

To finish the proof of Theorem 1.1 we have to make sure that Λ′′ has uniformly separated
terms. In order to achieve this, we can subtract any terms of Λ′ that may lie in

⋃︀∞
𝑚=1 𝐼𝑚, where

𝐼𝑚 is the interval [︀
𝑚2 · 10𝑚,𝑚2 · 10𝑚 + 𝑚 + 1

]︀
.

We now claim that this subset of Λ′ removed has density zero. Indeed, assuming that 𝜆′
𝑛+1−𝜆′

𝑛 >
𝛿 for some 𝛿 > 0 for all 𝑛 ∈ N, then (𝑚 + 2)/𝛿 is an upper bound for the number of terms of

Λ′ in the interval 𝐼𝑚. Hence 𝑘2/𝛿 is an upper bound for such terms in the finite union
⋃︀𝑘

𝑚=1 𝐼𝑚
and this is also an upper bound for the terms removed in the interval [0, 𝑘2 · 10𝑘 + 𝑘 + 1]. We
then easily deduce that the set removed has density zero. Hence the remaining set, rename it
as Λ′, has density 𝑑.

Letting again Λ′′ = Λ ∪ Λ′, gives a multiplicity-sequence with density 𝑑, positive real terms
and 𝑆Λ′′ < 0. Observe also that due to the removal of any possible terms of Λ′ lying in

⋃︀∞
𝑚=1 𝐼𝑚,

the terms of Λ′′ will now be uniformly separated, thus achieving our goal. The proof of Theorem
1.1 is now finished.

A. The density condition implies (1.4)

Observe that the density condition implies that sup𝑛∈N 𝑛/𝜆𝑛 < ∞. Hence the first condition
in (1.4) is valid since

log 𝑛

𝜆𝑛

=
log 𝑛

𝑛
· 𝑛

𝜆𝑛

→ 0, 𝑛 → ∞.

Suppose now that the second condition in (1.4) does not hold. Then there is some 𝜏 > 0 and
a subsequence {𝜆𝑛𝑘

, 𝜇𝑛𝑘
}∞𝑘=1 so that 𝜇𝑛𝑘

/𝜆𝑛𝑘
> 𝜏 for all 𝑘 ∈ N. Since Λ has density 𝑑, then for

every 𝜖 > 0 there is some 𝑡(𝜖) so that

𝑑− 𝜖 6
𝑛Λ(𝑡)

𝑡
6 𝑑 + 𝜖, ∀ 𝑡 > 𝑡(𝜖).

Taking 𝜖 = 𝜏/10, we have

𝑑− 𝜏

10
6

𝑛Λ(𝑡)

𝑡
6 𝑑 +

𝜏

10
, ∀ 𝑡 > 𝑡(𝜏/10).

Now, for each 𝑡 > 0, there is some 𝑛 ∈ N such that 𝜆𝑛 6 𝑡 but 𝜆𝑛+1 > 𝑡. Let 𝑢𝑡,𝑛 := 𝑡− 𝜆𝑛 for
𝑡 ∈ [𝜆𝑛, 𝜆𝑛+1). From this point on we assume that all 𝜆𝑛 > 𝑡(𝜏/10). Hence we have

𝑑− 𝜏

10
6

𝜇1 + 𝜇2 + · · · + 𝜇𝑛

𝜆𝑛 + 𝑢𝑡,𝑛

6 𝑑 +
𝜏

10
, ∀ 𝑡 ∈ [𝜆𝑛, 𝜆𝑛+1).

Thus,

𝑑− 𝜏

10
6

𝜇1 + 𝜇2 + · · · + 𝜇𝑛𝑘

𝜆𝑛𝑘
+ 𝑢𝑡,𝑛𝑘

6 𝑑 +
𝜏

10
, ∀ 𝑡 ∈ [𝜆𝑛𝑘

, 𝜆𝑛𝑘+1).

where we assumed earlier that 𝜇𝑛𝑘
/𝜆𝑛𝑘

> 𝜏 for all 𝑘 ∈ N. Letting 𝑡 = 𝜆𝑛𝑘
, thus 𝑢𝑡,𝑛𝑘

= 0, gives

𝑑− 𝜏

10
6

𝜇1 + 𝜇2 + · · · + 𝜇𝑛𝑘

𝜆𝑛𝑘

6 𝑑 +
𝜏

10
. (A.1)
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Similarly we have

𝑑− 𝜏

10
6

𝜇1 + 𝜇2 + · · · + 𝜇𝑛𝑘−1

𝜆𝑛𝑘−1 + 𝑢𝑡,𝑛𝑘−1

6 𝑑 +
𝜏

10
, ∀ 𝑡 ∈ [𝜆𝑛𝑘−1, 𝜆𝑛𝑘

).

Observe now that 𝜆𝑛𝑘−1 + 𝑢𝑡,𝑛𝑘−1 → 𝜆𝑛𝑘
as 𝑡 → 𝜆−

𝑛𝑘
. Then we get

𝑑− 𝜏

10
6

𝜇1 + 𝜇2 + · · · + 𝜇𝑛𝑘−1

𝜆𝑛𝑘

6 𝑑 +
𝜏

10
.

Since 𝜇𝑛𝑘
/𝜆𝑛𝑘

> 𝜏 then

𝜇1 + 𝜇2 + · · · + 𝜇𝑛𝑘−1 + 𝜇𝑛𝑘

𝜆𝑛𝑘

> 𝑑− 𝜏

10
+ 𝜏 = 𝑑 +

9𝜏

10
.

But this contradicts the right hand-side of inequality (𝐴.1), thus the second condition in (1.4)
is indeed valid.
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