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ON DESCRIPTION OF GENERALIZED INVARIANT

MANIFOLDS FOR NONLINEAR EQUATIONS

A.R. KHAKIMOVA

Abstract. In the paper we discuss the problem on constructing generalized invariant
manifolds for nonlinear partial differential equations. A generalized invariant manifold
for a given nonlinear equation is a differential connection that is compatible with the
linearization of this equation. In fact, this concept generalizes symmetry. Examples of
generalized invariant manifolds obtained from symmetries are given in the paper. However,
there exist generalized invariant manifolds irreducible to symmetries, exactly they are of the
greatest interest. Such generalized invariant manifolds allow one to construct effectively
Lax pairs, recursion operators, and particular solutions to integrable equations. In the
work we present the algorithm for constructing a generalized invariant manifold for a given
equation. A complete description of generalized invariant manifolds of order (2, 2) is given
for the Korteweg–de Vries equation. We describe briefly a method for constructing a Lax
pair and a recursion operator by means of the generalized invariant manifolds. As an
example, the Korteweg–de Vries equation is considered.
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1. Introduction

The method of constructing particular solutions to nonlinear partial differential equations
based on the notion of differential constraint (or invariant manifold) is well known in the litera-
ture, see [1], [2]. The matter of the method is to add a compatible equation to a given equation
and as a rule, the compatible equation is simpler. Such technique allows one to find particular
solutions to a studied equation. In works [3]–[7] there was proposed a scheme for constructing
the Lax pairs and recursion operators for integrable partial differential equations based on the
use of similar idea. A suitable generalization is to impose a differential constraint not on the
equation, but on its linearization. The resulting equation is referred to as a generalized invari-
ant manifold. This notion is discussed in more detail in Section 2 in the present paper, where
required definitions are also given. In Section 3 we provide a complete description of the class
of the generalized invariant manifolds of orders (2,0), (2,1) and (2,2) for the Korteweg–de Vries
equation. We note that the problem on a complete description of such manifolds for nonlinear
equations was not studied before. An algorithm of constructing the Lax pair and recursion
operator by a known nontrivial generalized invariant manifold is demonstrated in Section 4 at
the example of the KdV equation.
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2. Main definitions

We consider a nonlinear partial differential equation of the form

𝑢𝑡 = 𝑓(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . , 𝑢𝑘), 𝑢𝑗 =
𝜕𝑗𝑢

𝜕𝑥𝑗
. (1)

We recall that an ordinary differential equation

𝑢𝑟 = 𝑔(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . , 𝑢𝑟−1) (2)

is called an invariant manifold for equation (1) if it is compatible with (1), that is, if the
condition

𝐷𝑟
𝑥𝑓 −𝐷𝑡𝑔|(1),(2) = 0 (3)

holds. Here 𝐷𝑥 and 𝐷𝑡 are the operators of total differentiation with respect to 𝑥 and 𝑡,
respectively. We note that condition (3) is equivalent to a partial differential equation for the
unknown function 𝑔. Although sometimes this equation can be solved explicitly, in general, to
find the function 𝑔 is a rather complicated problem.

The situation differs noticeably, when one seeks an ordinary differential equation compatible
not with a nonlinear equation (1), but with its linearization

𝑈𝑡 =
𝜕𝑓

𝜕𝑢
𝑈 +

𝜕𝑓

𝜕𝑢𝑥
𝑈𝑥 +

𝜕𝑓

𝜕𝑢𝑥𝑥
𝑈𝑥𝑥 + · · · +

𝜕𝑓

𝜕𝑢𝑘
𝑈𝑘. (4)

We proceed to rigorous definitions. We consider an ordinary differential equation

𝑈𝑚 = 𝐹 (𝑥, 𝑡, 𝑈, 𝑈𝑥, 𝑈𝑥𝑥, . . . , 𝑈𝑚−1;𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . , 𝑢𝑛), (5)

where 𝑈 = 𝑈(𝑥, 𝑡) is the unknown function sought and the function 𝑢 = 𝑢(𝑥, 𝑡) is an arbitrary
solution to equation (1) involved in (5) as a functional parameter.

Remark 1. The variables 𝑥, 𝑡, 𝑈 , 𝑈𝑥, 𝑈𝑥𝑥, . . . , 𝑈𝑚−1, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . , 𝑢𝑛 in identity (5)
are assumed to be free variables taking arbitrary values.

Definition 1. Equation (5) defines a generalized invariant manifold if the condition

𝐷𝑚
𝑥 𝑈𝑡 −𝐷𝑡𝑈𝑚|(1),(4),(5) = 0

holds true identically for all values of the variables {𝑢𝑗}, 𝑥, 𝑡, 𝑈 , 𝑈𝑥, . . . , 𝑈𝑚−1.

Here the variables 𝑢𝑡, 𝑈𝑡 and their derivatives with respect to 𝑥 are changed by virtue
of equations (1) and (4), while the variables 𝑈𝑚, 𝑈𝑚+1, . . . are changed by virtue of equal-
ity (5). To emphasize that 𝑢(𝑥, 𝑡) is an arbitrary solution, we treat the variables 𝑢,
𝑢𝑥, 𝑢𝑥𝑥, . . . as independent ones. In view of this, the problem on finding the function
𝐹 (𝑥, 𝑡, 𝑈, 𝑈𝑥, 𝑈𝑥𝑥, . . . , 𝑈𝑚−1;𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . , 𝑢𝑛) becomes overdetermined and can be effectively
solved. This fact is supported by numerous examples considered in papers [3]–[7]. It shown
in these papers that the generalized invariant manifold is an efficient tool for constructing the
Lax pair and the recursion operator.

Definition 2. Let an invariant manifold 𝑀 be defined by equation (5). A pair of numbers
(𝑚,𝑛) is called the order of the manifold 𝑀 . The manifold 𝑀 is said to be trivial if an arbitrary
solution of equation (5) reads as

𝑈 = 𝜙(𝑥, 𝑡, 𝑢, 𝑢𝑥, . . . , 𝑢𝑠), where
𝜕𝜙

𝜕𝑢𝑠
̸= 0.

Below we provide two examples of trivial generalized invariant manifolds. One can confirm
that the equation

𝑈𝑥 =
𝑢𝑥𝑥
𝑢𝑥

𝑈, (6)
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defines a generalized invariant manifold for the Korteweg–de Vries equation

𝑢𝑡 = 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥. (7)

This follows the observation that the general solution to equation (6) can be expressed via the
classical symmetry 𝑢𝜏 = 𝑢𝑥 of the KdV equation as

𝑈 = 𝑐𝑢𝑥.

Therefore, it satisfies the linearized equation.
In the same way one can check that a second order equation

𝑈𝑥𝑥 =
3𝑢21𝑢2 + 𝑢1𝑢5 − 𝑢23
𝑢1𝑢4 + 𝑢31 − 𝑢2𝑢3

𝑈𝑥 +
𝑢3(𝑢

2
1 + 𝑢4) − 𝑢2𝑢5 − 3𝑢1𝑢

2
2

𝑢1𝑢4 + 𝑢31 − 𝑢2𝑢3
𝑈, 𝑢𝑛 =

𝜕𝑛

𝜕𝑥𝑛
𝑢(𝑥, 𝑡) (8)

defines a generalized invariant manifold for equation (7). Its general solution is given by the
linear combination 𝑈 = 𝑐1𝑢𝑥 + 𝑐2𝑢𝑡 of two symmetries 𝑢𝜏 = 𝑢𝑥 and 𝑢𝜏1 = 𝑢𝑡.

3. Complete description of second order generalized invariant manifolds
for the KdV equation

Examples (6) and (8) show that one can easily construct the trivial invariant manifolds
by means of classical and higher symmetries for the considered equation. However, it seems
impossible to construct the Lax pair and recursion operators using such manifolds. More
interesting objects are nontrivial generalized invariant manifolds.

The main result of the present paper is the following theorem.

Theorem 1. Let equation 𝑈𝑥𝑥 = 𝐹 (𝑈,𝑈𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) define a generalized invariant manifold
for the KdV equation (7). Then it is of the form

𝑈𝑥𝑥 =
𝑢𝑥

2(𝑢+ 𝑐3)
𝑈𝑥 −

2

3
(𝑢+ 𝑐3)𝑈 +

𝑢𝑥
√︀

9𝑈2
𝑥 + 6(𝑢+ 𝑐3)(𝑈2 + 6𝑐4)

6(𝑢+ 𝑐3)
,

where 𝑐3 and 𝑐4 are arbitrary constants.
Equation (7) does not possess the generalized invariant manifolds of the form 𝑈𝑥𝑥 =

𝐹 (𝑈,𝑈𝑥, 𝑢) and the form 𝑈𝑥𝑥 = 𝐹 (𝑈,𝑈𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) provided 𝜕𝐹
𝜕𝑢𝑥𝑥

does not vanish identically.

Proof. To prove the theorem, we employ Definition 1. We linearize equation (7):

𝑈𝑡 = 𝑈𝑥𝑥𝑥 + 𝑢𝑈𝑥 + 𝑢𝑥𝑈 (9)

and we seek the generalized invariant manifold as

𝑈𝑥𝑥 = 𝐹 (𝑈,𝑈𝑥, 𝑢, 𝑢𝑥) (10)

by the condition
𝐷2

𝑥𝑈𝑡 −𝐷𝑡𝐹
⃒⃒
(7),(9),(10)

= 0. (11)

We rewrite identity (11) in an expanded form:

(𝑈𝑥𝑥𝑥𝑥𝑥 + 𝑢𝑈𝑥𝑥𝑥 + 3𝑢𝑥𝑈𝑥𝑥 + 3𝑢𝑥𝑥𝑈𝑥 + 𝑢𝑥𝑥𝑥𝑈 − 𝐹𝑈𝑈𝑡

−𝐹𝑈𝑥𝑈𝑥,𝑡 − 𝐹𝑢𝑢𝑡 − 𝐹𝑢𝑥𝑢𝑥,𝑡)|(7),(9),(10) = 0. (12)

In identity (12) we change the variables 𝑢𝑡 and 𝑢𝑥,𝑡 by virtue of equation (7), 𝑈𝑡 and 𝑈𝑥,𝑡 are
replaced by virtue of (9), and 𝑈𝑥𝑥𝑥, 𝑈𝑥𝑥𝑥𝑥𝑥 are replaced by virtue of (10). Finally, we obtain:

𝛼1(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥)𝑢𝑥𝑥𝑥𝑢𝑥𝑥 + 𝛼2(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥)𝑢𝑥𝑥𝑥 + 𝛼3(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥)𝑢3𝑥𝑥

+ 𝛼4(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥)𝑢2𝑥𝑥 + 𝛼5(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥)𝑢𝑥𝑥 + 𝛼6(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥) = 0,
(13)

where

𝛼1 =3𝐹𝑢𝑥𝑢𝑥 ,
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𝛼2 =𝑈 + 3𝑈𝑥𝐹𝑈𝑢𝑥 + 3𝐹𝐹𝑈𝑥𝑢𝑥 + 3𝑢𝑥𝐹𝑢𝑢𝑥 ,

𝛼3 =𝐹𝑢𝑥𝑢𝑥𝑢𝑥 ,

𝛼4 =3𝑈𝑥𝐹𝑈𝑢𝑥𝑢𝑥 + 3𝐹𝑢𝑢𝑥 + 3𝐹𝑈𝑥𝑢𝑥𝐹𝑢𝑥 + 3𝐹𝐹𝑈𝑥𝑢𝑥𝑢𝑥 + 3𝑢𝑥𝐹𝑢𝑢𝑥𝑢𝑥 ,

𝛼5 =3𝑈𝑥𝐹𝑈𝑈𝑥𝐹𝑢𝑥 + 3𝑈𝑥𝐹𝑈𝑢 + 3𝑢2𝑥𝐹𝑢𝑢𝑢𝑥 + 3𝑢𝑥𝐹𝑈𝑥𝑢𝑥𝐹𝑢 + 3𝐹 2𝐹𝑈𝑥𝑈𝑥𝑢𝑥 + 3𝐹𝐹𝑈𝑥𝑢

+ 3𝑈𝑥𝐹𝑈𝐹𝑈𝑥𝑢𝑥 + 3𝑈2
𝑥𝐹𝑈𝑈𝑢𝑥 + 3𝑈𝑥 + 3𝐹𝐹𝑢𝑥𝐹𝑈𝑥𝑈𝑥 + 6𝑈𝑥𝐹𝐹𝑈𝑈𝑥𝑢𝑥 + 6𝑢𝑥𝑈𝑥𝐹𝑈𝑢𝑢𝑥

+ 6𝑢𝑥𝐹𝐹𝑈𝑥𝑢𝑢𝑥 + 3𝐹𝐹𝑈𝑥𝐹𝑈𝑥𝑢𝑥 + 3𝑢𝑥𝐹𝑢𝑢 − 𝑈𝐹𝑈𝑥 + 3𝐹𝐹𝑈𝑢𝑥 + 3𝑢𝑥𝐹𝑢𝑥𝐹𝑈𝑥𝑢,

𝛼6 =3𝑢𝑥𝐹 + 3𝐹 2𝐹𝑈𝑈𝑥 + 3𝑢𝑥𝐹𝐹𝑈𝑢 + 3𝑈2
𝑥𝐹𝑈𝐹𝑈𝑈𝑥 + 3𝑢2𝑥𝐹𝑢𝐹𝑈𝑥𝑢 + 3𝑈𝑥𝐹

2𝐹𝑈𝑈𝑥𝑈𝑥

+ 3𝑢𝑥𝐹
2𝐹𝑈𝑥𝑈𝑥𝑢 + 3𝑢2𝑥𝑈𝑥𝐹𝑈𝑢𝑢 + 3𝑢2𝑥𝐹𝐹𝑈𝑥𝑢𝑢 + 3𝑈2

𝑥𝐹𝐹𝑈𝑈𝑈𝑥 + 3𝑢𝑥𝑈
2
𝑥𝐹𝑈𝑈𝑢

+ 3𝑈𝑥𝐹𝐹𝑈𝑈 + 𝐹 3𝐹𝑈𝑥𝑈𝑥𝑈𝑥 + 𝑢3𝑥𝐹𝑢𝑢𝑢 + 3𝑈𝑥𝐹𝐹𝑈𝑥𝐹𝑈𝑈𝑥 + 3𝑢𝑥𝑈𝑥𝐹𝑢𝐹𝑈𝑈𝑥

+ 3𝑢𝑥𝑈𝑥𝐹𝑈𝐹𝑈𝑥𝑢 + 3𝑢𝑥𝐹𝐹𝑈𝑥𝐹𝑈𝑥𝑢 + 6𝑢𝑥𝑈𝑥𝐹𝐹𝑈𝑈𝑥𝑢 − 𝑢𝑥𝑈𝐹𝑈 + 3𝑈𝑥𝐹𝐹𝑈𝐹𝑈𝑥𝑈𝑥

+ 𝑈3
𝑥𝐹𝑈𝑈𝑈 + 3𝑢𝑥𝐹𝐹𝑢𝐹𝑈𝑥𝑈𝑥 + 3𝐹 2𝐹𝑈𝑥𝐹𝑈𝑥𝑈𝑥 − 𝑢2𝑥𝐹𝑢𝑥 − 2𝑢𝑥𝑈𝑥𝐹𝑈𝑥 .

We observe that the variables 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥 are treated as independent ones and, therefore, (13)
holds if and only if the identities

𝛼𝑖(𝑈,𝑈𝑥, 𝑢, 𝑢𝑥) = 0, 𝑖 = 1, 6, (14)

are satisfied.
Let us study the system of equations (14). As 𝑖 = 1 and 𝑖 = 3, we deal with the simplest

relations. They yield:

𝐹 (𝑈,𝑈𝑥, 𝑢, 𝑢𝑥) = 𝐹1(𝑈,𝑈𝑥, 𝑢)𝑢𝑥 + 𝐹2(𝑈,𝑈𝑥, 𝑢). (15)

Taking into consideration representation (15), we can further split the equations in system
(14) with respect to the independent variable 𝑢𝑥. Comparing like powers of 𝑢𝑥 in the second
equation in system (14), we obtain the following two equations:

(𝐹1)𝑢 + 𝐹1(𝐹1)𝑈𝑥 = 0, (16)

𝑈 + 3𝐹2(𝐹1)𝑈𝑥 + 3𝑈𝑥(𝐹1)𝑈 = 0. (17)

Then we express the function (𝐹1)𝑢 from (16) and the function 𝐹2 from (17):

(𝐹1)𝑢 = −𝐹1(𝐹1)𝑈𝑥 , (18)

𝐹2 = −𝑈 + 3𝑈𝑥(𝐹1)𝑈
3(𝐹1)𝑈𝑥

, where (𝐹1)𝑈𝑥 ̸= 0. (19)

Indeed, assuming (𝐹1)𝑈𝑥 = 0 in (19), we are led to the identities

𝑈 = 0 and (𝐹1(𝑈, 𝑢))𝑈 = 0

following (17). This contradicts to the fact that 𝑈 is a dynamical variable.
In the other equations in system (14), we change all derivatives of 𝐹1 with respect to variable

𝑢 by virtue of (18), exclude the function 𝐹2 by virtue of (19) and we equate the coefficients at
the like powers of the variable 𝑢𝑥. Thus, in addition to (18), we have extra four equations

1. − 3𝑈𝑥𝐹1(𝐹1)𝑈𝑈

(𝐹1)𝑈𝑥

− 𝐹1(𝐹1)𝑈(3𝑈𝑥(𝐹1)𝑈 + 𝑈)(𝐹1)𝑈𝑥𝑈𝑥

(𝐹1)3𝑈𝑥

+
(𝐹1)𝑈𝑈

(𝐹1)𝑈𝑥

+ 𝑈𝑥

+
𝐹1(𝑈 + 6𝑈𝑥(𝐹1)𝑈)(𝐹1)𝑈𝑈𝑥

(𝐹1)2𝑈𝑥

= 0,

(20)
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2.
𝐹1(𝐹1)𝑈 ((3𝑈𝑥(𝐹1)𝑈 + 𝑈) (𝐹1)𝑈𝑥 − 3𝐹1(𝐹1)𝑈)

(𝐹1)3𝑈𝑥

(𝐹1)𝑈𝑥𝑈𝑥

+ 3𝐹1

(︂
𝑈𝑥 −

𝐹1

(𝐹1)𝑈𝑥

)︂
(𝐹1)𝑈𝑈 + 𝐹1

(︂
6𝐹1(𝐹1)𝑈

(𝐹1)2𝑈𝑥

− 𝑈 + 6𝑈𝑥(𝐹1)𝑈
(𝐹1)𝑈𝑥

)︂
(𝐹1)𝑈𝑈𝑥

+ 𝐹1 − 𝑈(𝐹1)𝑈 − 𝑈𝑥(𝐹1)𝑈𝑥 = 0,

(21)

3.

(︂
𝑈3
𝑥 − 6𝐹1𝑈

2
𝑥

(𝐹1)𝑈𝑥

)︂
(𝐹1)𝑈𝑈𝑈

+

(︂
𝐹1(9𝑈𝑥(𝐹1)𝑈 + 2𝑈)

(𝐹1)2𝑈𝑥

− 𝑈𝑥(3𝑈𝑥(𝐹1)𝑈 − 2𝑈)

(𝐹1)𝑈𝑥

)︂
(𝐹1)𝑈𝑈

+

(︂
2𝑈𝑥𝐹1(2𝑈 + 9𝑈𝑥(𝐹1)𝑈) − 𝑈2

𝑥(3𝑈𝑥(𝐹1)𝑈 + 𝑈)(𝐹1)𝑈𝑥

(𝐹1)2𝑈𝑥

)︂
(𝐹1)𝑈𝑈𝑈𝑥

+

(︂
𝑈𝑥(3𝑈𝑥(𝐹1)𝑈 + 𝑈)2

3(𝐹1)2𝑈𝑥

− 2𝐹1(3𝑈𝑥(𝐹1)𝑈 + 𝑈)(9𝑈𝑥(𝐹1)𝑈 + 𝑈)

3(𝐹1)3𝑈𝑥

)︂
(𝐹1)𝑈𝑈𝑥𝑈𝑥

+

(︂
2(𝐹1)𝑈𝐹1(3𝑈𝑥(𝐹1)𝑈 + 𝑈)2

3(𝐹1)4𝑈𝑥

− (3𝑈𝑥(𝐹1)𝑈 + 𝑈)3

27(𝐹1)3𝑈𝑥

)︂
(𝐹1)𝑈𝑥𝑈𝑥𝑈𝑥

+
3𝑈2

𝑥(5𝐹1 − 𝑈𝑥(𝐹1)𝑈𝑥)(𝐹1)𝑈𝑈𝑥(𝐹1)𝑈𝑈

(𝐹1)2𝑈𝑥

− 𝑈

3(𝐹1)𝑈𝑥

+

(︂
𝑈2
𝑥(3𝑈𝑥(𝐹1)𝑈 + 𝑈)

(𝐹1)2𝑈𝑥

− 3𝑈𝑥𝐹1(5𝑈𝑥(𝐹1)𝑈 + 𝑈)

(𝐹1)3𝑈𝑥

)︂
(𝐹1)𝑈𝑥𝑈𝑥(𝐹1)𝑈𝑈

+

(︂
2𝑈2

𝑥(3𝑈𝑥(𝐹1)𝑈 + 𝑈)

(𝐹1)2𝑈𝑥

− 𝑈𝑥𝐹1(30𝑈𝑥(𝐹1)𝑈 + 7𝑈)

(𝐹1)3𝑈𝑥

)︂
(𝐹1)

2
𝑈𝑈𝑥

+

(︂
5𝐹1(3𝑈𝑥(𝐹1)𝑈 + 𝑈)(9𝑈𝑥(𝐹1)𝑈 + 𝑈)

3(𝐹1)4𝑈𝑥

− 𝑈𝑥(3𝑈𝑥(𝐹1)𝑈 + 𝑈)2

(𝐹1)3𝑈𝑥

)︂
(𝐹1)𝑈𝑈𝑥(𝐹1)𝑈𝑥𝑈𝑥

+

(︂
9𝑈𝑥𝐹1 − 6𝑈𝑥𝑈(𝐹1)𝑈 + 18𝑈2

𝑥(𝐹1)
2
𝑈 − 2𝑈2

3(𝐹1)2𝑈𝑥

− 𝐹1(𝐹1)𝑈(5𝑈 + 18𝑈𝑥(𝐹1)𝑈)

(𝐹1)3𝑈𝑥

)︂
(𝐹1)𝑈𝑈𝑥

+

(︂
𝑈2(𝐹1)𝑈 − 𝑈𝐹1 − 9𝑈2

𝑥(𝐹1)
3
𝑈 − 9𝑈𝑥𝐹1(𝐹1)𝑈

3(𝐹1)3𝑈𝑥

+
3𝐹1(𝐹1)

2
𝑈(3𝑈𝑥(𝐹1)𝑈 + 𝑈)

(𝐹1)4𝑈𝑥

)︂
(𝐹1)𝑈𝑥𝑈𝑥

+

(︂
(3𝑈𝑥(𝐹1)𝑈 + 𝑈)3

9(𝐹1)4𝑈𝑥

− 𝐹1(𝐹1)𝑈(3𝑈𝑥(𝐹1)𝑈 + 𝑈)2

3(𝐹1)5𝑈𝑥

)︂
(𝐹1)

2
𝑈𝑥𝑈𝑥

= 0,

(22)

4. 𝐺(𝑈,𝑈𝑥, 𝑢, 𝐹1, (𝐹1)𝑈 , (𝐹1)𝑈𝑥 , (𝐹1)𝑢, (𝐹1)𝑈𝑈 , . . . , (𝐹1)𝑈𝑥𝑈𝑥𝑈𝑥𝑈𝑥) = 0. (23)

We do not provide equation (23) explicitly since it is too cumbersome.
We consider equations (20) and (21). We multiply equation (20) by

(3𝐹1(𝐹1)𝑈 − (3𝑈𝑥(𝐹1)𝑈 + 𝑈) (𝐹1)𝑈𝑥)
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and deduct equation (21) multiplied by (3𝑈𝑥(𝐹1)𝑈 + 𝑈). This gives:

3(𝐹1)
2
𝑈

(𝐹1)𝑈𝑥

+
3𝐹1(𝐹1)𝑈𝑈

(𝐹1)𝑈𝑥

− 3𝐹1(𝐹1)𝑈(𝐹1)𝑈𝑈𝑥

(𝐹1)2𝑈𝑥

− 1 = 0.

We integrate the obtained identity with respect to variable 𝑈 and resolve with respect to (𝐹1)𝑈 :

(𝐹1)𝑈 =
(𝐹1)𝑈𝑥(𝑈 + 𝐹3)

3𝐹1

, 𝐹3 = 𝐹3(𝑈𝑥, 𝑢). (24)

The sought function should satisfy all equations (18), (20)–(24). The condition of compatibility
of (18) and (24) implies the following identity:

𝜕

𝜕𝑈
(𝐹1)𝑢 −

𝜕

𝜕𝑢
(𝐹1)𝑈

⃒⃒⃒⃒
(18),(24)

= 0. (25)

Hence, by equations (18) and (24), identity (25) casts into the form

−(𝐹1)𝑈𝑥 (𝐹1(𝐹3)𝑈𝑥 + (𝐹3)𝑢)

3𝐹1

= 0,

and we conclude that 𝐹3(𝑈𝑥, 𝑢) = 𝑐1, where 𝑐1 is an arbitrary constant.
In equations (20)–(23) we change all derivatives of the function 𝐹1 with respect to the variable

𝑈 are changed by virtue of (24). Then equations (20) and (21) hold identically. Then we express
(𝐹1)𝑈𝑥𝑈𝑥𝑈𝑥 from equation (22):

(𝐹1)𝑈𝑥𝑈𝑥𝑈𝑥 =
3(𝐹1)

2
𝑈𝑥𝑈𝑥

(𝐹1)𝑈𝑥

−
3(6𝐹1𝑈𝑥 + 𝑈2 − 𝑐21)(𝐹1)

3
𝑈𝑥

𝑈2𝐹 2
1

+
9(𝐹1)

2
𝑈𝑥

𝑈2

+
9((𝐹1)𝑈𝑥𝑈𝑥 − 𝐹1)(𝐹1)𝑈𝑥𝑈𝑥

𝑈2
+

3𝑈𝑥(3𝐹1𝑈𝑥 + 𝑈2 − 𝑐21)(𝐹1)
4
𝑈𝑥

𝑈2𝐹 3
1

. (26)

Using the compatibility condition for equations (24) and (26), we arrive at two possible cases:

3𝑈𝑥𝐹1(𝐹1)𝑈𝑥 + 𝑐1𝑈(𝐹1)𝑈𝑥 + 𝑈2(𝐹1)𝑈𝑥 − 3𝐹 2
1 = 0, (27)

or
𝑐21(𝐹1)

3
𝑈𝑥

− 3𝑈𝑥𝐹1(𝐹1)
3
𝑈𝑥

+ 3𝐹 2
1 (𝐹1)

2
𝑈𝑥

− 3𝐹 3
1 (𝐹1)𝑈𝑥𝑈𝑥 = 0. (28)

Assume that equation (27) holds, then

𝐹1 =
𝑈𝑥

2𝐹4

+

√︀
9𝑈2

𝑥 + 6𝐹4𝑈(𝑐1 + 𝑈)

6𝐹4

, 𝐹4 = 𝐹4(𝑈, 𝑢). (29)

Substituting identity (29) into equations (18) and (24), we find that

𝑐1 = 0 and 𝐹4 = 𝑢+ 𝑐2. (30)

We confirmed that function (29) satisfies equation (23) provided (30) holds. Hence, in case
(27), the sought function 𝐹 reads as

𝐹 =
𝑢𝑥𝑈𝑥

2(𝑢+ 𝑐2)
+
𝑢𝑥
√︀

9𝑈2
𝑥 + 6(𝑢+ 𝑐2)𝑈2

6(𝑢+ 𝑐2)
− 2

3
(𝑢+ 𝑐2)𝑈. (31)

Now we consider case (28). We rewrite it as

(𝐹1)𝑈𝑥𝑈𝑥 =
(𝐹1)

2
𝑈𝑥

(𝑐21(𝐹1)𝑈𝑥 − 3𝑈𝑥𝐹1(𝐹1)𝑈𝑥 + 3𝐹 2
1 )

3𝐹 3
1

. (32)

Then, substituting (32) into equation (23), we obtain

𝑐1 = 0 or 3𝑈𝑥𝐹1 + 2𝑈𝑐1 + 𝑈2 = 0. (33)

The second equation in (33) contradicts to identity (24), and this is why we let 𝑐1 = 0.
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We observe that as 𝑐1 = 0, equation (28) is solved explicitly:

𝐹1 =
𝑈𝑥

2𝐹5

+

√︀
𝑈2
𝑥 + 4𝐹5𝐹6

2𝐹5

, 𝐹5 = 𝐹5(𝑈, 𝑢), 𝐹6 = 𝐹6(𝑈, 𝑢). (34)

We determine the functions 𝐹5 and 𝐹6 by equations (18) and (24). We substitute (34) into
(18) and (24) to get:

𝐹5 = 𝑢+ 𝑐3, 𝐹6 =
1

6
𝑈2 + 𝑐4.

Hence, in case (28) we have

𝐹 =
𝑢𝑥𝑈𝑥

2(𝑢+ 𝑐3)
+
𝑢𝑥
√︀

9𝑈2
𝑥 + 6(𝑢+ 𝑐3)(𝑈2 + 6𝑐4)

6(𝑢+ 𝑐3)
− 2

3
(𝑢+ 𝑐3)𝑈, (35)

where 𝑐3 and 𝑐4 are arbitrary constants. Therefore, (31) and (35) represent two nonlinear
generalized invariant manifolds. However, we note that (31) is a particular case of (35) and,
therefore, equation (11) possesses in fact just one solution

𝑈𝑥𝑥 =
𝑢𝑥𝑈𝑥

2(𝑢+ 𝑐3)
+
𝑢𝑥
√︀

9𝑈2
𝑥 + 6(𝑢+ 𝑐3)(𝑈2 + 6𝑐4)

6(𝑢+ 𝑐3)
− 2

3
(𝑢+ 𝑐3)𝑈, (36)

which depends on two arbitrary constants 𝑐3, 𝑐4. The proof is complete.

Corollary 1. Generalized invariant manifold (36) is nontrivial.

Suppose that an arbitrary solution of equation (36) is of the form

𝑈 = 𝜙(𝑥, 𝑡, 𝑢, 𝑢𝑥, . . . , 𝑢𝑗), where
𝜕𝜙

𝜕𝑢𝑗
̸= 0. (37)

One can find 𝑈𝑥 and 𝑈𝑥𝑥 from equation (37):

𝑈𝑥 = 𝜙𝑢𝑢𝑥 + 𝜙𝑢𝑥𝑢𝑥𝑥 + · · · + 𝜙𝑢𝑗
𝑢𝑗+1, (38)

𝑈𝑥𝑥 = 𝜙𝑢𝑢𝑢
2
𝑥 + 𝜙𝑢𝑢𝑥𝑥 + · · · + 𝜙𝑢𝑗

𝑢𝑗+2. (39)

In equation (36), we change the functions 𝑈 , 𝑈𝑥, 𝑈𝑥𝑥 by virtue of identities (37), (38) and (39):

𝜙𝑢𝑢𝑢
2
𝑥 + 𝜙𝑢𝑢𝑥𝑥 + · · · + 𝜙𝑢𝑗

𝑢𝑗+2 =
𝑢𝑥

2(𝑢+ 𝑐3)

(︀
𝜙𝑢𝑢𝑥 + 𝜙𝑢𝑥𝑢𝑥𝑥 + · · · + 𝜙𝑢𝑗

𝑢𝑗+1

)︀
+
𝑢𝑥

√︁
9
(︀
𝜙𝑢𝑢𝑥 + 𝜙𝑢𝑥𝑢𝑥𝑥 + · · · + 𝜙𝑢𝑗

𝑢𝑗+1

)︀2
+ 6(𝑢+ 𝑐3)(𝜙2 + 6𝑐4)

6(𝑢+ 𝑐3)
− 2

3
(𝑢+ 𝑐3)𝜙.

(40)

Equating the coefficients at higher derivative 𝑢𝑗+2 in (40), we obtain the identity

𝜙𝑢𝑗
= 0,

which contradicts to assumption (37).

4. Relation between generalized invariant manifolds, the Lax pairs and
recursion operators

Invariant manifolds are defined by ordinary differential equations depending on constant
parameters. To these equations, we can apply the standard ways of order decreasing by finding
the integrals or order increasing excluding the constant parameters. We apply one of such
transformations to above found manifold (36). Excluding the parameter 𝑐4 from equation (36)
and its differential implication, we arrive to a third order generalized invariant manifold linear
in 𝑈,𝑈𝑥, 𝑈𝑥𝑥. Indeed, we rewrite (36) as

𝑈𝑥𝑥 −
𝑢𝑥𝑈𝑥

2(𝑢+ 𝑐3)
+

2

3
(𝑢+ 𝑐3)𝑈 =

𝑢𝑥
√︀

9𝑈2
𝑥 + 6(𝑢+ 𝑐3)(𝑈2 + 6𝑐4)

6(𝑢+ 𝑐3)
. (41)
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we calculate the square of both sides of identity (41) and resolve the resulting expression with
respect to the constant 𝑐4:

𝑐4 =
𝑢+ 𝑐3
𝑢2𝑥

𝑈2
𝑥𝑥 +

(︂
4(𝑢+ 𝑐3)

2

3𝑢2𝑥
𝑈 − 1

𝑢𝑥
𝑈𝑥

)︂
𝑈𝑥𝑥 −

2(𝑢+ 𝑐3)

3𝑢𝑥
𝑈𝑈𝑥 +

(︂
4(𝑢+ 𝑐3)

3

9𝑢2𝑥
− 1

6

)︂
𝑈2. (42)

We differentiate identity (42) with respect to the variable 𝑥:(︂
2(𝑢+ 𝑐3)

𝑢2𝑥
𝑈𝑥𝑥 −

1

𝑢𝑥𝑥
𝑈𝑥 +

4(𝑢+ 𝑐3)
2

3𝑢2𝑥
𝑈

)︂
𝑈𝑥𝑥𝑥 −

2(𝑢+ 𝑐3)𝑢𝑥𝑥
𝑢3𝑥

𝑈2
𝑥𝑥 −

2(𝑢+ 𝑐3)

3𝑢𝑥
𝑈2
𝑥

−
(︂

8(𝑢+ 𝑐3)𝑢𝑥𝑥
3𝑢3𝑥

− 2(𝑢+ 𝑐3)

𝑢𝑥

)︂
𝑈𝑈𝑥𝑥 +

(︂
2(𝑢+ 𝑐3)𝑢𝑥𝑥

3𝑢2𝑥
+

8(𝑢+ 𝑐3)
3

9𝑢2𝑥
− 1

)︂
𝑈𝑈𝑥

+

(︂
𝑢𝑥𝑥
𝑢2𝑥

+
4(𝑢+ 𝑐3)

2

3𝑢2𝑥

)︂
𝑈𝑥𝑈𝑥𝑥 +

(︂
4(𝑢+ 𝑐3)

2

3𝑢𝑥
− 8(𝑢+ 𝑐3)

3𝑢𝑥𝑥
9𝑢3𝑥

)︂
𝑈2 = 0.

We simplify the obtained expression by rewriting it in the following form:(︂
2(𝑢+ 𝑐3)

𝑢2𝑥
𝑈𝑥𝑥 −

1

𝑢𝑥𝑥
𝑈𝑥 +

4(𝑢+ 𝑐3)
2

3𝑢2𝑥
𝑈

)︂
·
(︂
𝑈𝑥𝑥𝑥 −

𝑢𝑥𝑥
𝑢𝑥

𝑈𝑥𝑥 +
2

3
(𝑢+ 𝑐3)𝑈𝑥 −

(︂
2(𝑢+ 𝑐3)𝑢𝑥𝑥

3𝑢𝑥
− 𝑢𝑥

)︂
𝑈

)︂
= 0.

This equation is split into the following two equations

1.
2(𝑢+ 𝑐3)

𝑢2𝑥
𝑈𝑥𝑥 −

1

𝑢𝑥𝑥
𝑈𝑥 +

4(𝑢+ 𝑐3)
2

3𝑢2𝑥
𝑈 = 0, (43)

2. 𝑈𝑥𝑥𝑥 −
𝑢𝑥𝑥
𝑢𝑥

𝑈𝑥𝑥 +
2

3
(𝑢+ 𝑐3)𝑈𝑥 −

(︂
2(𝑢+ 𝑐3)𝑢𝑥𝑥

3𝑢𝑥
− 𝑢𝑥

)︂
𝑈 = 0. (44)

Assume that condition (43) holds. Then, taking into consideration (41), we have the identity(︂
1

𝑢𝑥𝑥
− 1

𝑢𝑥

)︂
𝑈𝑥 −

√︀
9𝑈2

𝑥 + 6(𝑢+ 𝑐3)(𝑈2 + 6𝑐4)

3𝑢𝑥
= 0,

which contradicts to the fact that the variables 𝑈𝑥, 𝑈 , 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑐3, 𝑐4 are free with arbitrary
values, see Remark 1 in Section 2. Hence, only (44) holds and this means that

𝑈𝑥𝑥𝑥 =
𝑢𝑥𝑥
𝑢𝑥

𝑈𝑥𝑥 −
2

3
(𝑢+ 𝑐3)𝑈𝑥 +

(︂
2(𝑢+ 𝑐3)𝑢𝑥𝑥

3𝑢𝑥
− 𝑢𝑥

)︂
𝑈. (45)

A surprising fact is that the resulting third order equation turns out to be linear.
We observe that equations (36) and (45) provide different representations of the same object.

The transfer from one writing to the other is made by a simple transformation in the class of
ordinary differential equations. However, these representations differ from the point of view of
their applications. It is convenient to use the formula (36) to construct the Lax pair, while the
equation (45) is more suitable for constructing the recursion operator.

We recall that the recursion operator and the Lax pair are important attributes of the
integrability theory. The methods of constructing the Lax pair were discussed earlier in papers
[8]–[15]. For the recursion operator we refer for instance, to review [16]. The method of
constructing these objects by means of generalized invariant manifold discussed in the present
paper was developed in papers [3]–[7].

Let us find the Lax pair for the KdV equation by using the formula (36). Suppose 𝑐4 = 0,
then the radicand is a quadratic form of 𝑈 , 𝑈𝑥 with the coefficient depending on 𝑢, 𝑐3. We
rewrite the linearized equation (9) taking into consideration equation (36):

𝑈𝑡 =
𝑢𝑥𝑥
√︀

9𝑈2
𝑥 + 6(𝑢+ 𝑐3)𝑈2

6(𝑢+ 𝑐3)
+

(︂
𝑢𝑥𝑥

2(𝑢+ 𝑐3)
+
𝑢− 2𝑐3

3

)︂
𝑈𝑥. (46)
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We observe that the pair of equations (36) and (46) is the Lax pair for KdV equation (7), but
it is represented in a nonlinear form. The experience suggests that such obtained Lax pair can
be linearized by an appropriate change of variables, cf. [6]. To reduce this pair to a linear form,
we express the variables 𝑈 and 𝑈𝑥 as some quadratic forms of new variables 𝜙 and 𝜓 so that
the radicand in equation (36) becomes the perfect square. We employ the following lemma,
see [6].

Lemma 1. The quadratic form 𝑤(𝑃,𝑄) = 𝑃 2 +𝑄2, where

𝑃 = 𝛼1𝜙
2 + 𝛽1𝜙𝜓 + 𝛾1𝜓

2, 𝑄 = 𝛼2𝜙
2 + 𝛽2𝜙𝜓 + 𝛾2𝜓

2, (47)

can be written as 𝑃 2 + 𝑄2 = (𝛼3𝜙 + 𝛽3𝜓)2 if and only if the coefficients of form (47) satisfy
one of the following two conditions:

1. 𝛽2 = 𝛼1 = 𝛾1 = 0, 𝛽2
1 + 4𝛼2𝛾2 = 0;

2. there exists a function ℎ such that 𝛼2 = ℎ𝛼1, 𝛾2 = ℎ𝛾1, 𝛽1 = −ℎ𝛽2, 𝛽2
2 + 4𝛼1𝛾1 = 0.

Following Lemma 1, we choose the change of variables

𝑈 =
2√
6
𝜙𝜓, 𝑈𝑥 =

1

3

√
𝑢+ 𝑐3(𝜙

2 − 𝜓2).

Then we obtain two systems of equations⎧⎪⎪⎨⎪⎪⎩
𝜙𝑥 =

𝑢𝑥
4(𝑢+ 𝑐3)

𝜙−
√
𝑢+ 𝑐3√

6
𝜓,

𝜓𝑥 =

√
𝑢+ 𝑐3√

6
𝜙− 𝑢𝑥

4(𝑢+ 𝑐3)
𝜓,

(48)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜙𝑡 =

(︂
3𝑢𝑥𝑥𝑥 + 𝑢𝑥(𝑢− 2𝑐3)

12(𝑢+ 𝑐3)

)︂
𝜙−

√
6

18
(𝑢− 2𝑐3)

√
𝑢+ 𝑐3𝜓,

𝜓𝑡 =

(︃
𝑢𝑥𝑥√

6
√
𝑢+ 𝑐3

+

√
6

18
(𝑢− 2𝑐3)

√
𝑢+ 𝑐3

)︃
𝜙−

(︂
3𝑢𝑥𝑥𝑥 + 𝑢𝑥(𝑢− 2𝑐3)

12(𝑢+ 𝑐3)

)︂
𝜓

(49)

instead of the pair of equations (36), (46). Pair (48), (49) represents the linear Lax pair for KdV
equation (7). Let us reduce pair (48), (49) to a known Lax pair. To exclude the dependence
on 𝑢𝑥 in system (48), we employ the change of variables 𝜙 = 𝛼𝑝 and 𝜓 = 𝛽𝑞 that reduces (48)
to the form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝𝑥 =

(︂
𝑢𝑥

4(𝑢+ 𝑐3)
− 𝛼𝑥

𝛼

)︂
𝑝−

√
𝑢+ 𝑐3√

6

𝛽

𝛼
𝑞,

𝑞𝑥 =

√
𝑢+ 𝑐3√

6

𝛼

𝛽
𝑝−

(︂
𝑢𝑥

4(𝑢+ 𝑐3)
+
𝛽𝑥
𝛽

)︂
𝑞.

(50)

We postulate the identities

𝛼𝑥

𝛼
=

𝑢𝑥
4(𝑢+ 𝑐3)

,
𝛽𝑥
𝛽

= − 𝑢𝑥
4(𝑢+ 𝑐3)

and this implies 𝛼 = (𝑢+ 𝑐3)
1
4 , 𝛽 = (𝑢+ 𝑐3)

− 1
4 and, therefore, (50) becomes⎧⎪⎪⎨⎪⎪⎩

𝑝𝑥 = − 1√
6
𝑞,

𝑞𝑥 =
1√
6

(𝑢+ 𝑐3)𝑝.

(51)

From system (51), we proceed to a the second order equation for 𝑝:

𝑝𝑥𝑥 = −1

6
(𝑢+ 𝑐3)𝑝. (52)
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As a result of the above transformations, system (49) reduces to an equation of the form

𝑝𝑡 =
1

3
(𝑢− 2𝑐3)𝑝𝑥 −

1

6
𝑢𝑥𝑝. (53)

Pair of equations (52), (53) coincides with the known Lax pair for the KdV equation, see [17].
Now let us show how to find the recursion operator for the KdV equation (7) using the

generalized invariant manifold (45). We rewrite equation (45) as

𝑈𝑥𝑥𝑥 −
𝑢𝑥𝑥
𝑢𝑥

𝑈𝑥𝑥 +
2

3
𝑢𝑈𝑥 −

(︂
2𝑢𝑢𝑥𝑥
3𝑢𝑥

− 𝑢𝑥

)︂
𝑈 = −2

3
𝑐3𝑢𝑥𝐷𝑥

(︂
1

𝑢𝑥
𝑈

)︂
. (54)

In order to obtain the recursion operator from equation (54), we need to represent this equation

in the form 𝑅𝑈 = 𝜆𝑈 . To do this, the equation (54) is multiplied by operator 𝑢𝑥𝐷
−1
𝑥

(︂
1

𝑢𝑥

)︂
and by some straightforward transformations we arrive at the expression(︂

𝐷2
𝑥 +

2

3
𝑢+

1

3
𝑢𝑥𝐷

−1
𝑥

)︂
𝑈 = 𝜆𝑈, 𝜆 = −2

3
𝑐3.

Thus, the required recursion operator is of the form

𝑅 = 𝐷2
𝑥 +

2

3
𝑢+

1

3
𝑢𝑥𝐷

−1
𝑥 . (55)

Constructed operator (55) coincides with a known recursion operator of the KdV equation,
see [18].

The author expresses her deep gratitude to I.T. Habibullin for setting up the problem and
permanent attention to this work. She also thanks the participants of the seminar of the
Department of High Performance Computing Systems and Technology of USATU supervised
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