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ALGEBRAIC PROPERTIES OF

QUASILINEAR TWO-DIMENSIONAL LATTICES

CONNECTED WITH INTEGRABILITY

I.T. HABIBULLIN, M.N. POPTSOVA

Abstract. In the paper we discuss a classification method for nonlinear integrable equa-
tions with three independent variables based on the notion of the integrable reductions. We
call an equation integrable if it admits a large class of reductions being Darboux integrable
systems of hyperbolic type equations with two independent variables. The most natural
and convenient object to be studied in the framework of this scheme is the class of two
dimensional lattices generalizing the well-known Toda lattice. In the present article we
study the quasilinear lattices of the form

𝑢𝑛,𝑥𝑦 =𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝑢𝑛,𝑥𝑢𝑛,𝑦 + 𝛽(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝑢𝑛,𝑥

+ 𝛾(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)𝑢𝑛,𝑦 + 𝛿(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1).

We specify the coefficients of the lattice assuming that there exist cutting off conditions
which reduce the lattice to a Darboux integrable hyperbolic type system of the arbitrarily
high order. Under some extra assumption of nondegeneracy we describe the class of the
lattices integrable in the above sense. There are new examples in the obtained list of chains.

Keywords: two-dimensional integrable lattice, 𝑥-integral, integrable reduction, cut-off
condition, open chain, Darboux integrable system, characteristic Lie algebra
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1. Introduction

Integrable equations with three independent variables have a wide range of applications in
physics. It suffices to recall such well-known nonlinear models as the KP equation, the Davey-
Stewartson equation, the Toda lattice equation, and so on. From the point of view of integration
and classification, multidimensional equations are the most complex. Different approaches to
study the integrable multidimensional models were discussed, for example, in the papers [1]–[9].
It is known that the symmetry approach [10, 11], which proved to be a very effective method for
classifying integrable equations in 1 + 1 dimensions, is not so effective in the multidimensional
case [12]. For studying multidimensional equations, the idea of the reduction is often used, and
the matter is to replace an equation by a system of equations with less independent variables.
The existence of a wide class of integrable reductions with two independent variables, as a
rule, indicates the integrability of an equation with three independent variables. Among the
specialists, the most popular method is the method of hydrodynamic reductions, when the
presence of an infinite set of integrable systems of hydrodynamic type is taken as a sign of
integrability of the equation, and the general solution of each such system generates some
solution to the considered equation (see, for example, [13], [1], [2]). The history of the method
and related references can be found in survey [3].
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In our works [14, 15] we use an alternative approach. We call a given equation integrable if it
admits an infinite class of reductions in the form of Darboux-integrable systems of hyperbolic
partial differential equations with two independent variables. In solving classification problems
for multidimensional equations in this formulation, the theory of characteristic Lie algebras can
be employed (a detailed exposition can be found in [17, 18]). This direction in the integrability
theory seems to us promising.

Consider a nonlinear chain

𝑢𝑛,𝑥𝑦 = 𝑓(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛,𝑥, 𝑢𝑛,𝑦) (1.1)

with three independent variables, where the uknown function 𝑢 = 𝑢𝑛(𝑥, 𝑦) depends on real 𝑥,
𝑦, and on integer 𝑛. For chain (1.1), the desired finite-field reductions are obtained in a natural
way. It is sufficient to break off appropriately the chain at two integer points

𝑢𝑁1 = 𝜙1(𝑥, 𝑦, 𝑢𝑁1+1, . . .), (1.2)

𝑢𝑛,𝑥𝑦 = 𝑓(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛,𝑥, 𝑢𝑛,𝑦), 𝑁1 < 𝑛 < 𝑁2, (1.3)

𝑢𝑁2 = 𝜙2(𝑥, 𝑦, 𝑢𝑁2−1, . . .). (1.4)

Examples of such boundary conditions can be found below (see (4.28), (4.29)). The following
two very significant circumstances should be noted:

i) for each known integrable chain of form (1.1), there are cut-off conditions reducing it to a
Darboux-integrable system of form (1.2)-(1.4) of arbitrarily large order 𝑁 = 𝑁2 −𝑁1 − 1;

ii) specific form of the functions 𝜙1, 𝜙2, and 𝑓 is constructively determined by the requirement
of integrability of the system in the Darboux sense.

These two facts serve as motivation for the following definition (see also the work [14]):

Definintion 1. A chain (1.1) is called integrable if there exist functions 𝜙1 and 𝜙2 such
that for each choice of a pair of integers 𝑁1, 𝑁2, where 𝑁1 < 𝑁2 − 1, hyperbolic type system
(1.2)–(1.4) is Darboux integrable.

In the present paper we study quasilinear chains of the following form

𝑢𝑛,𝑥𝑦 = 𝛼𝑢𝑛,𝑥𝑢𝑛,𝑦 + 𝛽𝑢𝑛,𝑥 + 𝛾𝑢𝑛,𝑦 + 𝛿, (1.5)

assuming that the functions 𝛼 = 𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), 𝛽 = 𝛽(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), 𝛾 = 𝛾(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1),
𝛿 = 𝛿(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) are analytic in a domain 𝐷 ⊂ C3. We also assume that the derivatives

𝜕𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)

𝜕𝑢𝑛+1

and
𝜕𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)

𝜕𝑢𝑛−1

(1.6)

are non-zero.
The main result of this paper is the proof of the following assertion.

Theorem 1. The quasilinear chain (1.5), (1.6) is integrable in the sense of Definition 1 if
and only if it is reduced by point transformations to one of the following forms

𝑖) 𝑢𝑛,𝑥𝑦 = 𝛼𝑛𝑢𝑛,𝑥𝑢𝑛,𝑦,

𝑖𝑖) 𝑢𝑛,𝑥𝑦 = 𝛼𝑛(𝑢𝑛,𝑥𝑢𝑛,𝑦 − 𝑢𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦) + 𝑢2
𝑛) + 𝑢𝑛,𝑥 + 𝑢𝑛,𝑦 − 𝑢𝑛,

𝑖𝑖𝑖) 𝑢𝑛,𝑥𝑦 = 𝛼𝑛(𝑢𝑛,𝑥𝑢𝑛,𝑦 − 𝑠𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦) + 𝑠2𝑛) + 𝑠′𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦 − 𝑠𝑛),

where

𝑠𝑛 = 𝑢2
𝑛 + 𝐶, 𝑠′𝑛 = 2𝑢𝑛, 𝛼𝑛 =

1

𝑢𝑛 − 𝑢𝑛−1

− 1

𝑢𝑛+1 − 𝑢𝑛

,

𝐶 is an arbitrary constant.

We note that equation i) was found earlier in the papers [27], [28] by Ferapontov, Shabat and
Yamilov, equations ii) and iii) appear to be new. By applying additional conditions of the form
𝑥 = ±𝑦 to the equations i)-iii), we obtain 1 + 1-dimensional integrable chains. It can be shown
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that by point transformations they are reduced to the equations found earlier by Yamilov (see
[29]).

Following Definition 1, we suppose that in the integrable case there are cut-off conditions at
two integer points 𝑛 = 𝑁1, 𝑛 = 𝑁2 (𝑁1 < 𝑁2 − 1), which reduce chain (1.5) to a finite system
of hyperbolic equations

𝑢𝑁1 = 𝜙1,

𝑢𝑛,𝑥𝑦 = 𝛼𝑛𝑢𝑛,𝑥𝑢𝑛,𝑦 + 𝛽𝑛𝑢𝑛,𝑥 + 𝛾𝑛𝑢𝑛,𝑦 + 𝛿𝑛, 𝑁1 < 𝑛 < 𝑁2, (1.7)

𝑢𝑁2 = 𝜙2, (1.8)

integrable in the Darboux sense.
We recall that the system of partial differential equations of the hyperbolic type (1.7) is Dar-

boux integrable if it possesses a complete set of functionally independent 𝑥− and 𝑦−integrals.
A function 𝐼 depending on a finite set of dynamical variables u,u𝑥,u𝑦, . . . is called a 𝑦-integral
if it satisfies the equation 𝐷𝑦𝐼 = 0, where 𝐷𝑦 is the operator of total differentiation with respect
to the variable 𝑦, and the vector u has the coordinates 𝑢𝑁1+1, 𝑢𝑁1+2, . . . , 𝑢𝑁2−1. Since system
(1.7) is autonomous, we consider only autonomous nontrivial integrals. It can be shown that
an 𝑦−integral is independent of u𝑦, u𝑦𝑦, . . . Therefore, we will consider only 𝑦-integrals depend-
ing on at least one dynamic variable u,u𝑥, . . . We note that nowadays the Darboux integrable
discrete and continuous models are intensively studied (see, [14], [17], [19]-[26]).

We give one more argument in favor of our Definition 1 concerning the integrability property
of a two-dimensional chain. The problem on finding a general solution to a Darboux-integrable
system reduces to solving a system of ordinary differential equations. Usually these ODEs are
solved explicitly. On the other hand, any solution of the considered hyperbolic system (1.7)
easily extends beyond the interval [𝑁1, 𝑁2] and generates the solution of the corresponding
chain (1.5). Therefore, in this case chain (1.5) has a large set of exact solutions.

Let us briefly explain the structure of the paper. In Section 2 we recall the needed definitions
and study the basic properties of the characteristic Lie algebra, which is the main tool in
the theory of Darboux-integrable systems. In Section 3 we introduce the definition of test
sequences, by means of which we obtain a system of differential equations for the refinement of
the functions 𝛼, 𝛽, 𝛾. Section 4 is devoted to the search for the function 𝛿. Here we also give
the final form of desired chain (4.27) integrable in the sense of Definition 1 and we provide the
proof of Theorem 1.

2. Characteristic Lie algebras

Since chain (1.5) is invariant under the shift of the variable 𝑛, without loss of generality we
can put 𝑁1 = −1. In what follows we consider a system of hyperbolic equations

𝑢−1 = 𝜙1,

𝑢𝑛,𝑥𝑦 = 𝛼𝑛𝑢𝑛,𝑥𝑢𝑛,𝑦 + 𝛽𝑛𝑢𝑛,𝑥 + 𝛾𝑛𝑢𝑛,𝑦 + 𝛿𝑛, 0 6 𝑛 6 𝑁, (2.1)

𝑢𝑁+1 = 𝜙2.

Recall that here 𝛼𝑛 = 𝛼(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1), 𝛽𝑛 = 𝛽(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1), 𝛾𝑛 = 𝛾(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1), 𝛿𝑛 =
𝛿(𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1). Suppose that system (2.1) is Darboux integrable and that 𝐼(u,u𝑥, . . .) is its
nontrivial 𝑦-integral. The latter means that the function 𝐼 must satisfy the equation 𝐷𝑦𝐼 = 0,
where 𝐷𝑦 is the operator of total derivative with respect to the variable 𝑦. The operator 𝐷𝑦

acts on the class of functions of the form 𝐼(u,u𝑥, . . .) by the rule 𝐷𝑦𝐼 = 𝑌 𝐼, where

𝑌 =
𝑁∑︁
𝑖=0

(︂
𝑢𝑖,𝑦

𝜕

𝜕𝑢𝑖

+ 𝑓𝑖
𝜕

𝜕𝑢𝑖,𝑥

+ 𝑓𝑖,𝑥
𝜕

𝜕𝑢𝑖,𝑥𝑥

+ · · ·
)︂
. (2.2)

Here 𝑓𝑖 = 𝛼𝑖𝑢𝑖,𝑥𝑢𝑖,𝑦 + 𝛽𝑖𝑢𝑖,𝑥 + 𝛾𝑖𝑢𝑖,𝑦 + 𝛿𝑖 is the right hand side of lattice (1.5). Hence, the
function 𝐼 solves the equation 𝑌 𝐼 = 0. The coefficients of the equation 𝑌 𝐼 = 0 depend on the
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variables 𝑢𝑖,𝑦, while its solution 𝐼 is independent of 𝑢𝑖,𝑦, therefore the function 𝐼 in fact satisfies
the system of linear equations:

𝑌 𝐼 = 0, 𝑋𝑗𝐼 = 0, 𝑗 = 1, . . . , 𝑁, (2.3)

where 𝑋𝑖 = 𝜕
𝜕𝑢𝑖,𝑦

. It follows from (2.3) that the commutator 𝑌𝑖 = [𝑋𝑖, 𝑌 ] of the operators 𝑌

and 𝑋𝑖 for 𝑖 = 0, 1, . . . 𝑁 also annuls 𝐼. We use the explicit coordinate representation of the
operator 𝑌𝑖:

𝑌𝑖 =
𝜕

𝜕𝑢𝑖

+ 𝑋𝑖(𝑓𝑖)
𝜕

𝜕𝑢𝑖,𝑥

+ 𝑋𝑖(𝐷𝑥𝑓𝑖)
𝜕

𝜕𝑢𝑖,𝑥𝑥

+ · · · (2.4)

By the special form of the function 𝑓𝑖, the operator 𝑌 can be represented as

𝑌 =
𝑁∑︁
𝑖=0

𝑢𝑖,𝑦𝑌𝑖 + 𝑅, (2.5)

where

𝑅 =
𝑁∑︁
𝑖=0

(𝑓𝑖 − 𝑢𝑖,𝑦𝑋𝑖(𝑓𝑖))
𝜕

𝜕𝑢𝑖,𝑥

+ (𝑓𝑖,𝑥 − 𝑢𝑖,𝑦𝑋𝑖(𝐷𝑥𝑓𝑖))
𝜕

𝜕𝑢𝑖,𝑥𝑥

+ · · ·

=
𝑁∑︁
𝑖=0

(𝛽𝑖𝑢𝑖,𝑥 + 𝛿𝑖)
𝜕

𝜕𝑢𝑖,𝑥

+
(︀
(𝛼𝑖𝑢𝑖,𝑥 + 𝛾𝑖)(𝛽𝑖𝑢𝑖,𝑥 + 𝛿𝑖) + 𝐷𝑥(𝛽𝑖𝑢𝑖,𝑥 + 𝛿𝑖)

)︀ 𝜕

𝜕𝑢𝑖,𝑥𝑥

+ · · ·

(2.6)

We denote by F the ring of locally analytic functions of the dynamical variables u, u𝑥, u𝑦,
. . . We consider the Lie algebra ℒ(𝑦,𝑁) over the ring F generated by the differential operators
𝑌 , 𝑌0, 𝑌1, . . . , 𝑌𝑁 . It is clear that the commutator of two vector fields and the multiplication
of a vector field by a function satisfy the following conditions:

[𝑍, 𝑔𝑊 ] = 𝑍(𝑔)𝑊 + 𝑔[𝑍,𝑊 ], (2.7)

(𝑔𝑍)ℎ = 𝑔𝑍(ℎ), (2.8)

where 𝑍,𝑊 ∈ ℒ(𝑦,𝑁), 𝑔, ℎ ∈ F. Consequently, the pair (F,ℒ(𝑦,𝑁)) has the structure of
the Lie-Rinehart algebra1 (see [30]). We call this algebra the characteristic Lie algebra of the
system of equations (2.1) along the direction 𝑦. It is well known (see [20, 17]) that the function
𝐼 is a 𝑦-integral of the system (2.1) if and only if it belongs to the kernel of each operator in
ℒ(𝑦,𝑁). Since the 𝑦-integral depends only on a finite number of dynamic variables, we can
use the well-known Jacobi theorem on the existence of a nontrivial solution of a system to
first-order linear differential equations with one unknown function. By this theorem, it is easy
to confirm that in the Darboux integrable case in the algebra ℒ(𝑦,𝑁) there exists a finite basis
𝑍1, 𝑍2, . . . 𝑍𝑘, consisting of linearly independent operators such that each element 𝑍 of ℒ(𝑦,𝑁)
can be represented as a linear combination 𝑍 = 𝑎1𝑍1 + 𝑎2𝑍2 + . . . 𝑎𝑘𝑍𝑘, where the coefficients
𝑎1, 𝑎2, . . . , 𝑎𝑘 are analytic functions of dynamical variables defined in some open set. Moreover,
the identity 𝑎1𝑍1 + 𝑎2𝑍2 + . . . 𝑎𝑘𝑍𝑘 = 0 implies that 𝑎1 = 𝑎2 = . . . = 𝑎𝑘 = 0. In this case, we
call the algebra ℒ(𝑦,𝑁) finite-dimensional. Similarly, we can define the characteristic algebra
ℒ(𝑥,𝑁) in the direction 𝑥. It is clear that the system (2.1) is Darboux integrable if and only
if the characteristic algebras in both directions are finite-dimensional.

For the sake of convenience, we introduce the notation ad𝑋(𝑍) := [𝑋,𝑍]. We note that in
our study the operator ad𝐷𝑥 plays a key role. Below we shall apply 𝐷𝑥 to smooth functions
depending on dynamical variables u,u𝑥,u𝑥𝑥, . . .. As it has been shown above, the operators
𝐷𝑦 and 𝑌 coincide on this class of functions. Therefore, the identity [𝐷𝑥, 𝐷𝑦] = 0 immediately
implies [𝐷𝑥, 𝑌 ] = 0. Replacing 𝑌 by virtue of (2.5), and collecting in the resulting relation the

coefficients of the independent variables {𝑢𝑖,𝑦}𝑁𝑖=0, we obtain

[𝐷𝑥, 𝑌𝑖] = −𝑎𝑖𝑌𝑖, where 𝑎𝑖 = 𝛼𝑖𝑢𝑖,𝑥 + 𝛾𝑖. (2.9)

1We thank D.V. Millionshchikov who drew our attention to this circumstance.
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It is clear that the operator ad𝐷𝑥 takes the characteristic Lie algebra into itself. The next
lemma describes the kernel of this mapping.

Lemma 1. [16, 18, 17] If the vector field of the form

𝑍 =
∑︁
𝑖

𝑧1,𝑖
𝜕

𝜕𝑢𝑖,𝑥

+ 𝑧2,𝑖
𝜕

𝜕𝑢𝑖,𝑥𝑥

+ · · · (2.10)

solves the equation [𝐷𝑥, 𝑍] = 0, then 𝑍 = 0.

3. Method of test sequences

We call the sequence of operators 𝑊0,𝑊1,𝑊2, . . . in the algebra ℒ(𝑦,𝑁) a test sequence if

[𝐷𝑥,𝑊𝑚] =
𝑚∑︁
𝑗=0

𝑤𝑗,𝑚𝑊𝑗 (3.1)

holds for all 𝑚. The test sequence allows us to derive the integrability conditions for a system
of hyperbolic type (2.1) (see [19], [17], [20]). Indeed, assume that (2.1) is Darboux integrable.
Then among the operators 𝑊0,𝑊1,𝑊2, . . . there is only a finite set of linearly independent
elements in terms of which all the other operators can be expressed. In other words, there
exists an integer 𝑘 such that the operators 𝑊0, . . .𝑊𝑘 are linearly independent and 𝑊𝑘+1 is
expressed as follows:

𝑊𝑘+1 = 𝜆𝑘𝑊𝑘 + · · · + 𝜆0𝑊0. (3.2)

We apply the operator ad𝐷𝑥 to both sides of identity (3.2). As a result, we obtain the relation

𝑘∑︁
𝑗=0

𝑤𝑗,𝑘+1𝑊𝑗 + 𝑤𝑘+1,𝑘+1

𝑘∑︁
𝑗=0

𝜆𝑗𝑊𝑗

=
𝑘∑︁

𝑗=0

𝐷𝑥(𝜆𝑗)𝑊𝑗 + 𝜆𝑘

𝑘∑︁
𝑗=0

𝑤𝑗,𝑘𝑊𝑗 + 𝜆𝑘−1

𝑘−1∑︁
𝑗=0

𝑤𝑗,𝑘−1𝑊𝑗 + · · · + 𝜆0𝑤0,0𝑊0.

(3.3)

Collecting coefficients at independent operators, we obtain a system of differential equations for
the coefficients 𝜆0, 𝜆1, . . . 𝜆𝑘. The resulting system is overdetermined, since 𝜆𝑗 is a function of
a finite number of dynamical variables u,u𝑥, . . .. The compatibility conditions for this system
define the integrability conditions for (2.1). For example, collecting the coefficients at 𝑊𝑘, we
get the first equation of the mentioned system:

𝐷𝑥(𝜆𝑘) = 𝜆𝑘(𝑤𝑘+1,𝑘+1 − 𝑤𝑘,𝑘) + 𝑤𝑘,𝑘+1, (3.4)

which is also overdetermined.
Below in this section, we use two test sequences to refine the form of the functions 𝛼𝑛, 𝛽𝑛,

𝛾𝑛.

3.1. First test sequence. Let us define a sequence of operators in the characteristic algebra
ℒ(𝑦,𝑁) by the following recurrence formula:

𝑌0, 𝑌1, 𝑊1 = [𝑌0, 𝑌1] , 𝑊2 = [𝑌0,𝑊1] , . . .𝑊𝑘+1 = [𝑌0,𝑊𝑘] , . . . (3.5)

Above (see (2.9)), the commutation relations for the first two terms of this sequence were
derived:

[𝐷𝑥, 𝑌0] = −𝑎0𝑌0 = −(𝛼0𝑢0,𝑥 + 𝛾0)𝑌0, [𝐷𝑥, 𝑌1] = −𝑎1𝑌1 = −(𝛼1𝑢1,𝑥 + 𝛾1)𝑌1. (3.6)

Applying the Jacobi identity and using the last formulae, we derive:

[𝐷𝑥,𝑊1] = −(𝑎0 + 𝑎1)𝑊1 − 𝑌0(𝑎1)𝑌1 + 𝑌1(𝑎0)𝑌0. (3.7)

We can prove by induction that (3.5) is a test sequence. Moreover, for each 𝑘 > 2 the formula

[𝐷𝑥,𝑊𝑘] = 𝑝𝑘𝑊𝑘 + 𝑞𝑘𝑊𝑘−1 + · · · , (3.8)
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holds true, where the functions 𝑝𝑘, 𝑞𝑘 are found by the rule

𝑝𝑘 = −(𝑎1 + 𝑘𝑎0), 𝑞𝑘 =
𝑘 − 𝑘2

2
𝑌0(𝑎0) − 𝑌0(𝑎1)𝑘. (3.9)

By assumption,there exists only a finite set of linearly independent elements of the sequence
(3.5) in the algebra ℒ(𝑦,𝑁). Hence, there exists a natural 𝑀 such that

𝑊𝑀 = 𝜆𝑊𝑀−1 + · · · , (3.10)

the operators 𝑌0, 𝑌1,𝑊1, . . . ,𝑊𝑀−1 are linearly independent, and the dots stand for a linear
combination of the operators 𝑌0, 𝑌1, 𝑊1, . . . , 𝑊𝑀−2.

Lemma 2. The operators 𝑌0, 𝑌1,𝑊1 are linearly independent.

Proof. Let us assume the contrary, namely, that the identity holds:

𝜆1𝑊1 + 𝜇1𝑌1 + 𝜇0𝑌0 = 0. (3.11)

The operators 𝑌0, 𝑌1 are of the form 𝑌0 = 𝜕
𝜕𝑢0

+ · · · , 𝑌1 = 𝜕
𝜕𝑢1

+ · · · , while 𝑊1 contain no terms

of the form 𝜕
𝜕𝑢0

and 𝜕
𝜕𝑢1

. Hence, the coefficients 𝜇1, 𝜇0 are zero. If, in addition, 𝜆1 ̸= 0, then

𝑊1 = 0. We apply the operator ad𝐷𝑥 to both sides of the last identity, then by (3.7) we obtain
the equation

𝑌0(𝑎1)𝑌1 − 𝑌1(𝑎0)𝑌0 = 0.

It implies:
𝑌0(𝑎1) = 𝛼1,𝑢0𝑢1,𝑥 + 𝛾1,𝑢0 = 0, 𝑌1(𝑎0) = 𝛼0,𝑢1𝑢0,𝑥 + 𝛾0,𝑢1 = 0.

Due to the independence of the variables 𝑢0,𝑥 and 𝑢1,𝑥, we obtain 𝛼1,𝑢0 = 𝛼0,𝑢1 = 0. But this

contradicts the assumption of (1.6) that 𝜕𝛼(𝑢𝑛+1,𝑢𝑛,𝑢𝑛−1)
𝜕𝑢𝑛±1

̸= 0. The proof is complete.

Lemma 3. If the expansion of form (3.10) holds, then

𝛼(𝑢1, 𝑢0, 𝑢−1) =
𝑃 ′(𝑢0)

𝑃 (𝑢0) + 𝑄(𝑢−1)
+

1

𝑀 − 1

𝑄′(𝑢0)

𝑃 (𝑢1) + 𝑄(𝑢0)
− 𝑐1(𝑢0). (3.12)

Proof. It is not difficult to show that equation (3.4) for the sequence (3.5) is of the form:

𝐷𝑥(𝜆) = −𝑎0𝜆− 𝑀(𝑀 − 1)

2
𝑌0(𝑎0) −𝑀𝑌0(𝑎1). (3.13)

We simplify relation (3.13) using the formulae

𝑌0(𝑎0) =

(︂
𝜕

𝜕𝑢0

+ (𝛼0𝑢0,𝑥 + 𝛾0)
𝜕

𝜕𝑢0,𝑥

)︂
(𝛼0𝑢0,𝑥 + 𝛾0) =

(︀
𝛼0,𝑢0 + 𝛼2

0

)︀
𝑢0𝑥 + 𝛾0,𝑢0 + 𝛼0𝛾0,

𝑌0(𝑎1) =𝛼1,𝑢0𝑢1,𝑥 + 𝛾1,𝑢0 .

(3.14)

A simple analysis of the equation (3.13) shows that 𝜆 = 𝜆(𝑢0, 𝑢1). Therefore, (3.13) is rewritten
as

𝜆𝑢0𝑢0,𝑥 + 𝜆𝑢1𝑢1,𝑥 = −
(︂

(𝛼0𝜆 +
𝑀(𝑀 − 1)

2
(𝛼0,𝑢0 + 𝛼2

0)

)︂
𝑢0,𝑥 −𝑀𝛼1,𝑢0𝑢1,𝑥

−
(︂
𝛾0𝜆 +

𝑀(𝑀 − 1)

2
(𝛾0,𝑢0 + 𝛼0𝛾0) + 𝑀𝛾1,𝑢0

)︂
.

Collecting the coefficients at the independent variables 𝑢0,𝑥, 𝑢1,𝑥, we get an overdetermined
system of differential equations for 𝜆:

𝜆𝑢0 = −𝛼0𝜆− 𝑀(𝑀 − 1)

2
(𝛼0,𝑢0 + 𝛼2

0), 𝜆𝑢1 = −𝑀𝛼1,𝑢0 , (3.15)

𝛾0𝜆 +
𝑀(𝑀 − 1)

2
(𝛾0,𝑢0 + 𝛼0𝛾0) + 𝑀𝛾1,𝑢0 = 0. (3.16)
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Note that equations (3.15) do not involve the function 𝛾 and coincide completely with the
equations studied in our paper [15]. Lemma 3 is implied immediately by Lemma 3.2 in [15]. In
what follows we use equation (3.16) to refine the function 𝛾.

3.2. Second test sequence. We construct a test sequence containing the operators 𝑌0, 𝑌1,
𝑌2 and their multiple commutators:

𝑍0 = 𝑌0, 𝑍1 = 𝑌1, 𝑍2 = 𝑌2, 𝑍3 = [𝑌1, 𝑌0] , 𝑍4 = [𝑌2, 𝑌1] ,

𝑍5 = [𝑌2, 𝑍3] , 𝑍6 = [𝑌1, 𝑍3] , 𝑍7 = [𝑌1, 𝑍4] , 𝑍8 = [𝑌1, 𝑍5] . (3.17)

Elements of the sequence 𝑍𝑚 for 𝑚 > 8 are determined by the recurrence formula 𝑍𝑚 =
[𝑌1, 𝑍𝑚−3]. Note that this is the simplest test sequence generated by iterations of the map
𝑍 → [𝑌1, 𝑍], which contains the operator [𝑌2, [𝑌1, 𝑌0]] = 𝑍5.

Lemma 4. The operators 𝑍0, 𝑍1, . . . 𝑍5 are linearly independent.

Proof. Arguing as in the proof of Lemma 1, we confirm that the operators 𝑍0, 𝑍1, . . . , 𝑍4 are
linearly independent. Let us prove Lemma 4 by contradiction. Assume that

𝑍5 =
4∑︁

𝑗=0

𝜆𝑗𝑍𝑗. (3.18)

First we derive the formulae describing the action of the operator ad𝐷𝑥 on the operators 𝑍𝑖.
For 𝑖 = 0, 1, 2, the needed formulae are immediately obtained from the relation

[𝐷𝑥, 𝑌𝑖] = −𝑎𝑖𝑌𝑖.

Recall that 𝑎𝑖 = 𝛼𝑖𝑢𝑖,𝑥 + 𝛾𝑖 = 𝛼(𝑢𝑖−1, 𝑢𝑖, 𝑢𝑖+1)𝑢𝑖,𝑥 + 𝛾(𝑢𝑖−1, 𝑢𝑖, 𝑢𝑖+1). For 𝑖 = 3, 4, 5 we have

[𝐷𝑥, 𝑍3] = −(𝑎1 + 𝑎0)𝑍3 + · · · ,
[𝐷𝑥, 𝑍4] = −(𝑎2 + 𝑎1)𝑍4 + · · · ,
[𝐷𝑥, 𝑍5] = −(𝑎0 + 𝑎1 + 𝑎2)𝑍5 + 𝑌0(𝑎1)𝑍4 − 𝑌2(𝑎1)𝑍3 + · · ·

By applying the operator ad𝐷𝑥 to both sides of (3.18), we obtain

−(𝑎0 + 𝑎1 + 𝑎2)(𝜆4𝑍4 + 𝜆3𝑍3 + · · · ) + 𝑌0(𝑎1)𝑍4 − 𝑌2(𝑎1)𝑍3 + · · ·
= 𝜆4,𝑥𝑍4 + 𝜆3,𝑥𝑍3 − 𝜆4(𝑎1 + 𝑎2)𝑍4 − 𝜆3(𝑎0 + 𝑎1)𝑍3 + · · ·

(3.19)

Collecting the coefficients at 𝑍4 in identity (3.19), we obtain the following equation:

𝜆4,𝑥 = −(𝛼0𝑢0,𝑥 + 𝛾0)𝜆4 − (𝛼1,𝑢0𝑢1,𝑥 + 𝛾1,𝑢0). (3.20)

A simple analysis of equation (3.20) shows that 𝜆 = 𝜆(𝑢0, 𝑢1). Consequently,

𝜆4,𝑥 = 𝜆4,𝑢0𝑢0,𝑥 + 𝜆4,𝑢1𝑢1,𝑥

and equation (3.20) reduces to a system of three equations

𝛾0𝜆4 + 𝛾1,𝑢0 = 0, 𝜆4,𝑢0 = −𝛼0𝜆4, 𝜆4,𝑢1 = −𝛼1,𝑢0 .

It follows from these equations that 𝜆4 = 0. Otherwise, if 𝜆4 ̸= 0, then 𝛼0 = − (log 𝜆4)𝑢0
, which

implies that (𝛼0)𝑢−1 = 0 and this contradicts the requirement that 𝛼(𝑢1, 𝑢0, 𝑢−1) essentially
depends on 𝑢1 and 𝑢−𝑙. Hence, 𝜆4 = 0. Then from (3.20) we have 𝛼1,𝑢0 = 0, which again leads
to a contradiction.

We return back to sequence (3.17). For further work, we need to describe the action of the
operator ad𝐷𝑥 on all elements of this sequence. It is convenient to separate the sequence (3.17)
into three subsequences {𝑍3𝑚}, {𝑍3𝑚+1} and {𝑍3𝑚+2}.
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Lemma 5. The action of the operator ad𝐷𝑥 on the sequence (3.17) is given by the following
formulae:

[𝐷𝑥, 𝑍3𝑚] = −(𝑎0 + 𝑚𝑎1)𝑍3𝑚 +

(︂
𝑚−𝑚2

2
𝑌1(𝑎1) −𝑚𝑌1(𝑎0)

)︂
𝑍3𝑚−3 + · · · ,

[𝐷𝑥, 𝑍3𝑚+1] = −(𝑎2 + 𝑚𝑎1)𝑍3𝑚+1 +

(︂
𝑚−𝑚2

2
𝑌1(𝑎1) −𝑚𝑌1(𝑎2)

)︂
𝑍3𝑚−2 + · · · ,

[𝐷𝑥, 𝑍3𝑚+2] = −(𝑎0 + 𝑚𝑎1 + 𝑎2)𝑍3𝑚+2 + 𝑌0(𝑎1)𝑍3𝑚+1 + 𝑌2(𝑎1)𝑍3𝑚 −

− (𝑚− 1)
(︁𝑚

2
𝑌1(𝑎1) + 𝑌1(𝑎0 + 𝑎2)

)︁
𝑍3𝑚−1 + · · ·

Lemma 5 is easily proved by an induction.

Theorem 2. Assume that the operator 𝑍3𝑘+2 is represented as a linear combination

𝑍3𝑘+2 = 𝜆𝑘𝑍3𝑘+1 + 𝜇𝑘𝑍3𝑘 + 𝜈𝑘𝑍3𝑘−1 + · · · (3.21)

of the previous terms in sequence (3.17) and none of the operators 𝑍3𝑗+2 for 𝑗 < 𝑘 is a linear
combination of the operators 𝑍𝑠 with 𝑠 < 3𝑗 + 2. Then the coefficient 𝜈𝑘 satisfies the equation

𝐷𝑥(𝜈𝑘) = −𝑎1𝜈𝑘 −
𝑘(𝑘 − 1)

2
𝑌1(𝑎1) − (𝑘 − 1)𝑌1(𝑎0 + 𝑎2). (3.22)

Lemma 6. Assume that all the conditions of Theorem 2 are satisfied. Suppose that the
operator 𝑍3𝑘 (the operator 𝑍3𝑘+1) is linearly expressed in terms of the operators 𝑍𝑖, 𝑖 < 3𝑘.
Then in this expansion the coefficient at 𝑍3𝑘−1 is zero.

Proof. We prove the lemma by contradiction assuming that in the formula

𝑍3𝑘 = 𝜆𝑍3𝑘−1 + · · · (3.23)

the coefficient 𝜆 is nonzero. We apply the operator ad𝐷𝑥 to both sides of equation (3.23). As
a result, according to Lemma 5, we get:

− (𝑎0 + 𝑘𝑎1)𝜆𝑍3𝑘−1 + · · · = 𝐷𝑥(𝜆)𝑍3𝑘−1 − 𝜆(𝑎0 + (𝑘 − 1)𝑎1 + 𝑎2)𝑍3𝑘−1 + · · · (3.24)

Collecting the coefficients at 𝑍3𝑘−1, we obtain that the coefficient 𝜆 should satisfy the equation

𝐷𝑥(𝜆) = 𝜆(𝑎2 − 𝑎1).

According to our assumption above, 𝜆 does not vanish and, therefore,

𝐷𝑥(log 𝜆) = 𝑎2 − 𝑎1. (3.25)

Since 𝜆 depends on finitely many dynamical variables, according to equation (3.25), 𝜆 can
depend only on 𝑢1 and 𝑢2. Therefore, from (3.24) we get that

(log 𝜆)𝑢1𝑢1,𝑥 + (log 𝜆)𝑢2𝑢2,𝑥 = 𝛼2𝑢2,𝑥 + 𝛾2 − 𝛼1𝑢1,𝑥 − 𝛾1.

The variables 𝑢1,𝑥, 𝑢2,𝑥 are independent, so the last equation is equivalent to the system of
equations 𝛼1 = −(log 𝜆)𝑢1 , 𝛼2 = (log 𝜆)𝑢2 , 𝛾2 − 𝛾1 = 0. Consequently, 𝛼1 = 𝛼1(𝑢1, 𝑢2) depends
only on 𝑢1, 𝑢2. The latter contradicts the assumption that 𝛼1 essentially depends on 𝑢0. The
contradiction shows that the assumption 𝜆 ̸= 0 is false. The proof is complete.

In order to prove Theorem 2, we apply the operator ad𝐷𝑥 to both sides of identity (3.21) and
simplify by means of the formulae in Lemma 5. Collecting the coefficients at 𝑍3𝑘−1, we obtain
equation (3.22).

We find the exact values of the coefficients in equation (3.22):

𝑌1(𝑎0) = 𝑌1(𝛼0𝑢0,𝑥 + 𝛾0) = 𝛼0,𝑢1𝑢0,𝑥 + 𝛾0,𝑢1 ,

𝑌1(𝑎2) = 𝑌1(𝛼2𝑢2,𝑥 + 𝛾2) = 𝛼2,𝑢1𝑢2,𝑥 + 𝛾2,𝑢1 ,

𝑌1(𝑎1) = 𝑌1(𝛼1𝑢1,𝑥 + 𝛾1) = (𝛼1,𝑢1 + 𝛼2
1)𝑢1,𝑥 + 𝛾1,𝑢1 + 𝛾1𝛼1.
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and substitute them into (3.22):

𝐷𝑥(𝜈𝑘) = − (𝛼1𝑢1,𝑥 + 𝛾1)𝜈𝑘 −
𝑘(𝑘 − 1)

2

(︀
(𝛼1,𝑢1 + 𝛼2

1)𝑢1,𝑥 + 𝛾1,𝑢1 + 𝛾1𝛼1

)︀
− (𝑘 − 1)(𝛼0,𝑢1𝑢0,𝑥 + 𝛼2,𝑢1𝑢2,𝑥 + 𝛾0,𝑢1 + 𝛾2,𝑢1).

(3.26)

A simple analysis of equation (3.26) shows that 𝜈𝑘 can depend only on the variables 𝑢0, 𝑢1, 𝑢2.
Consequently,

𝐷𝑥(𝜈𝑘) = 𝜈𝑘,𝑢0𝑢0,𝑥 + 𝜈𝑘,𝑢1𝑢1,𝑥 + 𝜈𝑘,𝑢2𝑢2,𝑥. (3.27)

Substituting (3.27) in (3.26) and collecting coefficients at independent variables, we obtain a
system of equations for the coefficient 𝜈𝑘:

𝜈𝑘,𝑢0 = − (𝑘 − 1)𝛼0,𝑢1 , (3.28)

𝜈𝑘,𝑢1 = − 𝛼1𝜈𝑘 −
𝑘(𝑘 − 1)

2
(𝛼1,𝑢1 + 𝛼2

1), (3.29)

𝜈𝑘,𝑢2 = − (𝑘 − 1)𝛼2,𝑢1 , (3.30)

0 =𝛾1𝜈𝑘 +
𝑘(𝑘 − 1)

2
(𝛾1,𝑢1 + 𝛾1𝛼1) + (𝑘 − 1)(𝛾0,𝑢1 + 𝛾2,𝑢1). (3.31)

Substituting the expression for the function 𝛼 given by formula (3.12) into equation (3.28), we
get

𝜈𝑘,𝑢0 =
𝑘 − 1

𝑀 − 1

𝑃 ′(𝑢1)𝑄
′(𝑢0)

(𝑃 (𝑢1) + 𝑄(𝑢0))2
.

We integrate the last equation with respect to the variable 𝑢0

𝜈𝑘 = − 𝑘 − 1

𝑀 − 1

𝑃 ′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
+ 𝐻(𝑢1, 𝑢2). (3.32)

Since 𝜈𝑘,𝑢2 = 𝐻𝑢2 , equation (3.30) is rewritten as

𝐻𝑢2 = (𝑘 − 1)
𝑃 ′(𝑢2)𝑄

′(𝑢1)

(𝑃 (𝑢2) + 𝑄(𝑢1))2
.

Integrating the latter, we obtain an exact expression for the function 𝐻:

𝐻 = −(𝑘 − 1)

(︂
𝑄′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)
+ 𝐴(𝑢1)

)︂
,

which gives

𝜈𝑘 = −(𝑘 − 1)

(︂
1

𝑀 − 1

𝑃 ′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
+

𝑄′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)
+ 𝐴(𝑢1)

)︂
. (3.33)
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We substitute the found expressions for the functions 𝛼 and 𝜈𝑘 into the equation (3.29)

− (𝑘 − 1)

𝑀 − 1

(︂
𝑃 ′′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
− 𝑃 ′2(𝑢1)

(𝑃 (𝑢1) + 𝑄(𝑢0))2

)︂
− (𝑘 − 1)

(︂
𝑄′′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)
− 𝑄′2(𝑢1)

(𝑃 (𝑢2) + 𝑄(𝑢1))2
+ 𝐴′(𝑢1)

)︂
=(𝑘 − 1)

(︂
𝑃 ′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
+

1

𝑀 − 1

𝑄′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)
− 𝑐1(𝑢1)

)︂
·
(︂

1

𝑀 − 1

𝑃 ′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
+

𝑄′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)
+ 𝐴(𝑢1)

)︂
− 𝑘(𝑘 − 1)

2

(︂
𝑃 ′′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
+

1

𝑀 − 1

𝑄′′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)

− 1

𝑀 − 1

𝑄′2(𝑢1)

(𝑃 (𝑢2) + 𝑄(𝑢1))2
+

1

𝑀 − 1

2𝑄′(𝑢1)𝑃
′(𝑢1)

(𝑃 (𝑢1) + 𝑄(𝑢0))(𝑃 (𝑢2) + 𝑄(𝑢1))

+
1

(𝑀 − 1)2
𝑄′2(𝑢1)

(𝑃 (𝑢2) + 𝑄(𝑢1))2

−𝑐′1(𝑢1) − 2𝑐1(𝑢1)

(︂
𝑃 ′(𝑢1)

𝑃 (𝑢1) + 𝑄(𝑢0)
+

1

𝑀 − 1

𝑄′(𝑢1)

𝑃 (𝑢2) + 𝑄(𝑢1)

)︂
+ 𝑐21(𝑢1)

)︂
.

(3.34)

Obviously, according to the assumption

𝜕

𝜕𝑢1

𝛼(𝑢1, 𝑢0, 𝑢−1) ̸= 0,
𝜕

𝜕𝑢−𝑙

𝛼(𝑢1, 𝑢0, 𝑢−1) ̸= 0,

the functions 𝑃 ′(𝑢2) and 𝑄′(𝑢0) do not vanish. Consequently, the variables

𝑄′2(𝑢1)

(𝑃 (𝑢2) + 𝑄(𝑢1))2
,

𝑃 ′2(𝑢1)

(𝑃 (𝑢1) + 𝑄(𝑢0))2
,

𝑃 ′(𝑢1)𝑄
′(𝑢1)

(𝑃 (𝑢1) + 𝑄(𝑢0))(𝑃 (𝑢2) + 𝑄(𝑢1))

are independent. Collecting the coefficients of these variables in (3.34), we obtain a system of
two equations(︂

1 − 1

𝑀 − 1

)︂(︂
1 − 𝑘

2(𝑀 − 1)

)︂
= 0, 1 +

1

(𝑀 − 1)2
=

𝑘

𝑀 − 1
. (3.35)

The system (3.35) has two solutions: 𝑀 = 0, 𝑘 = −2 and 𝑀 = 2, 𝑘 = 2. Since 𝑘 must be
greater than zero, we have 𝑀 = 2, 𝑘 = 2. The last argument completes the proof of Theorem 2.

Thus, we have proved that 𝑀 = 2, 𝑘 = 2. Expansions (3.10) and (3.21) take the form

𝑊2 = 𝜆𝑊1 + 𝜎𝑌1 + 𝛿𝑌0, (3.36)

𝑍8 = 𝜆𝑍7 + 𝜇𝑍6 + 𝜈𝑍5 + 𝜌𝑍4 + 𝜅𝑍3 + 𝜎𝑍2 + 𝛿𝑍1 + 𝜂𝑍0. (3.37)

The following theorem is true.

Theorem 3. Expansions (3.36), (3.37) hold if and only if the functions 𝛼, 𝛾 in equation
(1.5) are of the form:

𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) =
1

𝑢𝑛 − 𝑢𝑛−1

− 1

𝑢𝑛+1 − 𝑢𝑛

, (3.38)

𝛾(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑟′(𝑢𝑛) − 𝑟(𝑢𝑛)𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), (3.39)

where 𝑟(𝑢𝑛) = 𝑘1
2
𝑢2
𝑛 + 𝑘2𝑢𝑛 + 𝑘3 and the factors 𝑘𝑖 are arbitrary constants.

Proof. Consider relation (3.36). Using relations (3.6), (3.7) and applying the Jacobi identity,
we get

[𝐷𝑥,𝑊2] = −(2𝑎0 + 𝑎1)𝑊2 − 𝑌0(𝑎0 + 2𝑎1)𝑊1 + (2𝑌0𝑌1(𝑎0) − 𝑌1𝑌0(𝑎0))𝑌0 − 𝑌0𝑌0(𝑎1)𝑌1. (3.40)
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It is obvious that only one term in formula (3.36) contains the operator of differentiation 𝜕
𝜕𝑢1

,

namely 𝜎𝑌1, and only one term contains 𝜕
𝜕𝑢0

, namely, 𝜎𝑌0. Consequently, 𝜎 = 0, 𝛿 = 0 and

expansion (3.36) casts into the form

𝑊2 = 𝜆𝑊1.

Applying the operator ad𝐷𝑥 to both sides of the last relation, we obtain

−(2𝑎0 + 𝑎1)𝑊2 − 𝑌0(𝑎0 + 2𝑎1)𝑊1 + (2𝑌0𝑌1(𝑎0) − 𝑌1𝑌0(𝑎0))𝑌0 − 𝑌0𝑌0(𝑎1)𝑌1

= 𝐷𝑥(𝜆)𝑊1 + 𝜆 (−(𝑎0 + 𝑎1)𝑊1 + 𝑌1(𝑎0)𝑌0 − 𝑌0(𝑎1)𝑌1) .

Collecting the coefficients for the operators 𝑊2, 𝑊1, 𝑌1, 𝑌0, we obtain the following system:

𝐷𝑥(𝜆) = −𝑎0𝜆− 𝑌0(𝑎0 + 2𝑎1), (3.41)

−𝑌0𝑌0(𝑎1) = −𝜆𝑌0(𝑎1), (3.42)

2𝑌0𝑌1(𝑎0) − 𝑌1𝑌0(𝑎0) = 𝜆𝑌1(𝑎0). (3.43)

Examining the first equation of the obtained system, we observe that 𝜆 = 𝜆(𝑢0, 𝑢1) and then
simplifying all the equations, we arrive at the following system:

𝜆𝑢0 = −𝛼0𝜆− (𝛼0,𝑢0 + 𝛼2
0), (3.44)

𝜆𝑢1 = −2𝛼1,𝑢0 , (3.45)

𝛼1,𝑢0𝑢0 = 𝜆𝛼1,𝑢0 , 𝛼0,𝑢0𝑢1 = 𝜆𝛼0,𝑢1 . (3.46)

𝛾0𝜆 + 𝛾0,𝑢0 + 𝛾0𝛼0 + 2𝛾1,𝑢0 = 0, (3.47)

𝛾1,𝑢0𝑢0 = 𝜆𝛾1,𝑢0 , (3.48)

𝛾0,𝑢0𝑢1 + 𝛾0𝛼0,𝑢1 − 𝛾0,𝑢1𝛼0 = 𝜆𝛾0,𝑢1 . (3.49)

We note that equations (3.44)-(3.46) will be employed to refine the functions 𝛼 and 𝜆, and the
equations (3.47)–(3.49) will be used to specify the function 𝛾 by substituting the already found
expression for 𝛼.

We proceed to decomposition (3.37). Letting 𝑘 = 2 in the formulae in Lemma 5, we obtain

[𝐷𝑥, 𝑍6] = −(𝛼0𝑢0,𝑥 + 2𝛼1𝑢1,𝑥)𝑍6 + · · · , (3.50)

[𝐷𝑥, 𝑍7] = −(𝛼2𝑢2,𝑥 + 2𝛼1𝑢1,𝑥)𝑍7 − (𝑌1(𝛼1𝑢1,𝑥) + 2𝑌1(𝛼2𝑢2,𝑥))𝑍4 + · · · , (3.51)

[𝐷𝑥, 𝑍8] = − (𝛼0𝑢0,𝑥 + 2𝛼1𝑢1,𝑥 + 𝛼2𝑢2,𝑥)𝑍8 + 𝑌0(𝛼1𝑢1,𝑥)𝑍7 + 𝑌2(𝛼1𝑢1,𝑥)𝑍6

− (𝑌1(𝛼1𝑢1,𝑥) + 𝑌1(𝛼0𝑢0,𝑥 + 𝛼2𝑢2,𝑥))𝑍5 + · · ·
(3.52)

Then we apply the operator ad𝐷𝑥 to both parts of relation (3.37) and simplify the resulting
equation by using (3.50), (3.51), (3.52). Comparing the coefficients at 𝑍7 and 𝑍6, we get 𝜆 = 0
and 𝜇 = 0. Thus, formula (3.37) is simplified:

𝑍8 = 𝜈𝑍5 + 𝜌𝑍4 + 𝜅𝑍3 + 𝜎𝑍2 + 𝛿𝑍1 + 𝜂𝑍0. (3.53)

The following commutation relations hold:

[𝐷𝑥, 𝑍8] = − (𝑎2 + 2𝑎1 + 𝑎0)𝑍8 + 𝑌0(𝑎1)𝑍7 − 𝑌2(𝑎1)𝑍6 − 𝑌1(𝑎2 + 𝑎1 + 𝑎0)𝑍5

+ 𝑌1𝑌0(𝑎1)𝑍4 − 𝑌1𝑌2(𝑎1)𝑍3 + (𝑌1𝑌2𝑌0(𝑎1) + 𝑍5(𝑎1))𝑍1,
(3.54)

[𝐷𝑥, 𝑍5] = −(𝑎0 + 𝑎1 + 𝑎2)𝑍5 + 𝑌0(𝑎1)𝑍4 − 𝑌2(𝑎1)𝑍3 + 𝑌2𝑌0(𝑎1)𝑍1. (3.55)

We apply ad𝐷𝑥 to (3.53), then simplify according to (3.54), (3.55), (3.53) and collect the
coefficients at 𝑍5:

−(𝑎2 + 2𝑎1 + 𝑎0)𝜈 − 𝑌1(𝑎2 + 𝑎1 + 𝑎0) = 𝐷𝑥(𝜈) − (𝑎2 + 𝑎1 + 𝑎0)𝜈

or the same

𝐷𝑥(𝜈) = −𝑎1𝜈 − 𝑌1(𝑎2 + 𝑎1 + 𝑎0). (3.56)
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It follows from equation (3.56) that 𝜈 depends on three variables 𝜈 = 𝜈(𝑢, 𝑢1, 𝑢2). Thus,
equation (3.56) reduces to a system of equations:

𝜈𝑢 = −𝛼0,𝑢1 , (3.57)

𝜈𝑢1 = −𝛼1𝜈 − 𝛼1,𝑢1 − 𝛼2
1, (3.58)

𝜈𝑢2 = −𝛼2,𝑢1 , (3.59)

𝛾1𝜈 + 𝛾2,𝑢1 + 𝛾1𝛼1 + 𝛾1,𝑢1 + 𝛾0,𝑢1 = 0. (3.60)

So, as a result of studying relations (3.36), (3.37), we arrive at equations (3.44)–(3.46) and
(3.57)-(3.59), which exactly coincide with the corresponding systems of equations from the
work [15] and, therefore, we obtain that

𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) =
1

𝑢𝑛 − 𝑢𝑛−1

− 1

𝑢𝑛+1 − 𝑢𝑛

.

Using the remaining equations (3.47)–(3.49) and (3.60), we find 𝛾:

𝛾(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑟′(𝑢𝑛) − 𝑟(𝑢𝑛)𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1).

It is easy to show that relations (3.36), (3.37) become

𝑊2 = 𝜆𝑊1, 𝜆 =
2

𝑢1 − 𝑢0

, 𝑍8 = 𝜈𝑍5, 𝜈 = − 𝑢2 − 2𝑢1 + 𝑢0

(𝑢1 − 𝑢0)(𝑢2 − 𝑢1)
.

Similarly, we have

𝛽(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑟′(𝑢𝑛) − 𝑟(𝑢𝑛)𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1), (3.61)

where 𝑟(𝑢𝑛) = 𝑘1
2
𝑢2
𝑛 + 𝑘2𝑢𝑛 + 𝑘3, and the coefficients 𝑘𝑖 are arbitrary constants.

The next step of our study is to refine the function 𝛿. To do this, we construct a new sequence
in a set of multiple commutators.

4. Refining of function 𝛿

We recall that since the right-hand side 𝑓𝑖 of the system (1.5) is of a special form, the operator
𝑌 can be represented as follows (see (2.5)):

𝑌 =
𝑁∑︁
𝑖=0

𝑢𝑖,𝑦𝑌𝑖 + 𝑅,

Here the operator 𝑅 is defined by formula (2.6). Consider the following sequence of the operators
in the characteristic algebra ℒ(𝑦,𝑁):

𝑌−1, 𝑌0, 𝑌1, 𝑌0,−1 = [𝑌0, 𝑌−1] , 𝑌1,0 = [𝑌1, 𝑌0] , (4.1)

𝑅0 = [𝑌0, 𝑅] , 𝑅1 = [𝑌0, 𝑅0] , 𝑅2 = [𝑌0, 𝑅1] , . . . , 𝑅𝑘+1 = [𝑌0, 𝑅𝑘] .

The following commutation relations hold true:

[𝐷𝑥, 𝑌−1] = −𝑎−1𝑌−1, [𝐷𝑥, 𝑌0] = −𝑎0𝑌0, [𝐷𝑥, 𝑌1] = −𝑎1𝑌1, (4.2)

[𝐷𝑥, 𝑌1,0] = −(𝑎0 + 𝑎1)𝑌1,0 − 𝑌1(𝑎0)𝑌0 + 𝑌0(𝑎1)𝑌1, (4.3)

[𝐷𝑥, 𝑌0,−1] = −(𝑎−1 + 𝑎0)𝑌0,−1 − 𝑌0(𝑎−1)𝑌−1 + 𝑌−1(𝑎0)𝑌0, (4.4)

[𝐷𝑥, 𝑅] = −
∑︁
𝑖

ℎ𝑖𝑌𝑖, (4.5)

where 𝑎𝑖 = 𝛼𝑖𝑢𝑖,𝑥 + 𝛾𝑖, ℎ𝑖 = 𝛽𝑖𝑢𝑖,𝑥 + 𝛿𝑖. Using the Jacobi identity and formulae (4.2)–(4.5), we
get the formulae:

[𝐷𝑥, 𝑅0] = [𝐷𝑥, [𝑌0, 𝑅]] = − [𝑌0, [𝑅,𝐷𝑥]] − [𝑅, [𝐷𝑥, 𝑌0]]

= − 𝑎0𝑅0 + ℎ1𝑌1,0 − ℎ−1𝑌0,−1 − 𝑌0(ℎ1)𝑌1 − 𝑌0(ℎ−1)𝑌−1 + (𝑅(𝑎0) − 𝑌0(ℎ0))𝑌0,
(4.6)
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[𝐷𝑥, 𝑅1] = −2𝑎0𝑅1 − 𝑌0(𝑎0)𝑅0 + · · · , (4.7)

[𝐷𝑥, 𝑅2] = −3𝑎0𝑅2 − 3𝑌0(𝑎0)𝑅1 − 𝑌 2
0 (𝑎0)𝑅0 + · · · , (4.8)

[𝐷𝑥, 𝑅3] = −4𝑎0𝑅2 − 6𝑌0(𝑎0)𝑅1 − 4𝑌 2
0 (𝑎0)𝑅1 − 𝑌 3

0 (𝑎0)𝑅0 + · · · , (4.9)

where the dots stand for a linear combination of the operators 𝑌1,0, 𝑌0,−1, 𝑌1, 𝑌0, 𝑌−1. It can be
proved by an induction that

[𝐷𝑥, 𝑅𝑛] = 𝑝𝑛𝑅𝑛 + 𝑞𝑛𝑅𝑛−1 + · · · , (4.10)

where

𝑝𝑛 = −(𝑛 + 1)𝑎0, 𝑞𝑛 = −𝑛2 + 𝑛

2
𝑌0(𝑎0), (4.11)

and three dots stand for a linear combination of the operators 𝑅𝑘, 𝑘 < 𝑛 − 1 and
𝑌1,0, 𝑌0,−1, 𝑌1, 𝑌0, 𝑌−1.

We consider two different cases:
𝑖) The operator 𝑅0 is expressed linearly in terms of operators (4.1).
𝑖𝑖) The operator 𝑅0 is not expressed linearly in terms of operators (4.1).
Let us focus on the case 𝑖). It follows from formula (4.6) that this linear expansion must be

of the form

𝑅0 = 𝜆𝑅 + 𝜇𝑌1,0 + 𝜇̃𝑌0,−1 + 𝜈𝑌1 + 𝜂𝑌0 + 𝜖𝑌−1. (4.12)

The operators in the right hand side of this formula are linearly independent.
Applying the operator ad𝐷𝑥 to both sides of (4.12), we obtain

−𝑎0(𝜆𝑅 + 𝜇𝑌1,0 + 𝜇̃𝑌0,−1 + · · · ) + ℎ1𝑌1,0 − ℎ−1𝑌0,−1 + · · ·
=𝐷𝑥(𝜆)𝑅 + 𝐷𝑥(𝜇)𝑌1,0 + 𝜇(−(𝑎0 + 𝑎1)𝑌1,0 + · · · )

+ 𝐷𝑥(𝜇̃)𝑌0,−1 + 𝜇̃(−(𝑎−1 + 𝑎0)𝑌0,−1 + · · · ).
(4.13)

Three dots stand for a linear combination of the operators 𝑌−1, 𝑌0, 𝑌1. Collecting coefficients
for the independent operators 𝑅, 𝑌1,0, 𝑌0,−1, we obtain the system of differential equations for
the coefficients 𝜆, 𝜇, 𝜇̃

𝐷𝑥(𝜆) = −𝑎0𝜆, (4.14)

𝐷𝑥(𝜇) = 𝑎1𝜇 + ℎ1, 𝐷𝑥(𝜇̃) = 𝑎−1𝜇̃− ℎ−1. (4.15)

The equation (4.14) reads as 𝐷𝑥(𝜆) = −(𝛼0𝑢0,𝑥 + 𝛾0)𝜆. It is easy to see that 𝜆 = 𝜆(𝑢0) and
hence 𝜆′(𝑢0) = −𝛼0𝜆(𝑢0), 0 = 𝛾0𝜆. If 𝜆 ̸= 0 then 𝛼0 = −(log 𝜆(𝑢0))

′. But this contradicts

assumption (1.6) that 𝜕𝛼0(𝑢1,𝑢0,𝑢−1)
𝜕𝑢±1

̸= 0. Hence, we have 𝜆 = 0.

Consider equations (4.15):

𝐷𝑥(𝜇) = (𝛼1𝑢1,𝑥 + 𝛾1)𝜇 + 𝛽1𝑢1,𝑥 + 𝛿1, (4.16)

𝐷𝑥(𝜇̃) = (𝛼−1𝑢−1,𝑥 + 𝛾−1)𝜇̃− 𝛽−1𝑢−1,𝑥 − 𝛿−1. (4.17)

From (4.16) we obtain that 𝜇 depends only on 𝑢1 and from (4.17) we obtain that 𝜇̃ depends
only on 𝑢−1. Hence, equations (4.16) and (4.17) are reduced to the following system:

𝜇′(𝑢1) = 𝛼1𝜇(𝑢1) + 𝛽1, 0 = 𝛾1𝜇(𝑢1) + 𝛿1, (4.18)

𝜇̃(𝑢−1) = 𝛼−1𝜇̃(𝑢−1) − 𝛽−1, 0 = 𝛾−1𝜇̃(𝑢−1) − 𝛿−1. (4.19)

By shifting the argument 𝑛 backwards and forwards by one in the equation (4.18) and, respec-
tively, in (4.19) we obtain:

𝜇′(𝑢0) = 𝛼0𝜇(𝑢0) + 𝛽0, 0 = 𝛾0𝜇(𝑢0) + 𝛿0, (4.20)

𝜇̃(𝑢0) = 𝛼0𝜇̃(𝑢0) − 𝛽0, 0 = 𝛾0𝜇̃(𝑢0) − 𝛿0. (4.21)
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We exclude 𝜇 and 𝜇̃ from these equations and arrive at the differential equation for the function
𝛿0:

𝛿0,𝑢0 =

(︂
𝛾0,𝑢0

𝛾0
+ 𝛼0

)︂
𝛿0 − 𝛽0𝛾0. (4.22)

Equation (4.22) is solved easily:

𝛿0(𝑢−1, 𝑢0, 𝑢1) =
1

4

1

(𝑢0 − 𝑢−1)(𝑢0 − 𝑢1)

(︁
𝑘1(𝑢

2
0𝑢1 − 2𝑢0𝑢−1𝑢1 + 𝑢2

0𝑢−1)

+ 2𝑘2(𝑢
2
0 − 𝑢−1𝑢1) + 2𝑘3(−𝑢1 + 2𝑢0 − 𝑢−1)

)︁
·
(︁
𝑘1(𝑢0𝑢1 − 𝑢−1𝑢1 + 𝑢−1𝑢0) + 2𝑘2𝑢0 + 2𝑘3

+ 4𝐹1(𝑢−1, 𝑢1)(𝑢0 − 𝑢−1)(𝑢0 − 𝑢1)
)︁
.

(4.23)

Here 𝑘1, 𝑘2, 𝑘3 and 𝑘1, 𝑘2, 𝑘3 are constants, which appear in the description of functions (3.39),
(3.61) and 𝐹1(𝑢−1, 𝑢1) is a function to be found.

Substituting (4.23) into the second equation of (4.20), we obtain that 𝐹1(𝑢−1, 𝑢1) = 1
2
𝑘1 and

𝜇(𝑢0) =
1

2
𝑘1𝑢

2
0 + 𝑘2𝑢0 + 𝑘3

From the second equation of (4.21) we get

𝜇̃(𝑢0) = −1

2
𝑘1𝑢

2
0 − 𝑘2𝑢0 − 𝑘3.

Further, we collect the coefficients at 𝑌1, 𝑌−1 in identity (4.14). Substituting the above
functions 𝛼, 𝛽, 𝛾, 𝛿, 𝜇, 𝜇̃ into the obtained equations, we get identities that do not give any
additional condition on the unknown functions.

Let us collect the coefficients at 𝑌0 in (4.14). We find:

𝐷𝑥(𝜂) = 𝑅(𝑎0) − 𝑌0(ℎ0) + 𝜇𝑌1(𝑎0) − 𝜇̃𝑌−1(𝑎0).

Calculating each term and simplifying the last equation, we obtain

𝐷𝑥(𝜂) =
(︀
−𝛽0,𝑢0 + 𝜇𝛼0,𝑢1 − 𝜇̃𝛼0,𝑢−1

)︀
𝑢0,𝑥 + 𝛿0𝛼0 − 𝛿0,𝑢0 − 𝛾0𝛽0 + 𝜇𝛾0,𝑢1 − 𝜇̃𝛾0,𝑢−1 .

A simple analysis of the last equation shows that 𝜂 can depend only on 𝑢0. Therefore, the last
equation reduces to a system of two equations:

𝜂′(𝑢0) = −𝛽0,𝑢0 + 𝜇𝛼0,𝑢1 − 𝜇̃𝛼0,𝑢−1 , (4.24)

0 = 𝛿0𝛼0 − 𝛿0,𝑢0 − 𝛾0𝛽0 + 𝜇𝛾0,𝑢1 − 𝜇̃𝛾0,𝑢−1 . (4.25)

By straightforward calculations we obtain that the right hand side of (4.24) vanishes identically.

Studying equation (4.25), we get some additional relations between the constants 𝑘𝑖 and 𝑘𝑖:

𝑘1 =
𝑘1

𝑘2
𝑘2, 𝑘3 =

𝑘3

𝑘2
𝑘2.

Thus, we have proved that if decomposition (4.12) holds, then it should be of the form

𝑅0 = 𝜇𝑌1,0 + 𝜇̃𝑌0,−1. (4.26)

Herewith we completely determine the desired coefficients of quasilinear chain (1.5)

𝑢𝑛,𝑥𝑦 = 𝛼𝑛𝑢𝑛,𝑥𝑢𝑛,𝑦 + 𝛽𝑛𝑢𝑛,𝑥 + 𝛾𝑛𝑢𝑛,𝑦 + 𝛿𝑛. (4.27)

We obtain explicit expressions for these coefficients

𝛼𝑛 = 𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) =
1

𝑢𝑛 − 𝑢𝑛−1

− 1

𝑢𝑛+1 − 𝑢𝑛

,

𝛽𝑛 = 𝛽(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝑟′(𝑢𝑛) − 𝑟(𝑢𝑛)𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1),
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𝛾𝑛 = 𝛾(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = 𝜀(𝑟′(𝑢𝑛) − 𝑟(𝑢𝑛)𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)),

𝛿𝑛 = 𝛿(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) = −𝜀𝑟(𝑢𝑛)(𝑟′(𝑢𝑛) − 𝑟(𝑢𝑛)𝛼(𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1)),

where 𝑟(𝑢𝑛) = 𝑐1
2
𝑢2
𝑛 + 𝑐2𝑢𝑛 + 𝑐3 is a polynomial of the degree at most two with arbitrary

coefficients and 𝑐𝑖 = 𝑘𝑖, 𝜀 = 𝑘2/𝑘2. The boundary conditions reducing the chain to an integrable
system of hyperbolic equations are given in the form

𝑢−1 = 𝜆, 𝑢𝑁+1 = 𝜆 (4.28)

where 𝜆 is a root of the polynomial 𝑟(𝜆), that is, 𝑟(𝜆) = 0. In the degenerate case when
𝑟(𝑢𝑛) = 𝑐3 the boundary conditions are taken as

𝑢−1 = 𝑐3(𝜀𝑥 + 𝑦) + 𝑐4, 𝑢𝑁+1 = 𝑐3(𝜀𝑥 + 𝑦) + 𝑐5, (4.29)

where 𝑐4, 𝑐5 are arbitrary constants.
Let us study case 𝑖𝑖). Assume that some element 𝑅𝑛, 𝑛 > 0 of sequence (4.1) is linearly

expressed in terms of the previous elements:

𝑅𝑛 = 𝜆𝑅𝑛−1 + · · · , (4.30)

but elements 𝑅𝑘, 𝑘 < 𝑛 are not expressed linearly in terms of the previous elements 𝑅𝑗, 𝑗 < 𝑘
and 𝑌1,0, 𝑌0,−1, 𝑌1, 𝑌0, 𝑌−1. We apply the operator ad𝐷𝑥 to both sides of (4.30) and obtain

𝑝𝑛(𝜆𝑅𝑛−1 + · · · ) + 𝑞𝑛𝑅𝑛−1 + · · · = 𝐷𝑥(𝜆)𝑅𝑛−1 + 𝜆(𝑝𝑛−1𝑅𝑛−1 + · · · ).
We collect the coefficients at the operator 𝑅𝑛−1 in the resulting identity and we find:

𝐷𝑥(𝜆) = 𝜆(𝑝𝑛 − 𝑝𝑛−1) + 𝑞𝑛.

We substitute explicit expressions for 𝑝𝑛, 𝑝𝑛−1, 𝑞𝑛 into the last equation to get

𝐷𝑥(𝜆) = −𝑎0𝜆− 𝑛2 + 𝑛

2
𝑌0(𝑎0).

We substitute the explicit expression for 𝑎0 and evaluate 𝑌0(𝑎0). We obtain

𝐷𝑥(𝜆) = −(𝛼0𝑢0,𝑥 + 𝛾0)𝜆− 𝑛2 + 𝑛

2

(︀
(𝛼0,𝑢0 + 𝛼2

0)𝑢0,𝑥 + 𝛾0,𝑢0 + 𝛾0𝛼0

)︀
(4.31)

It follows from the last identity that 𝜆 depends only on 𝑢0. Then the equation reduces to a
system of two equations

𝜆′(𝑢0) = −𝛼0𝜆− 𝑛2 + 𝑛

2
(𝛼0,𝑢0 + 𝛼2

0), (4.32)

𝛾0𝜆 +
𝑛2 + 𝑛

2
(𝛾0,𝑢0 + 𝛾0𝛼0) = 0. (4.33)

We rewrite equation (4.32) as

𝜆′(𝑢0) =
−𝜆(𝑢0)(2𝑢0 − 𝑢1 − 𝑢−1) − (𝑛2 + 𝑛)

(𝑢0 − 𝑢−1)(𝑢0 − 𝑢1)
(4.34)

or

𝜆′(𝑢0)(𝑢
2
0 − 𝑢0𝑢1 − 𝑢−1𝑢0 + 𝑢1𝑢−1) = −𝜆(𝑢0)(2𝑢0 − 𝑢1 − 𝑢−1) − (𝑛2 + 𝑛). (4.35)

Since the variables 𝑢−1, 𝑢0, 𝑢1 are independent then the last equation implies immediately that
𝜆 = 0 and 𝑛2 + 𝑛 = 0. Thus, we have 𝑛 = 0 or 𝑛 = −1. Both solutions contradict the
assumption 𝑛 > 0. Therefore, case 𝑖𝑖) is never realized.

Up to point transformations, there are three essentially different versions of chain (4.27):
1) If 𝑐1 = 𝑐2 = 0, then by the shift transformation 𝑢 → 𝑢 − 𝑐3(𝜀𝑥 + 𝑦) chain (4.27) reduces

to the known Ferapontov-Shabat-Yamilov chain (see [27, 28])

𝑢𝑛,𝑥𝑦 = 𝛼𝑛𝑢𝑛,𝑥𝑢𝑛,𝑦, (4.36)



ALGEBRAIC PROPERTIES OF QUASILINEAR TWO-DIMENSIONAL LATTICES. . . 101

2) If 𝑐1 = 0, 𝑐2 ̸= 0, then by shifting 𝑢 → 𝑢− 𝑐3
𝑐2

and scaling 𝑥 → 𝑥
𝜀𝑐2

, 𝑦 → 𝑦
𝑐2

we obtain the
chain

𝑢𝑛,𝑥𝑦 = 𝛼𝑛(𝑢𝑛,𝑥𝑢𝑛,𝑦 − 𝑢𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦) + 𝑢2
𝑛) + 𝑢𝑛,𝑥 + 𝑢𝑛,𝑦 − 𝑢𝑛, (4.37)

3) For 𝑐1 ̸= 0 by the shift transformation 𝑢 → 𝑢− 𝑐2
𝑐1

and by the scaling 𝑥 → 2
𝜀𝑐1

𝑥, 𝑦 → 2
𝑐1
𝑦

chain (4.27) can be reduced to

𝑢𝑛,𝑥𝑦 = 𝛼𝑛(𝑢𝑛,𝑥𝑢𝑛,𝑦 − 𝑠𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦) + 𝑠2𝑛) + 𝑠′𝑛(𝑢𝑛,𝑥 + 𝑢𝑛,𝑦 − 𝑠𝑛), (4.38)

where 𝑠𝑛 = 𝑢2
𝑛 + 𝐶 and 𝐶 = 𝑐3

𝑐1
−

(︁
𝑐2
𝑐1

)︁2

is an arbitrary constant.

Thus we have proved that each chain integrable in the sense of Definition 1 is of form (4.27).
In order to complete the proof of Theorem 1, we have to prove the opposite statement. This is
done in the following theorem.

Theorem 4. Chain (4.27) found as a result of the classification is integrable in the sense of
Definition 1 formulated in Introduction.

We introduce special notations for multiple commutators of the operators {𝑌𝑖}:

𝑌𝑖𝑘,...,𝑖0 = [𝑌𝑖𝑘 , 𝑌𝑖𝑘−1,...,𝑖0 ]. (4.39)

The structure of the Lie algebra generated by the operators {𝑌𝑖} can be studied by a method
developed in our previous paper [15]. One can prove that each element in this algebra can be
represented as a linear combination of the following operators

𝑌𝑖, 𝑌𝑖+1,𝑖, 𝑌𝑖+2,𝑖+1,𝑖, . . . . (4.40)

Formula (2.5) implies that the algebra ℒ(𝑦,𝑁) corresponding to system (2.1) is an extension
of this algebra obtained by adding one more generator, namely, the operator 𝑅.

We recall that in paper [15], a particular case of a chain (4.27) was studied in detail. Namely,
the following theorem was proved.

Theorem 5. The chain

𝑢𝑛,𝑥𝑦 =

(︂
1

𝑢𝑛 − 𝑢𝑛−1

− 1

𝑢𝑛+1 − 𝑢𝑛

)︂
𝑢𝑛,𝑥𝑢𝑛,𝑦 (4.41)

is integrable in the sense of Definition 1 formulated in the Introduction.

We recall briefly the scheme of the proof of Theorem 5. The basis

{𝑌𝑖}𝑁𝑖=0, {𝑌𝑖+1,𝑖}𝑁−1
𝑖=0 , {𝑌𝑖+2,𝑖+1,𝑖}𝑁−2

𝑖=0 , . . . , 𝑌𝑁,𝑁−1,...,0. (4.42)

was constructed in the set of multiple commutators of the operators 𝑌0, . . . , 𝑌𝑁 corresponding
to chain (4.41).

In order to prove that there is basis (4.42) in the set of multiple commutators of the operators
𝑌0, . . . , 𝑌𝑁 corresponding to chain (4.27), we can repeat the proof of Theorem 5.2 from paper
[15] (see Appendix) letting 𝑎𝑖 = 𝛼𝑖𝑢𝑖,𝑥 + 𝛾𝑖. This proof is cumbersome and we do not give it
here.

In order to prove the main Theorem 4 we consider the algebra Lie ℒ(𝑦,𝑁) generated by the
operators 𝑌0, . . . , 𝑌𝑁 , 𝑅 and we prove that a finite basis exists in this algebra

𝑅, {𝑌𝑖}𝑁𝑖=0, {𝑌𝑖+1,𝑖}𝑁−1
𝑖=0 , {𝑌𝑖+2,𝑖+1,𝑖}𝑁−2

𝑖=0 , . . . , 𝑌𝑁,𝑁−1,...,0. (4.43)

It remains to check that each multiple commutator of the operator 𝑅 with the operators (4.42)
is linearly expressed in terms of the operators in set (4.43).

We proceed to proving Theorem 4.

Proof of Theorem 4. Here we consider truncated chains, that is, finite systems of hyperbolic
equations (2.1) obtained by imposing cut-off conditions to the initial chain. We note that while
passing from an infinite chain to a truncated one, the commutation relations near the cut-off
points change.
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We prove Theorem 4 by an induction. Let us prove the induction base. The first step of the
proof requires the following formulae:[︀

𝐷𝑥, 𝑅̄0

]︀
= −𝑎0𝑅̄0 + ℎ1𝑌1,0 − 𝑌0(ℎ1)𝑌1 +

(︀
𝑅(𝑎0) − 𝑌0(ℎ0)

)︀
𝑌0, (4.44)[︀

𝐷𝑥, 𝑅̄𝑁

]︀
= − 𝑎𝑁 𝑅̄𝑁 − ℎ𝑁−1 [𝑌𝑁 , 𝑌𝑁−1]

− 𝑌𝑁(ℎ𝑁−1)𝑌𝑁−1 +
(︀
𝑅(𝑎𝑁) − 𝑌𝑁(ℎ𝑁)

)︀
𝑌𝑁 ,

(4.45)[︀
𝐷𝑥, 𝑅̄𝑘

]︀
= − 𝑎𝑘𝑅̄𝑘 − ℎ𝑘−1 [𝑌𝑘, 𝑌𝑘−1] + ℎ𝑘+1 [𝑌𝑘+1, 𝑌𝑘]

− 𝑌𝑘(ℎ𝑘−1)𝑌𝑘−1 +
(︀
𝑅(𝑎𝑘) − 𝑌𝑘(ℎ𝑘)

)︀
𝑌𝑘 − 𝑌𝑘(ℎ𝑘+1)𝑌𝑘+1.

(4.46)

Here 𝑅̄𝑗 = [𝑌𝑗, 𝑅], 𝑗 = 0, 1 . . . , 𝑁 .
First we study the end points 𝑘 = 0 and 𝑘 = 𝑁 . Let us prove the following identity:

𝑅̄0 = 𝜆(0)𝑅 + 𝜇(0)𝑌1,0 + 𝜈(0)𝑌1 + 𝜂(0)𝑌0. (4.47)

We apply the operator ad𝐷𝑥 to both sides of identity (4.47) and simplify using (4.2), (4.3),
(4.5), (4.44). As a result we obtain

−𝑎0(𝜆
(0)𝑅 + 𝜇(0)𝑌1,0 + · · · ) + ℎ1𝑌1,0 + · · ·

= 𝐷𝑥(𝜆(0))𝑅 + 𝐷𝑥(𝜇(0))𝑌1,0 + 𝜇(0)(−(𝑎1 + 𝑎0)𝑌1,0 + · · · ).
(4.48)

Here the dots stand for a linear combination of the operators 𝑌1, 𝑌0. Collecting the coefficients
at the operators 𝑅 and 𝑌1,0 in (4.48), we obtain a system of the equations

𝐷𝑥(𝜆(0)) = −𝑎0𝜆
(0), (4.49)

𝐷𝑥(𝜇(0)) = 𝑎1𝜇
(0) + ℎ1. (4.50)

Equation (4.49) coincides with equation (4.14) for 𝑖 = 0, hence, 𝜆(0) = 0. Equation (4.50)
coincides with the first equation in (4.15) for 𝑖 = 0, hence, 𝜇(0) = 𝜇. It is easy to show that
𝜈(0) = 𝜂(0) = 0. Thus, we have proved that decomposition (4.47) is of the form

𝑅̄0 = 𝜇(0)𝑌1,0. (4.51)

Let us prove the identity:

𝑅̄𝑁 = 𝜆(𝑁)𝑅 + 𝜇̃(𝑁)𝑌𝑁,𝑁−1 + 𝜂(𝑁)𝑌𝑁 + 𝜖(𝑁)𝑌𝑁−1. (4.52)

We apply ad𝐷𝑥 to both sides of relation (4.52):

−𝑎𝑁(𝜆(𝑁)𝑅 + 𝜇̃(𝑁)𝑌𝑁,𝑁−1 + · · · ) − ℎ𝑁−1𝑌𝑁,𝑁−1 + · · ·
= 𝐷𝑥(𝜆(𝑁))𝑅 + 𝐷𝑥(𝜇̃(𝑁))𝑌𝑁,𝑁−1 + 𝜇̃(𝑁)(−(𝑎𝑁 + 𝑎𝑁−1)𝑌𝑁,𝑁−1 + · · · ).

(4.53)

Here the dots stand for a linear combination of the operators 𝑌𝑁 , 𝑌𝑁−1. Collecting the coeffi-
cients for 𝑅 and 𝑌𝑁,𝑁−1, we get the system:

𝐷𝑥(𝜆(𝑁)) = −𝑎𝑁𝜆
(𝑁), (4.54)

𝐷𝑥(𝜇̃(𝑁)) = 𝑎𝑁−1𝜇̃
(𝑁) − ℎ𝑁−1. (4.55)

Equation (4.54) coincides with equation (4.14) for 𝑖 = 𝑁 , hence 𝜆(𝑁) = 0. Equation (4.55)
coincides with the second equation in (4.15) for 𝑖 = 𝑁 and hence, we have 𝜇̃(𝑁) = 𝐷𝑁

𝑛 𝜇̃(𝑢−1) =
𝜇̃(𝑢𝑁−1). It is easy to show that 𝜂(𝑁) = 𝜖(𝑁) = 0. Thus, we have proved that decomposition
(4.52) reads as

𝑅̄𝑁 = 𝜇̃(𝑁)𝑌𝑁,𝑁−1. (4.56)

Let 0 < 𝑘 < 𝑁 . We are going to show that

𝑅̄𝑘 = 𝜆(𝑘)𝑅 + 𝜇(𝑘)𝑌𝑘+1,𝑘 + 𝜇̃(𝑘)𝑌𝑘,𝑘−1 + 𝜈(𝑘)𝑌𝑘+1 + 𝜂(𝑘)𝑌𝑘 + 𝜖(𝑘)𝑌𝑘−1. (4.57)
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We apply the operator ad𝐷𝑥 to both sides of relation (4.57):

−𝑎𝑘(𝜆(𝑘)𝑅 + 𝜇(𝑘)𝑌𝑘+1,𝑘 + 𝜇̃(𝑘)𝑌𝑘,𝑘−1 + · · · ) − ℎ𝑘−1𝑌𝑘,𝑘−1 + ℎ𝑘+1𝑌𝑘+1,𝑘 + · · ·
=𝐷𝑥(𝜆(𝑘))𝑅 + 𝐷𝑥(𝜇(𝑘))𝑌𝑘+1,𝑘 + 𝐷𝑥(𝜇̃(𝑘))𝑌𝑘,𝑘−1

+ 𝜇(𝑘)(−(𝑎𝑘+1 + 𝑎𝑘)𝑌𝑘+1,𝑘 + · · · ) + 𝜇̃(𝑘)(−(𝑎𝑘 + 𝑎𝑘−1)𝑌𝑘,𝑘−1 + · · · ).
(4.58)

Here the dots stand for a linear combination of the operators 𝑌0, 𝑌1, . . . , 𝑌𝑁−1, 𝑌𝑁 . Collecting
the coefficients at 𝑅, 𝑌𝑘+1,𝑘, 𝑌𝑘,𝑘−1 in (4.58), we obtain the system

𝐷𝑥(𝜆(𝑘)) = −𝑎𝑘𝜆
(𝑘), (4.59)

𝐷𝑥(𝜇(𝑘)) = 𝑎𝑘+1𝜇
(𝑘) + ℎ𝑘+1, (4.60)

𝐷𝑥(𝜇̃(𝑘)) = 𝑎𝑘−1𝜇̃
(𝑘) − ℎ𝑘−1. (4.61)

Equation (4.59) coincides with (4.14) if 𝑖 = 𝑘. That is why we obtain 𝜆(𝑘) = 0. Equation (4.60)
coincides with the first equation in (4.15) if 𝑖 = 𝑘, and equation (4.61) coincides with the second
equation in (4.15) if 𝑖 = 𝑘. Hence, 𝜇(𝑘) = 𝐷𝑘

𝑛(𝜇(𝑢1)) = 𝜇(𝑢𝑘+1), 𝜇̃
(𝑘) = 𝐷𝑘

𝑛(𝜇̃(𝑢−1)) = 𝜇̃(𝑢𝑘−1).
It is easy to show that 𝜈(𝑘) = 𝜂(𝑘) = 𝜖(𝑘) = 0. Thus, we have proved that decomposition (4.57)
reads as

𝑅̄𝑘 = 𝜇(𝑘)𝑌𝑘+1,𝑘 + 𝜇̃(𝑘)𝑌𝑘,𝑘−1. (4.62)

We calculate the commutator [𝑌𝑖+1,𝑖, 𝑅] for some 𝑖, 0 6 𝑖 6 𝑁 −1. Using the Jacobi identity,
we obtain

[𝑌𝑖+1,𝑖, 𝑅] = − [𝑅, 𝑌𝑖+1,𝑖] = − [𝑅, [𝑌𝑖+1, 𝑌𝑖]] = [𝑌𝑖+1, [𝑌𝑖, 𝑅]] + [𝑌𝑖, [𝑅, 𝑌𝑖+1]]

=
[︀
𝑌𝑖+1, 𝜇

(𝑖)𝑌𝑖+1,𝑖 + 𝜇̃(𝑖)𝑌𝑖,𝑖−1

]︀
−
[︀
𝑌𝑖, 𝜇

(𝑖+1)𝑌𝑖+2,𝑖+1 + 𝜇̃(𝑖+1)𝑌𝑖+1,𝑖

]︀
=Λ(𝑖)𝑌𝑖+2,𝑖+1,𝑖 + 𝑀 (𝑖)𝑌𝑖+1,𝑖,𝑖−1 + 𝜅(𝑖)𝑌𝑖+2,𝑖+1 + 𝜂(𝑖)𝑌𝑖+1,𝑖 + 𝜁(𝑖)𝑌𝑖,𝑖−1,

where Λ(𝑖),𝑀 (𝑖), 𝜅(𝑖), 𝜂(𝑖), 𝜁(𝑖) are some functions depending on dynamic variables. Herewith
𝜁(0) = 0, 𝑀 (0) = 0, Λ𝑁−1 = 0, 𝜅𝑁−1 = 0.

Let us justify the inductive step. Given 𝑀 , 0 6 𝑘 < 𝑀 6 𝑁 − 1, we assume that

[𝑌𝑀,𝑀−1,...,𝑘, 𝑅] =Λ𝑌𝑀+1,𝑀,𝑀−1,...,𝑘 + 𝑀𝑌𝑀,𝑀−1,...,𝑘,𝑘−1 + 𝜈𝑌𝑀,𝑀−1,...,𝑘

+ 𝜀𝑌𝑀+1,𝑀,𝑀−1,..,𝑘+1 + 𝜂𝑌𝑀−1,...,𝑘,𝑘−1 + 𝜁𝑌𝑀−1,𝑀−2,...,𝑘

+ 𝜃𝑌𝑀,𝑀−1,...,𝑘+1 + 𝜉𝑌𝑀−2,𝑀−2,...,𝑘−1 + · · ·
+ · · · + 𝜅𝑌𝑀+1,𝑀 + 𝜙𝑌𝑀,𝑀−1 + · · · + 𝜒𝑌𝑘,𝑘−1.

(4.63)

Let us prove a similar representation holds for 𝑀 + 1. Using the Jacobi identity, we obtain:

[𝑌𝑀+1,𝑀,𝑀−1,...,𝑘, 𝑅] = − [𝑅, [𝑌𝑀+1, 𝑌𝑀,𝑀−1,...,𝑘]]

= [𝑌𝑀+1, [𝑌𝑀,𝑀−1,...,𝑘, 𝑅]] + [𝑌𝑀,𝑀−1,..,𝑘, [𝑅, 𝑌𝑀+1]]

= [𝑌𝑀+1, [𝑌𝑀,𝑀−1,...,𝑘, 𝑅]] − [𝑌𝑀,𝑀−1,..,𝑘, 𝑅𝑀+1] .

We substitute the decomposition (4.63) and one of equations (4.62), (4.51) or (4.56) (this
depends on a particular value of 𝑀 : 𝑀 = 0, 𝑀 = 𝑁 or 0 < 𝑀 < 𝑁) into the last formula.
Then we expand the commutators using the linearity property. The latter completes the proof
of Theorem 4.

Conclusion

In this paper the problem of the integrable classification of two-dimensional chains of type
(1.1) is studied. For chains of special type (1.5), (1.6), a complete description of the integrable
cases is obtained. By integrability of the chain we mean here the existence of reductions
in the form of arbitrarily high order systems of hyperbolic type equations that are Darboux
integrable. Apart of the known chains, the obtained list contains new chains (see Chains ii)
and iii) in Theorem 1).
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The algorithm used for classification is relatively new and testing this algorithm is one of the
goals of the work. It is based on the concept of the characteristic Lie algebra applied earlier
to the systems of hyperbolic type equations with two independent variables (see, for instance,
[17], [20] and the references therein). It is well known that for a Darboux integrable system,
the characteristic algebras in both directions have finite dimensions. In the present article we
adapted this concept to the classification of 1 + 2-dimensional lattices.

As the examples show (see [31] - [34]), the characteristic algebras of the hyperbolic systems
with two independent variables integrable by means of the inverse scattering method are slow
growth algebras.
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