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ON APPLYING COMPARISON THEOREMS TO STUDYING

STABILITY WITH PROBABILITY 1 OF STOCHASTIC

DIFFERENTIAL EQUATIONS

A.S. ASYLGAREEV

Abstract. In the work we obtain two results concerning trajectory-wise properties of sto-
chastic differential equations (SDE) with Stratonovich integral. First, we prove comparison
theorems for SDE with Stratonovich integral with respect to the standard Wiener process,
that is, we obtain the conditions for the coefficients of SDE, under which the solutions of
one equation for a fixed trajectory of the Wiener process is always located above or below
a solution to another equations for the same trajectory. At that, the drift and diffusion
coefficients of the studied equations can be different. Second, on the base of the proved
theorems we establish the conditions for the stability with probability 1 for perturbed so-
lutions to scalar SDE with Stratonovich integral with respect to the trivial solution. The
stability with probability 1 implies the Lyapunov stability for almost all solutions to SDE.
It should be noted that, as a rule, the stability for SDE is treated in weaker sense: stability
in probability, 𝑝-stability, exponential stability. Employing the formula of passage between
Ito integral and Stratonovich integral, which is valid for sufficiently smooth coefficients of
SDE, these results can be extended to SDE with Ito integral.

The approach of the work is based on the fact that a solution to SDE can be represented
as a deterministic function of a random variable solving, in its turn, a chain of ordinary
differential equations with a random right hand side. Since this technique is trajectory-
wise, the presented results can be also reformulated for deterministic analogues of SDE,
namely, for equations with symmetric integrals.

Keywords: stochastic differential equations, stability with probability 1, comparison the-
orems, equations with symmetric integral, Wiener process.
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1. Introduction and formulation of problem

We consider two stochastic differential equations (SDE) with Stratonovich integral w.r.t. the
standard Wiener process

𝑑𝜉
(1)
𝑡 = 𝜎1(𝑡, 𝜉

(1)
𝑡 ) * 𝑑𝑊𝑡 + 𝑏1(𝑡, 𝜉

(1)
𝑡 )𝑑𝑡, 𝜉

(1)
𝑡 |𝑡=0 = 𝜉

(1)
0 , (1)

𝑑𝜉
(2)
𝑡 = 𝜎2(𝑡, 𝜉

(2)
𝑡 ) * 𝑑𝑊𝑡 + 𝑏2(𝑡, 𝜉

(2)
𝑡 )𝑑𝑡, 𝜉

(2)
𝑡 |𝑡=0 = 𝜉

(2)
0 , (2)

where the functions 𝜎𝑖(𝑡, 𝑢), 𝑏𝑖(𝑡, 𝑢), 𝑖 = 1, 2, are deterministic.
The present work is a continuation of the study in [1] and it pursues two aims. The first aim

is to extend the approach of [1] for comparing solutions to SDEs to a wider class of equations.
To the best of our knowledge, a comparison theorem was first proved by Skorokhod [2] for Ito

SDE of form 𝑑𝜉
(𝑖)
𝑡 = 𝑏𝑖(𝑡, 𝜉

(𝑖)
𝑡 )𝑑𝑡+ 𝜎(𝑡, 𝜉

(𝑖)
𝑡 )𝑑𝑊 (𝑡), 𝑖 = 1, 2, with coinciding diffusion coefficients.

Its most general form was given in monograph [3]. The method proposed by Skorokhod, was
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further developed in work [4]. Later, in [5], Geib and Mathey succeeded to extend the results
by Skorokhod for Ito SDE with a multi-dimensional Wiener process and for stochastic partial
differential equations (SPDE). Comparison theorems for SPDEs were also considered in work [6].
In [7], there were proved comparison theorems for Ito SDE with an additional perturbation by
a Poisson process. The case of an SDE with different diffusion coefficients are less studied. The
most remarkable result here is due to O’Brien, who proved comparison theorems for equations

𝑑𝜉
(𝑖)
𝑡 = 𝜎𝑖(𝜉

(𝑖)
𝑡 )𝑑𝑊𝑡 + 1

2
𝜎𝑖(𝜉

(𝑖)
𝑡 )𝜎′

𝑖(𝜉
(𝑖)
𝑡 )𝑑𝑡, 𝑖 = 1, 2, in [8]. These equations can be rewritten in

Stratonovich form as equations without drift— 𝑑𝜉
(𝑖)
𝑡 = 𝜎𝑖(𝜉

(𝑖)
𝑡 ) * 𝑑𝑊𝑡. An essential difference of

the present work is that the proven comparison theorems are applicable to an essentially wider
class of SDEs than in work [8].

The second aim of the present work is to obtain the stability conditions with probability 1
for SDE

𝑑𝜉𝑡 = 𝜎(𝑡, 𝜉𝑡) * 𝑑𝑊 (𝑡) + 𝑏(𝑡, 𝜉𝑡)𝑑𝑡, 𝜉𝑡|𝑡=𝑡0 = 𝜉0, (3)

𝜎(𝑡, 0) = 0, 𝑏(𝑡, 0) = 0.

Usually, the stability for SDE is considered in weaker senses: stability in probability, 𝑝-stability,
exponential stability. We recall a perturbed solution 𝜉𝑡 to equation (3) with the initial condition
𝜉0 = 𝑥0 is stable in probability if for each 𝜀 > 0 it holds lim

𝜉0→0
𝑃{sup

𝑡>0
|𝜉𝑡| > 𝜀} = 0. A perturbed

solution 𝜉𝑡 to equation (3) with initial condition 𝜉0 = 𝑥0 is 𝑝-stable if sup
|𝑥0|6𝛿, 𝑡>0

𝐸|𝜉𝑡|𝑝 → 0 as

𝛿 → 0.
The conditions of stability in probability and 𝑝-stability were given in [9], [10] and are based

on constructing a Lyapunov function 𝑉 (𝑡, 𝑥), for which the Lyapunov operator

𝐿 =
𝜕

𝜕𝑡
+

(︂
𝑏(𝑡, 𝑢) +

𝜕𝜎(𝑡, 𝑢)

𝜕𝑢
𝜎(𝑡, 𝑢)

)︂
𝜕

𝜕𝑢
+

1

2
(𝜎)2(𝑡, 𝑢)

𝜕2

𝜕𝑢2

satisfies some inequalities. Various types of exponential stability we considered in details in
monograph [11].

Definition 1. A perturbed solution 𝜉𝑡 to equation (3) with initial condition 𝜉0 = 𝑥0 is stable
with probability 1 if for a.e. 𝜔, for each 𝜀 > 0 there exists 𝛿(𝜀, 𝜔) > 0 such that for each 𝑥0
obeying |𝑥0| < 𝛿, the solution 𝜉𝑡 satisfies the inequality |𝜉𝑡| < 𝜀 for all 𝑡 > 0.

In the latter definition the function 𝛿 depends on 𝜔, in other works, the stability with
probability 1 implies the Lyapunov stability for almost all trajectories of solutions to equation
(3).

The key point of our approach is that the solutions to equations (1), (2) can be represented

as 𝜉
(𝑘)
𝑡 = 𝜙𝑘(𝑡,𝑊𝑡 +𝐶𝑘(𝑡)), 𝑘 = 1, 2, where the functions 𝜙𝑘(𝑡, 𝑢) are deterministic and 𝐶𝑘(𝑡) =

𝐶𝑘(𝑡, 𝜔) are solutions to SDE with a random right hand side (see [12]). Since this technique is
in fact trajectory-wise, the obtained results can be reformulated for deterministic analogues of
SDE (equations with symmetric integrals) (see [12]) and for SDEs over a wider class of processes
(for instance, for SDE over a fractal Brownian motion). This study was preliminary presented
on International Scientific Forum “Lomonosov-2017” [13].

2. Preliminaries

Here we provide main ideas of monograph [12] being the base of the present work. We
consider SDE with Stratonovich integral:

𝑑𝜉𝑡 = 𝜎(𝑡, 𝜉𝑡) * 𝑑𝑊𝑡 + 𝑏(𝑡, 𝜉𝑡)𝑑𝑡. (4)

The following theorem holds for equation (4).
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Theorem 1 ([12, Ch. 2, Sect. 10, Thm. 10.1]). Let the functions 𝜎(𝑡, 𝑢), 𝜎′
𝑡(𝑡, 𝑢), 𝜎′

𝑢(𝑡, 𝑢),
𝑏(𝑡, 𝑢) be continuous on R+ ×R. The following statements are true:

1. If the function 𝜉𝑡 = 𝜙*(𝑡,𝑊𝑡) is a solution to equation (4) such that the function 𝜙*(𝑡, 𝑢)
possesses continuous partial derivaties (𝜙*)′𝑡(𝑡, 𝑢), (𝜙*)′𝑢(𝑡, 𝑢), (𝜙*)′′𝑡𝑢(𝑡, 𝑢), then it satisfies the
relations

(𝜙*)′𝑢(𝑡, 𝑢) = 𝜎(𝑡, 𝜙*(𝑡, 𝑢)), (𝜙*)′𝑡(𝑡,𝑊𝑡) = 𝑏(𝑡, 𝜙*(𝑡,𝑊𝑡)) for all 𝑡 > 0. (5)

2. Let the function 𝜙*(𝑡, 𝑢) possesses continuous partial derivatives (𝜙*)′𝑡(𝑡, 𝑢), (𝜙*)′𝑢(𝑡, 𝑢),
(𝜙*)′′𝑡𝑢(𝑡, 𝑢) and solves the chain of equations (5) with the initial condition 𝜉0 = 𝜙*(0,𝑊0). Then
the function 𝜉𝑡 = 𝜙*(𝑡,𝑊𝑡) is a solution to equation (4).

We introduce the notation:

𝐺(𝑡, 𝑢) =

𝑢∫︁
𝜉0

𝑑𝜓

𝜎(𝑡, 𝜓)
.

In the case, when the function 𝜎−1(𝑡, 𝑢) is locally summable for all 𝑡 > 0, by the first relation
in (5) the identity

𝐺(𝑡, 𝜙(𝑡, 𝑣)) = 𝑣 + 𝐶(𝑡) for all 𝑡 > 0 a.s. (6)

holds. We observe that solution (6) defines a deterministic function 𝜙(𝑡, 𝑣) such that 𝜙(𝑡, 𝑣 +
𝐶(𝑡)) = 𝜙*(𝑡, 𝑣) a.s., where 𝐶(𝑡) = 𝐶(𝑡, 𝜔) is a solution to an ordinary differential equation
with a random right hand side

𝐶 ′(𝑡) =
𝑏(𝑡, 𝜙(𝑡,𝑊𝑡 + 𝐶(𝑡))) − 𝜙′

𝑡(𝑡, 𝑣)|𝑣=𝑊𝑡+𝐶(𝑡)

𝜎(𝑡, 𝜙(𝑡,𝑊𝑡 + 𝐶(𝑡)))
, 𝐶(0) = 0. (7)

The derivative 𝜙′
𝑡(𝑡, 𝑣) in equation (7) can be found differentiating (6) by Leibniz rule:

𝜙′
𝑡(𝑡, 𝑣) = 𝜎(𝑡, 𝜙(𝑡, 𝑣))

𝜙(𝑡,𝑣)∫︁
𝜉0

𝜎′
𝑡(𝑡, 𝜓)𝑑𝜓

(𝜎(𝑡, 𝜓))2
.

In what follows we call the function 𝜙(𝑡, 𝑣) the structure of solution, and the function 𝐶(𝑡)
is called drift function of equation (4).

3. Comparison theorems

We return back to studying equations (1), (2). We let

𝑚(𝑡) = min
𝑠6𝑡

𝑊𝑠, 𝑀(𝑡) = max
𝑠6𝑡

𝑊𝑠, ran (𝑡, 𝜙) = {𝑦 ∈ 𝑅| 𝑦 = 𝜙(𝑡, 𝑣), 𝑣 ∈ 𝑅}.

We denote by 𝜙1(𝑡, 𝑣), 𝐶1(𝑡), 𝐺1(𝑡, 𝑢), 𝜙2(𝑡, 𝑣), 𝐶2(𝑡), 𝐺2(𝑡, 𝑢) the structures of solutions, the
drift functions and the functions 𝐺(𝑡, 𝑢) for equations (1), (2), respectively. Hereafter we assume
that for all 𝑡 > 0 the following conditions hold:

∙ For all 𝑢 ∈ R, the functions 𝜎𝑖(𝑡, 𝑢), (𝜎𝑖)
′
𝑡(𝑡, 𝑢), (𝜎𝑖)

′
𝑢(𝑡, 𝑢), 𝑏𝑖(𝑡, 𝑢) are continuous and the

functions 𝜎−1
𝑖 (𝑡, 𝑢) are locally summable 𝑖 = 1, 2.

∙ For all 𝑢, 𝑢′ ∈ R the inequality holds |𝜎𝑖(𝑡, 𝑢)−𝜎𝑖(𝑡, 𝑢′)| 6 𝐾|𝑢−𝑢′|, where 𝐾 = 𝑐𝑜𝑛𝑠𝑡 > 0,
𝑖 = 1, 2.

∙ For all 𝑢 ∈ R, the inequality

|𝑏𝑖(𝑡, 𝑢)| + |𝜎𝑖(𝑡, 𝑢)| 6 𝐾(1 + |𝑢|)

holds, where 𝐾 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑖 = 1, 2.
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We write equations (7) for 𝐶𝑖(𝑡), 𝑖 = 1, 2:

𝑑𝐶𝑖(𝑡)

𝑑𝑡
=
𝑏𝑖(𝑡, 𝜙𝑖(𝑡,𝑊𝑡 + 𝐶𝑖(𝑡))) − (𝜙𝑖)

′
𝑡(𝑡, 𝑣)|𝑣=𝑊𝑡+𝐶𝑖(𝑡)

𝜎𝑖(𝑡, 𝜙𝑖(𝑡,𝑊𝑡 + 𝐶𝑖(𝑡)))
, 𝐶𝑖(0) = 0. (8)

We denote the right hand sides of equations (8) by

𝐹𝑖(𝑡, 𝑦) =
𝑏𝑖(𝑡, 𝜙𝑖(𝑡,𝑊𝑡 + 𝑦)) − (𝜙𝑖)

′
𝑡(𝑡, 𝑣)|𝑣=𝑊𝑡+𝑦

𝜎𝑖(𝑡, 𝜙𝑖(𝑡,𝑊𝑡 + 𝑦))
.

Lemma 1. Let the functions 𝐹𝑖(𝑡, 𝑦), 𝑖 = 1, 2, be continuous and for all 𝑡 > 0 they satisfy
the conditions:

(𝑎) |𝐹𝑖(𝑡, 𝑥) − 𝐹𝑖(𝑡, 𝑥
′)| 6 𝐿|𝑥− 𝑥′|, 𝐿 = 𝑐𝑜𝑛𝑠𝑡 > 0, for all 𝑥, 𝑥′ ∈ R for a.e. 𝜔,

(𝑏) 𝐹2(𝑡, 𝑦) > 𝐹1(𝑡, 𝑦) for all 𝑦 ∈ R for a.e. 𝜔.
Then 𝐶2(𝑡) > 𝐶1(𝑡) for all 𝑡 ∈ 𝐼 a.s., where 𝐼 is the common interval of existence of solutions

to equations (8).

Proof. Assume that there exists a time 𝑡1 ∈ 𝐼, at which

𝐶2(𝑡1) < 𝐶1(𝑡1) a.s. (9)

Since there exist solutions to equations (8) on the interval 𝐼 and 𝐶2(0) = 𝐶1(0), there exists a
time 𝑡2 < 𝑡1 such that

𝑡2 = sup{𝑡 ∈ [0, 𝑡1]|𝐶2(𝑡) > 𝐶1(𝑡) a.s.}.
It follows from the definition of 𝑡2 that 𝐶2(𝑡2) = 𝐶1(𝑡2) and 𝐶2(𝑡) < 𝐶1(𝑡) for each 𝑡 ∈ (𝑡2, 𝑡1]
with probability 1. We denote 𝛿(𝑡) = 𝐶1(𝑡) − 𝐶2(𝑡), 𝛿(𝑡) > 0 for all 𝑡 ∈ [𝑡2, 𝑡1] for a.e. 𝜔. On
the other hand, since 𝛿′𝑡(𝑡) = (𝐶1)

′
𝑡(𝑡) − (𝐶2)

′
𝑡(𝑡), then with probability 1 it holds that

0 6𝛿(𝑡) = 𝐶1(𝑡2) − 𝐶2(𝑡2) +

𝑡∫︁
𝑡2

(𝐹1(𝑠, 𝐶1(𝑠)) − 𝐹2(𝑠, 𝐶2(𝑠))) 𝑑𝑠 6 |(𝑏)|

6

𝑡∫︁
𝑡2

|𝐹2(𝑠, 𝐶1(𝑠)) − 𝐹2(𝑠, 𝐶2(𝑠))| 𝑑𝑠 6 |(𝑎)| 6 𝐿

𝑡∫︁
𝑡2

|𝐶1(𝑠) − 𝐶2(𝑠)| 𝑑𝑠 = 𝐿

𝑡∫︁
𝑡2

𝛿(𝑠)𝑑𝑠.

By Grönwall’s lemma, the latter relations mean that 𝛿(𝑡) = 0 for all 𝑡 ∈ [𝑡2, 𝑡1] for a.e. 𝜔 and
this contradicts (9). Therefore, 𝐶2(𝑡) > 𝐶1(𝑡) for all 𝑡 ∈ 𝐼 a.s.

Theorem 2. Assume that for all 𝑡 > 0 the inequality holds:

𝜎2(𝑡, 𝑢) > 𝜎1(𝑡, 𝑢) for all 𝑢 ∈ R.

Then the following statements are true:

1. If 𝜙2(𝑡,𝑚(𝑡) +𝐶2(𝑡)) > 𝜙1(𝑡,𝑚(𝑡) +𝐶1(𝑡)) for all 𝑡 > 0 with probability 1, then 𝜉
(2)
𝑡 > 𝜉

(1)
𝑡

for all 𝑡 > 0 a.s.

2. If 𝜙2(𝑡,𝑚(𝑡) +𝐶2(𝑡)) > 𝜙1(𝑡,𝑚(𝑡) +𝐶1(𝑡)) for all 𝑡 > 0 with probability 1, then 𝜉
(2)
𝑡 > 𝜉

(1)
𝑡

for all 𝑡 > 0 a.s.

Proof. 1. According Theorem 1, for all fixed 𝑡 > 0 the functions 𝜙2(𝑡, 𝑣+𝐶2(𝑡)), 𝜙1(𝑡, 𝑣+𝐶1(𝑡)),
𝑣 ∈ [𝑚(𝑡),𝑀(𝑡)], solve the Cauchy problems

𝑑

𝑑𝑣
𝜙𝑖(𝑡, 𝑣 + 𝐶𝑖(𝑡)) = 𝜎𝑖(𝑡, 𝜙𝑖(𝑡, 𝑣 + 𝐶𝑖(𝑡))),

𝜙𝑖(𝑡, 𝑣 + 𝐶𝑖(𝑡))
⃒⃒⃒
𝑣=𝑚(𝑡)

= 𝜙𝑖(𝑚(𝑡) + 𝐶𝑖(𝑡)),

with probability 1, where 𝑖 = 1, 2.
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In view of assumptions of Theorem 2, for these differential equations the comparison theorem
for ODE holds [14, Sect. 2, Thm. 4] and therefore, 𝜙2(𝑡, 𝑣 + 𝐶2(𝑡)) > 𝜙1(𝑡, 𝑣 + 𝐶1(𝑡)) for all

𝑡 > 0, 𝑣 ∈ [𝑚(𝑡),𝑀(𝑡)] for a.e. 𝜔, and hence, 𝜉
(2)
𝑡 > 𝜉

(1)
𝑡 for all 𝑡 > 0 a.s.

2. Proof is similar to that of Lemma 1.

Corollary 1. Assume that for all 𝑡 > 0 the following conditions hold:
(a) 𝜙2(𝑡, 𝑣) > 𝜙1(𝑡, 𝑣) for all 𝑣 ∈ [𝑚(𝑡) + 𝐶1(𝑡),𝑀(𝑡) + 𝐶2(𝑡)],
(b) 𝜎2(𝑡, 𝑢) > 𝜎1(𝑡, 𝑢), 𝜎2(𝑡, 𝑢) > 0 for all 𝑢 ∈ R,
(c) 𝐶2(𝑡) > 𝐶1(𝑡) a.s.
Then Statement 1 of Theorem 2 holds.

Proof. According Condition (𝑏) of Corollary 1, the function 𝜙2(𝑡, 𝑣) increases in 𝑣 for all 𝑡 > 0
and hence, 𝜙2(𝑡, 𝑣2) > 𝜙2(𝑡, 𝑣1) > 𝜙1(𝑡, 𝑣1) for all 𝑣2 > 𝑣1. Thus, in order to check the
assumptions of Theorem 2, it is sufficient to show that 𝑚(𝑡)+𝐶2(𝑡) > 𝑚(𝑡)+𝐶1(𝑡) for all 𝑡 > 0
with probability 1. The latter inequality follows Condition (𝑐) of Corollary 1.

Corollary 2. Statement 1 of Theorem 2 holds if for all 𝑡 > 0
(a) 𝑚(𝑡) + 𝐶1(𝑡) > 0 with probability 1,
(b) 𝜎2(𝑡, 𝑢) > 𝜎1(𝑡, 𝑢) > 0 for all 𝑢 ∈ R,
(c) 𝐶2(𝑡) > 𝐶1(𝑡) with probability 1,

(d) 𝜉
(2)
0 > 𝜉

(1)
0 > 0.

Proof. Since according Condition (𝑏) of Corollary 2 the function 𝜙2(𝑡, 𝑣) is increasing in 𝑣 for
all 𝑡 > 0, then𝜙2(𝑡,𝑚(𝑡) + 𝐶2(𝑡)) > 𝜙2(𝑡,𝑚(𝑡) + 𝐶1(𝑡)) for all 𝑡 > 0 a.s. To complete the proof
of Corollary 2, it remains to check Condition 1 of Theorem 2. By (6) and Condition (a) of
Corollary 2, the relations

𝐺2(𝑡, 𝜙2(𝑡,𝑚(𝑡) + 𝐶1(𝑡))) = 𝐺1(𝑡, 𝜙1(𝑡,𝑚(𝑡) + 𝐶1(𝑡))) = 𝑚(𝑡) + 𝐶1(𝑡) > 0

hold. Hence, 𝜙2(𝑡,𝑚(𝑡) + 𝐶1(𝑡)) > 𝜙1(𝑡,𝑚(𝑡) + 𝐶1(𝑡)) > 0 for all 𝑡 > 0 a.s., therefore,

𝜙2(𝑡,𝑚(𝑡) + 𝐶2(𝑡)) > 𝜙1(𝑡,𝑚(𝑡) + 𝐶1(𝑡))

for almost all 𝜔.

Remark 1. One can show that if we replace the strict inequality in Conditions (a) of Corol-
laries 1, 2 by a non-strict one, the same arguing allows one to prove Statement 2 of Theorem 2.

Theorem 3. Assume that for all 𝑡 > 0 the following conditions hold:
(a) 𝜙2 (𝑡, 𝐺1(𝑡, 𝑢)) > 𝑢 for all 𝑣 ∈ R,
(b) 𝜎2(𝑡, 𝑢) > 0 for all 𝑢 ∈ ran (𝑡, 𝜙2),
(c) 𝐶2(𝑡) > 𝐶1(𝑡) for almost all 𝜔.

Then 𝜉
(2)
𝑡 > 𝜉

(1)
𝑡 for all 𝑡 > 0 a.s.

Proof. By relation (6), the structure of solution to equation (2) is represented as a function of
the structure of solution to equation (1):

𝜙2(𝑡, 𝑢+ 𝐶2(𝑡)) = 𝜙2 (𝑡, 𝐺1 (𝑡, 𝜙1(𝑡, 𝑢+ 𝐶1(𝑡))) + 𝐶2(𝑡) − 𝐶1(𝑡)) .

In view of Condition (b) of Theorem 3, the function 𝜙2(𝑡, 𝑣) is increasing in 𝑣 for all 𝑡 > 0,
therefore,

𝜙2 (𝑡, 𝐺1(𝑡, 𝜙1(𝑡, 𝑣 + 𝐶1(𝑡))) + 𝐶2(𝑡) − 𝐶1(𝑡)) > 𝜙2 (𝑡, 𝐺1 (𝑡, 𝜙(𝑡, 𝑣 + 𝐶1(𝑡)))).

By Condition (a) of Theorem 3 the latter inequality implies that for each 𝑡 > 0 for all 𝑣 ∈ R
the inequality

𝜙2(𝑡, 𝑣 + 𝐶2(𝑡)) > 𝜙1(𝑡, 𝑣 + 𝐶1(𝑡)) (10)

holds with probability 1. Substituting 𝑣 = 𝑊𝑡 into (10), we obtain that 𝜉
(2)
𝑡 > 𝜉

(1)
𝑡 for each

𝑡 > 0 for almost all 𝜔.
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The proof of Theorem 4 given below is similar to the proof of Theorem 3, just in this case
due to Condition (b) of Theorem 4 the function 𝜙2(𝑡, 𝑣) decreases in 𝑣 for all 𝑡 > 0.

Theorem 4. Assume that for all 𝑡 > 0 the following inequalities hold:
(a) 𝜙2(𝑡, 𝐺1(𝑡, 𝑢)) 6 𝑢 for all 𝑢 ∈ R,
(b) 𝜎2(𝑡, 𝑢) < 0 for all 𝑣 ∈ ran (𝑡, 𝜙2),
(c) 𝐶2(𝑡) > 𝐶1(𝑡) for almost all 𝜔.

Then 𝜉
(2)
𝑡 6 𝜉

(1)
𝑡 for all 𝑡 > 0 with probability 1.

If the functions 𝜎𝑖(𝑡, 𝑢) are also independent of the variable 𝑡, then the functions 𝐺𝑖(𝑢) =
𝐺𝑖(𝑡, 𝑢) are also independent of the variable 𝑡, where 𝑖 = 1, 2.

Lemma 2. Let 𝜂
(𝑖)
𝑡 be solutions of ODE

𝑑𝜂
(𝑖)
𝑡 = 𝜎𝑖(𝜂

(𝑖)
𝑡 ) * 𝑑𝑊𝑡, 𝜂

(𝑖)
𝑡 |𝑡=0 = 𝜂

(𝑖)
0 , 𝑖 = 1, 2, (11)

and for each 𝑢 ∈ R the conditions hold:
(a) 𝜎𝑖(𝑢) > 0, where 𝑖 = 1, 2,

(b) 𝜙2(𝐺1(𝑢)) > 𝑢, where 𝜙2(𝑣) is the structure of solutions to equation for 𝜂
(2)
𝑡 for all 𝑣 ∈ R.

Then for each 𝑢 ∈ R the inequality holds:

𝐺1(𝑢) > 𝐺2(𝑢). (12)

Proof. Taking into consideration that the coefficients of the equations (11) and the structures
of their solutions are independent of the time, we write relation (6) for 𝜙2(𝑣):

𝐺2(𝜙2(𝑣)) = 𝑣 + 𝐶(𝑡). (13)

We observe that 𝐶 ′(𝑡) = 0 for all 𝑡 > 0 by (7), therefore, 𝐶(𝑡) = 0 for all 𝑡 > 0 since 𝐶(0) = 0.
Under assumptions of Lemma 2, the functions 𝐺𝑖(𝑢), 𝑖 = 1, 2, are non-decreasing. We substitute
𝑣 = 𝐺1(𝑢) into (13) and by Condition (b) of Lemma 2 we obtain:

𝐺1(𝑢) = 𝐺2(𝜙2(𝐺1(𝑢))) > 𝐺2(𝑢).

Remark 2. The results presented in work [8] follow inequality (12). Thus, Lemma 2 says
that the results obtained by O’Brien in work [8] are particular case of our results.

Example 1. Let us provide an example of application of Theorem 3. We consider two SDEs
with Stratonovich integrals, whose diffusion coefficients are different:

𝑑𝜉
(1)
𝑡 = 1 * 𝑑𝑊𝑡 + 2𝑑𝑡, 𝜉

(1)
0 = 0,

𝑑𝜉
(2)
𝑡 = 2

√︁
𝜉
(2)
𝑡 − 1 * 𝑑𝑊𝑡 + 4

√︁
𝜉
(2)
𝑡 − 1𝑑𝑡, 𝜉

(2)
0 = 1.

Since these equations satisfy the assumptions of Theorem 3, we have 𝜉
(2)
𝑡 > 𝜉

(1)
𝑡 for each 𝑡 > 0

with probability 1. The latter inequality can be checked directly since the solutions to the

considered equations are of form 𝜉
(1)
𝑡 = 𝑊𝑡 + 2𝑡, 𝜉

(2)
𝑡 = (𝑊𝑡 + 2𝑡)2 + 1.

4. Stability with probability 1

We proceed to studying the stability with probability 1 for equation (3). The main idea
of our approach is to apply the comparison theorems for estimating the perturbed solution to
equation (3) by means of solution to SDE stable with probability 1. It was shown in work [1]
that as such equation, the equation

𝑑𝜂
(𝛼)
𝑡 = 𝑡𝜂

(𝛼)
𝑡 * 𝑑𝑊𝑡 − 𝑡𝛼+

1
2𝜂

(𝛼)
𝑡 𝑑𝑡, 𝑡 > 0, (14)

can serve. Its perturbed solution is stable with probability 1 for all 𝛼 > 0.
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We denote sgn (𝑥) = −1 as 𝑥 < 0, sgn (𝑥) = 0 as 𝑥 = 0, sgn (𝑥) = 1 as 𝑥 > 0. Let
𝜙1(𝑡, 𝑣), 𝐶1(𝑡), 𝐺1(𝑡, 𝑢), 𝜙2(𝑡, 𝑣), 𝐶2(𝑡), 𝐺2(𝑡, 𝑢) be the structures of solutions, drift functions
and functions 𝐺(𝑡, 𝑢) for equations (3), (14), respectively.

Theorem 5. Assume that for all 𝑡 > 0 the following conditions hold:
(a) 𝐶2(𝑡) > 𝐶1(𝑡) for almost all 𝜔,
(b) sgn (𝜎(𝑡, 𝑢)) = sgn (𝑢) for all 𝑢 ̸= 0, 𝑢 ∈ R,
(c) 𝜎(𝑡, 𝑢) 6 𝑡𝑢 for all 𝑢 ̸= 0, 𝑢 ∈ R.
Then the perturbed solution to equation (3) is stable with probability 1.

Proof. It is sufficient to show that for all 𝑡 > 0 the inequality |𝜉𝑡| 6 𝐾𝜂
(𝛼)
𝑡 holds with probability

1 (see [1]), where 𝜂
(𝛼)
𝑡 is the perturbed solution of equation (14) stable with probability 1. The

structure of solution to equation (14) is of form

𝜙2(𝑡, 𝑣 + 𝐶2(𝑡)) = 𝜂0 exp{𝑡(𝑣 + 𝐶2(𝑡))}.
Without loss of generality we let 𝜂0 > 0 since otherwise we can make the change ̃︀𝜂0 = −𝜂0 > 0.

Let us show first that 𝜉𝑡 6 𝐾𝜂
(𝛼)
𝑡 for all 𝑡 > 0 with probability 1. In order to do this, we

apply Theorem 3 to equations (3), (14). Since 𝜙2(𝑡, 𝑣) > 0, we have 𝜎2(𝑡, 𝑢) = 𝑡𝑢 > 0 for all
𝑢 ∈ ran (𝑡, 𝜙2), that is, Condition (b) of Theorem 3 is satisfied. Condition (c) of Theorem 3 is
true due to Condition (a) of Theorem 5. It remains to check Condition (a) of Theorem 3:

𝐾𝜂0 exp{𝑡𝐺1(𝑡, 𝑢)} > 𝑢.

We divide both sides by 𝐾𝜂0 and calculate the logarithm:

𝑡𝐺1(𝑡, 𝑢) > ln

(︂
𝑢

𝐾𝜂0

)︂
. (15)

Since 𝐾𝜂0 exp{𝑡𝐺1(𝑡, 0)} > 0, to check the latter inequality, it is sufficient to show that

𝑑

𝑑𝑢

(︂
𝑡𝐺1(𝑡, 𝑢) − ln(

𝑢

𝜂0
)

)︂
> 0,

that is,
𝑡

𝜎(𝑡, 𝑢)
>

1

𝑢
.

The latter inequality is true thanks to Conditions (b), (c) of Theorem 5.
Arguing as above and applying Theorem 4, we see that Conditions (a)-(c) of Theorem 5 are

sufficient to ensure the inequality 𝜉𝑡 > −𝐾𝜂(𝛼)𝑡 for all 𝑡 > 0 with probability 1.

Remark 3. In the case 𝜎(𝑡, 𝑢) > 0 for all 𝑡 > 0, ∈ 𝑅, Conditions (b), (c) of Theorem 5
can be replaced by Condition 𝜎(𝑡, 𝑢) 6 𝑡𝑢 for all 𝑢 > 0.

Remark 4. Since 𝐶2(𝑡) =
∫︀ 𝑡

0
(𝑠(𝛼+1)/2 + 𝑊𝑠)𝑑𝑠/𝑡, Condition (a) of Theorem 5 is reduced to

checking the inequality 𝑡𝐶1(𝑡) 6
∫︀ 𝑡

0
(𝑠(𝛼+1)/2 +𝑊𝑠)𝑑𝑠.

Example 2. Let us provide an example of application of Theorem 5. We consider SDE with
Stratonovich integral:

𝑑𝜉𝑡 = 𝜎(𝑡, 𝜉𝑡) * 𝑑𝑊𝑡 − 𝑡𝛼+
1
2 𝜉𝑡𝑑𝑡, 𝑡 > 0, (16)

where 𝜎(𝑡, 𝑢) = 𝑡𝑢/2 as 𝑢 > 0, 𝜎(𝑡, 𝑢) = 0 as 𝑢 = 0, 𝜎(𝑡, 𝑢) = 2𝑡𝑢 as 𝑢 > 0.
The function 𝜎(𝑡, 𝑢) satisfies the Lipschitz condition. Let us show that for equation (16) all

conditions of Theorem 5 are satisfied. Conditions (b), (c) of Theorem 5 hold by the definition of
the function 𝜎(𝑡, 𝑢). Condition (a) of Theorem 5 can be checked by straightforward substitution.
Hence, the perturbed solution to equation (16) is stable with probability 1.
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