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SYSTEMS OF CONVOLUTION EQUATIONS

IN COMPLEX DOMAINS

S.G. MERZLYAKOV

Abstract. In this paper we study the systems of convolution equations in spaces of vector-
valued functions of one variable. We define an analogue of the Leontiev interpolating
function for such systems, and we provide a series of the properties of this function. In
order to study these systems, we introduce a geometric difference of sets and provide its
properties.

We prove a theorem on the representation of arbitrary vector-valued functions as a series
over elementary solutions to the homogeneous system of convolution equations. These re-
sults generalize some well-known results by A.F. Leontiev on methods of summing a series of
elementary solutions to an arbitrary solution and strengthen the results by I.F. Krasichkov-
Ternovskii on summability of a square system of convolution equations.

We describe explicitly domains in which a series of elementary solutions converges for
arbitrary vector-valued functions. These domains depend on the domains of the vector-
valued functions, on the growth of the Laplace transform of the elements in this system,
and on the lower bound of its determinant. We adduce examples showing the sharpness of
this result.

Similar results are obtained for solutions to a homogeneous system of convolution equa-
tions, and examples are given in which the series converges in the entire domain of a
vector-valued function.

Keywords: Systems of convolution equations, vector-valued functions, Leontiev interpo-
lating function, series of elementary solutions.
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1. Introduction

Let 𝑞, 𝑟 ∈ N, 𝑈1, 𝑈2, . . . , 𝑈𝑞 be domains in the complex plane, 𝐻(𝑈𝑗) be the space of the
functions holomorphic in the domain 𝑈𝑗 with the topology of uniform convergence on compact
sets, 𝑆𝑝

𝑗 be linear continuous functionals on the space 𝐻(𝑈𝑗), 𝑗 = 1, . . . , 𝑞, 𝑝 = 1, . . . , 𝑟.
We consider the system of convolution equations

𝑞∑︁
𝑗=1

⟨︀
𝑆𝑝
𝑗 , 𝑓𝑗(𝑧 + ℎ)

⟩︀
= 0, 𝑝 = 1, . . . , 𝑟, 𝑓 = (𝑓1, . . . , 𝑓𝑞) ∈

𝑞∏︁
𝑗=1

𝐻(𝑈𝑗).

In works by I.F. Krasichkov-Ternovskii [1]–[7], the approximation of an arbitrary solution to
this system by linear combinations of elementary solutions was studied, while works [8]–[10]
were devoted to the summability of a series of elementary solutions.

In the present paper we extend the known results by A.F. Leontiev on methods of the
summation of series of elementary solutions to an arbitrary solution in the case 𝑞 = 1 and one

S.G. Merlyakov, Systems of convolution equations in complex domains.
c○ 2017 Merlyakov S.G..
The reported study was funded by RFBR according to the research projects nos. 17-01-00794 and 15-01-

01661).
Submitted October 24. 2017.

78

http://dx.doi.org/10.13108/2018-10-2-78


SYSTEMS OF CONVOLUTION EQUATIONS IN COMPLEX DOMAINS 79

convolution equation [11] to the solutions of the above system and we strengthen some results
by I.F. Krasichkov-Ternovskii on summability.

2. Notations, preliminaries and results

Given a set 𝑀 in the complex plane, by conv𝑀 , int𝑀 , 𝑀 , 𝑀𝑤, where 𝑤 ∈ C, we denote
respectively its convex hull, interior, closure and a connected component containing the point
𝑤.

The sum and geometric difference of sets 𝑀1,𝑀2 ⊂ C are defined respectively as the sets

𝑀1 +𝑀2 = {𝑧1 + 𝑧2 : 𝑧1 ∈𝑀1, 𝑧2 ∈𝑀2} , 𝑀1
*−𝑀2 = {𝑧 ∈ C : 𝑧 +𝑀2 ⊂𝑀1} .

For the operations with empty sets we obviously have

𝑀 + ∅ = ∅, 𝑀 *− ∅ = C, ∅ *−𝑀1 = ∅, 𝑀1 ̸= ∅.
The support function of a set 𝑀 ⊂ C is defined by the formula

ℎ(𝜃,𝑀) = sup
𝑎∈𝑀

Re(𝑎𝑒−𝑖𝜃), 𝜃 ∈ [0, 2𝜋] .

This function possesses the following properties (see [12], [13]):

Lemma 1. The following properties are true:

1) ℎ(𝜃,𝑀) = ℎ(𝜃, conv𝑀).
2) (ℎ(𝜃,𝑀1) 6 ℎ(𝜃,𝑀2), 𝜃 ∈ [0, 2𝜋]) ⇐⇒

(︀
𝑀1 ⊂ conv𝑀2

)︀
.

3) ℎ(𝜃,𝑀1 +𝑀2) = ℎ(𝜃,𝑀1) + ℎ(𝜃,𝑀2).

Lemma 2. The difference of sets possesses the following relations:

1) (𝑀 +𝐾 ⊂ 𝑈) ⇐⇒ (𝑀 ⊂ 𝑈 *− 𝐾).
2) (𝑈1 ⊂ 𝑈2, 𝐾1 ⊃ 𝐾2) =⇒ (𝑈1

*− 𝐾1 ⊂ 𝑈2
*− 𝐾2).

3) [(𝑈1 + 𝑈2) *− 𝐾] ⊃ [(𝑈1
*− 𝐾) + 𝑈2].

4) 𝑈 *− (𝐾1 +𝐾2) = (𝑈 *− 𝐾1) *− 𝐾2.
5) For arbitrary sets of indices 𝐴 and 𝐵 the identity holds:⋂︁

𝛼∈𝐴,𝛽∈𝐵

(𝑈𝛼
*− 𝐾𝛽) =

(︃⋂︁
𝛼∈𝐴

𝑈𝛼

)︃
*−

(︃⋃︁
𝛽∈𝐵

𝐾𝛽

)︃
.

6) If sets 𝑈𝑛 are open and the sets 𝐾𝑚 are compact and

𝑈𝑛 ⊂ 𝑈𝑛+1, 𝐾𝑚 ⊃ 𝐾𝑚+1, 𝑛,𝑚 = 1, 2, . . . ,

then ⋃︁
𝑛,𝑚

(𝑈𝑛
*− 𝐾𝑚) =

(︃⋃︁
𝑛

𝑈𝑛

)︃
*−

(︃⋂︁
𝑚

𝐾𝑚

)︃
.

7) If a set 𝑈 is open and a set 𝐾 is compact, then the set 𝑈 *− 𝐾 is open.
8) If a set 𝑈 is convex, then the set 𝑈 *− 𝐾 is convex and

𝑈 *− 𝐾 = 𝑈 *− conv𝐾.

9) For sets 𝑈,𝐾 ⊂ C, 𝐾 ̸= ∅, the inequality holds:

ℎ(𝜃, 𝑈 *− 𝐾) 6 ℎ(𝜃, 𝑈) − ℎ(𝜃,𝐾), 𝜃 ∈ [0, 2𝜋] .

10) If a convex set 𝑈 is either closed or open and a set 𝐾 is compact and non-empty, then

(𝑈 +𝐾) *− 𝐾 = 𝑈.

11) Let an open set 𝑈 be simply-connected, then all connected components of the set 𝑈 *− 𝐾 are
also simply-connected.
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Proof. Properties 1)–7) are easily implied by the definition of the difference of sets and the
properties of compact sets.

8) The convexity of the set 𝑈 *− 𝐾 follows property 5):

𝑈 *− 𝐾 =
⋂︁
𝑧∈𝐾

(𝑈 − 𝑧).

Since the set 𝑈 is convex, then

(𝑧 +𝐾 ⊂ 𝑈) ⇐⇒ (𝑧 + conv𝐾) ⊂ 𝑈.

Property 9) is implied by
(𝑈 *− 𝐾) +𝐾 ⊂ 𝑈

and property 3) of support functions.
10) By the previous property,

ℎ(𝜃, (𝑈 +𝐾) *− 𝐾) 6ℎ(𝜃, 𝑈 +𝐾) − ℎ(𝜃,𝐾)

=ℎ(𝜃, 𝑈) + ℎ(𝜃,𝐾) − ℎ(𝜃,𝐾) = ℎ(𝜃, 𝑈), 𝜃 ∈ [0, 2𝜋] ,

and this is why by property 2) of support functions in the case of a closed set 𝑈 we have the
relation

(𝑈 +𝐾) *− 𝐾 ⊂ 𝑈.

The opposite inclusion is also obvious.
If the set 𝑈 is open, it can be exhausted by an increasing sequence of convex compact sets

and the desired identity can be easily obtained by property 6).
We observe that if the set 𝑈 is non-convex, the latter property is generally speaking not true.

For instance, let

𝑈 = {𝑧 ∈ C : Im 𝑧 > 0} , 𝐾 = {𝑧 ∈ C : −1 6 Re 𝑧 6 1, Im 𝑧 = 0} .
As one can easily confirm,

𝑈 +𝐾 = C,

and
C = (𝑈 +𝐾) *− 𝐾 ̸= 𝑈.

11) Let 𝐶 ⊂ 𝑈 *− 𝐾 be a closed contour enveloping the point 𝑧. In this case for each point
𝑤 ∈ 𝐾 we have 𝑤 + 𝐶 ⊂ 𝑈 and the closed contour 𝑤 + 𝐶 envelops the point 𝑤 + 𝑧.

Since the domain 𝑈 is simply-connected, we have

𝑤 + 𝑧 ∈ 𝑈,

and this implies easily the desired statement.

Let 𝑈 and 𝐾 be respectively an open and a compact subsets of the complex plane. By 𝐻(𝑈)
and 𝐻(𝐾) we denoted respectively the space of holomorphic functions in the domain 𝑈 and
the space of holomorphic germs on the compact set 𝐾 with natural topologies. By 𝐻*(𝑈) and
𝐻*(𝐾) we denote the space of linear continuous functional respectively on the spaces 𝐻(𝑈)
and 𝐻(𝐾) with strong topologies.

As it is known [14], given an arbitrary functional 𝑆 ∈ 𝐻(C), there exists a compact set
𝐾 ⊂ C and a function 𝛾 holomorphic outside 𝐾 and obeying 𝛾(∞) = 0 such that

⟨𝑆, 𝑓⟩ =
1

2𝜋𝑖

∫︁
𝐶

𝛾(𝑡)𝑓(𝑡)𝑑𝑡, 𝑓 ∈ 𝐻(C),

where 𝐶 is a contour enveloping the compact set 𝐾.

The Laplace transform ̂︀𝑆(𝜆) of a functional 𝑆 is defined by the formulâ︀𝑆(𝜆) =
⟨︀
𝑆𝑧, 𝑒

𝜆𝑧
⟩︀
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and is an entire functional of exponential type. The smallest convex compact sets containing

all singularities of the function 𝛾 is called the conjugate diagram of the function ̂︀𝑆(𝜆).
Vice versa, for each entire function of exponential type there exists a functional in the space

𝐻*(C), whose Laplace transform coincides with this function.

Let a compact set 𝐾 ⊂ C be a conjugate diagram of the function ̂︀𝑆(𝜆). If a domain 𝑈 ⊂ C

is such that 𝐾 ⊂ 𝑈 , in the space 𝐻(𝑈) we can define the convolution operator 𝑆* with the

characteristic function ̂︀𝑆(𝜆) by the rule:

(𝑆 * 𝑓)(𝑧) =
1

2𝜋𝑖

∫︁
𝐶

𝛾(𝑡)𝑓(𝑡+ 𝑧)𝑑𝑡, 𝑓 ∈ 𝐻(𝑈).

As one can show easily, this operator maps the space 𝐻 (𝑈) into the space 𝐻 ([𝑈 *− 𝐾]0) linearly
and continuously.

If a functional 𝐹 belongs to the space 𝐻*(C), a compact set 𝑅 is a conjugate diagram of the

function ̂︀𝐹 and 𝐾 +𝑅 ⊂ 𝑈 , then we can defined the convolution of the functionals 𝐹 and 𝑆 as
a functional 𝐹 * 𝑆 on the space 𝐻(𝑈) acting by the formula

⟨𝐹 * 𝑆, 𝑓⟩ = ⟨𝐹, 𝑆 * 𝑓⟩ , 𝑓 ∈ 𝐻(𝑈).

It was shown in monograph [15] that this is a linear and continuous functional on the space
𝐻(𝑈). It is easy to see that it satisfies the relations:

𝐹 * 𝑆 = 𝑆 * 𝐹, 𝐹 * 𝑆 = ̂︀𝐹 ̂︀𝑆.
Let 𝑈𝑗 be domains in the complex plane, 𝑆𝑝

𝑗 ∈ 𝐻*(𝑈𝑗), 𝜙
𝑝
𝑗(𝜇) = ̂︁𝑆𝑝

𝑗 (𝜇), compact sets 𝐾𝑝
𝑗 ⊂ 𝑈𝑗

are conjugate diagrams of the functions 𝜙𝑝
𝑗(𝜇), 𝑗 = 1, . . . , 𝑞, 𝑝 = 1, . . . , 𝑟, and

𝜙(𝜇) =

⎛⎜⎜⎝
𝜙1
1(𝜇) 𝜙2

1(𝜇) . . . 𝜙𝑞
1(𝜇)

𝜙1
2(𝜇) 𝜙2

2(𝜇) . . . 𝜙𝑞
2(𝜇)

...
...

. . .
...

𝜙1
𝑟(𝜇) 𝜙2

𝑟(𝜇) . . . 𝜙𝑞
𝑟(𝜇)

⎞⎟⎟⎠ .

On the space
∏︀𝑞

𝑗=1𝐻(𝑈𝑗) we define a linear continuous convolution operator 𝑆* with values
in the space

𝑟∏︁
𝑝=1

𝐻

⎛⎝[︃ 𝑞⋂︁
𝑗=1

(︀
𝑈𝑗

*− 𝐾𝑝
𝑗

)︀]︃
0

⎞⎠
by the formula:

(𝑆 * 𝑓)𝑝 =

𝑞∑︁
𝑗=1

𝑆𝑝
𝑗 * 𝑓𝑝,

where (𝑆 * 𝑓)𝑝 is the 𝑝th component of the vector function 𝑆 * 𝑓 , 𝑝 = 1, . . . , 𝑟.
We consider the homogeneous system of convolution equations

𝑆 * 𝑓 = 0. (1)

A solution to this system is elementary if it is represented as
𝑠∑︁

𝑚=1

𝑒𝜆𝑧𝑧𝑚𝑐𝑚, 𝑠 ∈ N,

where 𝑐𝑚 ∈ C𝑟, 𝑚 = 1, . . . , 𝑠. The number 𝜆 is called the exponent of this solution.
The rank of system (1) is the number

rg𝑆 = max
𝜆∈C

rg𝜙(𝜆).



82 S.G. MERZLYAKOV

Let 𝐹𝑚
𝑝 be linear continuous functionals on the space of entire functions, compact sets 𝑅𝑚

𝑝

are conjugate diagrams of the functions ̂︀𝐹𝑚
𝑝 , 𝑝 = 1, . . . , 𝑟, 𝑚 = 1, . . . , 𝑙, 𝑙 ∈ N, and

conv
𝑟⋃︁

𝑝=1

(︀
𝑅𝑚

𝑝 +𝐾𝑝
𝑗

)︀
⊂ 𝑈𝑗, 𝑚 = 1, . . . , 𝑙, 𝑗 = 1, . . . , 𝑞.

In this case it is easy to show that the matrix of the functionals 𝐹 *𝑆 with entry
∑︀𝑟

𝑝=1 𝐹
𝑚
𝑝 *𝑆𝑝

𝑗

at the 𝑗th column and 𝑚th row generates the convolution operator

(𝐹 * 𝑆) * :

𝑞∏︁
𝑗=1

𝐻(𝑈𝑗) →
𝑙∏︁

𝑚=1

𝐻

⎛⎝{︃ 𝑞⋂︁
𝑗=1

[︃
𝑈𝑗

*− conv
𝑟⋃︁

𝑝=1

(︀
𝑅𝑚

𝑝 +𝐾𝑝
𝑗

)︀]︃}︃
0

⎞⎠ ,

and

(𝐹 * 𝑆) * 𝑓 = 𝐹 * (𝑆 * 𝑓) , 𝑓 ∈
𝑞∏︁

𝑗=1

𝐻(𝑈𝑗), 𝐹 * 𝑆 = ̂︀𝐹 ̂︀𝑆.
Assume that system (1) satisfy the identities

𝑞 = 𝑝 = rg𝑆 = 𝑛. (2)

We introduce the following notations: 𝐿(𝜆) = det𝜙(𝜆), 𝜙*(𝜆) is the adjunct of 𝜙(𝜆), 𝐵𝑗
𝑚 are

conjugate diagrams of the entries of the matrix 𝜙*(𝜆),

𝐾𝑚 = conv
𝑛⋃︁

𝑗=1

𝐾𝑗
𝑚, 𝐵

𝑗 = conv
𝑛⋃︁

𝑚=1

𝐵𝑗
𝑚, 𝑚, 𝑗 = 1, . . . , 𝑛,

𝐾 is the conjugate diagram of the function 𝐿(𝜆).
The properties of the adjunct imply easily the following relations:

𝐵𝑗 ⊂
∑︁
𝑝 ̸=𝑗

𝐾𝑝, conv
𝑛⋃︁

𝑗=1

(︀
𝐾𝑗

𝑚 +𝐵𝑚
𝑗

)︀
⊃ 𝐾, 𝑗,𝑚 = 1, . . . , 𝑛. (3)

Hereafter we assume that 𝐾𝑝 ⊂ 𝑈𝑝, 𝑝 = 1, . . . , 𝑛.
For a convex compact set 𝐵 ⊂ 𝐾 we define sets (𝑈,𝜙,𝐵)𝑝 as the unions of the sets

𝑛⋂︁
𝑗=1

[︀
(𝐵 +𝑅𝑗) *− 𝐵𝑝

𝑗

]︀
(4)

over all systems of convex compact sets (𝑅1, . . . , 𝑅𝑛) such that for some simply-connected
domains 𝐺𝑝 ⊂ 𝑈𝑝

conv
𝑛⋃︁

𝑗=1

(︀
𝑅𝑗 +𝐾𝑗

𝑚

)︀
⊂ 𝐺𝑚, 𝑚 = 1, . . . , 𝑛,

𝑅𝑗 ⊂

[︃
𝑛⋂︁

𝑚=1

(︀
𝐺𝑚

*− 𝐾𝑗
𝑚

)︀]︃
0

, 𝑗 = 1, . . . , 𝑛, 𝑝 = 1, . . . , 𝑛.

(5)

It is clear that the sets (𝑅1, . . . , 𝑅𝑛) with conditions (5) can be varied a little and this is why
the sets (𝑈,𝜙,𝐵)𝑝, 𝑝 = 1, . . . , 𝑛, are obviously open.

Lemma 3. The following relations hold:
1) (𝑈,𝜙,𝐵)𝑝 ⊂ 𝑈𝑝, 𝑝 = 1, . . . , 𝑛.
2) For simply-connected domains 𝐺𝑝 ⊂ 𝑈𝑝 and each convex subdomain 𝐷 of the domain[︃

𝑛⋂︁
𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0
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the inclusion holds:

(𝐵 +𝐷) *− 𝐵𝑝 ⊂ (𝑈,𝜙,𝐵)𝑝 , 𝑝 = 1, . . . , 𝑛.

3) For convex domains 𝑈𝑝 the identities hold:

(𝑈,𝜙,𝐵)𝑝 =
𝑛⋂︁

𝑗=1

{︃[︃
𝐵 +

𝑛⋂︁
𝑚=1

(︀
𝑈𝑚

*− 𝐾𝑗
𝑚

)︀]︃
*− 𝐵𝑝

𝑗

}︃
, 𝑝 = 1, . . . , 𝑛.

Proof. It is clear that it is sufficient to restrict ourselves by the case 𝑝 = 1.
1) Assume that a point 𝑧 belongs to the set (𝑈,𝜙,𝐵)1. In this case there exists a system of

convex compact sets (𝑅1, . . . , 𝑅𝑛) with property (5) so that the point 𝑧 belongs to set (4). We
have

𝑧 +𝐵1
𝑗 ⊂ 𝐵 +𝑅𝑗 ⊂ 𝐾 +𝑅𝑗, 𝑗 = 1, . . . , 𝑛. (6)

We denote by 𝑀1 the left hand side in the first relation in (5). It is clear that this set is a
convex compact set and

𝑅𝑗 +𝐾𝑗
1 ⊂𝑀1,

or

𝑅𝑗 ⊂𝑀1
*− 𝐾𝑗

1 ,

and this is why by relations (6) we obtain

𝑧 +𝐵1
𝑗 ⊂ 𝐾 + (𝑀1

*− 𝐾𝑗
1), 𝑗 = 1, . . . , 𝑛.

By property 3) of the difference of sets

𝐾 + (𝑀1
*− 𝐾𝑗

1) ⊂ (𝐾 +𝑀1) *− 𝐾𝑗
1 , 𝑗 = 1, . . . , 𝑛,

therefore,

𝑧 ∈
𝑛⋂︁

𝑗=1

{︀[︀
(𝐾 +𝑀1) *− 𝐾𝑗

1

]︀
*− 𝐵1

𝑗

}︀
=

𝑛⋂︁
𝑗=1

[︀
(𝐾 +𝑀1) *−

(︀
𝐾𝑗

1 +𝐵1
𝑗

)︀]︀
⊂ (𝐾 +𝑀1) *−

𝑛⋃︁
𝑗=1

(︀
𝐾𝑗

1 +𝐵1
𝑗

)︀
⊂ (𝐾 +𝑀1) −𝐾 = 𝑀1.

Here we have applied properties 2), 4), 5), 10) of the difference of sets and relations (3).
Since the set 𝑀1 lies in the domain 𝐺1, this proves the desired statement.
2) If 𝑅 is a convex compact set in the domain 𝐷, by property 2) of the difference of sets we

have

𝑅 ⊂

[︃
𝑛⋂︁

𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0

⊂

[︃
𝑛⋂︁

𝑚=1

(︀
𝐺𝑚

*− 𝐾𝑗
𝑚

)︀]︃
0

, 𝑗 = 1, . . . , 𝑛,

and by property 1) thanks to the convexity of the compact set 𝑅 we get

𝐺𝑚 ⊃ 𝑅 +𝐾𝑚 = conv
𝑛⋃︁

𝑗=1

(︀
𝑅 +𝐾𝑗

𝑚

)︀
, 𝑚 = 1, . . . , 𝑛.

In this case, if we let 𝑅𝑝 = 𝑅, 𝑝 = 1, . . . , 𝑛, the definition of the set (𝑈,𝜙,𝐵)1 yields

𝑛⋂︁
𝑗=1

[︀
(𝐵 +𝑅) *− 𝐵1

𝑗

]︀
⊂ (𝑈,𝜙,𝐵)1 ,

and the desired statement follows properties 5), 6) and 8) of the difference of sets.
3) The inclusion “⊂” is implied immediately by the definition and property 2) of the difference

of sets.
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In the case of convex domains 𝑈𝑝, they serve as the domains 𝐺𝑝, 𝑝 = 1, . . . , 𝑛, and as one
can show easily, conditions (5) on the sets 𝑅𝑗 are equivalent to the relation

𝑅𝑗 ⊂
𝑛⋂︁

𝑚=1

(︀
𝑈𝑚

*− 𝐾𝑗
𝑚

)︀
, 𝑗 = 1, . . . , 𝑛.

Let 𝑅𝑙
𝑗, 𝑙 ∈ N, be a sequence of convex compact sets such that

𝑅𝑙
𝑗 ⊂ int𝑅𝑙+1

𝑗 , 𝑙 ∈ N,
∞⋃︁
𝑙=1

𝑅𝑙
𝑗 =

𝑛⋂︁
𝑚=1

(︀
𝑈𝑚

*− 𝐾𝑗
𝑚

)︀
, 𝑗 = 1, . . . , 𝑛.

In this case

(𝑈,𝜙,𝐵)1 ⊃
∞⋃︁
𝑙=1

𝑛⋂︁
𝑗=1

[︀(︀
𝐵 +𝑅𝑙

𝑗

)︀
*− 𝐵1

𝑗

]︀
⊃

∞⋃︁
𝑙=1

𝑛⋂︁
𝑗=1

[︀(︀
𝐵 + int𝑅𝑙

𝑗

)︀
*− 𝐵1

𝑗

]︀
.

The sequence in the square brackets in the latter relation is increasing w.r.t. the variable 𝑙.
Hence, one can show easily that

∞⋃︁
𝑙=1

𝑛⋂︁
𝑗=1

[︀(︀
𝐵 + int𝑅𝑙

𝑗

)︀
*− 𝐵1

𝑗

]︀
⊃

𝑛⋂︁
𝑗=1

∞⋃︁
𝑙=1

[︀(︀
𝐵 + int𝑅𝑙

𝑗

)︀
*− 𝐵1

𝑗

]︀
and the desired statement follows property 6) of the difference of sets.

Corollary 1. Simply-connected domains 𝐺𝑝 ⊂ 𝑈𝑝 satisfy the inclusions:

𝐵 +

{︃[︃
𝑛⋂︁

𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0

*− 𝐵𝑝

}︃
⊂ (𝑈,𝜙,𝐵)𝑝,

(𝐵 *− 𝐵𝑝) +

[︃
𝑛⋂︁

𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0

⊂ (𝑈,𝜙,𝐵)𝑝, 𝑝 = 1, . . . , 𝑛.

Proof. Here we also assume that 𝑝 = 1. If a point 𝑧 belongs to the left hand side of the first
relation, then 𝑧 ∈ 𝐵 + 𝑧0 for some point

𝑧0 ∈

[︃
𝑛⋂︁

𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0

*− 𝐵1,

or

𝑧0 +𝐵1 ⊂

[︃
𝑛⋂︁

𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0

.

Letting 𝑅 = 𝑧0 +𝐵1, by the proved above we have(︀
𝑅 + 𝑧0 +𝐵1

)︀
*− 𝐵1 ⊂ (𝑈,𝜙,𝐵)1.

The non-degeneracy of the matrix 𝜙 implies that the set 𝐵1 is non-empty and this is why
property 10) of the difference of sets we have(︀

𝑅 + 𝑧0 +𝐵1
)︀

*− 𝐵1 = 𝑅 + 𝑧0

that proves the first relation.
As it has been shown above, for each convex domain

𝐷 ⊂

[︃
𝑛⋂︁

𝑚=1

(𝐺𝑚
*− 𝐾𝑚)

]︃
0

,

the inclusion
(𝐵 +𝐷) *− 𝐵1 ⊂ (𝑈,𝜙,𝐵)1
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holds and the second relation follows property 3) of the difference of sets and the arbitrariness
of the convex domain 𝐷.

3. Properties of functions 𝜔 and 𝑃

Assume that simply-connected domains𝐺𝑝 contain compact sets𝐾𝑝, 𝑝 = 1, . . . , 𝑛, and system
(1) obeys identities (2), so the function 𝐿(𝜆) is not identically zero.

On the space
𝑛∏︁

𝑝=1

𝐻(𝐺𝑝) (7)

we introduce two vector functions

𝜔(𝜇, 𝑓, 𝜙,𝐺, 𝑎) = 𝜙*(𝜇)

(︃
𝑛∑︁

𝑝=1

⟨
𝑆𝑗
𝑝,

∫︁ 𝑧

𝑎𝑝

𝑒𝜇(𝑧−𝑡)𝑓𝑝(𝑡)𝑑𝑡

⟩)︃𝑛

𝑗=1

,

𝑃 (𝑧, 𝑓, 𝜙, 𝐶) =
1

2𝜋𝑝

∫︁
𝐶

𝑒𝜇𝑧𝜔(𝜇, 𝑓, 𝜙,𝐺, 𝑎)

𝐿(𝜇)
𝑑𝜇, (8)

where 𝑎 ∈
∏︀𝑛

𝑝=1𝐺𝑝, 𝐶 is a closed contour not passing through the zeroes of the function 𝐿(𝜆).
In the first case the integration is made along curves in the domain 𝐺𝑝, 𝑝 = 1, . . . , 𝑛.

We note that the function 𝜔 is a generalization of the known Leontiev interpolation function
for the vector case.

Lemma 4. The function 𝜔(𝜇, 𝑓, 𝜙,𝐺, 𝑎) possesses the following properties:
1) W.r.t. the variable 𝜇, the function 𝜔(𝜇, 𝑓, 𝜙,𝐺, 𝑎) is an entire function of exponential type

for each component; w.r.t. the variable 𝑓 it is a linear continous functional on space (7).
2) The convolution operator 𝑆* satisfies the following identity

𝑆 * 𝑒𝜇𝑧𝜔 (𝜇, 𝑓, 𝜙,𝐺, 𝑎) = 𝐿 (𝜇)

(︃
𝑛∑︁

𝑝=1

⟨
𝑆𝑗
𝑝,

∫︁ 𝑧

𝑎𝑝

𝑒𝜇(𝑧−𝑡)𝑓𝑝 (𝑡) 𝑑𝑡

⟩)︃𝑛

𝑗=1

.

3) The vector function

𝑓(𝑧) = (exp𝜆𝑧) 𝑏, 𝑏 ∈ C𝑛, (9)

satisfies the relation

𝜔(𝜇, 𝑓, 𝜙,𝐺, 𝑎) =
𝜙*(𝜇)𝜙(𝜆)𝑏− 𝐿(𝜇)𝐸(𝜆− 𝜇, 𝑎, 𝑏)

𝜆− 𝜇
.

Here

𝐸(𝜆− 𝜇, 𝑎, 𝑏) =
(︀
𝑒(𝜆−𝜇)𝑎1𝑏1, . . . , 𝑒

(𝜆−𝜇)𝑎𝑛𝑏𝑛
)︀
.

The function 𝑔𝑗𝑝(𝜇, 𝜆) at the intersection of the 𝑝th and the 𝑗th row of the matrix 𝜙*(𝜇)𝜙(𝜆)
obeys the estimate

|𝑔𝑗𝑝(𝜇, 𝜆)| 6 𝐶(𝜀)𝐶1(𝜀1)𝑒
[ℎ(− arg𝜇,𝐵𝑗)+𝜀]|𝜇|+[ℎ(− arg 𝜆,𝐾𝑝)+𝜀1]|𝜆| (10)

and satisfies the relation

𝑔𝑝𝑝(𝜇, 𝜇) = 𝐿(𝜇), 𝑔𝑗𝑝(𝜇, 𝜇) = 0, 𝑝 ̸= 𝑗, 𝑝, 𝑗 = 1, . . . , 𝑛. (11)
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4) Assume that 𝜓 (𝜇) is 𝑛×𝑛 square matrix, whose entries are entire functions of exponential
type, compact sets 𝑅𝑚

𝑗 are conjugate diagrams of the functions 𝜓𝑚
𝑗 and inclusions hold:

conv
𝑛⋃︁

𝑗=1

(︀
𝑅𝑚

𝑗 +𝐾𝑗
𝑝

)︀
⊂ 𝐺𝑝, (12)

𝑅𝑚
𝑗 ⊂

[︃
𝑛⋂︁

𝑝=1

(︀
𝐺𝑝

*− 𝐾𝑗
𝑝

)︀]︃
0

def
= 𝑂𝑗, 𝑝, 𝑗,𝑚 = 1, . . . , 𝑛. (13)

Then for each vector function 𝑓 in space (7) the identity holds:

𝜔(𝜇, 𝑓, 𝜓𝜙,𝐺, 𝑎) = det𝜓(𝜇)𝜔(𝜇, 𝑓, 𝜙,𝐺, 𝑎) + 𝜙*(𝜇)𝜔(𝜇, 𝑆 * 𝑓, 𝜓,𝑂, 0).

5) Let𝑀𝑝 be a compact convex polygon 𝐾𝑝 ⊂ int𝑀𝑝,𝑀𝑝 ⊂ 𝐺𝑝, arg 𝑧 = −𝛼𝑚,𝑝, 𝑚 = 1, . . . , 𝑝𝑝,
be perpendiculars to the sides of the polygon, and 𝑙𝑚,𝑝 be the rays arg 𝑧 = 𝛼𝑚,𝑝; here we assume
that the passage from the ray 𝑙𝑚,𝑝 to the ray 𝑙𝑚+1,𝑝 goes via the shortest way counterclockwise,
𝑝 = 1, . . . , 𝑛.

For an arbitrary vector function 𝑓 in space (7) the representation holds:

𝜔 (𝜇, 𝑓, 𝜙,𝐺, 𝑎) = 𝐿 (𝜇)𝐴 (𝜇) − 𝜙* (𝜇)𝐷 (𝜇) ,

where 𝐴 (𝜇) and 𝐷 (𝜇) are meromorphic vector functions, whose poles are located at the rays
𝑙𝑚,𝑝, 𝑚 = 1, . . . , 𝑝𝑝, 𝑝 = 1, . . . , 𝑛.
For each number 𝜀 > 0 there exists a number 𝑐(𝜀) > 0 such that outside the angles

𝑃𝑚,𝑝 : | arg (𝑧 − 𝛼𝑚,𝑝) | < 𝜀,

the inequality holds:

|𝐷𝑗 (𝜇) | < 𝑐(𝜀)

|𝜇|

𝑛∑︁
𝑝=1

max
𝑡∈𝑀𝑝

|𝑓𝑝 (𝑡) |, 𝑚 = 1, . . . , 𝑝𝑝, 𝑝, 𝑗 = 1, . . . , 𝑛.

Proof. Properties 1)–3) are proved by simple calculations.
4) Let us show that all three operators in this relations are continuous w.r.t. the variable 𝑓

in space (7).
Indeed, the second operator is continuous by property 1), the first is also continuous by this

property thanks to inclusions (12).
The third operator is a superposition of the other two, and the internal operator, the convo-

lution 𝑆*, maps space (7) continuously into the space
∏︀𝑛

𝑝=1𝐻 (𝑂𝑝) , while the external operator
is the product of the matrix 𝜙* by the vector function 𝜔 defined on this space.

As one can see easily, the intersection of finitely many open sets with simply-connected
components is the same set and this is why, according property 11) of the difference of sets, the
domains 𝑂𝑝, 𝑝 = 1, . . . , 𝑛, are also simply-connected and the continuity of the third operator
is implied by property 1).

As one can easily get by property 2), the needed identity is true for the vector functions
𝑓(𝑧) = (exp𝜆𝑧)𝑏, 𝑏 ∈ C𝑛 and the linear combinations of these functions are dense in space (7)
since the domains 𝐺𝑝, 𝑝 = 1, . . . , 𝑛, are simply-connected.

5) This statement is implied by Theorem 4.6.10 in monograph [16] and remarks on this
theorem.

2. Let us provide properties of the vector functions 𝑃 (𝑧, 𝑓, 𝜙, 𝐶).

Lemma 5. 1) In representation (8), the vector function 𝑃 is independent of the parameter
𝑎, is a linear continuous functional on the space

𝑛∏︁
𝑝=1

𝐻 (𝐾𝑝)
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w.r.t. the variable 𝑓 , while w.r.t. the variable 𝑧 it is a linear combination of elementary
solutions to system (1) with exponents inside the contour 𝐶.

2) Assume that the matrix 𝜓 (𝜇) satisfies Statement 4) of the previous lemma.
If det𝜓 (𝜇) ̸≡ 0 and the vector function 𝑓 satisfies system (1), then this vector function

satisfies the system with the characteristic matrix 𝜓 (𝜇)𝜙 (𝜇) and

𝑃 (𝑧, 𝑓, 𝜓𝜙,𝐶) = 𝑃 (𝑧, 𝑓, 𝜙, 𝐶)

for each contour 𝐶 not passing through the zeroes of the function det𝜓 (𝜇)𝜙 (𝜇).
3) Let 𝐺𝑝 ⊂ 𝑈𝑝 be convex domains 𝐺𝑝 ⊃ 𝐾𝑝 and for some number 𝑚, 1 6 𝑚 6 𝑛, the

inclusions hold:

𝐵𝑚
𝑗 +𝐾𝑗

𝑝 ⊂ 𝐺𝑝, 𝑝, 𝑗 = 1, . . . , 𝑛.

If a vector function 𝑓 from space (7) satisfies system (1), then 𝑚th component of this function
satisfies the convolution equation with the characteristic function 𝐿(𝜇) and

𝑃𝑚(𝑧, 𝑓, 𝜙, 𝐶) = 𝑃 (𝑧, 𝑓𝑚, 𝐿, 𝐶)

for each contour 𝐶 not passing the zeroes of the function 𝐿(𝜇), where 𝑃𝑚 is the 𝑚th component
of the vector function 𝑃 .

4) If a vector function 𝑓 is a linear combination of elementary solutions to system (1) with
exponents inside the contour 𝐶, then

𝑃 (𝑧, 𝑓, 𝜙, 𝐶) = 𝑓(𝑧).

Proof. 1) The independence of the parameter 𝑎 for a vector function 𝑓 of form (9) follows easily
property 3) of vector function 𝜔, while for other functions this is implied by the completeness
of the above vector functions.

We choose points 𝑎𝑝 in the compact sets 𝐾𝑝, 𝑝 = 1, . . . , 𝑛. In view of the representation for
vector function 𝜔 it is clear that it is sufficient to integrate in infinitesimal neighbourhoods of
the mentioned compact sets that implies the continuity of the vector function 𝑃 in the needed
topology.

Employing representation (8) and property 2) of the vector function 𝜔, we obtain easily
that the vector function 𝑃 is a linear combination of elementary solutions to system (1) with
exponents inside the contour 𝐶.

2) If the vector function 𝑓 in space (7) solves system (1), as one can confirm easily, the last
term in the identity in Statement 3) of the previous lemma is identically zero.

1) For a vector function 𝑓 of form (9) the independence of the parameter 𝑎 follows easily
property 3) of the vector function 𝜔.

Property 3) for the function (exp𝜆𝑧)𝑏, 𝑏 ∈ C𝑛 is implied by property 2) of the function 𝜔
and the desired statement follows the completeness of linear combinations of exponential vector
functions in the space

∏︀𝑛
𝑝=1𝐻(𝐾𝑝).

4) Let

𝑎𝑝 ∈ conv
𝑛⋃︁

𝑗=1

(︀
𝑅𝑗 +𝐾𝑗

𝑝

)︀
, 𝑎′𝑝 ∈ 𝐾𝑝, 𝑎′′𝑝 ∈ 𝑅𝑝.

This follows the previous property and property 12) of the interpolating function in monograph
[16].

4. Summation of series of elementary solutions

1. Here we make use of the following result.
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Lemma 6. Let 𝑔(𝜇, 𝜆), 𝐿(𝜇) be entire functions obeying the estimates

|𝑔(𝜇, 𝜆)| 6𝑐1(𝜀1)𝑐2(𝜀2) exp [𝐻(arg 𝜆) + 𝜀] |𝜆| + [ℎ(− arg 𝜇,𝐾) + 𝜀1] |𝜇|,
|𝐿(𝜇)| >𝑐2(𝜀2) exp [ℎ(− arg 𝜇,𝐵) − 𝜀2] |𝜇|, |𝜇| = 𝑟𝑝, (14)

where 𝑟𝑝 ↗ ∞, 𝐻(𝜃) is the support function of some compact set, 𝐵, 𝐾 are convex compact
sets. Assume that 𝑔(𝜇, 𝜇) = 𝛼𝐿(𝜇), 𝛼 ∈ C. We define the function Φ𝑝(𝜆, 𝑧) by the formula

Φ𝑝(𝜆, 𝑧) =
1

2𝜋𝑝

∫︁
|𝑧|=𝑟𝑝

𝑔(𝜆, 𝜇) − 𝛼𝐿(𝜇)

(𝜆− 𝜇)𝐿(𝜇)
𝑒𝜇𝑧𝑑𝜇− 𝛼𝑒𝜆𝑧.

Then for a point 𝑧 ∈ (int𝐾) *− 𝐵 the estimate

|Φ𝑝(𝜆, 𝑧)| 6 𝑐(𝜀)𝐴(𝜀1)𝑟𝑘𝑒
(𝛿−2𝜀1)𝑟𝑝𝑒[𝐻(arg 𝜆)+𝜀]|𝜆|

holds, where 𝛿 = 𝜌(𝑧, 𝜕(𝐾 *− 𝐵)).

This result can be obtained by complicating a little the proof of a similar lemma in [16].

Theorem 1. Assume that the function 𝐿(𝜇) satisfies the estimate (14) and

𝐶𝑗 = {|𝑧| = 𝑟𝑗} , 𝑗 ∈ N.

Then for each vector function 𝑓 ∈
∏︀𝑛

𝑝=1𝐻(𝐵𝑝) the relation

lim
𝑗→∞

𝑃 (𝑧, 𝑓, 𝜙, 𝐶𝑗) = 𝑓(𝑧) (15)

holds in the topology of the space
∏︀𝑛

𝑚=1𝐻((int𝐵) *− 𝐵𝑚).
If 𝑓 ∈

∏︀𝑛
𝑝=1𝐻(𝑈𝑝), where domains 𝑈𝑝 contain compact sets 𝐵𝑝, 𝑝 = 1, . . . , 𝑛, and the

vector function 𝑓 satisfies system (1), then relation (15) holds true in the topology of the space∏︀𝑛
𝑚=1𝐻((𝑈,𝜙,𝐵)𝑚).

Proof. By the linearity of the operator 𝑃 , it is sufficient to prove the first part of the theorem
for the functions with only one non-zero component, say, the first component.

Let 𝑓(𝑧) = (exp(𝜆𝑧), 0, . . . , 0), 1 6 𝑚 6 𝑛. By the second property of the function 𝜔,

𝑃𝑚(𝑧, 𝑓, 𝜙, 𝐶𝑝) =
1

2𝜋𝑝

∫︁
𝐶𝑝

𝑔𝑚1 (𝜇, 𝜆) − 𝛿𝑚1𝐿(𝜇)

(𝜆− 𝜇)𝐿(𝜇)
𝑒𝜇𝑧𝑑𝜇.

The function 𝑔𝑚1 (𝜇, 𝜆) satisfies estimate (10) and relation (11), and this is why by Lemma 17
and Lemma 5.1 in book [11] we obtain the needed statement.

Assume now that the vector function

𝑓 ∈
𝑛∏︁

𝑝=1

𝐻(𝑈𝑝)

satisfies system (1) and 𝐵1, . . . , 𝐵𝑛 is a set of convex compact sets satisfying inclusions (2).
We can assume that the function 𝐿(𝜇) has zeroes between neighbouring circumferences

{|𝜇| = 𝑟𝑝} and {|𝜇| = 𝑟𝑝+1}. Arguing as in monograph [17], we find entire functions of ex-
ponential type 𝜓𝑗(𝜇) with the growth indicator ℎ(−𝜃, 𝐵𝑗), 𝑗 = 1, . . . , 𝑛 such that for |𝜇| = 𝑟𝑝
the estimate

|𝜓𝑗(𝜇)| > 𝑐(𝜀) exp
{︀[︀
ℎ(− arg 𝜇,𝐵𝑗) − 𝜀

]︀
|𝜇|
}︀

holds.
We denote by 𝜓(𝜇) the diagonal matrix with entries 𝜓(𝜇). By assumptions for compact sets

𝐵𝑗 and property 4) of the function 𝑃 we conclude:

𝑃 (𝑧, 𝑓, 𝜙, 𝐶𝑝) = 𝑃 (𝑧, 𝑓, 𝜓𝜙,𝐶𝑝).
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We apply the proven part of the theorem to the vector function 𝑓 and the matrix 𝜓(𝜇)𝜙(𝜇).
The compact set 𝐵 is replaced by the compact set 𝐵 +

∑︀𝑚
𝑗=1𝐵

𝑗, while the compact sets 𝐾𝑗
𝑝

are replaced by 𝐾𝑗
𝑝 +

∑︀
�̸�=𝑝𝐵

𝑚. We have the following relations:

int

(︃
𝐵 +

𝑚∑︁
𝑗=1

𝐵𝑗

)︃
*−

𝑛⋃︁
𝑝=1

(︃
𝐾𝑚

𝑝 +
∑︁
�̸�=𝑝

𝐵𝑚

)︃
=

𝑛⋂︁
𝑝=1

[︃
int

(︃
𝐵 +

𝑚∑︁
𝑗=1

𝐵𝑗

)︃
*−

(︃
𝐾𝑚

𝑝 +
∑︁
𝑚 ̸=𝑝

𝐵𝑚

)︃]︃

⊃
𝑛⋂︁

𝑝=1

[︃(︃
𝐵 + int𝐵𝑝 +

𝑚∑︁
𝑗=1

𝐵𝑗

)︃
*−

(︃
𝐾𝑚

𝑝 +
∑︁
𝑚 ̸=𝑝

𝐵𝑚

)︃]︃

=
𝑛⋂︁

𝑝=1

[︀
(𝐵 + int𝐵𝑝) *− 𝐾𝑚

𝑝

]︀
,

and as one can see easily, for each sets 𝐴1 and 𝐴2 the inclusion holds:

int (𝐴1 + 𝐴2) ⊃ 𝐴1 + int𝐴2.

Thus, relation (15) holds in the needed topology. The proof is complete.

Remark 1. The convergence domain of the sequence 𝑃 (𝑧, 𝑓, 𝜙, 𝐶𝑝) is maximal if the identi-
ties

𝐵𝑝 +𝐾𝑝 = 𝐵, 𝑝 = 1, . . . , 𝑛

hold. In this case for each vector function 𝑓 ∈
∏︀𝑛

𝑝=1𝐻(𝐵𝑝) relation (15) holds in the topology of

the space
∏︀𝑛

𝑝=1𝐻(int𝐵𝑝). In the space
∏︀𝑛

𝑝=1𝐻(𝐵𝑝), linear combinations of elementary solutions

to system (1) are not complete, since as one can show easily, the limiting vector functions of
such combinations satisfy this system.

Proposition 1. Suppose that under the assumptions of Theorem 1 the identities 𝐵𝑝 +𝐾𝑝 =
𝐵, 𝑈𝑝 = 𝐵𝑝 + 𝑂 hold, where 𝑂 is the domain containing the origin and a vector function
𝑓 ∈

∏︀𝑛
𝑝=1𝐻(𝑈𝑝) satisfies system (1). Then sequence (15) converges in the topology of the space∏︀𝑛

𝑝=1𝐻(𝑈𝑝).

Proof. Indeed, the first statement in Lemma 2 and first two statements in Lemma 3 imply the
identity

(𝑈,𝜙,𝐵) = 𝑈𝑝

and the desired statement is implied by Theorem 1.

Remark 2. Conditions 𝐵𝑝 +𝐾𝑝 = 𝐵, 𝑝 = 1, . . . , 𝑛, hold if
𝑛∑︁

𝑝=1

𝐵𝑝 = 𝐵.

This is indeed so if 𝜙𝑝
𝑝(𝜇) are functions of completely regular growth and int𝐵𝑝

𝑝 ⊃ 𝐵𝑗
𝑝, 𝑝, 𝑗 =

1, . . . , 𝑛, 𝑝 ̸= 𝑗.

2. Let us provide the examples showing the sharpness of the theorem.
We let

𝜙1
1(𝜇) =

sin𝜇 sin 𝑖𝜇

𝜇2
, 𝜙2

1(𝜇) = cos𝜇 cos 𝑖𝜇.

The conjugate diagram of these functions is the square 𝑀 with vertices at the points ±1 ± 𝑖.
Let 𝑈 be an open square with the vertices at the points ±2± 2𝑖. As one can show easily, the

relation

lim
𝑗→∞

1

2𝜋𝑝

∫︁
|𝜇|=(𝑗+ 1

4
)𝜋

𝑒𝑧𝜇𝑑𝜇

𝜙1
1(𝜇)𝜙2

1(𝜇)
= 0
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holds for the points 𝑧 ∈ 𝑈 . Applying the residues, for the same 𝑧 and some natural numbers
𝑎1𝑗 , 𝑎

2
𝑗 , 𝑏

1
𝑗 , 𝑏

2
𝑗 ∈ C, 𝑗 = 1, 2, . . . , we obtain

∞∑︁
𝑗=1

(𝑎1𝑗𝑒
𝜆𝑗𝑧 + 𝑎2𝑗𝑒

−𝜆𝑗𝑧) +
∞∑︁
𝑗=1

(𝑏1𝑗𝑒
𝜇𝑗𝑧 + 𝑏2𝑗𝑒

−𝜇𝑗𝑧) = 0, (16)

where 𝜆𝑗 are zero of the function 𝜙1
1(𝜇), 𝜇𝑗 are the zeroes of the function 𝜙2

1(𝜇). We denote the
sum of the first series by 𝑓1(𝑧). Since for the exponentials in this series a biortogonal system
exists [11], this function is not identically zero.

For an arbitrary entire function 𝐿(𝜇) of exponential type with conjugate diagram 𝐵, 𝐵 ⊂ 𝑈 ,
there exist two functions of exponential type 𝜙1

2(𝜇) and 𝜙2
2(𝜇), whose conjugate diagrams are

contained in the square 𝑀 such that

𝐿(𝜇) = 𝜙1
1(𝜇)𝜙2

2(𝜇) − 𝜙2
1(𝜇)𝜙1

2(𝜇),

see [18].
Let 𝑆𝑘

𝑝 ∈ 𝐻*(C) are linear continuous functionals, whose Laplace transforms coincide with

the functions 𝜙𝑘
𝑝, 𝑝, 𝑘 = 1, 2. Relation (16) implies the identities

𝑆1
1 * 𝑓1 = 𝑆2

1 * 𝑓1 = 0.

Letting 𝑈𝑝 = 𝑈 , 𝑝 = 1, 2, we obtain the system of convolution equations with the character-
istic matrix 𝜙, for which

det𝜙(𝜇) = 𝐿(𝜇), 𝐵1 = 𝑀, 𝐵2 ⊂𝑀, 𝐾1 = 𝐵2, 𝐾2 = 𝐵1,

and the function 𝑓 = (𝑓1, 0) ∈ 𝐻(𝑈1) ×𝐻(𝑈2) satisfies this system.

Example 1. Assume that 𝐵 ⊂ 𝑈 , the function 𝐿(𝜇) has a completely regular growth and

⟨𝑇, 𝑓1⟩ ≠ 0,

where 𝑇 ∈ 𝐻*(C) is a linear continuous functional, whose Laplace transform coincides with
the function 𝐿(𝜇). Estimate (14) holds for some sequence of numbers {𝑟𝑝 ∈ R : 𝑝 ∈ N}. By
Lemma 3 we have

(𝑈,𝜙,𝐵)1 =
2⋂︁

𝑗=1

{︃[︃
𝐵 +

2⋂︁
𝑚=1

(︀
𝑈 *− 𝐵𝑗

𝑚

)︀]︃
*− 𝐾1

𝑗

}︃
= (𝐵 + int𝑀) *−𝑀 = int𝐵,

and according Theorem 1, the sequence 𝑃1(𝑧, 𝑓, 𝜙, 𝐶𝑘) for some system of circumferences 𝐶𝑘,
𝑘 ∈ N, converges to a function 𝑓1(𝑧) in the topology of the space 𝐻(int𝐵). In the space 𝐻(𝐵)
this function can not be even approximated by linear combinations of elementary solutions to
our system since the functional 𝑇 vanishes at them (the fifth property of the function 𝑃 ).

For the next example we let𝐵 = 𝑈 . If the function 𝐿(𝜇) satisfies estimate (14), by Theorem 1,
for each vector function 𝑔 ∈

∏︀2
𝑝=1𝐻(𝑈𝑝) satisfying system (1), the sequence 𝑃 (𝑧, 𝑔, 𝜙, 𝐶𝑘)

converges to this vector function in the topology of the space
∏︀2

𝑝=1𝐻(𝑈𝑝). Without such
estimate, the system of elementary solutions can be incomplete even in the class of all solutions.
This is shown in the next example.

Example 2. As the function 𝐿(𝜇), we choose an entire function with a conjugate diagram
𝐵, whose zeroes are part of the zeroes of a first order function of minimal type. The construction
of such functions was provided in monograph [16]. In this case the linear combinations of the
first components of the elementary solutions to our system do not approximate the function
𝑓1(𝑧) in the topology of the space 𝐻(𝑉 ) for each domain 𝑉 ⊂ 𝑈 , since otherwise the function
𝑓1(𝑧) would have satisfied the convolution equation with a characteristic function of minimal
type. Then the representation of the function 𝑓1(𝑧) would have been implied that the numbers
𝜆𝑘, 𝑘 ∈ N, are zeroes of this function of minimal type, while this is impossible.
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These examples show that opposite to the scalar case, we can not obtain the results on the
completeness of elementary solutions to system (1) only in terms of conjugate diagrams of entire
exponential type related with the system but one also needs some conditions like lower bounds.

For the scalar case, the uniqueness theorem holds: if the function 𝐿(𝜇) has infinitely many
zeroes and 𝑃 (𝑧, 𝑔, 𝐿, 𝐶) = 0 for a function 𝑔 holomorphic in the neighbourhood of the conjugate
diagram of the function 𝐿(𝜇) and each contour 𝐶 not passing through the zeroes of this function,
then 𝑔 ≡ 0 [16]. In the vector case this is false even for the solutions to systems (1).

Example 3. We let 𝐿 ≡ 1. In this case it is obvious that the function 𝑓(𝑧) = (𝑓1(𝑧), 0)
satisfies identity 𝑃 (𝑧, 𝑔, 𝐿, 𝐶) = 0 for each contour 𝐶. If 𝜓1(𝜇), 𝜓2(𝜇) are entire functions of
exponential type with infinitely many zeroes and with conjugate diagrams lying in the domain
int𝑀 , then the vector function 𝑓(𝑧) satisfies the system of convolution equations with the
characteristic matrix 𝜓(𝜇)𝜙(𝜇), whose determinant has infinitely many zeroes. But by property
4) of the function 𝑃 , we have 𝑃 (𝑧, 𝑓, 𝜓𝜙,𝐶) = 0 for each contour 𝐶 not passing through the
zeroes of the function 𝜓1(𝜇)𝜓2(𝜇).

Let us compare Theorem 1 with Theorem 4.4 in [10]), which is the main result of the series
of papers [8]–[10] for a square non-degenerate system of convolution equations.

Example 4. We consider the system of convolution equations in the space 𝐻(𝑈) × 𝐻(𝑈)
with the characteristic matrix

𝜙(𝜇) =

(︂
𝑒𝜀𝜇𝜙1

1(𝜇) 0
𝑒−𝜀𝜇𝜙1

2(𝜇) 𝑒−𝜀𝜇𝜙1
2(𝜇)

)︂
,

where 0 < 𝜀 < 1. The vector functions (𝑓1, 0) and (𝑓1,−𝑓1) obviously solve the homogeneous
system and as one can show easily,

𝐾1
1 = 𝐵2

2 = 𝑀 + 𝜀, 𝐾1
2 = 𝐵2

1 = ∅, 𝐾2
1 = 𝐵1

2 = 𝐾2
2 = 𝐵1

1 = 𝑀 − 𝜀,

𝐿(𝜇) = 𝜙1
1(𝜇)𝜙2

1(𝜇), 𝐵 = 2𝑀, (𝑈,𝜙,𝐵) = (𝑈,𝑈),

and by Theorem 1, for each vector function 𝑔 ∈ 𝐻(𝑈) ×𝐻(𝑈) solving the considered homoge-
neous system, the sequence 𝑃 (𝑧, 𝑔, 𝜙, 𝐶𝑘) for some sequence of circumferences converges to this
vector function in the topology of the space 𝐻(𝑈) ×𝐻(𝑈).

Assume that our system admits (𝜔, 𝜔′)-estimate along the system of circumferences

Γ𝑗 = {𝑧 : |𝑧| = 𝑟𝑗} , 𝑟𝑗 → ∞,

where 𝜔 = (𝜔1, 𝜔2) is a pair of convex domains in the complex plane and 𝜔′ ⊂ C is a compact
set [10]. This means that inequalities hold:

−𝜀Re 𝜃 − ln
⃒⃒
𝜙1
1(𝑟𝑗𝑒

𝑖𝜃)
⃒⃒
6 ℎ(−𝜃, 𝜔′)𝑟𝑗 − ℎ(−𝜃, 𝜔1)𝑟𝑗 + 𝜀𝑗𝑟𝑗,

𝜀Re 𝜃 − ln
⃒⃒
𝜙1
2(𝑟𝑗𝑒

𝑖𝜃)
⃒⃒
6 ℎ(−𝜃, 𝜔′)𝑟𝑗 − ℎ(−𝜃, 𝜔2)𝑟𝑗 + 𝜀𝑗𝑟𝑗,

where 𝜃 ∈ [0, 2𝜋), 𝑗 ∈ N, and the sequence of positive numbers 𝜀𝑗, 𝑗 ∈ N, tends to zero.
But

ln
⃒⃒
𝜙1
1(𝑟𝑒

𝑖𝜃)
⃒⃒
6 ℎ(−𝜃,𝑀)𝑟, 𝑟 > 1, ln

⃒⃒
𝜙2
1(𝑟𝑒

𝑖𝜃)
⃒⃒
6 ℎ(−𝜃,𝑀)𝑟, 𝑟 > 0, 𝜃 ∈ [0, 2𝜋),

and by the above inequalities we obtain

ℎ(−𝜃, 𝜔1) 6 ℎ(−𝜃,𝑀) + ℎ(−𝜃, 𝜔′) + 𝜀Re 𝜃 ℎ(−𝜃, 𝜔2) 6 ℎ(−𝜃,𝑀) + ℎ(−𝜃, 𝜔′) − 𝜀Re 𝜃,

where 𝜃 ∈ [0, 2𝜋), and this yields

𝜔1 ⊂𝑀 + 𝜔′ + 𝜀, 𝜔2 ⊂𝑀 + 𝜔′ − 𝜀. (17)

In our case, the set 𝐷 in Theorem 4.4 coincides with the compact set (𝑀 + [−𝜀, 𝜀],𝑀 − 𝜀)
and 𝐺′ = (𝑈,𝑈).
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Theorem 4.4 ensures the convergence of the series of elementary solutions for an arbitrary
solution to the homogeneous system in the domain (Ω1,Ω2), where

Ω1 = [𝑈 *− (𝑀 + [−𝜀, 𝜀] + 𝜔′)] + 𝜔1, Ω2 = [𝑈 *− (𝑀 − 𝜀+ 𝜔′)] + 𝜔2.

Employing inclusions (17) and properties 3), 4), 10) of Lemma 2, it is easy to obtain the
relation (Ω1 ⊂ 𝑈 *− [0, 2𝜀]. The latter set is contained in the domain 𝑈 and does not coincide
with it.

Thus, Theorem 1 is not implied by Theorem 4.4 in [10].
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