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ON GROWTH RATE OF COEFFICIENTS IN

BERNSTEIN POLYNOMIALS FOR THE STANDARD

MODULUS FUNCTION ON A SYMMETRIC INTERVAL

M.A. PETROSOVA, I.V. TIKHONOV, V.B. SHERSTYUKOV

Abstract. The subject of the paper is closely related to one general direction in the
approximation theory, within which the growth rate of the coefficients of algebraic polyno-
mials is studied for uniform approximations of continuous functions. The classical Bern-
stein polynomials play an important role here. We study in detail a model example of
Bernstein polynomials for the standard modulus function on a symmetric interval. The
question under consideration is the growth rate of of the coefficients in these polynomials
with an explicit algebraic representation. It turns out that in the first fifteen polynomials
the growth of the coefficients is almost not observed. For the next polynomials the situa-
tion changes, and coefficients of exponential growth appear. Our main attention is focused
on the behaviour of the maximal coefficient, for which exact exponential asymptotics and
corresponding two-sided estimates are established (see Theorem 2). As it follows from the

obtained result, the maximal coefficient has growth 2𝑛/2/ 𝑛2, where 𝑛 is the index of the
Bernstein polynomial. It is shown that the coefficients equidistant from the maximal one
have a similar growth rate (for details, see Theorem 3). The group of the largest coefficients
is located in the central part of the Bernstein polynomials but at the ends the coefficients
are sufficiently small. The behavior of the sum of absolute values of all coefficients is also
considered. This sum admits an explicit expression that is not computable in the sense of
traditional combinatorial identities. On the base of a preliminary recurrence relation, we
succeeded to obtain the exact asymptotics for the sum of absolute values of all coefficients
and to give the corresponding two-sided estimates (see Theorem 4). The growth rate of the

sum is 2𝑛/2/ 𝑛3/2. In the end of the paper, we compare this result with a general Roulier
estimate and new related problems are formulated.
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1. Introduction

There is one special direction in the approximation theory devoted to studying possible
growth rate of the coefficients in algebraic polynomials used in uniform approximations of
continuous functions on a given set [1]–[7]. Some results, see [3]–[6], were obtained by estimating
the coefficients in the corresponding Bernstein polynomials. As a rule, such estimates were
given independent of specific approximated functions and this is why they had quite “rought”
character. A choice of a specific example allows one to specify essentially the real growth rate
of the coefficients in Bernstein polynomials.
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For instance, in work [8], there was found an explicit algebraic expression for Bernstein
polynomials in the power of a variable 𝑥 for the function 𝑓(𝑥) = |2𝑥 − 1| considered on the
segment [0, 1]. It was shown that the maximal coefficient in this expression grows exponentially
approximately as 23𝑛/2, where 𝑛 is the index of a Bernstein polynomial. A series of additional
facts on the coefficients of Bernstein polynomials on the standard segment [0, 1] was mentioned
in work [9].

It is curious that while extending the Bernstein construction on the symmetric segment
[−1, 1], a nature of such results changes. Features of a symmetric segment in the theory of
Bernstein polynomials were found out rather recently, see [10], [11]. In particular, in work [11]
there was found an explicit algebraic expression in powers of the variable 𝑥 for Bernstein
polynomials for the standard modulus function 𝑓(𝑥) = |𝑥| on the symmetric segment [−1, 1].
A final formula turned out to be simple and elegant. Here we employ the results of [11] to
estimate the growth rate in rising polynomials.

For general information on the theory of Bernstein polynomials we refer to textbooks [12]–
[16].

2. Formulation of problem

Given a function 𝑓 ∈ 𝐶[−1, 1], the Bernstein polynomials on the symmetric segment [−1, 1]
are introduced by the rule:

𝐵𝑛(𝑓, 𝑥) =
1

2𝑛

𝑛∑︁
𝑘=0

𝑓

(︂
2𝑘

𝑛
− 1

)︂
𝐶𝑘

𝑛 (1 + 𝑥)𝑘 (1 − 𝑥)𝑛−𝑘, 𝑛 ∈ N. (1)

Here 𝐶𝑘
𝑛 are binomial coefficients. Choosing the standard modulus function

𝑓(𝑥) = |𝑥|, 𝑥 ∈ [−1, 1], (2)

formula (1) becomes

𝐵𝑛(𝑥) =
1

2𝑛

𝑛∑︁
𝑘=0

⃒⃒⃒⃒
2𝑘

𝑛
− 1

⃒⃒⃒⃒
𝐶𝑘

𝑛 (1 + 𝑥)𝑘 (1 − 𝑥)𝑛−𝑘, 𝑛 ∈ N. (3)

Polynomials (3) are denoted simply by 𝐵𝑛(𝑥) without mentioning the function 𝑓 since in the
present work we consider no other generating functions except (2).

Inter alia, polynomials (3) obey a special gluing rule meaning

𝐵2𝑚+1(𝑥) = 𝐵2𝑚(𝑥), 𝑚 ∈ N. (4)

Identity (4) is a reflection of the general law of pairwise coincidence, which is true for Bernstein
polynomials on [−1, 1] for piecewise linear functions with rational abscissas of breakpoints, see
[10], [11]. Due to (4) we consider only polynomials with even indices:

𝐵2𝑚(𝑥) =
1

22𝑚

2𝑚∑︁
𝑘=0

⃒⃒⃒⃒
𝑘

𝑚
− 1

⃒⃒⃒⃒
𝐶𝑘

2𝑚 (1 + 𝑥)𝑘 (1 − 𝑥)2𝑚−𝑘, 𝑚 ∈ N. (5)

Let us proceed to the algebraic writing in powers of the variable 𝑥.
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Opening brackets and collecting like terms, for the first polynomials we obtain

𝐵2(𝑥) =
1

2

(︀
1 + 𝑥2

)︀
,

𝐵4(𝑥) =
1

8

(︀
3 + 6𝑥2 − 𝑥4

)︀
,

𝐵6(𝑥) =
1

16

(︀
5 + 15𝑥2 − 5𝑥4 + 𝑥6

)︀
,

𝐵8(𝑥) =
1

128

(︀
35 + 140𝑥2 − 70𝑥4 + 28𝑥6 − 5𝑥8

)︀
,

𝐵10(𝑥) =
1

256

(︀
63 + 315𝑥2 − 210𝑥4 + 126𝑥6 − 45𝑥8 + 7𝑥10

)︀
,

𝐵12(𝑥) =
1

1024

(︀
231 + 1386𝑥2 − 1155𝑥4 + 924𝑥6 − 495𝑥8 + 154𝑥10 − 21𝑥12

)︀
and so forth. All polynomials 𝐵2𝑚(𝑥) for even function (2) involve only even powers of 𝑥, see
[10], and have the sturcture

𝐵2𝑚(𝑥) =
𝑚∑︁
𝑘=0

𝑎2𝑚,2𝑘 𝑥
2𝑘, 𝑚 ∈ N. (6)

Explicit expression showing exact form of formula (6) is as follows:

𝐵2𝑚(𝑥) = 2−2𝑚 𝐶𝑚
2𝑚

[︃
1 +

𝑚∑︁
𝑘=1

(−1)𝑘−1

2𝑘 − 1
𝐶𝑘

𝑚 𝑥2𝑘

]︃
, 𝑚 ∈ N. (7)

Representation (7) was found in work [11]. We are going to employ (7) for studying the
coefficients of the polynomials 𝐵2𝑚(𝑥).

We briefly call the parameter 𝑛 = 2𝑚 index. Comparing (6) and (7), we obtain

𝑎2𝑚,0 = 2−2𝑚 𝐶𝑚
2𝑚, 𝑚 ∈ N, (8)

𝑎2𝑚,2𝑘 = 2−2𝑚 𝐶𝑚
2𝑚 (−1)𝑘−1 𝛽𝑚(𝑘), 𝑚 ∈ N, 𝑘 = 1, . . . , 𝑚, (9)

with positive numbers

𝛽𝑚(𝑘) =
1

2𝑘 − 1
𝐶𝑘

𝑚, 𝑚 ∈ N, 𝑘 = 1, . . . , 𝑚. (10)

The behavior of free coefficients (8) is given by the known asymptotics

2−2𝑚 𝐶𝑚
2𝑚 ∼ 1√

𝜋𝑚
, 𝑚 → ∞, (11)

meaning a “slow” vanishing as 𝑚 → ∞.
We focus our attention on main coefficients (9). Given a fixed 𝑛 = 2𝑚, we want to find a

maximal (by the absolute value) coefficient among (9) and to estimate it behavior as the index
𝑛 = 2𝑚 increases.

We introduce the main characteristics:

𝜇2𝑚 ≡ max
16𝑘6𝑚

|𝑎2𝑚,2𝑘| = 2−2𝑚 𝐶𝑚
2𝑚 max

16𝑘6𝑚
𝛽𝑚(𝑘), 𝑚 ∈ N, (12)

with the numbers 𝛽𝑚(𝑘) in formula (10). Let us study the behavior of quantity (12).
For the first polynomials mentioned above we obviously have

𝜇2 =
1

2
, 𝜇4 =

3

4
, 𝜇6 =

15

16
, 𝜇8 =

35

32
, 𝜇10 =

315

256
, 𝜇12 =

693

512
, (13)

and all these values are attained at the coefficient at 𝑥2.
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The next polynomial

𝐵14(𝑥) =
1

2048

(︀
429 + 3003𝑥2 − 3003𝑥4 + 3003𝑥6 − 2145𝑥8 + 1001𝑥10 − 273𝑥12 + 33𝑥14

)︀
is special since the value

𝜇14 =
3003

2048
(14)

is attained at three coefficients simultaneously: at 𝑥2, 𝑥4 and 𝑥6.
It could seem that the quantity 𝜇2𝑚 does not exhibit a tendency to a special growth since all

values (13), (14) are located in a narrow range from 1/2 to 3/2. But the real picture becomes
more complicated: the main “strategic” tendency in the behavior of 𝜇2𝑚 becomes evident only
for sufficiently large incides 𝑛 = 2𝑚. It is quite problematic to find out such tendency basing on
an initial definition (5) and not using explicit writing (7). This is a principal difference of the
situation with the function 𝑓(𝑥) = |𝑥| on [−1, 1] from a similar example 𝑓(𝑥) = |2𝑥−1| on [0, 1],
where a swift growth of the coefficients is evidently seen while opening the brackets already at
the first indices of Bernstein polynomials (see [8]). We proceed to precise formulations.

3. Main statements

We employ notations (9), (10), (12) for quantities 𝑎2𝑚,2𝑘, 𝛽𝑚(𝑘), 𝜇2𝑚, respectively. In order
to estimate 𝜇2𝑚, for each fixed 𝑚 ∈ N we need to the find the maximal of numbers 𝛽𝑚(𝑘). Let
us find out the laws acting in a finite sequence 𝛽𝑚(𝑘) with a fixed 𝑚 > 2 as 𝑘 = 1, 2, . . . ,𝑚.

The initial case 𝑚 = 1 is not of interest since the sequence obviously degenerates into the
only element 𝛽1(1) = 1.

Theorem 1. Let the quantity 𝛽𝑚(𝑘) be defined by formula (10). Subject to 𝑚 > 2, one
should distinguish three cases.

1. For each fixed 𝑚 ∈ { 2, 3, 4, 5, 6 }, the numbers 𝛽𝑚(𝑘) form a finite strictly decreasing
sequence with the maximal element 𝛽𝑚(1) = 𝑚.

2. As 𝑚 = 7, the numbers 𝛽7(𝑘) form a special set

7, 7, 7, 5,
7

3
,

7

11
,

1

13
, (15)

where the first three elements coincide and then the elements strictly decay.
3. For each fixed 𝑚 > 8 a finite sequence 𝛽𝑚(𝑘) strictly increases to 𝑘 = [(𝑚−1)/2] and then

it strictly decreases, that is, the maximal element of the sequence is exaclty 𝛽𝑚

(︀
[(𝑚− 1)/2]

)︀
.

The mentioned features allows us to explain why the first Bernstein polynomials (7) corre-
sponding to the values 𝑚 from 1 to 7 are exceptional and growth of coefficients (9) is almost
not observed. But as 𝑚 > 8 the tendency changes. The main result is as follows.

Theorem 2. Let the quantity 𝜇2𝑚 be defined by formula (12) as the maximal absolute value
of the coefficients (9) taken from polynomials (7). Then the asymptotic formula holds:

𝜇2𝑚 ∼
√

2

𝜋

2𝑚

𝑚2
, 𝑚 → ∞, (16)

and the estimate √
2

𝜋

2𝑚

𝑚2
< 𝜇2𝑚 < 1.2215 ·

√
2

𝜋

2𝑚

𝑚2
, (17)

is true for all natural 𝑚 > 8.
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Making estimate (17) a little bit rougher, we can write a more demonstrable version:

0.45
2𝑚

𝑚2
< 𝜇2𝑚 < 0.55

2𝑚

𝑚2
, 𝑚 ∈ N, 𝑚 > 8. (18)

Relations (16)–(18) show that the maximal (by the absolute value) coefficient in polynomials (7)
grows with at most exponential rate but this rate is essentially small than in the analogous
example on the standard segment [0, 1] (cf. [8], [9], [15]). We proceed to the proof of the
formulated results.

4. Proof of Theorem 1

For a fixed natural 𝑚 > 2 we consider the numbers

𝛽𝑚(1), 𝛽𝑚(2), . . . , 𝛽𝑚(𝑚), (19)

taken from formula (10). We need to characterise the growth and decay of the elements in
finite sequence (19). In order to do this, we define the relations:

𝑞𝑚(𝑘) =
𝛽𝑚(𝑘 + 1)

𝛽𝑚(𝑘)
, 𝑘 = 1, . . . , 𝑚− 1. (20)

We need to compare numbers (20) with one. We write in an expanded form:

𝑞𝑚(𝑘) =
𝐶𝑘+1

𝑚

2𝑘 + 1
· 2𝑘 − 1

𝐶𝑘
𝑚

=
(2𝑘 − 1)(𝑚− 𝑘)

(2𝑘 + 1)(𝑘 + 1)
=

−2𝑘2 + (2𝑚 + 1)𝑘 −𝑚

2𝑘2 + 3𝑘 + 1

and we consider the differences

𝑞𝑚(𝑘) − 1 =
−2𝑘2 + (2𝑚 + 1)𝑘 −𝑚

2𝑘2 + 3𝑘 + 1
− 1 = −4𝑘2 − 2(𝑚− 1)𝑘 + 𝑚 + 1

2𝑘2 + 3𝑘 + 1
.

We introduce an auxiliary quadratic function

ℎ𝑚(𝑡) = 4𝑡2 − 2(𝑚− 1)𝑡 + 𝑚 + 1, 𝑡 ∈ R. (21)

The above formula imply obviously the following result.

Lemma 1. For each 𝑘 ∈ { 1, . . . , 𝑚−1 }, the relation 𝑞𝑚(𝑘) < 1 is equivalent to the relation
ℎ𝑚(𝑘) > 0; the relation 𝑞𝑚(𝑘) > 1 is equivalent to the relation ℎ𝑚(𝑘) < 0; and finally, the
relation 𝑞𝑚(𝑘) = 1 is equivalent to the identity ℎ𝑚(𝑘) = 0.

To apply Lemma 1, we study quadratic function (21); by 𝐷𝑚 we denote its discriminant.
Since 𝐷𝑚/4 = 𝑚2 − 6𝑚− 3, then 𝐷𝑚 < 0 as

𝑚 ∈ { 2, 3, 4, 5, 6 } (22)

and 𝐷𝑚 > 0 for other 𝑚 > 7. First we consider 𝑚 in set (22). Since for such 𝑚 the values
of function (21) are strictly positive, then ℎ𝑚(𝑘) > 0 for all 𝑘 = 1, . . . , 𝑚 − 1. Hence, by
Lemma 1, we conclude that

𝑞𝑚(𝑘) =
𝛽𝑚(𝑘 + 1)

𝛽𝑚(𝑘)
< 1, 𝑘 = 1, . . . , 𝑚− 1.

Therefore, for each 𝑚 in (22), sequence of numbers (19) strictly decreases and

max
16𝑘6𝑚

𝛽𝑚(𝑘) = 𝛽𝑚(1) = 𝐶1
𝑚 = 𝑚, 𝑚 ∈ { 2, 3, 4, 5, 6 }.

This proves first statement of Theorem 1.
The case 𝑚 = 7 is special. Function (21) becomes

ℎ7(𝑡) = 4𝑡2 − 12𝑡 + 8 = 4(𝑡− 1)(𝑡− 2).
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It is clear that ℎ7(1) = ℎ7(2) = 0 and ℎ7(𝑘) > 0 as 𝑘 = 3, 4, 5, 6. Respectively,

𝑞7(1) =
𝛽7(2)

𝛽7(1)
= 1, 𝑞7(2) =

𝛽7(3)

𝛽7(2)
= 1, but then 𝑞7(𝑘) =

𝛽7(𝑘 + 1)

𝛽7(𝑘)
< 1

as 𝑘 = 3, 4, 5, 6. As a result we get sequence (19) with three maximal elements:

𝛽7(1) = 𝛽7(2) = 𝛽7(3) > 𝛽7(4) > 𝛽7(5) > 𝛽7(6) > 𝛽7(7).

Exact values are given in formula (15). This proves second statement of Theorem 1.
We proceed to the main case 𝑚 > 8. Here 𝐷𝑚/4 = 𝑚2 − 6𝑚 − 3 > 0 and function (21)

possesses two different roots:

𝑡1 ≡ 𝑡1,𝑚 =
𝑚− 1 −

√
𝑚2 − 6𝑚− 3

4
, 𝑡2 ≡ 𝑡2,𝑚 =

𝑚− 1 +
√
𝑚2 − 6𝑚− 3

4
,

at that, 𝑡1 < 𝑡2 and 𝑡1 + 𝑡2 = (𝑚− 1)/2. We observe that{︃
ℎ𝑚(1

2
) = 1 − (𝑚− 1) + 𝑚 + 1 = 3 > 0,

ℎ𝑚(1) = 4 − 2(𝑚− 1) + 𝑚 + 1 = 7 −𝑚 < 0.

Therefore, the root 𝑡1 satisfies the bounds 1
2
< 𝑡1 < 1. But then

𝑚− 3

2
< 𝑡2 =

𝑚− 1

2
− 𝑡1 <

𝑚− 2

2
. (23)

We define an integer quantity:

𝑗𝑚 ≡
[︂
𝑚− 1

2

]︂
. (24)

Employing estimate (23), we are going to establish the following fact.

Lemma 2. For each natural 𝑚 > 8 the relation holds:

𝑗𝑚 − 1 < 𝑡2 ≡ 𝑡2,𝑚 =
𝑚− 1 +

√
𝑚2 − 6𝑚− 3

4
< 𝑗𝑚, (25)

that is, the root 𝑡2 is localized in the interval (𝑗𝑚 − 1, 𝑗𝑚) with 𝑗𝑚 given by (24).

Proof. We employ an elementary inequality

𝑚− 2

2
6 𝑗𝑚 ≡

[︂
𝑚− 1

2

]︂
6

𝑚− 1

2
,

which holds for each natural (and even integer) 𝑚. This yields:

𝑗𝑚 − 1 6
𝑚− 1

2
− 1 =

𝑚− 3

2
<

𝑚− 2

2
6 𝑗𝑚.

Comparing with estimate (23) being valid for all natural 𝑚 > 8, we arrive at (25). The proof
is complete.

We also observe that for each 𝑚 > 8, quantity 𝑗𝑚 is located in the segment

3 6 𝑗𝑚 ≡
[︂
𝑚− 1

2

]︂
6 𝑚− 5.

Taking into consideration localization (25) of root 𝑡2 and the fact that 1
2
< 𝑡1 < 1, we obtain

the values:

ℎ𝑚(1) < 0, ℎ𝑚(2) < 0, . . . , ℎ𝑚(𝑗𝑚 − 1) < 0,

ℎ𝑚(𝑗𝑚) > 0, ℎ𝑚(𝑗𝑚 + 1) > 0, . . . , ℎ𝑚(𝑚− 1) > 0.
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Then, employing Lemma 1, we infer that

𝑞𝑚(𝑘) =
𝛽𝑚(𝑘 + 1)

𝛽𝑚(𝑘)
> 1, 𝑘 = 1, . . . , 𝑗𝑚 − 1,

and

𝑞𝑚(𝑘) =
𝛽𝑚(𝑘 + 1)

𝛽𝑚(𝑘)
< 1, 𝑘 = 𝑗𝑚, . . . , 𝑚− 1.

This implies immediately that as 𝑚 > 8, finite sequence (19) first strictly increases to the
element 𝛽𝑚(𝑗𝑚) and then strictly decreases. A mentioned element 𝛽𝑚(𝑗𝑚) with 𝑗𝑚 given by (24)
is the sought maximal element of sequence (19). This yields the third statement of Theorem 1.
The proof of the theorem is complete.

As some final and at the same time a groundwork for future, let us provide an explicit
expression for main characteristics (12). In view of the third statement of Theorem 1, we
conclude that

𝜇2𝑚 = 2−2𝑚 𝐶𝑚
2𝑚 max

16𝑘6𝑚
𝛽𝑚(𝑘) = 2−2𝑚 𝐶𝑚

2𝑚 𝛽𝑚

(︀
[(𝑚− 1)/2]

)︀
, 𝑚 > 8.

Taking into consideration representations (10) and (24), we write a final expression:

𝜇2𝑚 = 2−2𝑚 𝐶𝑚
2𝑚

1

2𝑗𝑚 − 1
𝐶𝑗𝑚

𝑚 , 𝑗𝑚 ≡
[︂
𝑚− 1

2

]︂
, 𝑚 > 8. (26)

Exactly formula (26) will play a central role in the following proof of Theorem 2.

5. Proof of Theorem 2

Here we deal with indices 𝑛 = 2𝑚 > 16 assuming that 𝑚 > 8. First let us prove asymptotic
formula (16). We shall study separately two cases fitting them with standard asymptotics of
form (11).

Let 𝑚 = 2𝑝. Then 𝑗𝑚 ≡ [(𝑚− 1)/2] = 𝑝− 1. According (26), we obtain:

𝜇4𝑝 = 2−4𝑝 𝐶2𝑝
4𝑝

1

2𝑝− 3
𝐶𝑝−1

2𝑝 =
1

2𝑝− 3
2−4𝑝𝐶2𝑝

4𝑝

(2𝑝)!

(𝑝− 1)! (𝑝 + 1)!

=
𝑝

(2𝑝− 3) (𝑝 + 1)
· 2−4𝑝 𝐶2𝑝

4𝑝 · 𝐶𝑝
2𝑝, 𝑝 ∈ N, 𝑝 > 4.

(27)

This is why

𝜇4𝑝 ∼
1

2𝑝
· 1√

2𝜋𝑝
· 22𝑝

√
𝜋𝑝

=
1

2
√

2 𝜋

22𝑝

𝑝2
=

√
2

𝜋

22𝑝

(2𝑝)2
, 𝑝 → ∞, (28)

and this gives formula (16) as 𝑚 = 2𝑝.
Let 𝑚 = 2𝑝 + 1. Then 𝑗𝑚 ≡ [(𝑚− 1)/2] = 𝑝. According (26), we have

𝜇4𝑝+2 = 2−4𝑝−2𝐶2𝑝+1
4𝑝+2

1

2𝑝− 1
𝐶𝑝

2𝑝+1 =
1

2𝑝− 1
2−4𝑝−2𝐶2𝑝+1

4𝑝+2

(2𝑝 + 1)!

𝑝! (𝑝 + 1)!

=
2𝑝 + 1

(2𝑝− 1)(𝑝 + 1)
· 2−4𝑝−2𝐶2𝑝+1

4𝑝+2 · 𝐶𝑝
2𝑝, 𝑝 ∈ N, 𝑝 > 4.

(29)

This is why

𝜇4𝑝+2 ∼
1

𝑝
· 1√︀

𝜋 (2𝑝 + 1)
· 22𝑝

√
𝜋𝑝

∼
√

2

𝜋

22𝑝+1

(2𝑝 + 1)2
, 𝑝 → ∞, (30)

and this gives formula (16) as 𝑚 = 2𝑝 + 1.
Thus, asymptotics (16) is proven. While proving main non-asymptotic estimate (17), it is

again convenient to separate two cases.
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Let 𝑚 = 2𝑝. We define the sequence

𝜉(1)𝑝 =
𝜋√
2

2−2𝑝 (2𝑝)2 𝜇4𝑝, 𝑝 ∈ N, 𝑝 > 4. (31)

Formula (28) ensures that 𝜉
(1)
𝑝 → 1 as 𝑝 → ∞. Let us show that this sequence tends to one

monotonically from below. Employing the last expression in (27), we write explicitly:

𝜉(1)𝑝 =
𝜋√
2

2−2𝑝 (2𝑝)2 · 𝑝

(2𝑝− 3) (𝑝 + 1)
2−4𝑝 𝐶2𝑝

4𝑝 𝐶𝑝
2𝑝 =

𝜋√
2

2−6𝑝+2 𝑝3

(2𝑝− 3) (𝑝 + 1)

(4𝑝)!

(2𝑝)! (𝑝!)2
.

We have the relation:

𝜉
(1)
𝑝+1

𝜉
(1)
𝑝

=
2−6𝑝−4 (𝑝 + 1)3 (4𝑝 + 4)!

(2𝑝− 1) (𝑝 + 2) (2𝑝 + 2)! ((𝑝 + 1)!)2
· (2𝑝− 3) (𝑝 + 1) (2𝑝)! (𝑝!)2

2−6𝑝+2 𝑝3 (4𝑝)!

=
(2𝑝− 3)(𝑝 + 1)2(4𝑝 + 1)(4𝑝 + 3)

16𝑝3 (2𝑝− 1)(𝑝 + 2)
=

32𝑝5 + 48𝑝4 − 42𝑝3 − 109𝑝2 − 60𝑝− 9

32𝑝5 + 48𝑝4 − 32𝑝3
.

For each 𝑝 > 4, the numerator of the obtained fraction is less than its denominator. Hence,
the above fraction is less than one and sequence (31) strictly decreases to its limit. But then

1 < 𝜉
(1)
𝑝 6 𝜉

(1)
4 for each 𝑝 > 4. Here

𝜉
(1)
4 =

𝜋√
2

2−6𝑝+2 𝑝3

(2𝑝− 3) (𝑝 + 1)

(4𝑝)!

(2𝑝)! (𝑝!)2

⃒⃒⃒⃒
𝑝=4

=
𝜋√
2

7 · 9 · 11 · 13

214
< 1.2215.

As one can check easily, the scalar gap in the latter estimate is rather small and does not
exceed 10−5. As a result, we arrive at the relation:

1 < 𝜉(1)𝑝 ≡ 𝜋√
2

2−2𝑝 (2𝑝)2 𝜇4𝑝 < 1.2215, 𝑝 ∈ N, 𝑝 > 4. (32)

Formula (32) implies needed estimate (17) for all even 𝑚 = 2𝑝 > 8.
Assume now that 𝑚 = 2𝑝 + 1. We proceed in the same way as above. We introduce the

sequence

𝜉(2)𝑝 =
𝜋√
2

2−2𝑝−1 (2𝑝 + 1)2 𝜇4𝑝+2, 𝑝 ∈ N, 𝑝 > 4. (33)

Formula (30) ensures that 𝜉
(2)
𝑝 → 1 as 𝑝 → ∞. Let us show that now this sequence tends to

one monotonically from above. Employing the final expression in (29), we write explicitly:

𝜉(2)𝑝 =
𝜋√
2

2−2𝑝−1 (2𝑝 + 1)2 · 2𝑝 + 1

(2𝑝− 1)(𝑝 + 1)
2−4𝑝−2𝐶2𝑝+1

4𝑝+2 𝐶𝑝
2𝑝

=
𝜋√
2

2−6𝑝−3 2𝑝 + 1

(2𝑝− 1) (𝑝 + 1)

(4𝑝 + 2)!

(2𝑝)! (𝑝!)2
.

We define the fraction:

𝜉
(2)
𝑝+1

𝜉
(2)
𝑝

=
2−6𝑝−9 (2𝑝 + 3) (4𝑝 + 6)!

(2𝑝 + 1) (𝑝 + 2) (2𝑝 + 2)! ((𝑝 + 1)!)2
· (2𝑝− 1) (𝑝 + 1) (2𝑝)! (𝑝!)2

2−6𝑝−3 (2𝑝 + 1) (4𝑝 + 2)!

=
128𝑝5 + 576𝑝4 + 856𝑝3 + 348𝑝2 − 198𝑝− 135

128𝑝5 + 576𝑝4 + 928𝑝3 + 688𝑝2 + 240𝑝 + 32
.

For each 𝑝 > 4, the numerator is less than the denominator. This means that this fraction is

less than one and sequence (33) strictly increases to its limit. But then 1 < 𝜉
(2)
𝑝 6 𝜉

(2)
4 for each

𝑝 > 4. Here

𝜉
(2)
4 =

𝜋√
2

2−6𝑝−3 2𝑝 + 1

(2𝑝− 1) (𝑝 + 1)

(4𝑝 + 2)!

(2𝑝)! (𝑝!)2

⃒⃒⃒⃒
𝑝=4

=
𝜋√
2

35 · 11 · 13 · 15 · 17

224
< 1.18.
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As a result, we arrive at the relation:

1 < 𝜉(2)𝑝 ≡ 𝜋√
2

2−2𝑝−1 (2𝑝 + 1)2 𝜇4𝑝+2 < 1.18, 𝑝 ∈ N, 𝑝 > 4. (34)

Since 1.18 < 1.2215, needed estimate (17) follows (34) for all odd 𝑚 = 2𝑝+ 1 > 9. This proves
estimate (17) for all 𝑚 > 8.

We also note that
√

2

𝜋
= 0.45015815 . . . , 1.2215 ·

√
2

𝜋
= 0.54986819 . . . .

This is why, making (17) a little bit rougher, we obtain close estimate (18). The proof of
Theorem 2 is complete.

The meaning of estimate (17) is clear: it confirms that asymptotics (16) expresses rather
precise the behavior of quantity 𝜇2𝑚 for all natural 𝑚 > 8. By the proof of Theorem 2 one
can see easily that the first value 𝜇16 is very close to the upper bound in (17) and as the index
𝑛 = 2𝑚 increases, the numbers 𝜇2𝑚 go closer to the lower bound coinciding asymptotically as
𝑚 → ∞. There are certain nuances in this motion.

While analyzing the proof of Theorem 2, there can arise the idea not to split the proof
of estimate (17) into two cases but in view of established asymptotics (16), to introduce one
resulting sequence

𝛾𝑚 =
𝜋√
2

2−𝑚𝑚2 𝜇2𝑚, 𝑚 ∈ N, 𝑚 > 8. (35)

Then

𝛾2𝑝 = 𝜉(1)𝑝 , 𝛾2𝑝+1 = 𝜉(2)𝑝 , 𝑝 > 4, (36)

with subsequences 𝜉
(1)
𝑝 , 𝜉

(2)
𝑝 in formulae (31), (33), respectively. It is clear that 𝛾𝑚 → 1 as

𝑚 → ∞. But this tending to one is no longer monotone! Indeed, it is straightforward to check
that first all seems to be ok:

𝛾12 < 𝛾11 < 𝛾10 < 𝛾9 < 𝛾8,

but then 𝛾13 > 𝛾12, and moreover, 𝛾2𝑝+1 > 𝛾2𝑝 for all 𝑝 > 6. It even turns out that 𝛾19 > 𝛾16 and
so forth. Speaking shortly, although each of two subsequences (36) decreases monotonically,

𝛾2𝑝 = 𝜉
(1)
𝑝 tends to the limit essentially faster than 𝛾2𝑝+1 = 𝜉

(2)
𝑝 .

It follows from the said above if we base the proof of estimate (17) on sequence (35), this will
require special clarifications. Such details are unlikely to be reasonable. We restrict ourselves
by a simple statement: main asymptotic formula (16) contains certain subtleties related to the
parity of 𝑚 > 8.

Nevertheless, formulae (16)–(18) describe well the growth of the maximal coefficient in stud-
ied Bernstein polynomials (7). The growth of such rate turns out to be exponential of order
2𝑚 = 2𝑛/2. The neighbouring or equidistant coefficients are of course smaller, but for large
indices 𝑛 = 2𝑚 they grow with the same asymptotic rate as in formula (16). Let us rigorously
establish this.

6. Behavior of other coefficients

We deal with the coefficients 𝑎2𝑚,2𝑘 in formula (9) taken for 𝑚 > 8. We still employ nota-
tion (24) letting 𝑗𝑚 ≡ [(𝑚− 1)/2]. We fix a constant value 𝑟 ∈ Z ∖ {0}, positive or negative.

Similar to the quantity 𝜇2𝑚 = |𝑎2𝑚,2𝑗𝑚| corresponding to the maximal (by the absolute value)
coefficients 𝑎2𝑚,2𝑗𝑚 , we introduce the characteristics

𝜇2𝑚,2𝑟 = |𝑎2𝑚,2𝑗𝑚+2𝑟|, 𝑚 ∈ N, 𝑚 > 𝑚0(𝑟), (37)
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well-defined for sufficiently large 𝑚 depending on the choice of 𝑟 ∈ Z∖{0}. Characteristics (37)
provides absolute values of the coefficients distant from 𝑎2𝑚,2𝑗𝑚 exactly by 𝑟 powers in formal
writing of polynomials (6).

Taking into consideration the structure of formula (6), we have the restrictions

1 6 𝑗𝑚 + 𝑟 6 𝑚.

By this, we elementary find the values

𝑚 > 𝑚0(𝑟) =

{︃
max(2𝑟 − 2, 8), 𝑟 > 0,

max(3 − 2𝑟, 8), 𝑟 < 0,
(38)

appropriate for defining (37).
In view of the form of coefficients (9) and recalling third statement of Theorem 1, we observe

that {︃
𝜇2𝑚 > 𝜇2𝑚,2 > 𝜇2𝑚,4 > . . . ,

𝜇2𝑚 > 𝜇2𝑚,−2 > 𝜇2𝑚,−4 > . . . .
(39)

Despite strict inequalities (39), asymptotic behavior of all quantities 𝜇2𝑚,2𝑟 is same as 𝑚 → ∞.

Theorem 3. Suppose that for a fixed 𝑟 ∈ Z ∖ {0}, the quantity 𝜇2𝑚,2𝑟 is defined by for-
mula (37) with restriction (38). Then

𝜇2𝑚,2𝑟 ∼
√

2

𝜋

2𝑚

𝑚2
, 𝑚 → ∞, (40)

and this is the same asymptotics as in (16).

Proof. Since result (40) coincides with (16), to obtain the needed relation, it is sufficient to show
that 𝜇2𝑚,2𝑟/𝜇2𝑚 → 1 as 𝑚 → ∞. Employing basic formulae (9), (10), we write representations

𝜇2𝑚 = |𝑎2𝑚,2𝑗𝑚| = 2−2𝑚 𝐶𝑚
2𝑚 · 1

2𝑗𝑚 − 1
𝐶𝑗𝑚

𝑚 ,

𝜇2𝑚,2𝑟 = |𝑎2𝑚,2𝑗𝑚+2𝑟| = 2−2𝑚 𝐶𝑚
2𝑚 · 1

2𝑗𝑚 + 2𝑟 − 1
𝐶𝑗𝑚+𝑟

𝑚 .

Hence,

𝜇2𝑚,2𝑟

𝜇2𝑚

=
2𝑗𝑚 − 1

2𝑗𝑚 + 2𝑟 − 1
· 𝐶

𝑗𝑚+𝑟
𝑚

𝐶𝑗𝑚
𝑚

=
2𝑗𝑚 − 1

2𝑗𝑚 + 2𝑟 − 1
· 𝑗𝑚! (𝑚− 𝑗𝑚)!

(𝑗𝑚 + 𝑟)! (𝑚− 𝑗𝑚 − 𝑟)!
.

If 𝑚 → ∞, then 𝑗𝑚 ≡ [(𝑚− 1)/2] → ∞ and 𝑚− 𝑗𝑚 = 𝑚− [(𝑚− 1)/2] → ∞. Therefore,

2𝑗𝑚 − 1

2𝑗𝑚 + 2𝑟 − 1
∼ 1,

𝑗𝑚!

(𝑗𝑚 + 𝑟)!
∼ 1

𝑗𝑟𝑚
,

(𝑚− 𝑗𝑚)!

(𝑚− 𝑗𝑚 − 𝑟)!
∼ (𝑚− 𝑗𝑚)𝑟

for each fixed 𝑟 ∈ Z ∖ {0}. But then

𝜇2𝑚,2𝑟

𝜇2𝑚

∼
(︂
𝑚− 𝑗𝑚

𝑗𝑚

)︂𝑟

, 𝑚 → ∞. (41)

We observe that 𝑗𝑚 ≡ [(𝑚− 1)/2] = (𝑚− 2 + 𝜏𝑚)/2, where 𝜏𝑚 = 0 if 𝑚 is even and 𝜏𝑚 = 1 if
𝑚 is odd. This is why

𝑚− 𝑗𝑚
𝑗𝑚

=
𝑚 + 2 − 𝜏𝑚
𝑚− 2 + 𝜏𝑚

→ 1, 𝑚 → ∞. (42)

Combining (41) and (42), we conclude that 𝜇2𝑚,2𝑟/𝜇2𝑚 → 1 as 𝑚 → ∞. As it has been
mentioned, this implies needed result (40). The proof is complete.
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Asymptotics (40) means that for sufficiently large indices 𝑛 = 2𝑚, algebraic writing (6) of
the studied Bernstein polynomials involves a group of coefficients of approximately same order
with huge absolute values. These coefficients are located in the central part of polynomials (6)
close to 𝑎2𝑚,2𝑗𝑚 , where 𝑗𝑚 ≡ [(𝑚−1)/2]. Farther from the center, the character of the behavior
of the coefficients changes substantially and at the edges of polynomials (6) completely different
laws act.

For instance, the behavior of free coefficients (8) of form 𝑎2𝑚,0 = 2−2𝑚 𝐶𝑚
2𝑚 is expressed by

asymptotics (11), which can be completed by the estimate(︂
1 − 1

8𝑚

)︂
1√
𝜋𝑚

< 2−2𝑚 𝐶𝑚
2𝑚 <

(︂
1 − 1

8𝑚 + 1

)︂
1√
𝜋𝑚

, 𝑚 ∈ N. (43)

Two-sided estimate (43) is quite precise and is true for all natural 𝑚 with no exceptions. One
of possible proofs of (43) is given in [17]; for further remarks see [15].

Since

1 − 1

8𝑚 + 1
= 1 − 1

8𝑚
+

1

8𝑚 (8𝑚 + 1)
, 𝑚 ∈ N,

inequalities (43) imply immediately a known formula

2−2𝑚 𝐶𝑚
2𝑚 =

1√
𝜋𝑚

(︂
1 − 1

8𝑚
+ 𝑂

(︂
1

𝑚2

)︂)︂
, 𝑚 → ∞, (44)

specifying (11). A finer approximation is of the form

2−2𝑚 𝐶𝑚
2𝑚 =

1√
𝜋𝑚

(︂
1 − 1

8𝑚
+

1

128𝑚2
+

5

1024𝑚3
− 21

32768𝑚4
+ 𝑂

(︂
1

𝑚5

)︂)︂
. (45)

For interesting details of such expansions we refer to [18]. We note that a universal non-
asymptotic estimate (43) should be proved independently and it does not follow asymptotic
formulae (44), (45). In any case, the behavior of free coefficients (8) has been found out with
a high accuracy.

For the next coefficients 𝑎2𝑚,2 at the powers 𝑥2, basic formulae (9), (10) give expression:

𝑎2𝑚,2 = 2−2𝑚 𝐶𝑚
2𝑚 ·𝑚, 𝑚 ∈ N.

Taking into consideration (43), we conclude that(︂
1 − 1

8𝑚

)︂√︂
𝑚

𝜋
< 𝑎2𝑚,2 <

(︂
1 − 1

8𝑚 + 1

)︂√︂
𝑚

𝜋
, 𝑚 ∈ N,

with the asymptotics

𝑎2𝑚,2 ∼
√︂

𝑚

𝜋
, 𝑚 → ∞.

Here we observe a slow power growth as 𝑚 → ∞.
Finally, according (9), (10), for the higher coefficients in (6) we have the representation:

𝑎2𝑚,2𝑚 = 2−2𝑚 𝐶𝑚
2𝑚 · (−1)𝑚−1

2𝑚− 1
, 𝑚 ∈ N.

This is why

|𝑎2𝑚,2𝑚| ∼
1

2
√
𝜋 𝑚3/2

, 𝑚 → ∞,

that is, the numbers 𝑎2𝑚,2𝑚 tend to zero by a power law.
In view of explicit expression (7), it is easy to see that the highest coefficient 𝑎2𝑚,2𝑚 is

minimal (by the absolute value) in the polynomial 𝐵2𝑚(𝑥) for each fixed 𝑚 > 2 (as 𝑚 = 1, the
polynomial 𝐵2(𝑥) contains two same coefficients 𝑎2,0 = 𝑎2,2 = 1/2).
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Moreover, as 𝑚 → ∞, the coefficients

𝑎2𝑚,2𝑚−2 = 2−2𝑚 𝐶𝑚
2𝑚 · (−1)𝑚

𝑚

2𝑚− 3
, 𝑚 ∈ N, 𝑚 > 2,

tend to zero. All other coefficients, except 𝑎2𝑚,0, 𝑎2𝑚,2𝑚−2, 𝑎2𝑚,2𝑚, tend to infinity in the sense
that

𝜂2𝑚 ≡ min
16𝑘6𝑚−2

|𝑎2𝑚,2𝑘| → ∞, 𝑚 → ∞.

Namely, 𝜂2𝑚 = |𝑎2𝑚,2𝑚−4| as 𝑚 > 3 and this implies

𝜂2𝑚 ∼ 1

4

√︂
𝑚

𝜋
, 𝑚 → ∞.

This follows easily explicit expressions (9), (10) in view of main asymptotics (11).
Thus, for sufficiently large indices 𝐵2𝑚(𝑥), almost all coefficients in the studied Bernstein

polynomials except three coefficients turn out to be sufficiently large and the central coefficients
are not just large but exponentially large (by the absolute value).

Now it is natural to pose a question on the behavior of the entire sum

𝑆2𝑚 ≡
𝑚∑︁
𝑘=0

|𝑎2𝑚,2𝑘|, 𝑚 ∈ N. (46)

This problem is interesting from the point of view of a general theory, see [3].

7. Asymptotics for the sum of all coefficients

Employing representations (8), (9) for the coefficients 𝑎2𝑚,2𝑘, we write sum (46) as

𝑆2𝑚 = 2−2𝑚 𝐶𝑚
2𝑚

(︃
1 +

𝑚∑︁
𝑘=1

1

2𝑘 − 1
𝐶𝑘

𝑚

)︃
= 2−2𝑚 𝐶𝑚

2𝑚 𝜎𝑚, (47)

where

𝜎𝑚 ≡ 1 +
𝑚∑︁
𝑘=1

1

2𝑘 − 1
𝐶𝑘

𝑚, 𝑚 ∈ N. (48)

A character of the technical factor 2−2𝑚 𝐶𝑚
2𝑚 is clarified by asymptotics (11) and two-sided

estimates (43). To study the behavior of quantity 𝑆2𝑚, we need to estimate the growth of
combinatorial sum (48) as 𝑚 → ∞ as accurate as possible. Several first values are

𝜎1 = 2, 𝜎2 =
10

3
, 𝜎3 =

26

5
, 𝜎4 =

278

35
, 𝜎5 =

766

63
, 𝜎6 =

4366

231
, 𝜎7 =

12890

429
.

A general compact representation for sum (48) seems not to exist. For instance, fundamental
handbook [19] provides similar formula (4.2.3.20), but the answer is expressed in terms of some
implicit integral. Special computer programs express (48) in terms of the Gauss hypergeometric
function. This is why, the following statement is interesting from practical point of view.

Lemma 3. Quantity (48) satisfies the recurrent formula:

𝜎𝑚+1 =
2

2𝑚 + 1

(︁
(𝑚 + 1)𝜎𝑚 + 2𝑚 − 1

)︁
, 𝑚 ∈ N. (49)

Proof. According (48), we have

𝜎𝑚+1 ≡ 1 +
𝑚+1∑︁
𝑘=1

1

2𝑘 − 1
𝐶𝑘

𝑚+1 = 1 +
𝑚∑︁
𝑘=1

1

2𝑘 − 1
(𝐶𝑘

𝑚 + 𝐶𝑘−1
𝑚 ) +

1

2𝑚 + 1

= 𝜎𝑚 +
𝑚−1∑︁
𝑘=0

1

2𝑘 + 1
𝐶𝑘

𝑚 +
1

2𝑚 + 1
= 𝜎𝑚 +

𝑚∑︁
𝑘=0

1

2𝑘 + 1
𝐶𝑘

𝑚.
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We employ the identity
𝜎𝑚+1 = 𝜎𝑚 + 𝜋𝑚, 𝑚 ∈ N,

where

𝜋𝑚 ≡
𝑚∑︁
𝑘=0

1

2𝑘 + 1
𝐶𝑘

𝑚 =
1

2𝑚 + 1

𝑚∑︁
𝑘=0

2𝑘 + 1 + 2𝑚− 2𝑘

2𝑘 + 1
𝐶𝑘

𝑚

=
1

2𝑚 + 1

(︃
𝑚∑︁
𝑘=0

𝐶𝑘
𝑚 + 2

𝑚∑︁
𝑘=0

𝑚− 𝑘

2𝑘 + 1
𝐶𝑘

𝑚

)︃
=

1

2𝑚 + 1

(︃
2𝑚 + 2

𝑚−1∑︁
𝑘=0

𝑚− 𝑘

2𝑘 + 1
𝐶𝑘

𝑚

)︃
.

But (𝑚− 𝑘)𝐶𝑘
𝑚 = (𝑘 + 1)𝐶𝑘+1

𝑚 as 𝑘 ranges from 0 to 𝑚− 1. This is why,

2
𝑚−1∑︁
𝑘=0

𝑚− 𝑘

2𝑘 + 1
𝐶𝑘

𝑚 = 2
𝑚−1∑︁
𝑘=0

𝑘 + 1

2𝑘 + 1
𝐶𝑘+1

𝑚 = 2
𝑚∑︁
𝑘=1

𝑘

2𝑘 − 1
𝐶𝑘

𝑚 =
𝑚∑︁
𝑘=1

𝐶𝑘
𝑚 +

𝑚∑︁
𝑘=1

1

2𝑘 − 1
𝐶𝑘

𝑚

= 2𝑚 − 1 + 𝜎𝑚 − 1 = 2𝑚 + 𝜎𝑚 − 2.

Finally we obtain

𝜎𝑚+1 = 𝜎𝑚 + 𝜋𝑚 = 𝜎𝑚 +
1

2𝑚 + 1
(2𝑚 + 2𝑚 + 𝜎𝑚 − 2) =

2

2𝑚 + 1

(︁
(𝑚 + 1)𝜎𝑚 + 2𝑚 − 1

)︁
.

The proof is complete.

By means of recurrent formula (49) we establish the following result.

Lemma 4. Quantity (48) satisfies the estimate

2𝑚

𝑚− 𝛼
< 𝜎𝑚 <

2𝑚

𝑚− 𝛽
, 𝑚 ∈ N, 𝑚 > 5, (50)

as 𝛼 = 2 and 𝛽 = 3. The value 𝛼 = 2 is asymptotically sharp: for each 𝛼 > 2, the lower
bound in (50) fails for all indices 𝑚 > 𝑚0 starting from a corresponding 𝑚0 = 𝑚0(𝛼) ∈ N. On
the contrary, the value of 𝛽 can be lessened moving it arbitrarily close to 𝛼 = 2 by choosing
sufficiently large numbers 𝑚 > 𝑚1 with a corresponding 𝑚1 = 𝑚1(𝛽) ∈ N.

Proof. Let us prove the upper bound. As 𝛽 = 3, it casts into the form:

𝜎𝑚 <
2𝑚

𝑚− 3
≡ 𝜎(+)

𝑚 , 𝑚 ∈ N, 𝑚 > 5. (51)

We check the indices 𝑚 = 5, 6, 7 independently. Straightforward calculations give true inequal-
ities:

𝜎5 =
766

63
= 12.1587 . . . < 𝜎

(+)
5 = 16,

𝜎6 =
4366

231
= 18.9004 . . . < 𝜎

(+)
6 =

64

3
= 21.3333 . . . ,

𝜎7 =
12890

429
= 30.0466 . . . < 𝜎

(+)
7 = 32.

In what follows we argue by induction.
Assume that estimate (51) is true for some 𝑚 > 7. Then according (49), we have

𝜎𝑚+1 =
2

2𝑚 + 1

(︁
(𝑚 + 1)𝜎𝑚 + 2𝑚 − 1

)︁
<

2

2𝑚 + 1

(︁
(𝑚 + 1)𝜎𝑚 + 2𝑚

)︁
<

2

2𝑚 + 1

(︂
(𝑚 + 1)

2𝑚

𝑚− 3
+ 2𝑚

)︂
=

2𝑚+1

2𝑚 + 1

(︂
𝑚 + 1

𝑚− 3
+ 1

)︂
=

2𝑚+1 (2𝑚− 2)

(2𝑚 + 1) (𝑚− 3)
6

2𝑚+1

𝑚− 2
≡ 𝜎

(+)
𝑚+1
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since
1

𝑚− 2
− 2𝑚− 2

(2𝑚 + 1) (𝑚− 3)
=

𝑚− 7

(𝑚− 2)(2𝑚 + 1)(𝑚− 3)
> 0

as 𝑚 > 7. Thus, estimate (51) is true for all 𝑚 > 5.
Strictly saying, estimate (51) is true also for 𝑚 = 4, but this case is not included in general

formula (50) since as 𝑚 = 4 the corresponding lower bound is not guaranteed.
Let us prove the lower bound. As 𝛼 = 2, it becomes

𝜎𝑚 >
2𝑚

𝑚− 2
≡ 𝜎(−)

𝑚 , 𝑚 ∈ N, 𝑚 > 5. (52)

Since

𝜎5 =
766

63
= 12.1587 . . . > 𝜎

(−)
5 =

32

3
= 10.6666 . . . ,

for 𝑚 = 5 estimate (52) is satisfied. Further we argue by induction. Assume that estimate (52)
is true for some 𝑚 > 5. According (49), we have

𝜎𝑚+1 =
2

2𝑚 + 1

(︁
(𝑚 + 1)𝜎𝑚 + 2𝑚 − 1

)︁
>

2

2𝑚 + 1

(︂
(𝑚 + 1)

2𝑚

𝑚− 2
+ 2𝑚

)︂
− 2

2𝑚 + 1

=
2𝑚+1

2𝑚 + 1

(︂
𝑚 + 1

𝑚− 2
+ 1

)︂
− 2

2𝑚 + 1
=

2𝑚+1 (2𝑚− 1)

(2𝑚 + 1) (𝑚− 2)
− 2

2𝑚 + 1
>

2𝑚+1

𝑚− 1
≡ 𝜎

(−)
𝑚+1

since
2𝑚+1 (2𝑚− 1)

(2𝑚 + 1) (𝑚− 2)
− 2𝑚+1

𝑚− 1
=

3 · 2𝑚+1

(2𝑚 + 1) (𝑚− 2) (𝑚− 1)
>

2

2𝑚 + 1

thanks to the obvious relation 3 · 2𝑚 > (𝑚 − 2) (𝑚 − 1) being true for all 𝑚 ∈ N. Thus,
assertion (52) is established and estimate (50) with 𝛼 = 2 and 𝛽 = 3 is completely proven.

Let us study the accuracy of the values 𝛼 = 2 and 𝛽 = 3 in estimate (50). Employing the
elementary transformation

1

𝑚− 𝛾
=

1

𝑚
+

𝛾𝑚

𝑚− 𝛾

1

𝑚2
, 𝑚 > 𝛾 > 0,

we write (50) in the following equivalent form

2𝑚

𝑚
+

𝛼𝑚

𝑚− 𝛼

2𝑚

𝑚2
< 𝜎𝑚 <

2𝑚

𝑚
+

𝛽𝑚

𝑚− 𝛽

2𝑚

𝑚2
, 𝑚 ∈ N, 𝑚 > 5, (53)

with values 𝛼 = 2 and 𝛽 = 3. We denote temporarily

𝑥𝑚 = 𝜎𝑚 − 2𝑚

𝑚
, 𝑦𝑚 =

2𝑚

𝑚2
, 𝑚 ∈ N. (54)

Then (53) is reduced to the form

𝛼𝑚

𝑚− 𝛼
<

𝑥𝑚

𝑦𝑚
<

𝛽𝑚

𝑚− 𝛽
, 𝑚 ∈ N, 𝑚 > 5, (55)

where 𝛼 = 2, 𝛽 = 3. It is clear that

lim
𝑚→∞

𝛼𝑚

𝑚− 𝛼
= 𝛼, lim

𝑚→∞

𝛽𝑚

𝑚− 𝛽
= 𝛽.

Let us show the existence of the limit

lim
𝑚→∞

𝑥𝑚

𝑦𝑚
= 2. (56)

This implies immediately that the value 𝛼 = 2 in formula (55) is asymptotically sharp, while
the value 𝛽 = 3 can be lessen in the interval 2 < 𝛽 6 3 moving 𝛽 arbitrarily close to 𝛼 = 2 by
choosing sufficiently large indices 𝑚 > 𝑚1 = 𝑚1(𝛽).
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We prove existence of limit (56) for quotient of sequence (54) by applying usual Stolz-Cesàro
theorem [20]. In view of definition (54) and recurrent formula (49) we have

𝑥𝑚+1 − 𝑥𝑚 = 𝜎𝑚+1 −
2𝑚+1

𝑚 + 1
− 𝜎𝑚 +

2𝑚

𝑚
=

2𝑚 + 2

2𝑚 + 1
· 𝜎𝑚 +

2𝑚+1 − 2

2𝑚 + 1
− 2𝑚+1

𝑚 + 1
− 𝜎𝑚 +

2𝑚

𝑚

=
1

2𝑚 + 1
· 𝜎𝑚 +

3𝑚 + 1

𝑚 (𝑚 + 1) (2𝑚 + 1)
· 2𝑚 − 2

2𝑚 + 1
.

At that,

𝑦𝑚+1 − 𝑦𝑚 =
2𝑚+1

(𝑚 + 1)2
− 2𝑚

𝑚2
=

𝑚2 − 2𝑚− 1

𝑚2 (𝑚 + 1)2
· 2𝑚.

Sequence 𝑦𝑚 strictly increases to +∞ as 𝑚 > 3. The assumptions of the Stolz-Cesàro theorem
are satisfied. For the quotient of the difference we have

𝑥𝑚+1 − 𝑥𝑚

𝑦𝑚+1 − 𝑦𝑚
=

𝑚 (𝑚 + 1)

𝑚2 − 2𝑚− 1

(︂
𝑚 (𝑚 + 1)

2𝑚 + 1
· 2−𝑚𝜎𝑚 +

3𝑚 + 1

2𝑚 + 1
− 2𝑚 (𝑚 + 1)

2𝑚 + 1
· 2−𝑚

)︂
.

We note that 𝑚 · 2−𝑚𝜎𝑚 → 1 as 𝑚 → ∞ according proven estimate (50). This is why

lim
𝑚→∞

𝑥𝑚+1 − 𝑥𝑚

𝑦𝑚+1 − 𝑦𝑚
= 1 ·

(︂
1

2
· 1 +

3

2
− 0

)︂
= 2.

Hence, by the Stolz-Cesàro theorem, we obtain limit (56). Comparing (56) with inequality (55),
we establish all needed statements on asymptotic sharpness of the value 𝛼 = 2 and on lessening
the value 𝛽 = 3. These statements are extended immediately to equivalent formula (50). The
proof is complete.

The obtained result imply the following corollary.

Lemma 5. Quantity (48) satisfies the asymptotics

𝜎𝑚 ∼ 2𝑚

𝑚
, 𝑚 → ∞, (57)

more precisely,

𝜎𝑚 =
2𝑚

𝑚

(︂
1 +

2

𝑚
+ 𝑜

(︂
1

𝑚

)︂)︂
, 𝑚 → ∞. (58)

Proof. Asymptotics (57) follows estimate (50). Specified formula (58) is equivalent to found
limit (56) in view of notations introduced in (54). The proof is complete.

Now we are in position to find out the behavior of sum (46) formed by the coefficients of the
studied Bernstein polynomials. For the sake of convenience, we give several first values:

𝑆2 = 1, 𝑆4 =
5

4
, 𝑆6 =

13

8
, 𝑆8 =

139

64
, 𝑆10 =

383

128
, 𝑆12 =

2183

512
, 𝑆14 =

6445

1024
.

As the index 𝑛 = 2𝑚 increases, the growth of the sequence 𝑆2𝑚 becomes more visible, but a
real growth rate is clarified just by the following statement.

Theorem 4. Suppose that the sums 𝑆2𝑚 are defined by formula (46) with coefficients (8), (9)
of Bernstein polynomials (7). Then the sequence 𝑆2𝑚 satisfies the asymptotics:

𝑆2𝑚 ∼ 1√
𝜋

2𝑚

𝑚3/2
, 𝑚 → ∞, (59)

more precisely,

𝑆2𝑚 =
1√
𝜋

2𝑚

𝑚3/2

(︂
1 +

15

8𝑚
+ 𝑜

(︂
1

𝑚

)︂)︂
, 𝑚 → ∞. (60)
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Moreover, the estimate holds:(︂
1 − 1

8𝑚

)︂
2𝑚

√
𝜋𝑚 (𝑚− 2)

< 𝑆2𝑚 <

(︂
1 − 1

8𝑚 + 1

)︂
2𝑚

√
𝜋𝑚 (𝑚− 3)

(61)

valid for all natural 𝑚 > 5.

Proof. Thanks to (47), let us employ the representation 𝑆2𝑚 = 2−2𝑚 𝐶𝑚
2𝑚 𝜎𝑚 with the factors 𝜎𝑚

in formula (48). Taking into consideration asymptotics (11) and (57), we obtain needed rela-
tion (59). More gentle formula (60) is found by multiplying (44) and (58). In the same way,
taking into consideration previous estimates (43) and (50) (the latter is used with the values
𝛼 = 2 and 𝛽 = 3), we establish two-sided estimate (61) for all natural 𝑚 > 5. We also note
that as 𝑚 = 4, estimate (61) fails since for the lower bound we obtain(︂

1 − 1

8𝑚

)︂
2𝑚

√
𝜋𝑚 (𝑚− 2)

⃒⃒⃒⃒
𝑚=4

=
31

8
√
𝜋

= 2.186234 . . . > 𝑆8 =
139

64
= 2.171875,

which contradicts (61). The proof is complete.

It is interesting to compare the established facts with one general result by J.A. Roulier. In
his work [3], there was obtained an universal estimate for the sum of the coefficients of the
Bernstein polynomials on a segment [𝑎, 𝑏] with the condition 𝑎 6 0 < 1 6 𝑏. For the symmetric
segment [−1, 1], the Roulier result gives the following.

Let 𝑓 ∈ 𝐶[−1, 1] be a function with the Bernstein polynomials 𝐵𝑛(𝑓, 𝑥) written by for-
mula (1). We write in the algebraic form:

𝐵𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑘=0

𝑎𝑛,𝑘(𝑓)𝑥𝑘, 𝑛 ∈ N, (62)

and we denote

𝑆𝑛(𝑓) ≡
𝑛∑︁

𝑘=0

|𝑎𝑛,𝑘(𝑓)|, 𝑛 ∈ N. (63)

Then, according Theorem 1 in [3], the estimate holds:

𝑆𝑛(𝑓) 6 2𝑛 ‖𝑓‖, 𝑛 ∈ N, (64)

where ‖ · ‖ is the usual supremum norm on [−1, 1].
We observe that for the function 𝑓(𝑥) = |𝑥| on [−1, 1], estimate (64) turns out to be rather

rough. Indeed, in this case, taking into consideration gluing rule (4) and passing from general
formulae (62), (63) to particular ones (6), (46), we obtain:

𝑆2𝑚+1(𝑓) = 𝑆2𝑚(𝑓) = 𝑆2𝑚, 𝑚 ∈ N.

Therefore, as 𝑛 = 2𝑚, by formula (59) we have

𝑆𝑛(𝑓) = 𝑆2𝑚 ∼ 1√
𝜋

2𝑚

𝑚3/2
=

2
√

2√
𝜋

2𝑛/2

𝑛3/2
, 𝑛 = 2𝑚 → ∞,

and as 𝑛 = 2𝑚 + 1, we get

𝑆𝑛(𝑓) = 𝑆2𝑚 ∼ 1√
𝜋

2𝑚

𝑚3/2
∼ 2√

𝜋

2𝑛/2

𝑛3/2
, 𝑛 = 2𝑚 + 1 → ∞.

The asymptotics for even and odd indices is formally different but in any case

𝑆𝑛(𝑓) = 𝑜
(︀
2𝑛/2

)︀
, 𝑛 → ∞, (65)

with the exponent function 2𝑛/2 and not 2𝑛 as in (64). The comparison is rather clear.
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In view of the said above, a natural problem arises: by choosing a break point 𝑝/𝑞 ∈ (−1, 1),
find an example of a simple rational modulus

𝑓(𝑥) = |𝑞𝑥− 𝑝|, 𝑥 ∈ [−1, 1],

for which the coefficients in Bernstein polynomials (1) in writing (62) have the maximal growth
as 𝑛 → ∞. Whether there exists such example with substantial exceeding of growth (65) is
still unclear. The situations likely differs from that on the standard segment [0, 1], cf. [9].

It could be quite interesting to show the sharpness of Roulier estimate (64) on [−1, 1] or to
obtain another universal estimate for quantity (63) applicable for all functions 𝑓 ∈ 𝐶[−1, 1],
strengthening result (64) and being extremely sharp on the class 𝐶[−1, 1].

Remark on proofreading: recently there was a substantial advantage in this problem, see
[23].
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