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ON HOLOMORPHIC REGULARIZATION OF STRONGLY

NONLINEAR SINGULARLY PERTURBED PROBLEMS

V.I. KACHALOV

Abstract. The method of holomorphic regularization, being a logical continuation of the
method of S.A. Lomova, allows one to construct solutions to nonlinear singularly perturbed
initial problems as series in powers of a small parameter converging in the usual sense. The
method is based on a generalization of the Poincare decomposition theorem: in the regu-
lar case, solutions depend holomorphically on a small parameter, in the singular case the
first integrals inherit this dependence. Having arised in the framework of the regulariza-
tion method, S.A. Lomov’s concept of a pseudo-analytic (pseudo-holomorphic) solution of
singularly perturbed problems initiated the formation of the analytic theory of singular per-
turbations. This theory is designed to equalize the rights of regular and singular theories.
In the first case, under sufficiently general assumptions, the series obtained in the solution
of problems in powers of the small parameter converge in the usual sense, and in the second
case they are basically asymptotic. A vivid example of the holomorphic dependence on a
parameter of the solution to a differential equation is given by Poincare’s decomposition
theorem.

In the present paper, the holomorphic regularization method is applied for constructing
pseudo-holomorphic solutions to a singularly perturbed first order equation and to a second
order Tikhonov system.

Keywords: holomorphic regularization, commutation relation, pseudo-holomorphic solu-
tion, Tikhonov system, passage to the limit.
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1. Introduction

Lomov’s regularization method [2], [3] allows one to construct solutions of singularly per-
turbed problems as power series in a small parameter converging not only asymptotically but
also in the usual sense. Such solutions are called pseudo-analytic (pseudo-holomorphic) and
in this way, Poincaré theorem on expansion in parameter is developed also in the theory of
differential equations.

2. Holomorphic in parameter first integrals of singularly perturbed
equations

We consider the Cauchy problem

𝜀
𝑑𝑤

𝑑𝑧
= 𝑓(𝑧, 𝑤), 𝑤(𝑧0, 𝜀) = 𝑤0, (1)

in some domain Ω0 of complex variables 𝑧 and 𝑤 containing the initial point 𝑃0(𝑧0, 𝑤0). In
a regular case, that is, as a small complex parameter 𝜀 is involved holomorphically in the
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right hand of the equation, according Poincaré theorem, the equation possesses a solution
holomorphic at the point 𝜀 = 0 and satisfying the given initial condition. It is clear that for
equation (1) this is not necessarily the case for a complicated right hand side since as 𝜀 = 0,
this equation is no longer differential. Nevertheless, there exists a characteristics inheriting a
holomorphic (and even entire) dependence of the left hand side in equation (1) on the small
parameter.

We introduce some notations. Let 𝒜𝑧0 be the algebra of functions of one complex variable
𝑧 holomorphic at the point 𝑧0, and 𝒜𝑧0𝑤0 be the algebra of functions of two complex variables
holomorphic at the point 𝑃0(𝑧0, 𝑤0).

Theorem 1. Assume that the function 𝑓(𝑧, 𝑤) is holomorphic in Ω0 and does not vanish.
Then the mappings defined by the formula

𝐻𝜀
𝑓 [𝜙(𝑧)] ≡ 𝜙(𝑧) − 𝜀

𝑤∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤1

𝑓(𝑧, 𝑤1)
+ 𝜀2

𝑤∫︁
𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤1∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤2

𝑓(𝑧, 𝑤2)

⎞⎠ 𝑑𝑤1

𝑓(𝑧, 𝑤1)

− 𝜀3
𝑤∫︁

𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤1∫︁
𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤2∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤3

𝑓(𝑧, 𝑤3)

⎞⎠ 𝑑𝑤2

𝑓(𝑧, 𝑤2)

⎞⎠ 𝑑𝑤1

𝑓(𝑧, 𝑤1)
+ . . . ,

(2)

form a holomorphic at the point 𝜀 = 0 family {𝐻𝜀
𝑓} of continuous homomorphisms of the algebra

𝒜𝑧0 into the algebra 𝒜𝑧0𝑤0 and the commutation relation

𝐻𝜀
𝑓 [𝜙(𝑧)] = 𝜙(𝐻𝜀

𝑓 [𝑧]), 𝜙(𝑧) ∈ 𝒜𝑧0 , (3)

is satisfied. The image of this family consists of the first integrals 𝑈𝜙(𝑧, 𝑤, 𝜀) = 𝐻𝜀
𝑓 [𝜙(𝑧)] of

equation (1) holomorphic in the small parameter 𝜀.

The proof of Theorem 1 is based on the Cauchy integral formula for functions of several
complex variables and general properties of the first integrals for differential equations [5].

3. Pseudoholomorphic solutions to singularly perturbed problems

Definition 1. A solution 𝑤(𝑧, 𝜀) to Cauchy problem (1) is called pseudo-holomorphic at the
point 𝜀 = 0 if there exists a function 𝑊 (𝑧, 𝜂, 𝜀) holomorphic at the point 𝑄(𝑧0, 0, 0) in the space
of complex variables (𝑧, 𝜂, 𝜀) such that for each 𝜀 in some neighbourhood of the point 𝜀 = 0 there
exists a neighbourhood 𝜔𝜀

𝑧 of the point 𝑧0 such that the identity holds:

𝑤(𝑧, 𝜀) = 𝑊

(︂
𝑧,
𝜙(𝑧)

𝜀
, 𝜀

)︂
, (4)

where 𝜙(𝑧) is some function 𝒜𝑧0 satisfying the condition 𝜙(𝑧0) = 0.
If the series

∞∑︁
𝑛=0

𝑊𝑛(𝑧, 𝜂)𝜀𝑛 (5)

representing the function𝑊 (𝑧, 𝜂, 𝜀) converges uniformly in 𝑧 on each compact set 𝑇𝑧0 containing
the point 𝑧0 for each 𝜂 in an unbounded connected set 𝐺 in the complex plane of the variable 𝜂
and the convergence holds in some neighbourhood (depending on 𝜂) of the point 𝜀 = 0, then the
solution 𝑤(𝑧, 𝜀) is called pseudo-holomorphic in the global sense.

We dwell on a more important, in our opinion, global pseudo-holomorphy.
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Theorem 2. If the equation

𝜙′(𝑧)

𝑤∫︁
𝑤0

𝑑𝑤1

𝑓(𝑧, 𝑤1)
= 𝜂 (6)

is solvable with respect to 𝑤 for each 𝜂 in an unbounded simply-connected domain 𝐺 ⊂ C𝜂 and
its solution 𝑤 = 𝑊0(𝑧, 𝜂) is bounded on a set 𝑇𝑧0 × 𝐺, where 𝑇𝑧0 ⊂ C𝑧 is some compact set
containing the point 𝑧0, then the solution 𝑤(𝑧, 𝜀) to initial problem (1) is pseudo-holomorphic
in the global sense.

Proof. Let 𝒦 be a compact set containing the point 𝜂 = 0 and being a closure of some simply-
connected subdomain of the domain 𝐺. By the implicit function theorem, for each point 𝜂 ∈ 𝒦
there exists a neighbourhood 𝜎𝜂, in which the equation

𝑉 (𝑧, 𝑤, 𝜀) = 𝜂, (7)

where

𝑉 (𝑧, 𝑤, 𝜀) =𝜙′(𝑧)

𝑤∫︁
𝑤0

𝑑𝑤1

𝑓(𝑧, 𝑤1)
− 𝜀

𝑤∫︁
𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤1∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤2

𝑓(𝑧, 𝑤2)

⎞⎠ 𝑑𝑤1

𝑓(𝑧, 𝑤1)

+ 𝜀2
𝑤∫︁

𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤1∫︁
𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤2∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤3

𝑓(𝑧, 𝑤3)

⎞⎠ 𝑑𝑤2

𝑓(𝑧, 𝑤2)

⎞⎠ 𝑑𝑤1

𝑓(𝑧, 𝑤1)
− . . . ,

has a holomorphic in 𝜀 solution 𝑊 (𝑧, 𝜂, 𝜀) uniformly in 𝑧 ∈ 𝑇𝑧0 . In the covering {𝜎𝜂} of
the compact set 𝒦 we choose a finite subcovering {𝜎𝜂}𝑁1 . Then the function 𝑊 (𝑧, 𝜂, 𝜀) is
holomorphic uniformly in 𝑧 ∈ 𝑇𝑧0 for each 𝜂 ∈ 𝒦 in the neighbourhood |𝜀| < 𝜀0, where 𝜀0 > 0
is the smallest among such constants associated with the finite subcovering.

Let the parameter 𝜀 in equation (1) satisfies the inequality 0 < 𝜀<𝜀0. By ̃︀𝑇𝑧0 we denote the
set of the points in 𝑇𝑧0 , for which the values 𝜂 = 𝜙(𝑧)/𝜀 belong to 𝒦. Then the solution 𝑤(𝑧, 𝜀)
can be represented as the series

𝑤(𝑧, 𝜀) =
∞∑︁
𝑛=0

𝜀𝑛𝑊𝑛

(︂
𝑧,
𝜙(𝑧)

𝜀

)︂
(8)

converging in the usual sense in ̃︀𝑇𝑧0 . The proof is complete.

Let us write out the formulae for the leading terms in series (8):

𝑊1 = −𝑉1
𝑉2

⃒⃒⃒⃒
𝑤=𝑊0(𝑧,𝜙(𝑧)/𝜀)

, 𝑊2 = −𝑉11𝑉
2
2 − 2𝑉12𝑉1𝑉2 + 𝑉22𝑉

2
1

2𝑉 2
2

⃒⃒⃒⃒
𝑤=𝑊0(𝑧,𝜙(𝑧)/𝜀)

,

where

𝑉1 = −
𝑤∫︁

𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤1∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤2

𝑓(𝑧, 𝑤2)

⎞⎠ 𝑑𝑤1

𝑓(𝑧, 𝑤1)
;

𝑉2 =
𝜙′(𝑧)

𝑓(𝑧, 𝑤)
;

𝑉11 = 2

𝑤∫︁
𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤1∫︁
𝑤0

⎛⎝ 𝜕

𝜕𝑧

𝑤2∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤3

𝑓(𝑧, 𝑤3)

⎞⎠ 𝑑𝑤2

𝑓(𝑧, 𝑤2)

⎞⎠ 𝑑𝑤1

𝑓(𝑧, 𝑤1)
;
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𝑉12 = − 1

𝑓(𝑧, 𝑤)

⎛⎝ 𝜕

𝜕𝑧

𝑤∫︁
𝑤0

𝜙′(𝑧)𝑑𝑤1

𝑓(𝑧, 𝑤1)

⎞⎠ ;

𝑉22 = −𝜙
′(𝑧)𝑓 ′

𝑤(𝑧, 𝑤)

𝑓 2(𝑧, 𝑤)
.

In the following examples we assume that 𝐺 = (−∞; 0], 𝑇𝑧0 is a segment in the real axis,
whose left ends is at the point 𝑧0 = 0 and 𝜀 > 0.

Example 1. We consider the Cauchy problem:

𝜀
𝑑𝑤

𝑑𝑧
= 𝑤2 − 𝑒2𝑧, 𝑤(0, 𝜀) = 0.

The solution constructed by the method of holomorphic regularization is of the form:

𝑤(𝑧, 𝜀) = 𝑒𝑧 tanh
1 − 𝑒𝑧

𝜀
+
𝜀

2
tanh2 1 − 𝑒𝑧

𝜀
+ . . . .

Example 2. Consider the Cauchy problem:

𝜀
𝑑𝑤

𝑑𝑧
= 𝑒−𝑤𝑒𝑧 − 10, 𝑤(0, 𝜀) = 0.

Then

𝑤(𝑧, 𝜀) = 𝑒−𝑧 ln
1 + 9𝑒10(1−𝑒𝑧)/𝜀

10
+ 𝜀

𝑒−2𝑧

10
ln

1 + 9𝑒10(1−𝑒𝑧)/𝜀

10
+ . . .

is the sought solution pseudo-holomorphic in the global sense.

4. Holomorphic regularization of Tikhonov system

We proceed to a real domain and in the segment [0, 𝑇 ] we consider the initial problem for
Tikhonov system with one slow and one fast variable:⎧⎨⎩

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦, 𝑣), 𝜀

𝑑𝑣

𝑑𝑡
= 𝐹 (𝑡, 𝑦, 𝑣),

𝑦(0, 𝜀) = 𝑦0, 𝑣(0, 𝜀) = 𝑣0.
(9)

Here 𝜀 > 0 is a small parameter and 𝑦0 and 𝑣0 are independent of this parameter. If we let
𝜀 = 0, we obtain the degenerate system⎧⎨⎩

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦, 𝑣)

0 = 𝐹 (𝑡, 𝑦, 𝑣),
(10)

for which we impose only the first initial condition 𝑦(0) = 𝑦0.
Let 𝑣 = Φ(𝑡, 𝑦) be a solution to the second equation in system (10), then we have the Cauchy

problem:
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦,Φ(𝑡, 𝑦)), 𝑦(0) = 𝑦0. (11)

Under the assumptions of Tikhonov theorem [1], the passage to limit holds:

lim
𝜀→+0

𝑦(𝑡, 𝜀) = 𝑦(𝑡), 0 6 𝑡 6 𝑇,

lim
𝜀→+0

𝑣(𝑡, 𝜀) = Φ(𝑡, 𝑦(𝑡)), 0 < 𝑡 6 𝑇.

Let us present the formalism of the method of holomorphic regularization for this system.
Assume that its right hand sides are holomorphic in a closed domain 𝐷 of the space of real
variables (𝑡, 𝑦, 𝑣) containing the point 𝑄0(0, 𝑦0, 𝑣0) and let 𝐹 (𝑡, 𝑦, 𝑣) ̸= 0 in this domain.
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According the algorithm of the method, from nonlinear system (9) we proceed to the linear
equation for its integrals:

𝜀𝐿𝑈 + 𝐹
𝜕𝑈

𝜕𝑣
= 0, (12)

where

𝐿 =
𝜕

𝜕𝑡
+ 𝑓

𝜕

𝜕𝑦
.

Assuming that the operator 𝐿 is relatively bounded with respect to the operator 𝐹 𝜕
𝜕𝑣

, we
seek a solution to equation (12) as a regular series in powers of 𝜀:

𝑈(𝑡, 𝑦, 𝑣, 𝜀) = 𝑈0(𝑡, 𝑦, 𝑣) + 𝜀𝑈1(𝑡, 𝑦, 𝑣) + . . .+ 𝜀𝑛𝑈𝑛(𝑡, 𝑦, 𝑣) + . . . , (13)

and for its coefficients we have a series of problems:

𝐹
𝜕𝑈0

𝜕𝑣
= 0,

𝐹
𝜕𝑈1

𝜕𝑣
= −𝐿𝑈0,

𝐹
𝜕𝑈2

𝜕𝑣
= −𝐿𝑈1,

. . .

𝐹
𝜕𝑈𝑛

𝜕𝑣
= −𝐿𝑈𝑛−1,

. . .

(14)

As a solution to the first equation in (14) we take an arbitrary holomorphic function 𝑈0 =
𝜓(𝑡, 𝑦) independent of 𝑣.

Solving other equations under the condition 𝑈𝑛(𝑡, 𝑦, 𝑣0) = 0, 𝑛 = 1, 2, . . ., we obtain

𝑈(𝑡, 𝑦, 𝑣, 𝜀) = 𝜓(𝑡, 𝑦) − 𝜀

𝑣∫︁
𝑣0

𝐿𝜓𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

+ 𝜀2
𝑣∫︁

𝑣0

⎛⎝𝐿 𝑣1∫︁
𝑣0

𝐿𝜓𝑑𝑣2
𝐹 (𝑡, 𝑦, 𝑣2)

⎞⎠ 𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

− . . . . (15)

The proof of the convergence of series of form (15) can be found in [6]. It is easy to confirm
that identity (15) defines a linear mapping 𝐻𝜀

𝐹 of the algebra 𝒜𝑡𝑦 of the functions holomorphic
on the projection of the domain 𝐷 on the space of the variables (𝑡, 𝑦), into the algebra 𝒜𝑡𝑦𝑣 of
the functions holomorphic on 𝐷. Thus, 𝐻𝜀

𝐹 : 𝒜𝑡𝑦 → 𝒜𝑡𝑦𝑣 and 𝑈(𝑡, 𝑦, 𝑣, 𝜀) = 𝐻𝜀
𝐹 [𝜓].

If we let 𝜓 = 𝑡 and then 𝜓 = 𝑦, we obtain two independent first integrals of system (9):
𝐻𝜀

𝐹 [𝑡] and 𝐻𝜀
𝐹 [𝑦]. According the general theory of differential equations, there exists a function

Ψ such that 𝐻𝜀
𝐹 [𝜓] = Ψ(𝐻𝜀

𝐹 [𝑡], 𝐻𝜀
𝐹 [𝑦]). In this identity we let 𝑣 = 𝑣0, then 𝜓 = Ψ, and this

identity becomes a commutation relation:

𝐻𝜀
𝐹 [𝜓(𝑡, 𝑦)] = 𝜓(𝐻𝜀

𝐹 [𝑡], 𝐻𝜀
𝐹 [𝑦]). (16)

Let us prove that the mappings 𝐻𝜀
𝐹 : 𝒜𝑡𝑦 → 𝒜𝑡𝑦𝑣 are homomorphisms. Indeed, for each

𝜓1, 𝜓2 ∈ 𝒜𝑡𝑦 the identities

𝐻𝜀
𝐹 [𝜓1𝜓2] = (𝜓1𝜓2)(𝐻

𝜀
𝐹 [𝑡], 𝐻𝜀

𝐹 [𝑦]) = 𝜓1(𝐻
𝜀
𝐹 [𝑡], 𝐻𝜀

𝐹 [𝑦])𝜓2(𝐻
𝜀
𝐹 [𝑡], 𝐻𝜀

𝐹 [𝑦]) = 𝐻𝜀
𝐹 [𝜓1]𝐻

𝜀
𝐹 [𝜓2].

hold true. Finally, the following theorem is true.

Theorem 3. To each system of form (9) there corresponds a holomorphic at the point 𝜀 = 0
family {𝐻𝜀

𝐹} of homomorphisms of the algebra 𝒜𝑡𝑦 into the algebra 𝒜𝑡𝑦𝑣 satisfying commu-
tation relation (16); these homomorphisms are given by identity (15). The images of these
homomorphisms are the integrals 𝑈(𝑡, 𝑦, 𝑣, 𝜀) of this system holomorphic at the point 𝜀 = 0.
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Let us introduce the notion of a pseudo-holomorphic solution to second order Tikhonov
system [7].

Definition 2. A solution (𝑦(𝑡, 𝜀), 𝑣(𝑡, 𝜀)) to initial problem (9) is called pseudo-holomorphic
at the point 𝜀 = 0 if there exist holomorphic at the point 𝑀0(0, 0, 0) functions 𝑌 (𝑡, 𝜂, 𝜀) and
𝑉 (𝑡, 𝜂, 𝜀) such that for each 𝜀 ∈ (0, 𝜀0), where 𝜀0 is some small positive number, there exists
𝛿 > 0 such that for all 𝑡 ∈ [0, 𝛿) the identities

𝑦(𝑡, 𝜀) = 𝑌

(︂
𝑡,
𝜙(𝑡)

𝜀
, 𝜀

)︂
, 𝑣(𝑡, 𝜀) = 𝑉

(︂
𝑡,
𝜙(𝑡)

𝜀
, 𝜀

)︂
hold for some holomorphic on the segment [0, 𝑇 ] function 𝜙(𝑡); at that, 𝜙(0) = 0 and 𝜙′(𝑡) < 0
as 𝑡 ∈ [0, 𝑇 ].

If the series
∞∑︁
𝑛=0

𝑌𝑛(𝑡, 𝜂)𝜀𝑛,
∞∑︁
𝑛=0

𝑉𝑛(𝑡, 𝜂)𝜀𝑛

representing the mentioned functions converge uniformly on the segment [0, 𝑇 ] for each fixed 𝜂 ∈
(−∞; 0] in some neighbourhood of the point 𝜀 = 0 (depending on 𝜂), the solution (𝑦(𝑡, 𝜀), 𝑣(𝑡, 𝜀))
is called pseudo-holomorphic in the global sense.

The next theorem provides sufficient conditions for global pseudo-holomorphy.

Theorem 4. Under the assumptions of Tikhonov theorem on passage to the limit, the solu-
tion (𝑦(𝑡, 𝜀), 𝑣(𝑡, 𝜀)) is pseudo-holomorphic at the point 𝜀 = 0 in the global sense.

Proof. Let 𝜙(𝑡) be a holomorphic on the segment [0, 𝑇 ] function such that 𝜙(0) = 0, 𝜙′(𝑡) < 0
for all 𝑡 ∈ [0, 𝑇 ] and 𝑦(𝑡) is a solution to Cauchy problem (11). We have to independent first
integrals obtained from (15) as 𝜓(𝑡, 𝑦) = 𝜙(𝑡) and 𝜓(𝑡, 𝑦) = 𝑦 − 𝑦(𝑡); these integrals define
implicitly a solution (𝑦(𝑡, 𝜀), 𝑣(𝑡, 𝜀)):

𝑣∫︁
𝑣0

𝐿𝜙𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

− 𝜀

𝑣∫︁
𝑣0

⎛⎝𝐿 𝑣1∫︁
𝑣0

𝐿𝜙𝑑𝑣2
𝐹 (𝑡, 𝑦, 𝑣2)

⎞⎠ 𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

+ . . . =
𝜙(𝑡)

𝜀
, (17)

𝑦 − 𝑦(𝑡) − 𝜀

𝑣∫︁
𝑣0

𝐿(𝑦 − 𝑦(𝑡))𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

+ 𝜀2
𝑣∫︁

𝑣0

⎛⎝𝐿 𝑣1∫︁
𝑣0

𝐿(𝑦 − 𝑦(𝑡))𝑑𝑣2
𝐹 (𝑡, 𝑦, 𝑣2)

⎞⎠ 𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

− . . . = 0. (18)

In view of the fact that 𝐿𝜙 = 𝜙′(𝑡), we write these equations as a system denoting the right
hand side in (17) by 𝜂:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙′(𝑡)

𝑣∫︁
𝑣0

𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

− 𝜀

𝑣∫︁
𝑣0

⎛⎝𝐿 𝑣1∫︁
𝑣0

𝜙′(𝑡)𝑑𝑣2
𝐹 (𝑡, 𝑦, 𝑣2)

⎞⎠ 𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

+ . . . = 𝜂

𝑦 − 𝑦(𝑡) − 𝜀

𝑣∫︁
𝑣0

−𝑦′(𝑡) + 𝑓(𝑡, 𝑦, 𝑣1)

𝐹 (𝑡, 𝑦, 𝑣1)
𝑑𝑣1

+ 𝜀2
𝑣∫︁

𝑣0

⎛⎝𝐿 𝑣1∫︁
𝑣0

−𝑦′(𝑡) + 𝑓(𝑡, 𝑦, 𝑣1)

𝐹 (𝑡, 𝑦, 𝑣2)
𝑑𝑣2

⎞⎠ 𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

− . . . = 0.

(19)

Then we apply the implicit function theorem and the proof is completed in the same way as for
Theorem 2. At that we employ the fact that the boundedness of the function 𝑣 = 𝑉0(𝑡, 𝜙(𝑡)/𝜀)
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as 𝜀→ +0 uniformly in 𝑡 ∈ [0, 𝑇 ] defined by the equation

𝜙′(𝑡)

𝑣∫︁
𝑣0

𝑑𝑣1
𝐹 (𝑡, 𝑦(𝑡), 𝑣1)

=
𝜙(𝑡)

𝜀

is due to the asymptotic stability of the equilibrium ̃︀𝑣 = Φ(𝑡, 𝑦) for so-called adjoint equation

𝑑̃︀𝑣
𝑑𝜏

= 𝐹 (𝑡, 𝑦, ̃︀𝑣), 𝜏 ≥ 0,

that is Condition IV of Tikhonov theorem on passage to the limit [1]. The proof is complete.

Remark. In various asymptotic methods, a choice of the regularizing function 𝜙(𝑡) is made
in different ways. In Vasilieva-Butuzov-Nefedov method the choice is 𝜙(𝑡) = −𝑡; in Lomov
regularization method the choice is determined by the spectrum of some operator related with a
considered singularly perturbed problem. A quite effective method for studying nonlinear problem
is Safonov method of normal forms [4]. In most cases both methods give rise to an exponential
boundary layer.

Concerning the method of holomorphic regularization, here the following statement holds: if
the equation

𝜙′(𝑡)

𝑣∫︁
𝑣0

𝑑𝑣1
𝐹 (𝑡, 𝑦(𝑡), 𝑣1)

= 𝜂

has a solution of form 𝑣 = 𝑉0(𝑡, 𝑒
𝜂), where the function 𝑉0(𝑡, 𝑞) is holomorphic in the rectangle

Π𝑡𝑞 = {(𝑡, 𝑞) : 0 6 𝑡 6 𝑇, 0 6 𝑞 6 1}, then solution to initial problem (9) is pseudo-
holomorphic on the segment [0, 𝑇 ] in the global sense.

We write formulae of first order in 𝜀:

𝑦(𝑡, 𝜀) =𝑦(𝑡) + 𝜀

𝑣∫︁
𝑣0

𝐿(𝑦 − 𝑦(𝑡))𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

⃒⃒⃒⃒
⃒⃒
𝑦=𝑦(𝑡)
𝑣=𝑉0(𝑡,𝜙(𝑡)/𝜀)

+ 𝑜(𝜀), 𝜀→ 0;

𝑣(𝑡, 𝜀) =𝑉0

(︂
𝑡,
𝜙(𝑡)

𝜀

)︂
+ 𝜀

𝐹 (𝑡, 𝑦, 𝑣)

𝜙′(𝑡)

⎡⎣ 𝑣∫︁
𝑣0

⎛⎝𝐿 𝑣1∫︁
𝑣0

𝜙′(𝑡)𝑑𝑣2
𝐹 (𝑡, 𝑦, 𝑣2)

⎞⎠ 𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

−
𝑣∫︁

𝑣0

𝐿(𝑦 − 𝑦(𝑡))𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

· 𝜕
𝜕𝑦

𝑣∫︁
𝑣0

𝜙′(𝑡)𝑑𝑣1
𝐹 (𝑡, 𝑦, 𝑣1)

⎤⎦⃒⃒⃒⃒⃒⃒
𝑦=𝑦(𝑡)
𝑣=𝑉0(𝑡,𝜙(𝑡)/𝜀)

+ 𝑜(𝜀), 𝜀→ 0.

Example 3. We consider the Cauchy problem⎧⎨⎩
𝑑𝑦

𝑑𝑡
= 𝑣2, 𝜀

𝑑𝑣

𝑑𝑡
= 𝑣2 − 𝑦2𝑒2𝑡, 𝑡 ∈ [0, 𝑇 ], 𝜀 > 0,

𝑦(0, 𝜀) = −2, 𝑣(0, 𝜀) = 0.

The proposed approach gives:

𝑦(𝑡, 𝜀) = −2𝑒−2𝑡 − 2𝜀𝑒−𝑡 tanh
2(𝑒−𝑡 − 1)

𝜀
+ 𝑜(𝜀), 𝜀→ 0,

𝑣(𝑡, 𝜀) = 2𝑒−𝑡 tanh
2(𝑒−𝑡 − 1)

𝜀
+ 𝑜(1), 𝜀→ 0.
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5. Conclusion

In theoretical physics, a so-called Dyson’s argument is known [8]. It expresses the property
of non-analiticity for solution to each (in the general case) singularly perturbed problem and
following Poincaré theorem on expansion. In particular, in non-relativistic gravitation theory,
while solving problem on hydrostatic equilibrium of stars without local electroneutrality con-
straint, the expansion is made in the gravitation constant 𝐺 in the vicinity of the point 𝐺 = 0.
In the present work we provide conditions ensuring the pseudo-holomorphy and hence, there
arises a chance to construct the solutions to singularly perturbed problems as power series in
the small parameter converging in the usual sense.
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