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ON INSTABILITY OF EXTREMALS OF

POTENTIAL ENERGY FUNCTIONAL

N.M. POLUBOYAROVA

Abstract. The paper is devoted to studying the stability and instability of extremals of a
potential energy functional. A particular case of this functional is the area type functionals.
The potential energy functional is the sum of functionals of area type and of volume density
of forces. The potential energy functional is constructed in such way in order to take into
consideration the loads on the surface from outside and inside. The stability is defined
as the sign-definiteness of the second variation. In this paper we prove the formulae for
the first and second variations of the functional. We also prove that the extremal surface
can be locally minimal and locally maximal depending on the sign of matrix 𝐺. Using
the 𝐺-capacity and the second variation of the functional, we obtain the conditions for
the instability of the extremals of the potential energy functional. This technique was
developed in works by V.M. Miklyukov and V.A. Klyachin. For 𝐺-parabolic extremal
surfaces we prove the degeneracy into the plane. This result is an analogue of the theorems
by M. do Carmo and C.K. Peng. By an example of 𝑛-dmensional surfaces of revolution we
demonstrate the formulae for the first and second variations of the functional. We also prove
the criteria of stability and instability for 𝑛-dimensional surfaces of revolution. Similar
extremal surfaces arise in applications, in physical problems (e.g. soap films, capillary
surfaces, magnetic liquids in a gravitational field with a potential), and the properties of
extreme surfaces are used in applied problems (e.g. modeling of awning coverings).

Keywords: the variation of functional, extreme surface, area type functional, volumetric
power density functional, functional of potential energy, 𝐺-capacity, 𝐺-parabolicity, the
stability.

Mathematics Subjects Classifications: 53A10, 30C70, 31A15.

1. Introduction

The present paper is devoted to studying the stability and instability of extremals for a
special functional. This is one of topical and challenging issues of the contemporary analysis.
Similar extremal surfaces arise in applications, in physical problems (e.g., soap films) and the
properties of the extremal surfaces are employed in application problems (e.g., modeling of tent
coverings).

The problem of stability of extremal surfaces in various spaces was studied in papers
by D. Hoffman and R. Osserman [1], J.L. Barbosa and M. do Carmo [2], J. Lowson [3],
A.V. Pogorelov [4], H. B. Simons [5], A.A. Tuzhilin [6], A.T. Fomenko [7] etc.

Extremals of a particular case of the considered functional describe, for example, equilibrium
fluids in gravitational field with a potential that was described in the monography by R.Finn.
Some particular cases of extremal surfaces with the mean curvature depending only on one
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fixed coordinate were considered in the paper of D. Hoffman and R. Osserman [1]. In the paper
[9], V.A. Klyachin the studied the stability of surfaces with a prescribed mean curvature.

In the paper the potential energy functional is represented as a linear combination of area-
like functional and functional with volume density of forces. This is motivated by the need of
considering inward and outward loads on a surface (system) in applied problems. This is why in
the present work we consider a more complicated functional than the area-like one. The results
are new and more general as compared to the classical facts known for minimal surfaces; and
there are no restrictions for the mean curvature of the surfaces. In the proofs we employ the
capacity technique elaborated by V.M. Mikljukova and V.A. Klyachin in papers [10] that allow
us to prove analogous tests for the new functional.

2. Main Results

Let 𝑀 be a 𝑛-dimensional connected oriented 𝐶2-manifold. We define a potential energy
functional on the oriented hypersurface ℳ = (𝑀,𝑢) obtained by 𝐶2-immersion 𝑢 : 𝑀 → R𝑛+1:

𝑊 (ℳ) =

∫︁
ℳ

Φ(𝜉) 𝑑ℳ +

∫︁
Ω

Ψ(𝑥) 𝑑𝑥 (1)

where Ω ⊂ R𝑛+1 is a domain such that ℳ ⊂ 𝜕Ω, and, from a physical point of view, Ψ(𝑥) is
the volume density of forces acting on a fluid element occupying the interior of the domain Ω,
and Φ, Ψ : R𝑛+1 → R are 𝐶2-smooth functions and 𝜉 is the field of unit normals to the surface
ℳ.

Let 𝑉 be a 𝐶2-smooth vector field defined in a neighbourhood of the surface ℳ such that
𝑉 |ℳ = ℎ·𝜉 where ℎ ∈ 𝐶1

0(ℳ), 𝜉 is the field of unit normals to the surface, and it is supposed that
the integral curves of the field 𝑉 are located on the straight lines and the identity |𝑉 | = const
holds along these curves.

It is clear that provided the surface ℳ is immersed, each vector field 𝑉 = ℎ · 𝜉 defined
along ℳ can be continued into some neighbourhood of ℳ so that the above conditions are
satisfied. We note that according work [5], the second variation is independent of choice of the
continuation.

Let 𝑈(ℳ) be a neighbourhood of the surface ℳ, in which the field 𝑉 is defined, and
𝑔𝑡(𝑥) : 𝑈(ℳ) → R𝑛+1 be a one-parameter group of local diffeomorphisms generated by the
vector field 𝑉. That is, 𝑔𝑡(𝑥) is a solution to the Cauchy problem:

𝑑𝑔𝑡(𝑥)

𝑑𝑡
= 𝑉 (𝑔𝑡(𝑥)), 𝑔𝑡(𝑥)|𝑡=0 = 𝑥.

We let ℳ𝑡 = 𝑔𝑡(ℳ). It is clear that ℳ0 = ℳ.
The surface ℳ is extremal if the first variation of functional (1) vanishes for all infinitesi-

mal deformations of the surface ℳ. Extremal surface ℳ is stable if the second variation of
functional (1) is sign-definite for all infinitesimal deformations of the surface ℳ; otherwise it
is called unstable.

A Riemmanian metrics and a corresponding scalar product of tangent vectors are induced on
the surface ℳ. This scalar product will be denoted in the same way as the in R𝑛+1, by ⟨·, ·⟩.
The symbols ∇ and ∇ stand for the Riemannian connectivities in R𝑛+1 and ℳ, respectively.
The following relations are known

∇ℎ = (∇ℎ)𝑇 , ∇𝑋𝑌 = (∇𝑋𝑌 )𝑇 ,

which are valid for all 𝐶1-smooth functions ℎ : R𝑛+1 → R and 𝐶1-smooth vector fields 𝑋 and
all 𝑌 tangential to ℳ. By symbol 𝑣𝑇 we denote the orthogonal projection of a vector 𝑣 on the
tangent plane 𝑇𝑚ℳ of the surface ℳ at a point 𝑚 ∈ ℳ.
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We denote

𝐺 = {𝐺𝑖𝑗}𝑛+1
𝑖,𝑗=1, 𝐺𝑖𝑗 =

𝜕2Φ

𝜕𝜉𝑖𝜕𝜉𝑗
+ 𝛿𝑖𝑗(Φ − ⟨𝐷Φ, 𝜉⟩) (2)

where 𝐷Φ =

(︂
𝜕Φ

𝜕𝜉1
,
𝜕Φ

𝜕𝜉2
, . . . ,

𝜕Φ

𝜕𝜉𝑛+1

)︂
, 𝛿𝑖𝑗 is the Kronecker delta, 𝑘𝑖 are the principle curvatures;

and 𝐸𝑖 are the principle directions of the surface.

Theorem 1. If 𝑊 (𝑡) = 𝑊 (ℳ𝑡), then

𝑊 ′(0) =

∫︁
ℳ

(div(𝐷Φ(𝜉))𝑇 − 𝑛𝐻Φ(𝜉) + Ψ(𝑥))ℎ(𝑥) 𝑑ℳ

where div is divergence in the metrics on the surface ℳ and 𝐻 = ⟨�⃗�, 𝜉⟩ is the mean curvature
of the surface ℳ with respect to the normal 𝜉. Moreover, if 𝑊 ′(0) = 0 for all functions
ℎ(𝑥) ∈ 𝐶1

0(ℳ), then

𝑊 ′′(0) =

∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) + ℎ2

(︃
⟨∇Ψ(𝑥), 𝜉⟩ −

𝑛∑︁
𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃}︃
𝑑ℳ

where 𝐺 is the quadratic form associated with matrix (2).

Functional (1) is the composition of the above studied area-like functionals [11] and the
functional with volumetric density of forces [9].

Hereafter we suppose that the matrix 𝐺 is positively definite and
⟨︀
∇Ψ, 𝜉

⟩︀
6 0.

Remark. The restrictions for the matrix 𝐺 are motivated by using of capacity concept in the
proofs and by employing in applications. The condition

⟨︀
∇Ψ, 𝜉

⟩︀
6 0 is in fact a coupling one

between inwards and outwards surface loads but its interpretation in applications is not known
to the author. The presence of conditions is due to features of the technique of the proof as in
paper [9].

Corollary 1. If the matrix 𝐺 is positively definite, then each extremal is locally-minimal for
functional (1), and if the matrix 𝐺 is negatively definite, all extremals are locally-maximal.

Let Ω1 ⊂ ℳ be a domain in the surface ℳ and 𝑃,𝑄 ⊂ Ω1 be two disjoint closed sets in Ω1.
Every triple (𝑃,𝑄; Ω1) will be referred to as the capacitor on ℳ.
The 𝐺-capacity of a capacitor (𝑃,𝑄; Ω1) is the quantity

cap 𝐺(𝑃,𝑄; Ω1) = inf
𝜙

∫︁
ℳ

𝐺(∇𝜙,∇𝜙) 𝑑ℳ

where the infimum is taken over all locally Lipschitz functions 𝜙 : ℳ → R1, 𝜙(𝑚) = 1 as 𝑚 ∈ 𝑃
and 𝜙(𝑚) = 0 as 𝑚 ∈ 𝑄.

The surface ℳ will be referred to as 𝐺-parabolic if there exists a sequence of subdomains
Ω𝑘 ⊂ ℳ, Ω𝑘 b Ω𝑘+1 such that the identity

lim
𝑘→∞

cap 𝐺(𝑃, 𝜕Ω𝑘; Ω𝑘) = 0

holds for each 𝑃 b ℳ.

Theorem 2. Let ℳ be an extremal surface for functional (1). If there exists a domain
Ω1 ⊂ ℳ and a compact set 𝑃 b Ω1 such that∫︁

𝑃

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
> cap𝐺(𝑃, 𝜕Ω1; Ω1),

then the surface ℳ is unstable.
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Theorem 3. Let ℳ be a stable extrinsically complete complete (without edge) immersed
surface extremal for the functional (1) along which the inequality

⟨︀
∇Ψ, 𝜉

⟩︀
6 0 holds. If ℳ is

of a 𝐺-parabolic type, then the surface ℳ is a plane.

Remark. The theorem 3 is an analogue of known result due to M. do Carmo and C.K. Peng
[12].

3. Proofs

Proof of Theorem 1. The proof is reduced to a combination of previously obtained results. In
order to use them, we represent the functional (1) in the form

𝑊 (ℳ) = 𝐹 (ℳ) + 𝐿(ℳ),

where

𝐹 (ℳ) =

∫︁
ℳ

Φ(𝜉) 𝑑ℳ, (3)

𝐿(ℳ) =

∫︁
Ω

Ψ(𝑥) 𝑑𝑥. (4)

The following theorem on the variations of functional (3) was proved by B.A. Klyachin and
the author in [11].

Theorem 4. If 𝐹 (𝑡) = 𝐹 (ℳ𝑡), then

𝐹 ′(𝑡) =

∫︁
ℳ

(div(𝐷Φ(𝜉))𝑇 − 𝑛𝐻Φ(𝜉))ℎ(𝑥) 𝑑ℳ.

Moreover, if 𝐹 ′(0) = 0, then

𝐹 ′′(0) ≡
∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) − ℎ2

𝑛∑︁
𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

}︃
𝑑ℳ

holds for all functions ℎ ∈ 𝐶1
0(ℳ).

Theorem 5 for the functional (4) was proved in [9] while studying another functional.

Theorem 5. If 𝐿(𝑡) = 𝐿(ℳ𝑡), then

𝐿′(𝑡) =

∫︁
ℳ

Ψ(𝑥)ℎ(𝑥) 𝑑ℳ.

Moreover, if 𝐿′(0) = 0, then

𝐿′′(0) =

∫︁
ℳ

(⟨∇Ψ, 𝜉⟩ − 𝑛𝐻Ψ(𝑥))ℎ2𝑑ℳ

holds for all functions ℎ(𝑥) ∈ 𝐶1
0(ℳ).

It is obvious that 𝑊 ′(𝑡) = 𝐹 ′(𝑡) +𝐿′(𝑡), 𝑊 ′′(0) = 𝐹 ′′(0) +𝐿′′(0). The proof is complete.

Proceeding to the proof of Corollary 1, we note that it is based on a method developed in
paper [13].
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Proof of Corollary 1. By Theorem 1 we have that for extremal surfaces the identity 𝑊 ′(0) = 0
holds and the second variation is well-defined. We fix a point 𝑝 ∈ ℳ and a neighbourhood
𝒰 ⊂ ℳ of the point 𝑝. we let

𝑐 = sup
𝒰

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖) − ⟨∇Ψ(𝑥), 𝜉⟩

)︃
.

For an arbitrary function ℎ ∈ 𝐶1
0(𝒰) we have

𝑄(ℎ) ≡
∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) − ℎ2

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖) − ⟨∇Ψ(𝑥), 𝜉⟩

)︃}︃
𝑑ℳ

>
∫︁
ℳ

{𝐺(∇ℎ,∇ℎ) − ℎ2𝑐} 𝑑ℳ >
∫︁
ℳ

⎧⎨⎩ inf
ℎ0∈𝐶1

0 (𝒰)

∫︀
𝒰
𝐺(∇ℎ0,∇ℎ0)∫︀

𝒰
ℎ20

− 𝑐

⎫⎬⎭ℎ2 𝑑ℳ.

If the matrix 𝐺 is positive-definite, we can state that

inf
ℎ0∈𝐶1

0 (𝒰)

∫︀
𝒰
𝐺(∇ℎ0,∇ℎ0)∫︀

𝒰
ℎ20

→ +∞,

as diam𝒰 → 0, and then it is obvious that 𝑄(ℎ) > 0 for a sufficiently small neighbourhood 𝒰
of the point 𝑝. Hence, the variation of the surface ℳ along the direction of the vector field 𝜉
does not lessen the area and the surface ℳ is locally-minimal.

Arguing in the same way for a negative-definite matrix 𝐺, we observe that

inf
ℎ0∈𝐶1

0 (𝒰)

∫︀
𝒰
𝐺(∇ℎ0,∇ℎ0)∫︀

𝒰
ℎ20

→ −∞

as diam𝒰 → 0 and as above, we conclude that 𝑄(ℎ) 6 0 if the support of the function ℎ is
sufficiently small. Therefore, the variation of the surface ℳ does not lessen the area and the
surface ℳ is locally-maximal. The proof is complete.

The proof is based on the following lemma proved in [11].

Lemma. Assume that we are given a non-zero non-negative function 𝑆(𝑥) in R𝑛+1. Then
for an arbitrary bounded domain Ω1 ⊂ ℳ and a compact set 𝑃 b Ω1 there exists a function
ℎ0 : ℳ → R such that ℎ0 ∈ 𝐶1

0(Ω1) obeying

𝑄𝑆(ℎ0) =

∫︁
ℳ

{︀
𝐺(∇ℎ0,∇ℎ0) − 𝑆ℎ20

}︀
𝑑ℳ 6 cap𝐺 (𝑃, 𝜕Ω1; Ω1) −

∫︁
𝑃

𝑆 𝑑ℳ.

Proof of Theorem 2. We apply Lemma to the the second variation of functional and in view of
the condition

⟨︀
∇Ψ, 𝜉

⟩︀
6 0 we obtain the inequality∫︁

ℳ

{︃
𝐺(∇ℎ,∇ℎ) + ℎ2

(︃
⟨∇Ψ(𝑥), 𝜉⟩ −

𝑛∑︁
𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃}︃
𝑑ℳ

6
∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) − ℎ2

𝑛∑︁
𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

}︃
𝑑ℳ

6 cap𝐺 (𝑃, 𝜕Ω1; Ω1) −
∫︁
𝑃

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ.
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And since by the assumption of the theorem, the 𝐺-capacity is less than the last term in the
above inequality, we get that the second variation is negative. By the definition, this means
that the surface ℳ is unstable. The proof is complete.

Proof of Theorem 3. The proof is similar to that provided in [11] for functional (3).
Let 𝑃 ⊂ ℳ be an arbitrary compact set. Provided the surface ℳ of 𝐺-parabolic type, there

exists a subsequence of domains Ω𝑘 ⊂ ℳ, Ω𝑘 ⊂ Ω𝑘+1 and 𝑃 b Ω1 ⊂ Ω2 . . . , such that the
identity holds:

lim
𝑘→∞

cap𝐺(𝑃, 𝜕Ω𝑘; Ω𝑘) = 0.

Since by the assumptions of the theorem ℳ is a stable extremal surface, the definiton of
stability implies that the second variation is nonnegative:

0 6
∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) − ℎ2

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖) − ⟨∇Ψ(𝑥), 𝜉⟩

)︃}︃
𝑑ℳ.

Employing the condition
⟨︀
∇Ψ, 𝜉

⟩︀
6 0, we get

0 6
∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) − ℎ2

𝑛∑︁
𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

}︃
𝑑ℳ.

It is known [14] that the variational problem∫︁
ℳ

𝐺 (∇ℎ,∇ℎ) 𝑑ℳ → inf

has solutions ℎ𝑘(𝑥) for all 𝑘 = 1, 2, . . . , such that

cap𝐺 (𝑃, 𝜕Ω𝑘; Ω𝑘) =

∫︁
ℳ

𝐺(∇ℎ𝑘,∇ℎ𝑘) 𝑑ℳ

and ℎ𝑘|𝑃 = 1, ℎ𝑘|𝜕Ω𝑘
= 0. Then we get

0 6
∫︁
ℳ

{︃
𝐺(∇ℎ𝑘,∇ℎ𝑘) − ℎ2𝑘

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃}︃
𝑑ℳ

=cap𝐺 (𝑃, 𝜕Ω𝑘; Ω𝑘) −
∫︁
ℳ

ℎ2𝑘

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ

6cap𝐺 (𝑃, 𝜕Ω𝑘; Ω𝑘) −
∫︁
𝑃

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ.

This implies that

0 6 cap𝐺 (𝑃, 𝜕Ω𝑘; Ω𝑘) −
∫︁
𝑃

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ,

cap𝐺 (𝑃, 𝜕Ω𝑘; Ω𝑘) >
∫︁
𝑃

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ.
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Passing to the limit as 𝑘 → +∞ in this inequality and using the definition of 𝐺-parabolicity of
the surface, we get: ∫︁

𝑃

(︃
𝑛∑︁

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ 6 0,

and this is possible only as
𝑛∑︀

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖) ≡ 0 on 𝑃. Since the compact set 𝑃 was chosen

arbitrarily, we conclude that
𝑛∑︀

𝑖=1

𝑘2𝑖𝐺(𝐸𝑖, 𝐸𝑖) ≡ 0 on ℳ.

Since the matrix 𝐺 is the positive-definite, this means that for all 𝑖 the identities 𝑘𝑖 = 0 are
true, where 𝑘𝑖 are the principle curvatures of the surface ℳ. This means that ℳ is a plane.

4. Examples of Realisations of Obtained Results

Let ℳ ⊂ R𝑛+1 be a 𝐶2-smooth surface defined by the position vector

�⃗�(𝑡, 𝜃) = (𝑡, 𝑟(𝑡)𝜌(𝜃)), (5)

𝜃 ∈ S𝑛−1, 𝜌(𝜃) be the position vector of the sphere S𝑛−1, 𝑡 ∈ (𝑎, 𝑏) ⊂ R; and let 𝑟(𝑡) be
a 𝐶2-smooth function on (𝑎, 𝑏), 𝜉𝑛+1 be the coordinate of unit normal to the surface ℳ and
Φ(𝜉) = 𝜑(𝜉𝑛+1), Ψ(𝑥) = 𝜓(𝑥𝑛+1) = 𝜓(𝑡).

We introduce the following notations to have more compact statements

𝜏 = 𝜉𝑛+1 = −�̇�(𝑡)/
√︀

1 + �̇�2(𝑡),

𝜑′(𝜏) = 𝑑𝜑/𝑑𝜉𝑛+1, 𝜑
′′(𝜏) = 𝑑2𝜑/𝑑𝜉2𝑛+1,

�̇�(𝑡) = 𝑑𝑟(𝑡)/𝑑𝑡, 𝑟(𝑡) = 𝑑2𝑟(𝑡)/𝑑𝑡2,

𝐵(𝑡) =
𝜑′′(𝜏)

(1 + �̇�2(𝑡))

(︃
𝜑(𝜏) +

𝜑′(𝜏)�̇�(𝑡)√︀
1 + �̇�2(𝑡)

)︃ ,

𝐶(𝑡) =
𝑟(𝑡)

√︀
1 + �̇�2(𝑡)

𝜑(𝜏) + 𝜑′(𝜏)�̇�(𝑡)√
1+�̇�2(𝑡)

,

𝑄(𝑡) = 𝜑(𝜏) +
𝜑′(𝜏)�̇�(𝑡)√︀
1 + �̇�2(𝑡)

.

Then Theorem 1 implies Theorem 6 on equation of extremals (the proof is given in [15]) and
Theorem 7 on expression of the second variation for the revolution surface.

Theorem 6. The surface ℳ of class 𝐶2 defined by the radius-vector (5) is extremal for the
functional (1) if and only if

𝑟(𝑡)𝑟(𝑡)

1 + �̇�2(𝑡)
− (𝑛− 1) + Ψ(𝑥)𝐶(𝑡)

𝐵(𝑡) + 1
= 0.

The following theorem is a logical continuation of Theorem 6 and it is useful in seeking
stability and instability domains of extremal revolution surfaces.

Theorem 7. An extremal surface ℳ of the class 𝐶2 defined by position-vector (5) is stable
if and only if the quadratic form∫︁

ℳ

ℎ′2𝑡 (𝑡, 𝜃)
𝜑′′(𝜏) +𝑄(𝑡)(1 + �̇�2(𝑡))

(1 + �̇�2(𝑡))2
+ |𝐷𝜃ℎ(𝑡, 𝜃)|2𝑄(𝑡)

𝑟2(𝑡)
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− ℎ2(𝑡, 𝜃) ·

(︃(︁
(𝑛− 1)𝑄(𝑡) + 𝜓(𝑡)𝑟(𝑡)

√︀
1 + �̇�2(𝑡)

)︁2
𝑟2(𝑡)(𝜑′′(𝜏) +𝑄(𝑡)(1 + �̇�2(𝑡)))

+
(𝑛− 1)𝑄(𝑡)

𝑟2(𝑡)(1 + �̇�2(𝑡))
+

𝜓′(𝑡)�̇�(𝑡)√︀
1 + �̇�2(𝑡)

)︃
𝑑ℳ

is sign-definite over the class of all Lipschitz functions ℎ : R𝑛+1 → R such that ℎ ∈ 𝐶1
0(ℳ).

Proof of Theorem 7. All intermediate steps in calculating of the coefficients in quadratic form,
principle curvatures and principle directions of the surface were described in details in [15] and
this is why we do not provide them. To calculate the second variation, we should write out the
obtained formulae for the first and second quadratic form and substitute them into the formula
for the second variation; we also going to clarify how to obtain the values of the matrix 𝐺 on
the vectors 𝐸𝑖 and ∇ℎ.

The first quadratic form is

𝐼 = (1 + �̇�2(𝑡))𝑑𝑡2 + 𝑟2(𝑡)𝑑𝜃2,

where 𝑑𝜃2 is the length differential for S𝑛−1.
The second quadratic form is

𝐼𝐼 =
𝑟(𝑡)√︀

1 + �̇�2(𝑡)
𝑑𝑡2 +

𝑟(𝑡)√︀
1 + �̇�2(𝑡)

𝑑̃︀𝜃2,
where 𝑑̃︀𝜃2 is the second quadratic form for S𝑛−1.

Using the standard notation ‖𝑔𝑖𝑗‖ for matrix of the coefficients of the first quadratic form and
the notation ‖𝑔𝑖𝑗‖ for the inverse matrix, we write out the formula for gradient of the function
ℎ:

(∇ℎ)𝑖 =
𝑛−1∑︁
𝑗=0

𝑔𝑖𝑗
𝜕ℎ

𝜕𝑥𝑗
, 𝑖 = 0, 𝑛− 1,

and we calculate ℎ:

(∇ℎ)0 =
𝑛−1∑︁
𝑗=0

𝑔0𝑗
𝜕ℎ

𝜕𝑥𝑗
= 𝑔00

𝜕ℎ

𝜕𝑥0
=

ℎ′𝑡
1 + �̇�2(𝑡)

,

(∇ℎ)𝑖 =
𝑛−1∑︁
𝑗=0

𝑔𝑖𝑗
𝜕ℎ

𝜕𝑥𝑗
=

𝑛−1∑︁
𝑗=1

𝑔𝑖𝑗
𝜕ℎ

𝜕𝑥𝑗
=

1

𝑟2(𝑡)

𝑛−1∑︁
𝑗=1

𝑔𝑖𝑗
𝜕ℎ

𝜕𝜃𝑖𝑗
=

1

𝑟2(𝑡)
(𝐷ℎ)𝑖, 𝑖 ̸= 0.

Denoting 𝐷𝜃ℎ =
𝑛−1∑︀
𝑖=1

(𝐷ℎ)𝑖, we obtain coordinate expression for the gradient vector:

∇ℎ =

(︂
ℎ′𝑡

1 + �̇�2(𝑡)
,
𝐷𝜃ℎ

𝑟2(𝑡)

)︂
.

This easily implies that the square of the modulus of the gradient is of the form

|∇ℎ|2 = ℎ′2𝑡 /(1 + �̇�2(𝑡)) + |𝐷𝜃ℎ|2/𝑟2(𝑡)

because |∇ℎ|2 =
𝑛−1∑︀
𝑗=0

𝑔𝑖𝑗 ((∇ℎ)𝑖)
2
. The values of the matrix 𝐺 on the vectors 𝐸𝑖 and ∇ℎ are cal-

culated by means of the scalar product ⟨⟨𝐺,𝐸𝑖⟩, 𝐸𝑖⟩, ⟨⟨𝐺,∇ℎ⟩,∇ℎ⟩ and are written as follows:

𝐺(𝐸1, 𝐸1) =
𝜑′′(𝜏)

1 + �̇�2(𝑡)
+ 𝜑(𝜏) +

𝜑′(𝜏)�̇�(𝑡)√︀
1 + �̇�2(𝑡)

, 𝐺(𝐸𝑖, 𝐸𝑖) = 𝜑(𝜏) +
𝜑′(𝜏)�̇�(𝑡)√︀
1 + �̇�2(𝑡)

,

𝐺(∇ℎ, ∇ℎ) =
𝜑′′(𝜏)ℎ′2𝑡

(1 + �̇�2(𝑡))2
+

(︂
ℎ′2𝑡

1 + �̇�2(𝑡)
+

|𝐷𝜃ℎ|2

𝑟2(𝑡)

)︂(︃
𝜑(𝜏) +

𝜑′(𝜏)�̇�(𝑡)√︀
1 + �̇�2(𝑡)

)︃
.
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We substitute the obtained expressions into the formula for the second variation in Theorem 1
and this gives us the required statement. The proof is complete.
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