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BASIS IN INVARIANT SUBSPACE

OF ANALYTICAL FUNCTIONS

O.A. KRIVOSHEEVA

Abstract. In this work we study the problem on representing the functions in an invari-
ant subspace of analytic functions on a convex domain in the complex plane. We obtain
a sufficient condition for the existence of a basis in the invariant subspace consisting of
linear combinations of eigenfunctions and associated functions of differentiation operator
in this subspace. The linear combinations are constructed by the system of exponential
monomials, whose exponents are partitioned into relatively small groups. We apply the
method employing the Leontiev interpolating function. At that, we provide a complete
description of the space of the coefficients of the series representing the functions in the
invariant subspace. We also find necessary conditions for representing functions in an ar-
bitrary invariant subspace admitting the spectral synthesis in an arbitrary convex domain.
We employ the method of constructing special series of exponential polynomials developed
by the author.
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exponentials
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1. Introduction

Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a sequence of different complex numbers 𝜆𝑘 and of their multiplicities
𝑛𝑘. We assume that |𝜆𝑘| increases and |𝜆𝑘| → ∞ as 𝑘 → ∞.

Let 𝑊 be a nontrivial closed subspace in the space 𝐻(𝐷) of functions analytic in a convex
domain 𝐷 ⊂ C with the topology of uniform convergence on compact sets in 𝐷 invariant w.r.t.
the differentiation operator. Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a multiple spectrum of this operator in 𝑊
and ℰ(Λ) = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1

𝑘=1,𝑛=0 be the family of its eigenfunctions and adjoint functions in
𝑊 .

The work is devoted to the existence of the basis in an invariant subspace formed by linear
combinations of the functions in ℰ(Λ).

The main problem in the theory of invariant subspaces is the problem on representing an
arbitrary function in 𝑊 be means of the elements in the system ℰ(Λ). Subject to the character
of such representation, the problems splits into several problems. The weakest version of the
representation leads one to one of the most complicated problems. This is the spectral synthesis,
that is, the approximation of an arbitrary function in 𝑊 by linear combinations of the elements
in ℰ(Λ). The criterion of the admissibility of the spectral synthesis for an arbitrary invariant
subspace in a convex domain was obtained by I.F. Krasichkov-Ternovskii in work [1]. In work
[2] this result was applied for solving the problem on the spectral synthesis in some particular
cases. For instance, it was proved that each space of solutions to a homogeneous convolution
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equation in a convex domain admits a spectral synthesis. Moreover, we establish that an
invariant subspace in an unbounded convex domain always admits the spectral synthesis.

We note that invariant subspaces 𝑊 ⊂ 𝐻(𝐷) admitting the spectral synthesis coincide with
subspaces 𝑊 (Λ, 𝐷) being the closures in 𝐻(𝐷) of the linear span of the system ℰ(Λ).

If 𝑊 admits the spectral synthesis, a natural desire is to “improve” the approximation. Of
course, the most desirable representation for each function 𝑔 ∈ 𝑊 is as a “pure” series

𝑔(𝑧) =

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑧
𝑛 exp(𝜆𝑘𝑧), 𝑧 ∈ 𝐷, (1.1)

converging uniformly on compact sets in 𝐷. This problem is called the fundamental principle
problem.

By means of the Laplace transform, the fundamental principle problem is reduced to the
dual problem on multiple interpolation in the space of entire functions of exponential type.
The studies of both problems were made first independently and they have a rich story. The
main milestones were reflected in works [3] and [4]. In [4] the fundamental principle problem
was solved for invariant subspaces admitting the spectral synthesis as well as the interpolation
problem for an arbitrary convex domain 𝐷 ⊂ C under the only restriction (𝑚𝐷(Λ) = 0):
𝑛𝑘(𝑗)/|𝜆𝑘(𝑗)| → 0, 𝑗 → ∞ for each subsequence {𝜆𝑘(𝑗)} accumulating the direction, where the
support function 𝐻𝐷 of the domain 𝐷 is bounded, that is, 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝜉 and 𝐻𝐷(𝜉) < +∞).
In work [5], the authors succeeded to remove this restriction in the case of a bounded domain.
Thus, there was found a criterion for the fundamental principle for an invariant subspace in a
bounded convex domain 𝐷. It consists of two conditions. The first concerns local distribution of
the spectral points and means certain “discreteness” (the concentration index satisfies 𝑆Λ = 0;
this index is introduced in the next section). The second condition is responsible for the global
distribution of 𝜆𝑘.

If the condition 𝑆Λ = 0 fails, it is impossible to represent all functions 𝑔 ∈ 𝑊 as series (1.1).
This is why, in a natural way, there rises the problem on representing 𝑔 as series (1.1) with
brackets:

𝑔(𝑧) =
∞∑︁
𝑚=1

(︃ ∑︁
𝜆𝑘∈𝑈𝑚

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑘,𝑛𝑧
𝑛 exp(𝜆𝑘𝑧)

)︃
. (1.2)

The monograph by A.F. Leontiev [6] was devoted to studying the mentioned problems. Here a
lot of results both by the author himself and its predecessors were presented.

The aim to improve representation (1.2) led us to the problem on a basis in an invariant
subspace, which can be formulated as follows. Under what conditions we can partition 𝑈 =
{𝑈𝑚}∞𝑚=1 the sequence Λ into the groups 𝑈𝑚 and choose fixed linear combinations 𝑒𝑚,𝑗, 𝑗 =
1, 𝑁𝑚 of the elements ℰ(Λ) in these groups so that the family of exponential polynomials
ℰ(Λ, 𝑈) = {𝑒𝑚,𝑗} becomes a basis in 𝑊 . If such basis exists, a series of issues arises. How to
make the partition 𝑈 and is it possible to describe all admissible partitions? How small the
diameter of the groups 𝑈𝑚 can be? Finally, how to describe the space of the coefficients of
the series over the system ℰ(Λ, 𝑈)? In the case of a bounded convex domain 𝐷, the answers
to these questions were obtained in works [7]–[11]. In particular, there was found the criterion
of the existence of the basis in the subspace 𝑊 constructed by the partition 𝑈 into relatively
small groups 𝑈𝑚, namely, into the groups whose diameters and the number of the points are
infinitesimal as 𝑚→ ∞ in comparison with the absolute values of these points.

Thus, in the case of a bounded convex domain, the study of representation of the functions
in an invariant space can be regarded as complete. Concerning unbounded domains, here only
two particular cases were studied when 𝐷 is a plane or a half-plane. The complete solution
of the representation problem for invariant subspaces of entire functions was obtained in work
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[12]. The invariant subspaces in the half-plane we mostly studied in the case of a simple positive
spectrum (see [6], [13]) and almost real spectrum [14].

We observe that in the most part of the works, see, for instance, [15], [16], the representation
problem in the both cases of a single or several variables is reduced to dual problems of special
interpolation in the spaces of entire functions of exponential type. The study of such problems
is a rather complicated process. At that, the duality of the representation problem and interpo-
lation problem was established in [4] only under an additional restriction for the multiplicities
of the points 𝜆𝑘: 𝑚𝐷(Λ) = 0. And the issue whether the duality is true without this restriction
is still open. And if the duality is still true, it is completely unclear how to solve the corre-
sponding interpolation problem in this case. Because of this, in work [14], another method was
proposed for solving the representation problem allowing one to avoid solving the interpolation
problem. This method employs the Leontiev interpolating function, see [6], [17]. Thanks to
this, for the invariant subspaces with almost real spectrum, the representation problem was
solved successfully in the general case without additional restriction for the multiplicities of the
points in the spectrum.

The present work is devoted to studying necessary and sufficient conditions of the existence
of a basis in the invariant subspace constructed by relatively small groups of the points in the
spectrum.

In the second section we obtain sufficient conditions for the existence of a basis for an arbitrary
convex domain (see Theorem 2.2); the domain can be also unbounded. As in work [14], we apply
the method employing the Leontiev interpolating function. At that, we provide a complete
description of the space of the coefficients of the series representing the functions in the invariant
subspace.

In the third section we obtain necessary conditions of the existence of a basis for an arbitrary
convex domain and an arbitrary invariant subspace, see Theorem 3.1. We employ the method
of constructing special series of exponential polynomials developed in [18].

2. Sufficient conditions

First of all we recall some notions and mention some facts related to the Leontiev interpolating
function.

Let 𝐵(𝑧, 𝑟), 𝑆(𝑧, 𝑟) be an open ball and a circumference of radius 𝑟 centered at the point 𝑧.
By 𝑛(𝑧, 𝑟,Λ) we denote the number of the points 𝜆𝑘 counting their multiplicities 𝑛𝑘 located in

the closed ball 𝐵(𝑧, 𝑟), while by �̄�(Λ) we denote the upper density of the sequence Λ:

�̄�(Λ) = lim
𝑟→+∞

𝑛(0, 𝑟,Λ)

𝑟
.

If 𝑀 is a convex set in C, by the symbol 𝐻𝑀(𝜆) we denote the support function of the set 𝑀
(more precisely, of the complex conjugate set):

𝐻𝑀(𝜆) = sup
𝑤∈𝑀

Re(𝜆𝑤), 𝜆 ∈ C.

The function 𝐻𝑀 is convex and positively homogeneous of order one, that is, 𝑡𝐻𝑀(𝜆) = 𝐻𝑀(𝑡𝜆),
𝑡 > 0.

Let 𝑓 be an entire function. We say that 𝑓 has an exponential type if for some 𝐴,𝐵 > 0 the
inequality holds: ln |𝑓(𝜆)| 6 𝐴+𝐵|𝜆|, 𝜆 ∈ C. The indicator of 𝑓 is the funtion

ℎ𝑓 (𝜆) = lim
𝑡→∞

ln |𝑓(𝑡𝜆)|
𝑡

, 𝜆 ∈ C.

It is convex and positively homogeneous of order one, that is, it coincides with the support
function of some compact set called the indicator diagram of 𝑓 , see, for instance, [19, Ch. I,
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Sect. 5, Thm. 5.4]. The compact set 𝐿 complex conjugate to the indicator diagram is called
the complex diagram of the function 𝑓 . Thus,

ℎ𝑓 (𝜆) = 𝐻𝐿(𝜆), 𝜆 ∈ C.
Let 𝐷 be a convex domain in C and 𝐻*(𝐷) stands for the strongly dual space of 𝐻(𝐷) called

the space of analytic functionals. Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 and ℰ(Λ) = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1
𝑘=1,𝑛=0. By

𝑊 (Λ, 𝐷) we denote the closure of the linear span of the system ℰ(Λ) in the space 𝐻(𝐷).
Let �̂�(𝜆) denote the Laplace transform of the functional 𝜇 ∈ 𝐻*(𝐷): �̂�(𝜆) = 𝜇(𝑒𝜆𝑧). The

function �̂�(𝜆) is entire and has an exponential type. It is known, see, for instance, [20, Ch.
III, Sect. 12, Thm. 12.3] that the Laplace transform makes an algebraic and topological
isomorphism between 𝐻*(𝐷) and 𝑃𝐷, where 𝑃𝐷 is the inductive limit of Banach spaces

𝑃𝑠 = {𝑓 ∈ 𝐻(C) : ‖𝑓‖𝑠 = sup
𝜆∈C

|𝑓(𝜆)| exp(−𝐻𝐾𝑠(𝜆)) <∞}.

Here 𝐾(𝐷) = {𝐾𝑠}∞𝑠=1 is a sequence of convex compact sets exhausting 𝐷, that is, 𝐾𝑠 ⊂
int𝐾𝑠+1, 𝑠 > 1, (int stands for the interior of a set) and 𝐷 = ∪∞

𝑝=1𝐾𝑝. The set 𝑃𝐷 is formed by
the entire functions of exponential type 𝑓 whose conjugare diagrams are located in the domain
𝐷 (that is, ℎ𝑓 (𝜆) < 𝐻𝐷(𝜆), 𝜆 ̸= 0).

Assume that the system ℰ(Λ) is incomplete in 𝐻(𝐷). By the Hahn-Banach theorem, the
latter is equivalent to the existence of a non-zero functional 𝜇 ∈ 𝐻*(𝐷) vanishing on the
functions in the system ℰ(Λ), that is, to the existence of the function 𝑓 ∈ 𝑃𝐷 (𝑓 = �̂�) vanishing
at the points 𝜆𝑘 with the multiplicities at least 𝑛𝑘. Since 𝑓 has an exponential type, according
the well-known Lindelöf theorem, see, for instance, [21, Ch. I, Sect. 11, Thm. 15], in this case
the upper density �̄�(Λ) is finite.

Assume that there exists an entire function of exponential type 𝑓 ∈ 𝑃𝐷 vanishing at the
points 𝜆𝑘 with the multiplicities at least 𝑛𝑘. Then in the space 𝐻*(𝐷), there exists [17, Ch.
IV, Sect. 1, Subsect. 2] a system of functional biorthogonal to ℰ(Λ) Ξ(Λ, 𝐷) = {𝜇𝑘,𝑛}∞,𝑛𝑘−1

𝑘=1,𝑛=0:

𝜇𝑘,𝑛(𝑧𝑙 exp(𝜆𝑗𝑧)) = 1 if 𝑗 = 𝑘, 𝑙 = 𝑛 and 𝜇𝑘,𝑛(𝑧𝑙 exp(𝜆𝑗𝑧)) = 0 otherwise. It is constructed by

means of the function 𝑓 and is a part of a system Ξ(Λ̃, 𝐷) biorthogonal to ℰ(Λ̃), where Λ̃ is
the multiple zero set of 𝑓 . Assume that series (1.2) converges uniformly on compact subsets
of the domain 𝐷. Then, employing the continuity and linearity of the functionals 𝜇𝑘,𝑛, we
obtain 𝑑𝑘,𝑛 = 𝜇𝑘,𝑛(𝑔), 𝑘 > 1, 𝑛 = 0, 𝑛𝑘 − 1. Thus, if there exists the aforementioned function
𝑓 , then the representation by the series (1.2) possesses the uniqueness property. At that, the
coefficients of the representation are calculated by means of the biorthogonal system of the
functionals.

Let 𝐷 be a convex domain, 𝑔 ∈ 𝐻(𝐷), 𝛼 ∈ C, and 𝑓 be an entire function of exponential
type, whose conjugate diagram 𝐾 contains the origin and its shift 𝐾(𝛼) = 𝐾 + 𝛼 lies in 𝐷
(𝐾(𝛼) is the conjugate diagram 𝑓(𝜆) exp(𝛼𝜆)). An interpolating function for 𝑔 is called, see [6,
Ch. I, Sect. 2, Subsect. 1]:

𝜔𝑓 (𝜆, 𝛼, 𝑔) = exp(−𝛼𝜆)
1

2𝜋𝑖

∫︁
Ω

𝛾(𝜉)

⎛⎝ 𝜉∫︁
0

𝑔(𝜉 + 𝛼− 𝜂) exp(𝜆𝜂)𝑑𝜂

⎞⎠ 𝑑𝜉,

where Ω is a contour (a simple closed continuous rectifiable curve) enveloping the compact set
𝐾 and lying in the domain 𝐷 − 𝛼, 𝛾(𝜉) is the function associated with 𝑓 in the Borel sense,
see [19, Ch. I, Sect. 5]. We mention some properties of 𝜔𝑓 (𝜆, 𝛼, 𝑔) and Ξ(Λ, 𝐷).

1. [6, Ch. I, Sect. 2, Thm. 1.2.5]. Let Ω be a boundary of a convex neighbourhood of the
compact set 𝐾 and Ω(𝛼) = Ω + 𝛼 ⊂ 𝐷. For each 𝜀 > 0 there exists 𝐴(𝜀) > 0 such that

|𝜔𝑓 (𝜆, 𝛼, 𝑔)| 6 𝐴(𝜀) exp(ℎ𝑓 (𝜆) + 𝜀|𝜆| − Re(𝛼𝜆)) max
𝑧∈Ω(𝛼)

|𝑔(𝑧)|, 𝜆 ∈ C. (2.1)
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2. Let 𝑔 ∈ 𝑊 (Λ, 𝐷) and 𝑑𝑘,𝑛 = 𝜇𝑘,𝑛(𝑔), where 𝜇𝑘,𝑛 ∈ Ξ(Λ, 𝐷), 𝑘 > 1, 𝑛 = 0, 𝑛𝑘 − 1. Then

1

2𝜋𝑖

∫︁
𝑆𝑘

𝜔𝑓 (𝜆, 𝛼, 𝑔)

𝑓(𝜆)
exp(𝜆𝑧)𝑑𝜆 =

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑘,𝑛𝑧
𝑛 exp(𝜆𝑘𝑧), 𝑘 > 1, (2.2)

where 𝑆𝑘 is a circumference inside which there are no zeroes of 𝑓 different from 𝜆𝑘. Moreover,
if 𝜆′ is a zero of the function 𝑓 not being among 𝜆𝑘, 𝑘 > 1, and 𝑆 ′ is circumference, inside
which 𝜆′ is located and there are no other zeroes of the function 𝑓 , then

1

2𝜋𝑖

∫︁
𝑆′

𝜔𝑓 (𝜆, 𝛼, 𝑔)

𝑓(𝜆)
exp(𝜆𝑧)𝑑𝜆 = 0. (2.3)

Indeed, let 𝑔 be the limit of the sequence

𝑃𝑙(𝑧) =
𝑙∑︁

𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑙𝑘,𝑛𝑧
𝑛 exp(𝜆𝑘𝑧), 𝑙 > 1,

converging uniformly on compact sets in 𝐷. Since 𝑔 ∈ 𝑊 (Λ, 𝐷), such sequence exists provided
we suppose that some 𝑑𝑙𝑘,𝑛 vanish. By Theorem 1.2.4 in [6, Ch. I, Sect. 2], we have:

1

2𝜋𝑖

∫︁
𝑆𝑘

𝜔𝑓 (𝜆, 𝛼, 𝑃𝑙)

𝑓(𝜆)
exp(𝜆𝑧)𝑑𝜆 =

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑙𝑘,𝑛𝑧
𝑛 exp(𝜆𝑘𝑧), 𝑘 = 1, 𝑙,

1

2𝜋𝑖

∫︁
𝑆𝑘

𝜔𝑓 (𝜆, 𝛼, 𝑃𝑙)

𝑓(𝜆)
exp(𝜆𝑧)𝑑𝜆 = 0, 𝑘 > 𝑙,

1

2𝜋𝑖

∫︁
𝑆′

𝜔𝑓 (𝜆, 𝛼, 𝑃𝑙)

𝑓(𝜆)
exp(𝜆𝑧)𝑑𝜆 = 0.

Employing the continuity and the linearity of the functionals in the biorthogonal system, we
obtain (if 𝑘 > 𝑙, we suppose 𝑑𝑙𝑘,𝑛 = 0):

𝑑𝑘,𝑛 = 𝜇𝑘,𝑛(𝑔) = lim
𝑙→∞

𝜇𝑘,𝑛(𝑃𝑙) = lim
𝑙→∞

𝑑𝑙𝑘,𝑛, 𝑘 > 1, 𝑛 = 0, 𝑛𝑘 − 1. (2.4)

It follows from estimate (2.1) 𝜔𝑓 (𝜆, 𝛼, 𝑃𝑙) → 𝜔𝑓 (𝜆, 𝛼, 𝑔) as 𝑙 → ∞ uniformly on each compact
set in the plane. Together with the above facts, this give us the required identities.

3. Let 𝑔 ∈ 𝑊 (Λ, 𝐷) and 𝑑𝑘,𝑛 = 𝜇𝑘,𝑛(𝑔), 𝑘 > 1, 𝑛 = 0, 𝑛𝑘 − 1. Assume that series (1.2)
converge uniformly on compact sets in 𝐷. Then 𝑔 ≡ 𝑔.

Indeed, if 𝜇′ ∈ Ξ(Λ̃, 𝐷) ∖ Ξ(Λ, 𝐷), then 𝜇′(𝑔) = 𝜇′(𝑔) = 𝜇′(𝑃𝑙). In view of (2.4) and by the
uniqueness theorem [6, Ch. II, Sect. 1, Thm. 2.1.2], this implies the needed identity.

Let 𝐷 be an unbounded convex domain. We let

𝐽(𝐷) = {𝜆 ∈ C : 𝐻𝐷(𝜆) = +∞}.

Since 𝐻𝐷 is a convex and positively homogeneous function, the set C ∖ 𝐽(𝐷) is a convex cone.
Therefore, only the following four cases are possible: C ∖ 𝐽(𝐷) is a point or a ray or a straight
line or an angle of opening at most 𝜋. If 𝐷 = C, then 𝐽(𝐷) = C ∖ {0}. In the case, when
𝐷 is the half-plane {𝑧 ∈ C : Re(𝑧𝑒𝑖𝜙) < 𝑎}, the set 𝐽(𝐷) the plane with the cut along the
ray {𝜆 = 𝑡𝑒𝑖𝜙 : 𝑡 > 0}. If 𝐷 is the strip {𝑧 ∈ C : Re(𝑧𝑒𝑖𝜙) < 𝑎,Re(𝑧𝑒𝑖(𝜙+𝜋)) < 𝑏}, then
𝐽(𝐷) are two half-plane with the common boundary straight line {𝜆 = 𝑡𝑒𝑖𝜙 : 𝑡 ∈ R}. In
other cases the domain 𝐷 contains no straight lines. However, 𝐷 always contains some ray
{𝑧 = 𝑧0 + 𝑡𝑒𝑖𝜙, 𝑡 > 0}. At that, the set 𝐽(𝐷) is angle of an opening strictly leas than 2𝜋 and it
contains an open angle of the opening 𝜋, which is the half-plane{︁

𝜆 = 𝑡𝑒𝑖𝜓 : −𝜙− 𝜋

2
< 𝜓 < −𝜙+

𝜋

2
, 𝑡 > 0

}︁
.



BASIS IN INVARIANT SUBSPACE OF ANALYTICAL FUNCTIONS 63

We also note that thanks to the convexity, the function 𝐻𝐷 is continuous outside the closure
of the set 𝐽(𝐷).

Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1. By the symbol 𝑈 = {𝑈𝑚}∞𝑚=1 we denote the partition of the sequence
{𝜆𝑘}∞𝑘=1 into the groups 𝑈𝑚, 𝑚 = 1, 2, . . . We re-index the terms of Λ.

The points 𝜆𝑘 in a group 𝑈𝑚 are denoted by 𝜆𝑚,𝑙 and their multiplicities are denoted by 𝑛𝑚,𝑙.
Here the first subscript 𝑚 coincides with the index of the group, while the second subscript
ranges from 1 to 𝑀𝑚, where 𝑀𝑚 is the number of the points 𝜆𝑘 in the group 𝑈𝑚. Let 𝑁𝑚 be
the number of the points 𝜆𝑘 in a group 𝑈𝑚, 𝑚 = 1, 2, . . ., counting their multiplicities, that is,
𝑁𝑚 =

∑︀𝑀𝑚

𝑙=1 𝑛𝑚,𝑙.
By the symbol Θ(Λ) we denote the set of all limits of all converging sequence of form

{𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1. The set Θ(Λ) is closed and lies on the unit circumference centered at the
origin.

Lemma 2.1. Let 𝐷 be a convex domain in C, Λ = {𝜆𝑘, 𝑛𝑘} is partitioned into the groups
𝑈 = {𝑈𝑚}∞𝑚=1, where 𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚

𝑣=1, the system ℰ(Λ) is incomplete in 𝐻(𝐷) and Θ(Λ)
does not intersect the boundary of the set 𝐽(𝐷). We assume that for each convex compact set
𝐾0 ⊂ 𝐷, each 𝛿0 > 0 and each subsequence {𝑈𝑚𝑙

}∞𝑙=1 such that {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converges,
there exists a function 𝑓 ∈ 𝑃𝐷, a sequence of contours {𝛾𝑙}∞𝑙=1 and an index 𝑙0 possessing the
following properties:

1) 𝑓 vanishes at the points 𝜆𝑘, 𝑘 > 1, with a multiplicity at least 𝑛𝑘;
2) for all 𝑙 > 𝑙0, all points of the group 𝑈𝑚𝑙

are located inside the contour 𝛾𝑙 and there are
no points 𝜆𝑘 different from 𝜆𝑚𝑙,𝑣, 𝑣 = 1,𝑀𝑚𝑙

;
3) ln |𝑓(𝜆)| > 𝐻𝐾0(𝜆), 𝜆 ∈ 𝛾𝑙, 𝑙 > 𝑙0;
4) d(𝛾𝑙) 6 𝛿0|𝜆𝑚𝑙,1|, 𝑙 > 𝑙0, where d(𝛾𝑙) is the diameter of the contour 𝛾𝑙;
5) 𝜌(𝛾𝑙) 6 |𝜆𝑚𝑙,1|2, 𝑙 > 𝑙0, where 𝜌(𝛾𝑙) is the length of the contour 𝛾𝑙.
Then each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into the series

𝑔(𝑧) =
∞∑︁
𝑚=1

(︃
𝑀𝑚∑︁
𝑣=1

𝑛𝑚,𝑣−1∑︁
𝑛=0

𝑐𝑚,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑣𝑧)

)︃
, 𝑧 ∈ 𝐷. (2.5)

At that, for each convex compact set 𝐾 ⊂ 𝐷

∞∑︁
𝑚=1

max
𝑧∈𝐾

⃒⃒⃒⃒
⃒
𝑀𝑚∑︁
𝑣=1

𝑛𝑚,𝑣−1∑︁
𝑛=0

𝑐𝑚,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑣𝑧)

⃒⃒⃒⃒
⃒ < +∞. (2.6)

In particular, the series (w.r.t. 𝑚) converges absolutely and uniformly on compact sets in the
domain 𝐷.

Proof. By the assumption, ℰ(Λ) is incomplete in 𝐻(𝐷). Then �̄�(Λ) < +∞ and there exists a
system of functionals in 𝐻*(𝐷), Ξ(Λ, 𝐷) = {𝜇𝑘,𝑛}∞,𝑛𝑘−1

𝑘=1,𝑛=0, biorthogonal to ℰ(Λ).
Let 𝑔 ∈ 𝑊 (Λ, 𝐷). We consider the series

∞∑︁
𝑚=1

(︃
𝑀𝑚∑︁
𝑣=1

𝑛𝑚,𝑣−1∑︁
𝑛=0

𝑐𝑚,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑣𝑧)

)︃
, 𝑧 ∈ 𝐷,

where 𝑐𝑚,𝑣,𝑛 = 𝜇𝑘,𝑛(𝑔) if 𝜆𝑚,𝑣 = 𝜆𝑘. Let 𝐾 be a convex compact set 𝐷. Assume that series
(2.6) diverges. Then there exists a sequence of embedded segments [𝜙1,𝑗, 𝜙2,𝑗], 𝑗 > 1, with the
lengths tending to zero such that∑︁

𝑚∈𝑄(𝑗)

max
𝑧∈𝐾

⃒⃒⃒⃒
⃒
𝑀𝑚∑︁
𝑣=1

𝑛𝑚,𝑣−1∑︁
𝑛=0

𝑐𝑚,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑣𝑧)

⃒⃒⃒⃒
⃒ = +∞, 𝑗 > 1, (2.7)



64 O.A. KRIVOSHEEVA

where 𝑄(𝑗) is the sequence of all subscripts 𝑚, for which the point 𝜆𝑚,1 is located in the angle
Θ𝑗 = {𝑡𝑒𝑖𝜙 : 𝜙 ∈ [𝜙1,𝑗, 𝜙2,𝑗], 𝑡 > 0}. This implies that there exists a sequence {𝑈𝑚𝑙

}∞𝑙=1 such
that

∞∑︁
𝑙=1

max
𝑧∈𝐾

⃒⃒⃒⃒
⃒⃒𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧)

⃒⃒⃒⃒
⃒⃒ = +∞, (2.8)

and for each 𝑗 > 1 the inclusion 𝜆𝑚𝑙,1 ∈ Θ𝑗, 𝑙 > 𝑙(𝑗) holds for some 𝑙(𝑗). The latter means
that {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 tends to the number 𝑒𝑖𝜙0 , where 𝜙0 is the common points of all segments
[𝜙1,𝑗, 𝜙2,𝑗, ], 𝑗 > 1. We consider two cases.

1) 𝐻𝐷(𝑒𝑖𝜙0) < +∞ (𝑒𝑖𝜙0 /∈ 𝐽(𝐷)). Since 𝐾 is a compact set in 𝐷, there exists 𝛽 > 0 such
that

𝐻𝐾(𝜆) + 2𝛽|𝜆| 6 𝐻𝐷(𝜆), 𝜆 ∈ C. (2.9)

By assumption, 𝐽(𝐷) ∪ {0} is a closed set. Therefore, the function 𝐻𝐷 is continuous in the
neighbourhood of the point 𝑒𝑖𝜙0 . This is why there exists 𝛿 ∈ (0, 1) such that

|𝐻𝐷(𝑒𝑖𝜙0) −𝐻𝐷(𝜆)| < 𝛽

6
, 𝜆 ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿). (2.10)

Moreover, we can assume that for some compact set 𝐾0 ⊂ 𝐷 the inequality holds:

𝐻𝐾0(𝜆) +
𝛽|𝜆|

6
> 𝐻𝐷(𝜆), 𝜆 ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿). (2.11)

We choose 𝛿0(0, 𝛿/2) such that

max
𝑧∈𝐾

max
𝜇∈Δ

𝛿0|𝑧 − 𝜇| < 𝛽

6
, (2.12)

where ∆ is the triangle defined as

∆ = {𝑧 : Re(𝑧𝑤1) 6 𝐻𝐷(𝑤1)} ∩ {𝑧 : Re(𝑧𝑤2) 6 𝐻𝐷(𝑤2)} ∩ {𝑧 : Re(𝑧𝑒𝑖𝜙0) > 𝐻𝐾0(𝑒
𝑖𝜙0)},

and 𝑤1, 𝑤2 are the points of the intersection of the circumference 𝑆(𝑒𝑖𝜙0 , 𝛿/2) with the unit
circumference centered at the origin.

By assumption, there exists a function 𝑓 ∈ 𝑃𝐷, a sequence of contours {𝛾𝑙}∞𝑙=1 and an index
𝑙0 possessing properties 1)-4). By the symbol 𝐿 we denote the conjugate diagram of function
𝑓 . By the definition of the space 𝑃𝐷, the compact set 𝐿 is located in the domain 𝐷.

Let 𝑧0 be a point of the compact set 𝐿 satisfying the identity

Re(𝑧0𝑒
𝑖𝜙0) = 𝐻𝐿(𝑒𝑖𝜙0);

there are the only such point or a segment in the boundary of the compact set 𝐿. Statement 3
of the lemma implies that

Re(𝑧0𝑒
𝑖𝜙0) = 𝐻𝐿(𝑒𝑖𝜙0) > 𝐻𝐾0(𝑒

𝑖𝜙0). (2.13)

Since 𝑧0 ∈ 𝐿 ⊂ 𝐷, then

Re(𝑧0𝑤1) < 𝐻𝐷(𝑤1), Re(𝑧0𝑤2) < 𝐻𝐷(𝑤2).

Thus, the point 𝑧0 belongs to the triangle ∆.
Consider the function 𝑓0(𝜆) = exp(−𝑧0𝜆). Its conjugate diagram is the compact set 𝐿 − 𝑧0

containing the origin. We let 𝛼 = 𝑧0. The shift of the compact set 𝐿 − 𝑧0 by the vector 𝛼
coincides with 𝐿 and lies in the domain 𝐷. Employing the residues, identities (2.2), (2.3) and
Statements 1), 2) of the lemma, we have

1

2𝜋𝑖

∫︁
𝛾𝑙

𝜔𝑓0(𝜆, 𝛼, 𝑔)

𝑓0(𝜆)
exp(𝜆𝑧)𝑑𝜆 =

𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧), 𝑙 > 𝑙0. (2.14)
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Moreover, by inequality (2.1) we have

|𝜔𝑓0(𝜆, 𝛼, 𝑔)| 6𝐴(𝛽) exp(ℎ𝑓0(𝜆) +
𝛽|𝜆|

6
− Re(𝛼𝜆)) max

𝑧∈Ω
|𝑔(𝑧)|

=𝐴 exp(𝐻𝐿(𝜆) − Re(𝑧0𝜆) +
𝛽|𝜆|

6
− Re(𝛼𝜆)), 𝜆 ∈ C,

where Ω is the boundary of a convex neighbourhood of the compact set 𝐿 and this neigh-
bourhood is located inside 𝐷. In view of Statements 3) and 5) of the lemma, as 𝑙 > 𝑙0 we
obtain⃒⃒⃒⃒

⃒⃒ 1

2𝜋𝑖

∫︁
𝛾𝑙

𝜔𝑓0(𝜆, 𝛼, 𝑔)

𝑓0(𝜆)
exp(𝜆𝑧)𝑑𝜆

⃒⃒⃒⃒
⃒⃒

6 |𝜆𝑚𝑙,1|2𝐴 exp

(︂
max
𝜆∈𝛾𝑙

(︂
𝐻𝐿(𝜆) − Re(𝑧0𝜆) −𝐻𝐾0(𝜆)

+ Re(𝑧0𝜆) +
𝛽|𝜆|

6
+ Re((𝑧 − 𝛼)𝜆)

)︂)︂
= 𝛿0|𝜆𝑚𝑙,1|𝐴 exp(max

𝜆∈𝛾𝑙
(𝐻𝐿(𝜆) −𝐻𝐾0(𝜆) + 𝛽|𝜆|/6 + Re((𝑧 − 𝛼)𝜆))), 𝑧 ∈ 𝐾.

(2.15)

According Statements 2) and 4) of the lemma, the contour 𝛾𝑙 lies in the ball 𝐵(𝜆𝑚𝑙,1, 𝛿0|𝜆𝑚𝑙,1|),
𝑙 > 𝑙0. Since te sequence {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converges to 𝑒𝑖𝜙0 and 𝛿0 < 𝛿, there exists an index
𝑙1 > 𝑙0 such that inclusions hold 𝛾𝑙 ⊂ 𝐵(𝜆𝑚𝑙,1, 𝛿0|𝜆𝑚𝑙,1|) ⊂ 𝐵(|𝜆𝑚𝑙,1|𝑒𝑖𝛾0 , 𝛿0|𝜆𝑚𝑙,1|), 𝑙 > 𝑙1. By
inequality (2.10), the positive homogeneity of the support function and the inclusion 𝐿 ⊂ 𝐷
we obtain

𝐻𝐿(𝜆) −𝐻𝐾0(𝜆) < 𝐻𝐷(𝜆) −𝐻𝐷(𝜆) +
𝛽|𝜆|

6
=
𝛽|𝜆|

6
, 𝜆 ∈ 𝛾𝑙, 𝑙 > 𝑙1.

Therefore, by (2.15) and (2.14) we have (𝛼 = 𝑧0):⃒⃒⃒⃒
⃒⃒𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧)

⃒⃒⃒⃒
⃒⃒ 6 𝛿0|𝜆𝑚𝑙,1|𝐴 exp

(︂
max
𝜆∈𝛾𝑙

(︂
𝛽|𝜆|

3
+ Re((𝑧 − 𝛼)𝜆)

)︂)︂

6 𝛿0|𝜆𝑚𝑙,1|𝐴 exp

(︂
max

𝜆𝑚𝑙,1
+𝜉∈𝛾𝑙

(︂
𝛽|𝜆𝑚𝑙,1|

3
+
𝛽|𝜉|

3
+ Re((𝑧 − 𝑧0)𝜆𝑚𝑙,1) + Re((𝑧 − 𝑧0)𝜉)

)︂)︂
for all 𝑧 ∈ 𝐾 and 𝑙 > 𝑙1. We choose an index 𝑙2 > 𝑙1 such that

|𝜆𝑚𝑙,1|2𝐴 6 exp(𝛽|𝜆𝑚𝑙,1|/7), 𝑙 > 𝑙2. (2.16)

According Statement 4) of the lemma, |𝜉| 6 𝛿0|𝜆𝑚𝑙,1|, where 𝜆𝑚𝑙,1+𝜉 ∈ 𝛾𝑙, 𝑙 > 𝑙2. Hence, taking
into consideration the previous inequality, the belonging 𝑧0 ∈ ∆, (2.12) and the inequalities
𝛿0 < 𝛿/2 < 1/2, we obtain

max
𝑧∈𝐾

⃒⃒⃒⃒
⃒⃒𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧)

⃒⃒⃒⃒
⃒⃒

6 max
𝑧∈𝐾

(︂
exp

(︂
𝛽|𝜆𝑚𝑙,1|(1 + 𝛿0)

3
+ Re((𝑧 − 𝑧0)𝜆𝑚𝑙,1) +

𝛽

7
|𝜆𝑚𝑙,1| +

𝛽

6
|𝜆𝑚𝑙,1|

)︂)︂
6 exp

(︂
2𝛽|𝜆𝑚𝑙,1|

3
+𝐻𝐾(𝜆𝑚𝑙,1) − Re(𝑧0𝜆𝑚𝑙,1) +

𝛽

7
|𝜆𝑚𝑙,1|

)︂
, 𝑙 > 𝑙2.
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Since the sequence {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converges to 𝑒𝑖𝜙0 , thanks to the continuity and the positive
homogeneity of the support function of a compact set, we find an index 𝑙3 > 𝑙2 such that

𝐻𝐾(𝜆𝑚𝑙,1) − Re(𝑧0𝜆𝑚𝑙,1) +
𝛽

7
|𝜆𝑚𝑙,1| =|𝜆𝑚𝑙,1|

(︂
𝐻𝐾

(︂
𝜆𝑚𝑙,1

|𝜆𝑚𝑙,1|

)︂
− Re

(︂
𝑧0
𝜆𝑚𝑙,1

|𝜆𝑚𝑙,1|

)︂
+
𝛽

7

)︂
6 6 |𝜆𝑚𝑙,1|(𝐻𝐾(𝑒𝑖𝜙0) − Re(𝑧0𝑒

𝑖𝜙0) +
𝛽

6
), 𝑙 > 𝑙3.

By the previous inequality and (2.13), (2.11), (2.9) this yields

max
𝑧∈𝐾

⃒⃒⃒⃒
⃒⃒𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧)

⃒⃒⃒⃒
⃒⃒ 6 exp

(︂
5𝛽|𝜆𝑚𝑙,1|

6
+ |𝜆𝑚𝑙,1|(𝐻𝐾(𝑒𝑖𝜙0) − Re(𝑧0𝑒

𝑖𝜙0))

)︂

6 exp

(︂
5𝛽|𝜆𝑚𝑙,1|

6
+ |𝜆𝑚𝑙,1|(𝐻𝐾(𝑒𝑖𝜙0) −𝐻𝐾0(𝑒

𝑖𝜙0))

)︂
6 exp

(︂
5𝛽|𝜆𝑚𝑙,1|

6

+ |𝜆𝑚𝑙,1|
(︂
𝐻𝐷(𝑒𝑖𝜙0) − 2𝛽 −𝐻𝐷(𝑒𝑖𝜙0) +

𝛽

6

)︂)︂
= exp(−𝛽|𝜆𝑚𝑙,1|),

where 𝑙 > 𝑙3. Since Λ has a finite upper density, the series
∑︀

exp(−𝛽|𝜆𝑚𝑙,1|) converges. This
contradicts (2.8). Thus, in the considered case (2.6) holds. Therefore, series (2.5) converges
absolutely and uniformly on compact sets in the domain 𝐷. Since 𝑐𝑚,𝑣,𝑛 = 𝜇𝑘,𝑛(𝑔) if 𝜆𝑚,𝑣 = 𝜆𝑘,
according property 3 given before the lemma, identity (2.5) holds.

2) 𝐻𝐷(𝑒𝑖𝜙0) = +∞ (𝑒𝑖𝜙0 ∈ 𝐽(𝐷)). By assumption, 𝑒𝑖𝜙0 /∈ 𝜕𝐽(𝐷). Then there exists 𝛿 ∈ (0, 1)
such that

𝐻𝐷(𝜆) = +∞, 𝜆 ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿). (2.17)

Let 𝛿0 ∈ (0, 𝛿/2) ∩ (0, 2/5) and 𝐾0 = 𝐾. By assumption, there exist a function 𝑓 ∈ 𝑃𝐷,
a sequence of contours {𝛾𝑙}∞𝑙=1 and an index 𝑙0 possessing properties 1)-4). By the symbol 𝐿
we denote the conjugate diagram of the function 𝑓 . By the definition of the space 𝑃𝐷, the
compact set 𝐿 lies in the domain 𝐷. Let 𝑧0 ∈ 𝐿. Consider the function 𝑓0(𝜆) = exp(−𝑧0𝜆). Its
conjugate diagram is the compact set 𝐿− 𝑧0 containing the origin.

By (2.17) and what was said before the lemma on the set 𝐽(𝐷), there exists 𝜓0 such that
the angle

Γ = {𝜆 = 𝑡𝑒𝑖𝜓 : −𝜓0 − 𝜋/2 < 𝜓 < −𝜓0 + 𝜋/2, 𝑡 > 0}

lies in 𝐽(𝐷) and contains the closure of the ball 𝐵(𝑒𝑖𝜙0 , 2𝛿0). We consider the compact sets
𝐿(𝑡) = 𝐿+ 𝑡𝑒𝑖𝜓0 , 𝑡 > 0. For each 𝑧 ∈ 𝐿 and 𝑡 > 0 we have

Re
(︀
(𝑧 + 𝑡𝑒𝑖𝜓0)𝜆

)︀
= Re(𝑧𝜆) + 𝑡Re(𝑒𝑖𝜓0𝜆) 6 Re(𝑧𝜆) 6 𝐻𝐿(𝜆) < 𝐻𝐷(𝜆), 𝜆 /∈ Γ ∪ {0},

Re
(︀
(𝑧 + 𝑡𝑒𝑖𝜓0)𝜆

)︀
< +∞ = 𝐻𝐷(𝜆), 𝜆 ∈ Γ.

Therefore, 𝐻𝐿(𝑡)(𝜆) < 𝐻𝐷(𝜆), 𝜆 ̸= 0, that is, 𝐿(𝑡) ⊂ 𝐷, 𝑡 > 0.
Let 𝛽 > 0. Since the closure of the ball 𝐵(𝑒𝑖𝜙0 , 2𝛿0) lies inside Γ, there exists 𝑡0 > 0 such

that the inequality

𝑡0 Re(𝑒𝑖𝜓0𝜆) > 𝐻𝐿(𝜆) − Re(𝑧0𝜆) + 2𝛽|𝜆|, 𝜆 ∈ 𝐵(𝑒𝑖𝜙0 , 2𝛿0) (2.18)

holds.
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We let 𝛼 = 𝑧0 + 𝑡0𝑒
𝑖𝜓0 . Then relations (2.14) and (2.15) hold. By these relations, (2.16) and

the choice of the compact set 𝐾0 we obtain⃒⃒⃒⃒
⃒⃒𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧)

⃒⃒⃒⃒
⃒⃒

6 |𝜆𝑚𝑙,1|2𝐴 exp

(︂
max
𝜆∈𝛾𝑙

(︂
𝐻𝐿(𝜆) −𝐻𝐾0(𝜆) +

𝛽|𝜆|
6

+ Re((𝑧 − 𝛼)𝜆)

)︂)︂
6 exp

(︂
max
𝜆∈𝛾𝑙

(︂
𝐻𝐿(𝜆) −𝐻𝐾(𝜆) +

𝛽|𝜆|
3

+ Re((𝑧 − 𝛼)𝜆)

)︂)︂
, 𝑙 > 𝑙′.

Since the sequence {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converges to 𝑒𝑖𝜙0 , by (2.18) and the positive homogeneity
of the support function there exists 𝑙” > 𝑙′ such that

𝑡0 Re(𝑒𝑖𝜓0𝜆) > 𝐻𝐿(𝜆) − Re(𝑧0𝜆) + 2𝛽|𝜆|, 𝜆 ∈ 𝛾𝑙, 𝑙 > 𝑙”.

By the previous inequality, Statements 2), 4) of the lemma and the inequality 𝛿0 < 2/5 this
implies

max
𝑧∈𝐾

⃒⃒⃒⃒
⃒⃒𝑀𝑚𝑙∑︁
𝑣=1

𝑛𝑚𝑙,𝑣
−1∑︁

𝑛=0

𝑐𝑚𝑙,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚𝑙,𝑣𝑧)

⃒⃒⃒⃒
⃒⃒

6 exp

(︂
max
𝜆∈𝛾𝑙

(𝐻𝐿(𝜆) −𝐻𝐾(𝜆) + 𝛽|𝜆|/3 +𝐻𝐾(𝜆) − Re(𝛼𝜆))

)︂
6 exp

(︂
max
𝜆∈𝛾𝑙

(𝐻𝐿(𝜆) + 𝛽|𝜆|/3 − Re((𝑧0 + 𝑡0𝑒
𝑖𝜓0)𝜆))

)︂
6 exp

(︂
max
𝜆∈𝛾𝑙

(𝐻𝐿(𝜆) + 𝛽|𝜆|/3 − Re(𝑧0𝜆) −𝐻𝐿(𝜆) + Re(𝑧0𝜆) − 2𝛽|𝜆|)
)︂

= exp

(︂
max
𝜆∈𝛾𝑙

(︂
−5𝛽|𝜆|

3

)︂)︂
6 exp

(︂
−5𝛽|𝜆𝑚𝑙,1|

3
+

5𝛽𝛿0|𝜆𝑚𝑙,1|
3

)︂
6 exp(−𝛽|𝜆𝑚𝑙,1|).

As in the first case, this contradicts (2.8). Thus, (2.5) and (2.6) are true. The proof is complete.

Let Λ = {𝜆𝑘, 𝑛𝑘} be partitioned into the groups 𝑈 = {𝑈𝑚}∞𝑚=1, where 𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚
𝑣=1. We

say that 𝑈𝑚, 𝑚 > 1, are groups of relatively small diameter if

lim
𝑚→∞

max
16𝑗,𝑙6𝑀𝑚

|𝜆𝑚,𝑗 − 𝜆𝑚,𝑙|
|𝜆𝑚,1|

= 0.

We note that the numbers 𝜆𝑚,1 can be replaced by other representatives 𝜆𝑚,𝑗 of the groups 𝑈𝑚.
This is implied immediately by the relation

lim
𝑚→∞

max
16𝑗6𝑀𝑚

|𝜆𝑚,𝑗|
|𝜆𝑚,1|

6 lim
𝑚→∞

max
16𝑗6𝑀𝑚

|𝜆𝑚,𝑗 − 𝜆𝑚,1|
|𝜆𝑚,1|

+ lim
𝑚→∞

|𝜆𝑚,1|
|𝜆𝑚,1|

= 1.

We also say that the groups 𝑈𝑚 are relatively small if they are groups of relatively small
diameter and the identity holds:

lim
𝑚→∞

𝑁𝑚

|𝜆𝑚,1|
= 0.

Following work [8], by the system ℰ(Λ) = {𝑧𝑛 exp(𝜆𝑘𝑧)}∞,𝑛𝑘−1
𝑘=1,𝑛=0 we construct the system of

the functions ℰ(Λ, 𝑈) = {𝑒𝑚,𝑗(𝑧)}∞,𝑁𝑚

𝑚=1,𝑗=1. Let 𝛾𝑚 be a contour enveloping the points of the
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group 𝑈𝑚 and

𝜔𝑚(𝜆) =
𝑀𝑚∏︁
𝑙=1

(𝜆− 𝜆𝑚,𝑙)
𝑛𝑚,𝑙 , 𝑚 > 1.

We let

𝑃𝑚(𝜆, 𝑧) =
1

2𝜋𝑖

∫︁
𝛾𝑚

exp(𝑧𝜁)(𝜔𝑚(𝜁) − 𝜔𝑚(𝜆))

(𝜁 − 𝜆)𝜔𝑚(𝜁)
𝑑𝜁, 𝑚 > 1.

This formula defines the known interpolation polynomial of the degree at mots 𝑁𝑚 − 1 such
that at the points 𝜆𝑚,𝑙 its value and the values of its derivatives up to the order 𝑛𝑚,𝑙−1 coincide
with that of the function exp(𝑧𝜆):

𝑃 (𝑛)
𝑚 (𝜆𝑚,𝑙, 𝑓) = 𝑧𝑛 exp(𝜆𝑚,𝑙𝑧), 𝑙 = 1, 2, . . . ,𝑀𝑚, 𝑛 = 0, 1, . . . , 𝑛𝑚,𝑙 − 1.

We expand 𝑃𝑚(𝜆, 𝑧) in powers of (𝜆− 𝜆𝑚,1). We have:

𝑃𝑚(𝜆, 𝑧) =
𝑁𝑚−1∑︁
𝑗=0

𝑝𝑚,𝑗(𝑧)
(𝜆− 𝜆𝑚,1)

𝑗

𝑗!
.

We let 𝑒𝑚,𝑗(𝑧) = 𝑝𝑚,𝑗(𝑧), 𝑚 > 1, 𝑗 = 1, 𝑁𝑚. Thus, the function 𝑒𝑚,𝑗(𝑧) coincides with (𝑗− 1)th
derivative of the polynomial 𝑃𝑚(𝜆, 𝑧) at the point 𝜆𝑚,1. According the Cauchy integral formula,
we have

𝑒𝑚,𝑗(𝑧) =
𝑀𝑚∑︁
𝑙=1

𝑛𝑚,𝑙−1∑︁
𝑛=0

𝑐𝑚,𝑗,𝑙,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑙𝑧) =

(𝑗 − 1)!

2𝜋𝑖

∫︁
|𝜆−𝜆𝑚,1|=1

𝑃𝑚(𝜆, 𝑧)𝑑𝜆

(𝜆− 𝜆𝑚,1)𝑗
, 𝑚 > 1, 𝑗 = 1, 𝑁𝑚.

We consider the series over the system ℰ(Λ, 𝑈):

𝑔(𝑧) =
∞∑︁
𝑚=1

𝑁𝑚∑︁
𝑗=1

𝑐𝑚,𝑗𝑒𝑚,𝑗(𝑧). (2.19)

The sequence of its coefficients is denoted by 𝑐 = {𝑐𝑚,𝑗}∞,𝑁𝑚

𝑚=1,𝑗=1.
Let 𝐷 be a convex domain, 𝐾(𝐷) = {𝐾𝑠}∞𝑠=1 be a sequence of convex compact sets exhausting

𝐷 and Λ be partitions into the groups 𝑈 = {𝑈𝑚}∞𝑚=1, where 𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚
𝑣=1. For each

𝑠 = 1, 2, . . . we introduce the Banach space of complex sequences

𝑄𝑠(𝐷,Λ, 𝑈) = {𝑐 = {𝑐𝑚,𝑗}∞,𝑁𝑚

𝑚=1,𝑗=1 : ‖𝑐‖𝑠 = sup
𝑚,𝑗

(|𝑐𝑚,𝑗| exp(𝐻𝐾𝑠(𝜆𝑚,1))) <∞}.

By 𝑄(𝐷,Λ, 𝑈) we denote the projective limit of the spaces 𝑄𝑠(𝐷,Λ, 𝑈).
We define an operator ℬ acting on the space 𝑄(𝐷,Λ, 𝑈) with values in 𝑊 (Λ, 𝐷) by the rule:

a sequence 𝑐 = {𝑐𝑚,𝑗} ∈ 𝑄(𝐷,Λ, 𝑈) is mapped into the sum 𝑔(𝑧) of series (2.19) if it converges
in the topology of the space 𝐻(𝐷).

For a convex domain 𝐷 we let

𝐷(Θ(Λ)) = {𝑧 ∈ C : Re(𝑧𝜆) < 𝐻𝐷(𝜆), 𝜆 ∈ Θ(Λ)}.

The set 𝐷(Θ(Λ)) is obviously a compact set and contains 𝐷. At that, the identity

𝐻𝐷(𝜆) = 𝐻𝐷(Θ(Λ))(𝜆), 𝜆 ∈ Θ(Λ)

holds. As one can see easily, this implies that the spaces 𝑄(𝐷,Λ, 𝑈) and 𝑄(𝐷(Θ(Λ)),Λ, 𝑈)
coincide.
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Theorem 2.2. Suppose that under assumption of Lemma 2.1 the groups 𝑈𝑚, 𝑚 > 1, are
relatively small. Then each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into series (2.19), whose sum is
analytic in the domain 𝐷(Θ(Λ)), that is, 𝑔 is analytically continued into the domain 𝐷(Θ(Λ)).
At that, for each index 𝑠 there exist indices 𝑝′, 𝑝 and numbers 𝐴′, 𝐴 > 0 independent of the
function 𝑔 ∈ 𝑊 (Λ, 𝐷) such that

∞∑︁
𝑚=1

𝑁𝑚∑︁
𝑗=1

max
𝑧∈𝐾𝑠

|𝑐𝑚,𝑗𝑒𝑚,𝑗(𝑧)| 6 𝐴′‖𝑐‖𝑝′ 6 𝐴max
𝑧∈𝐾𝑝

|𝑔(𝑧)|, (2.20)

where 𝑐 = {𝑐𝑚,𝑗}∞,𝑁𝑚

𝑚=1,𝑗=1, ‖𝑐‖𝑝′ is the norm in the space 𝑄𝑝′(𝐷(Θ(Λ)),Λ, 𝑈) and 𝐾𝑠, 𝐾𝑝 ∈
𝐾(𝐷(Θ(Λ))). In particular, series (2.19) converges absolutely and uniformly on the compact
sets in the domain 𝐷(Θ(Λ)). Moreover, the operator

ℬ : 𝑄(𝐷(Θ(Λ)),Λ, 𝑈) → 𝑊 (Λ, 𝐷) (2.21)

is an isomorphism of linear topological spaces.

Proof. By assumption, the sequence Λ is partitioned into relatively small groups 𝑈 = {𝑈𝑚}∞𝑚=1.
Then according Theorem 3 in work [9], the system of the functions ℰ(Λ, 𝑈) is an almost expo-
nential sequence in the domain 𝐷 with exponents 𝜆𝑚,1 in the sense of the definition in work [7].
Moreover, by Theorem 5 in work [9], system ℰ(Λ, 𝑈) possess the Köthe group property. This
means that for each compact set 𝐾 ⊂ 𝐷 there exists a compact set 𝐾 ′ ⊂ 𝐷 and a number
𝐴′′ > 0 satisfying the condition: for each 𝑚 > 1 and each function ℎ𝑚 of form

ℎ𝑚(𝑧) =
𝑁𝑚∑︁
𝑗=1

𝑎𝑚,𝑗𝑒𝑚,𝑗(𝑧) (2.22)

the identity
𝑁𝑚∑︁
𝑗=1

|𝑎𝑚,𝑗| sup
𝑧∈𝐾

|𝑒𝑚,𝑗(𝑧)| 6 𝐴” sup
𝑧∈𝐾′

|ℎ𝑚(𝑧)| (2.23)

holds.
Given 𝑔 ∈ 𝑊 (Λ, 𝐷), by Lemma 2.1 this function is expanded into series (2.5) and (2.6) holds.

We let

ℎ𝑚(𝑧) =
𝑀𝑚∑︁
𝑣=1

𝑛𝑚,𝑣−1∑︁
𝑛=0

𝑐𝑚,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑣𝑧).

Then by the definition of 𝑒𝑚,𝑗(𝑧), the function ℎ𝑚(𝑧) is of form (2.22). Therefore, according
(2.23) and (2.6), for each compact set 𝐾 ⊂ 𝐷, the series converges

∞∑︁
𝑚=1

𝑁𝑚∑︁
𝑗=1

max
𝑧∈𝐾

|𝑐𝑚,𝑗𝑒𝑚,𝑗(𝑧)|. (2.24)

This means that series (2.19) converges absolutely and uniformly on compact sets in the domain
𝐷. By Lemma 2.1, some subsequence of its partial sums converges to the function 𝑔. This is
why identity (2.19) holds.

Since series (2.24) converges for each 𝐾 ⊂ 𝐷, by Theorem 3.1 in work [22] being an
analogue of Abel theorem for the series of exponential polynomials, for each compact set
𝐾𝑠 ∈ 𝐾(𝐷(Θ(Λ))) there exist an index 𝑝′ and a number 𝐴′ > 0 independent of the func-
tion 𝑔 ∈ 𝑊 (Λ, 𝐷) such that

∞∑︁
𝑚=1

𝑁𝑚∑︁
𝑗=1

max
𝑧∈𝐾𝑠

|𝑐𝑚,𝑗𝑒𝑚,𝑗(𝑧)| 6 𝐴′‖𝑐‖𝑝′ , (2.25)
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where 𝑐 = {𝑐𝑚,𝑗}∞,𝑁𝑚

𝑚=1,𝑗=1 and ‖𝑐‖𝑝′ is the norm in the space 𝑄𝑝′(𝐷(Θ(Λ)),Λ, 𝑈). This implies
that the function 𝑔 is continued analytically into the domain 𝐷(Θ(Λ)) and is represented there
by series (2.19), which converges absolutely and uniformly on compact sets in the domain
𝐷(Θ(Λ)). This means that the spaces 𝑊 (Λ, 𝐷) and 𝑊 (Λ, 𝐷(Θ(Λ))) coincide and operator
(2.21) is a surjection.

By Lemma 2.3 in work [22], operator (2.21) is defined on the entire space 𝑄(𝐷(Θ(Λ)),Λ, 𝑈).
If the system ℰ(Λ) is incomplete in 𝐻(𝐷), as it was mentioned above, the representation by
series (1.2) possesses the uniqueness property. Therefore, operator (2.21) is injective. Thus,
ℬ is an isomorphism of linear spaces. By (2.25), the operator ℬ is continuous. As one can
see easily, the spaces 𝑄(𝐷(Θ(Λ)),Λ, 𝑈) and 𝑊 (Λ, 𝐷) are Fréchet spaces. Then by the Banach
theorem on the inverse operator for the Fréchet spaces, the operator ℬ is an isomorphism of
topological spaces and the inequality

𝐴′‖𝑐‖𝑝′ 6 𝐴max
𝑧∈𝐾𝑝

|𝑔(𝑧)|

holds, where 𝐾𝑝 ∈ 𝐾(𝐷(Θ(Λ))) and the index 𝑝 and the number 𝐴 > 0 are independent of the
function 𝑔. The latter estimate and (2.25) lead us to (2.20). The proof is complete.

Remark. In Theorem 2.2, both with representing the functions in 𝑊 (Λ, 𝐷), a continuation
of these functions is made to a wider convex domain. The problem on such continuation of the
functions in the invariant spaces has a rich story. The most general results on this problem
both for the case of one and several variables were obtained in works [23]–[25]. These works
provide also a historical survey on the continuation problem.

The partition 𝑈 = {𝑈𝑚}∞𝑚=1 of a sequence Λ is called trivial if each group 𝑈𝑚 of the only
point 𝜆𝑚,1, 𝑚 > 1. In this case the functions of the system ℰ(Λ, 𝑈) are easily calculated. We
have

𝑒𝑚,𝑗(𝑧) = 𝑧𝑗−1 exp(𝜆𝑚,1𝑧), 𝑗 = 1, . . . , 𝑁𝑚(= 𝑛𝑚,1), 𝑚 > 1.

In this case, the relative smallness of the groups is equivalent to the identity

𝜎(Λ) = lim
𝑚→∞

𝑛𝑚,1/|𝜆𝑚,1| = lim
𝑘→∞

𝑛𝑘/|𝜆𝑘| = 0.

Thus, in a particular case, by Theorem 2.2 we obtain the solution for the fundamental principle
problem.

Corollary 2.3. Suppose that under the assumptions of Lemma 2.1 the partition 𝑈 is trivial
and 𝜎(Λ) = 0. Then each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into series (1.1), whose sum is
analytic in the domain 𝐷(Θ(Λ)), that is, 𝑔 is analytically continued in the domain 𝐷(Θ(Λ)).
At that, for each index 𝑠 there exist indices 𝑝′, 𝑝 and numbers 𝐴′, 𝐴 > 0 independent of
𝑔 ∈ 𝑊 (Λ, 𝐷) such that

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

max
𝑧∈𝐾𝑠

|𝑑𝑘,𝑛𝑧𝑛 exp(𝜆𝑘𝑧)| 6 𝐴′‖𝑑‖𝑝′ 6 𝐴max
𝑧∈𝐾𝑝

|𝑔(𝑧)|,

where 𝑑 = {𝑑𝑘,𝑛}∞,𝑛𝑘−1
𝑘=1,𝑛=0, ‖𝑑‖𝑝′ is the norm in the space 𝑄𝑝′(𝐷(Θ(Λ)),Λ, 𝑈) and 𝐾𝑠, 𝐾𝑝 ∈

𝐾(𝐷(Θ(Λ))). In particular, series (1.1) converges absolutely and uniformly on compact sets
in the domain 𝐷(Θ(Λ)). Moreover, the operator ℬ : 𝑄(𝐷(Θ(Λ)),Λ, 𝑈) → 𝑊 (Λ, 𝐷) is an
isomorphism of linear topological spaces.

Now we consider the case, when the functions 𝑓 ∈ 𝑃𝐷 whose existence is needed in Lemma 2.1
are constructed in advance. Here we need one known characteristics of the sequence Λ =



BASIS IN INVARIANT SUBSPACE OF ANALYTICAL FUNCTIONS 71

{𝜆𝑘, 𝑛𝑘}∞𝑘=1. Let 𝑈 = {𝑈𝑚}∞𝑚=1, 𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚
𝑣=1, be a partition of Λ into the groups. Following

work [4], we let

𝑞Λ(𝜆,𝑤, 𝛿) =
∏︁

𝜆𝑘∈𝐵(𝑤,𝛿|𝑤|)

(︂
𝜆− 𝜆𝑘
3𝛿|𝜆𝑘|

)︂𝑛𝑘

=
∏︁

𝜆𝑚,𝑣∈𝐵(𝑤,𝛿|𝑤|)

(︂
𝑧 − 𝜆𝑚,𝑣
3𝛿|𝜆𝑚,𝑣|

)︂𝑛𝑚,𝑣

.

In the case when the ball 𝐵(𝑤, 𝛿|𝑤|) contains none of 𝜆𝑘, we let 𝑞Λ(𝜆,𝑤, 𝛿) ≡ 1. The ab-
solute value of 𝑞Λ(𝜆,𝑤, 𝛿) can be interpreted as a measure of accumulation of the points
𝜆𝑘 ∈ 𝐵(𝑤, 𝛿|𝑤|) at 𝜆. The quantity ln |𝑞Λ(𝜆,𝑤, 𝛿)|/|𝑤| is similar by the meaning to the loga-
rithm of the geometric mean (arithmetic mean of the logarithms) of the normed distances from
the points 𝜆𝑘 ∈ 𝐵(𝑤, 𝛿|𝑤|) to the point 𝜆.

We introduce also the functions (see [10]): we let

𝑞𝑚Λ,𝑈(𝑧, 𝛿) =
∏︁

𝜆𝑘,𝑣∈𝐵(𝜆𝑚,1,𝛿|𝜆𝑚,1|),𝑘 ̸=𝑚

(︂
𝑧 − 𝜆𝑘,𝑣
3𝛿|𝜆𝑘,𝑣|

)︂𝑛𝑘,𝑣

, 𝑚 > 1.

If the ball 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|) contains no points 𝜆𝑘,𝑣, 𝑘 ̸= 𝑚, then 𝑞𝑚Λ,𝑈(𝑧, 𝛿). We note that in

distinction of 𝑞Λ(𝑧, 𝑤, 𝛿), the function 𝑞
𝑚(𝑧,𝛿)
Λ,𝑈 depends on the partition 𝑈 of the sequence Λ. If

𝛿 ∈ (0, 1), then the absolute value of each factor 𝑞𝑚Λ,𝑈 is estimated from above by 2(3(1 − 𝛿))−1

in the ball 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|). This is why for 𝛿 ∈ (0, 1/3) it does not exceed one. Therefore,

|𝑞𝑚Λ,𝑈(𝑧, 𝛿1)| > |𝑞𝑚Λ,𝑈(𝑧, 𝛿2)|, 𝑧 ∈ 𝐵(𝜆𝑚,1, 𝛿2|𝜆𝑚,1|), (2.26)

if 0 < 𝛿1 6 𝛿2 < 1/3. We let

𝑆Λ(𝑈) = lim
𝛿→0

lim
𝑚→∞

min
𝜆𝑚,𝑣∈𝐵(𝜆𝑚,1,𝛿|𝜆𝑚,1|)

ln
|𝑞𝑚Λ,𝑈(𝜆𝑚,𝑣, 𝛿)|

|𝜆𝑚,𝑣|
.

This definition is well-defined since according (2.26) the limit in 𝛿 exists. We also note that
the inequality 𝑆Λ(𝑈) 6 0 is true. It is implied by the non-positiveness of ln |𝑞𝑚Λ,𝑈(𝜆𝑚,𝑣, 𝛿)| as
𝜆𝑚,𝑙 ∈ 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|) and 𝛿 ∈ (0, 1/3). If the groups 𝑈𝑚, 𝑚 > 1, are relatively small, for each
𝛿 > 0, beginning with some index 𝑚(𝛿), all points of the group 𝑈𝑚 lie in the ball 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|).
This is why as 𝑚 > 𝑚(𝛿), the minimum of quantity in the definition of 𝑆Λ(𝑈) can be taken not
over the points 𝜆𝑚,𝑣 in the ball 𝐵(𝜆𝑚,1, 𝛿|𝜆𝑚,1|) but over all 𝑣 = 1, . . . ,𝑀𝑚. In the case of the
trivial partition 𝑈 , the quantity 𝑆Λ(𝑈) coincides with the quantity 𝑆Λ introduced in work [4].

Corollary 2.4. Let Λ = {𝜆𝑘, 𝑛𝑘} be partitioned into relatively small groups 𝑈 = {𝑈𝑚}∞𝑚=1,
where 𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚

𝑣=1 and �̄�(Λ) < ∞. Assume that 𝑆Λ(𝑈) > −∞. Then each function
𝑔 ∈ 𝑊 (Λ,C) is expanded into series (2.19) over the system ℰ(Λ, 𝑈). At that, for each index 𝑠
there exist indices 𝑝′, 𝑝 and numbers 𝐴′, 𝐴 > 0 independent of 𝑔 ∈ 𝑊 (Λ,C)) such that

∞∑︁
𝑚=1

𝑁𝑚∑︁
𝑗=1

max
𝑧∈𝐾𝑠

|𝑐𝑚,𝑗𝑒𝑚,𝑗(𝑧)| 6 𝐴′‖𝑐‖𝑝′ 6 𝐴max
𝑧∈𝐾𝑝

|𝑔(𝑧)|,

where 𝑐 = {𝑐𝑚,𝑗}∞,𝑁𝑚

𝑚=1,𝑗=1, ‖𝑐‖𝑝′ is the norm in the space 𝑄𝑝′(C,Λ, 𝑈) and 𝐾𝑠, 𝐾𝑝 ∈ 𝐾(C).
In particular, series (2.19) converges absolutely and uniformly on compact sets in the plane.
Moreover, the operator ℬ : 𝑄(C,Λ, 𝑈) → 𝑊 (Λ,C) is an isomorphism of linear topological
spaces.

Proof. Let us show that all assumptions of Theorem 2.2 are satisfied. Since the groups 𝑈𝑚 are
relatively small, it is sufficient to check the assumptions of Lemma 2.1 for the domain 𝐷 = C.
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By assumption, the upper density of the sequence Λ is finite. Then by the aforementioned
Lindelöf theorem, the function

∞∑︁
𝑘=1

(︂
1 − 𝜆2

𝜆2𝑘

)︂𝑛𝑘

is entire and has an exponential type. It vanishes at the points 𝜆𝑘 with the multiplicities 𝑛𝑘.
Therefore, the system ℰ(Λ) is incomplete in the space 𝐻(C). The set Θ(Λ) does not intersect
the boundary of the set 𝐽(𝐷), that is, 𝐽(𝐷) = C ∖ {0}.

Let 𝐾0 be a convex compact set, 𝛿0 > 0, and {𝑈(𝑚𝑙)}∞𝑙=1 be subsequence of the groups such
that {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converges.

By Theorem 4.1 in work [12], there exists a sequence Λ′ = {𝜉𝑙, 1}∞𝑙=1 having no common
points with Λ and such that

1) Λ̃ = Λ∪Λ′ is the zero set (counting multiplicities) of an entire function 𝑓 of an exponential

type, that is, 𝑓 ∈ 𝑃C;
2) The partition �̃� = 𝑈 ∪𝑈 ′ of the sequence Λ̃, where 𝑈 ′ is the trivial partition of Λ′, satisfies

the inequality 𝑆Λ̃(�̃�) > −∞ and �̃� and is a partition into relatively small groups.

Then Theorem 5.1 in work [12] implies that there exist positive numbers {𝛼𝑚,𝑗}𝑀𝑚,∞
𝑗=1,𝑚=1 sat-

isfying the conditions

lim
𝑚→∞

max
16𝑠,𝑗6𝑀𝑚

𝛼𝑚,𝑗
|𝜆𝑚,𝑠|

= 0, (2.27)

the sets 𝐵𝑚 =
⋃︀𝑀𝑚

𝑗=1 𝐵(𝜆𝑚,𝑗, 𝛼𝑚,𝑗, 𝑚 > 1, are mutually disjoint and the diameters 𝑑𝑚 of the
sets 𝐵𝑚 obey the relation

lim
𝑚→∞

max
16𝑗6𝑀𝑚

𝑑𝑚
|𝜆𝑚,𝑗|

= 0. (2.28)

There exist 𝑏, 𝑏1 > 0 such that

ln |𝑓(𝜆)| > −𝑏1 − 𝑏|𝜆|, 𝜆 ∈ 𝜕𝐵𝑚, 𝑚 > 1. (2.29)

We let 𝑓(𝜆) = 𝑓(𝑧)𝑒𝜏𝜆 and 𝛾𝑙 = 𝜕𝐵𝑚𝑙
, 𝑙 > 1. By property 1) of the sequence Λ̃ we obtain

Statement 1) of Lemma 2.1 for each 𝜏 ∈ C. Statement 2) of this lemma is implied by the
definition of the sets 𝐵𝑚 and the fact that they are mutually disjoint. Relation (2.28) gives us
Statement 4) of Lemma 2.1. According the definition of sets 𝐵𝑚, the length of the contour 𝛾𝑙
satisfies the estimate:

𝜌(𝛾𝑙) 6 2𝜋

𝑁𝑚𝑙∑︁
𝑗=1

𝛼𝑚𝑙,𝑗.

Since the groups 𝑈𝑚 are relatively small, then

lim
𝑚→∞

𝑀𝑚

|𝜆𝑚,1|
= 0.

By (2.27) it leads us to Statement 5) of Lemma 2.1. It remains to show that for an appropriate
number 𝜏 ∈ C Statement 3) of this lemma holds.

Let {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converge to 𝑒𝑖𝜙0 . We let 𝜏 = 𝑡0𝑒
−𝑖𝜙0 . Them

ln |𝑓(𝜆)| = ln |𝑓(𝜆)| + 𝑡0 Re(𝑒−𝑖𝜙0𝜆).

By the continuity and the positive homogeneity of the support function there exist 𝑎, 𝛿, 𝑡0 > 0
such that

𝑡0 Re(𝑒−𝑖𝜙0𝜆) − 𝑏1 − 𝑏|𝜆| > 𝐻𝐾0(𝜆), 𝜆/|𝜆| ∈ 𝐵(𝑒𝑖𝜙0 , 𝛿), |𝜆| > 𝑎.

Since {𝜆𝑚𝑙,1/|𝜆𝑚𝑙,1|}∞𝑙=1 converges to 𝑒𝑖𝜙0 , by the definition of the sets 𝐵𝑚 and relations (2.28),
(2.29), the latter identity implies Statement 3 of Lemma 2.1. The proof is complete.
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Remark. Earlier the result of Corollart 2.4 was obtained by A.S. Krivosheev in [12, Sect.
9] via solving a special rather complicated interpolation problem in the space of entire functions
of exponential type.

3. Necessary conditions

Let us show that a condition for the condensation index 𝑆Λ(𝑈) similar to one presented in
the latter statement is necessary for the existence of the basis in the most general case, for an
arbitrary invariant subspace admitting the spectral synthesis in an arbitrary convex domain.

Let 𝐷 be a convex domain and a sequence Λ = {𝜆𝑘, 𝑛𝑘} is partitioned into the groups
𝑈 = {𝑈𝑚}∞𝑚=1 (𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚

𝑣=1) of relatively small diameter. For a set 𝐸 in the circumference
𝑆(0, 1), by the symbol Λ(𝐸) we denote the subsequence Λ consisting of all groups 𝑈𝑚 such that
𝜆𝑚,1/|𝜆𝑚,1| ∈ 𝐸. Following [4], we let

𝑆Λ(𝑈, 𝐹 ) = sup
𝐸⊃𝐹

𝑆Λ(𝐸)(𝑈), 𝑆Λ(𝑈,𝐷) = inf
𝐹⊃(𝑆(0,1)∖𝐽(𝐷))

𝑆Λ(𝑈, 𝐹 ),

where the supremum is taken over all sets 𝐸 ⊃ 𝐹 open in 𝑆(0, 1), while the infimum is taken
over all compact subsets 𝐹 ⊃ (𝑆(0, 1) ∖ 𝐽(𝐷)).

Lemma 3.1. Let 𝐷 be a convex domain and a sequence Λ is partitioned into the groups
𝑈 = {𝑈𝑚}∞𝑚=1

(︀
𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚

𝑣=1

)︀
of a relatively small diameter. Assume that the system ℰ(Λ)

is incomplete in 𝐻(𝐷) and each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into series (2.5) converging
w.r.t. 𝑚 uniformly on compact sets in 𝐷. Then 𝑆Λ(𝑈,𝐷) = 0.

Proof. Assume that 𝑆Λ(𝑈,𝐷) 6 −3𝛽 < 0. Then there exists a compact set 𝐹 ⊂ (𝑆(0, 1)∖𝐽(𝐷))
such that 𝑆Λ(𝐸)(𝑈) 6 −2𝛽 for each set 𝐸 ⊃ 𝐹 open in 𝑆(0, 1). This is why according the
definition of 𝑆Λ(𝐸)(𝑈), for each 𝑝 > 1 there exist indices 𝑚(𝑝), 𝑣(𝑝) and a number 𝛿𝑝 ∈ (0, 1/4𝑝)
satisfying the conditions

min
𝜆∈𝐹

⃒⃒⃒⃒
𝜆𝑚(𝑝),1

|𝜆𝑚(𝑝),1|
− 𝜆

⃒⃒⃒⃒
, (3.1)

ln |𝑞𝑚(𝑝)
Λ,𝑈 (𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝)|
|𝜆𝑚(𝑝),𝑣(𝑝)|

6 −𝛽, (3.2)

|𝜆𝑚(𝑝+1),𝑣(𝑝+1)| > 2|𝜆𝑚(𝑝),𝑣(𝑝)|. (3.3)

Passing to a subsequence, we can assume that {𝜆𝑚(𝑝),1/|𝜆𝑚(𝑝),1|}∞𝑝=1 converges to 𝑒𝑖𝜙0 . By (3.1),

the inclusion holds: 𝑒𝑖𝜙0 ∈ 𝐹 . In particular, 𝐻𝐷(𝑒𝑖𝜙0) < +∞.
We consider the functions

𝑔𝑝(𝑧) =
1

2𝜋𝑖

∫︁
𝑆(𝜆𝑚(𝑝),𝑣(𝑝),5𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)|)

exp(𝜆𝑧)𝑑𝜆

(𝜆− 𝜆𝑚(𝑝),𝑣(𝑝))𝑞
𝑚(𝑝)
Λ,𝑈 (𝜆, 𝛿𝑝)

, 𝑝 > 1. (3.4)

Let us find upper bounds for |𝑔𝑝|. Taking into consideration that 𝛿𝑝 < 1/4, we have

|𝑞𝑚(𝑝)
Λ,𝑈 (𝜆, 𝛿𝑝)| =

∏︁
𝜆𝑚,𝑣∈𝐵(𝜆𝑚(𝑝),𝑣(𝑝),𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)|),𝑚 ̸=𝑚(𝑝)

⃒⃒⃒⃒
𝜆− 𝜆𝑚,𝑣
3𝛿|𝜆𝑚,𝑣|

⃒⃒⃒⃒𝑛𝑘,𝑣

>

(︂
4𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)|

(3𝛿𝑝(1 + 𝛿𝑝)|𝜆𝑚(𝑝),𝑣(𝑝)|

)︂𝑠(𝑝)
> 1, 𝜆 ∈ 𝑆(𝜆𝑚(𝑝),𝑣(𝑝), 5𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)|),

(3.5)
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where 𝑠(𝑝) is the number of the points 𝜆𝑘,𝑣, 𝑘 ̸= 𝑚(𝑝), counting the multiplicities located in
the ball 𝐵(𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)). By (3.5) we have

|𝑔𝑝(𝑧)| 65𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)| sup
𝜆∈𝑆(𝜆𝑚(𝑝),𝑣(𝑝),5𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)|)

⃒⃒⃒⃒
exp(𝜆𝑧)

(𝜆− 𝜆𝑚(𝑝),𝑣(𝑝)

⃒⃒⃒⃒
6 exp(Re(𝜆𝑚(𝑝),𝑣(𝑝)𝑧) + 5𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝))||𝑧|).

(3.6)

Let 𝐾 be an arbitrary compact set in the domain 𝐷. Then

Re(𝑧𝑒𝑖𝜙0) 6 𝐻𝐷(𝑒𝑖𝜙0) − 2𝜏, 𝑧 ∈ 𝐾, (3.7)

for some number 𝜏 > 0. Since 𝑈𝑚 are the groups of relatively small diameters, the sequence
{𝜆𝑚(𝑝),𝑣(𝑝)/|𝜆𝑚(𝑝),𝑣(𝑝)|}∞𝑝=1, as {𝜆𝑚(𝑝),1/|𝜆𝑚(𝑝),1|}∞𝑝=1, converges to 𝑒𝑖𝜙0 . This is why in view of
(3.6), (3.7) and 𝛿𝑝 < 1/4𝑝→ 0 we obtain

|𝑔𝑝(𝑧)| 6 exp

(︂
|𝜆𝑚(𝑝),𝑣(𝑝)|

(︂
Re

𝜆𝑚(𝑝),𝑣(𝑝)𝑧

|𝜆𝑚(𝑝),𝑣(𝑝)|
+ 5𝛿𝑝

)︂)︂
6 exp(|𝜆𝑚(𝑝),𝑣(𝑝)|(Re(𝑧𝑒𝑖𝜙0) + 𝜏)) 6 exp(|𝜆𝑚(𝑝),𝑣(𝑝)|(𝐻𝐷𝑒

(𝑖𝜙0) − 𝜏)),

(3.8)

where 𝑧 ∈ 𝐾 and 𝑝 > 𝑝(𝐾).
We consider the function

𝑔(𝑧) =
∞∑︁
𝑝=1

𝑐𝑝𝑔𝑝(𝑧), (3.9)

where 𝑐𝑝 = exp(−|𝜆𝑚(𝑝),𝑣(𝑝)|𝐻𝐷(𝑒𝑖𝜙0)), 𝑝 > 1. By (3.8) and (3.3)

∞∑︁
𝑝=𝑝(𝐾)

|𝑐𝑝𝑔𝑝(𝑧)| 6
∞∑︁

𝑝=𝑝(𝐾)

exp(−𝜏 |𝜆𝑚(𝑝),𝑣(𝑝)|) <∞, 𝑧 ∈ 𝐾.

Therefore, series (3.9) converges uniformly on compact sets in the domain 𝐷. Employing the
residues, by definition of 𝑔𝑝 we have

𝑔𝑝(𝑧) = 𝑑𝑝 exp(𝜆𝑚(𝑝),𝑣(𝑝)𝑧) +
∑︁

𝜆𝑚,𝑣∈𝐵(𝜆𝑚(𝑝),𝑣(𝑝),𝛿𝑝|𝜆𝑚(𝑝),𝑣(𝑝)|),�̸�=𝑚(𝑝)

𝑛𝑚,𝑣−1∑︁
𝑛=0

𝑑𝑚,𝑣,𝑛𝑧
𝑛 exp(𝜆𝑚,𝑣𝑧), (3.10)

𝑑𝑝 =
(︁
𝑞
𝑚(𝑝)
Λ,𝑈 (𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝)

)︁−1

. (3.11)

By (3.9) this implies 𝑔 ∈ 𝑊 (Λ, 𝐷). Let us show that opposed to the assumption of the lemma,
the function 𝑔 is not expanded into series (2.5) uniformly on compact sets in the domain 𝐷.

By assumption, the system ℰ(Λ) is incomplete in 𝐻(𝐷). Therefore, as it has been mentioned
above, there exists a biorthogonal to ℰ(Λ) system of functionals Ξ(Λ, 𝐷). Since 𝛿𝑝 < 1/4, and
𝑈𝑚 are groups of relatively small diameter, according (3.3), the points 𝜆𝑚(𝑝),𝑣, 𝑣 = 1,𝑀𝑚(𝑝), do
not lie in the ball 𝐵(𝜆𝑚(𝑗),𝑣(𝑗), 𝛿𝑝|𝜆𝑚(𝑗),𝑣(𝑗)|) if 𝑗 ̸= 𝑝. This is why by (3.10)

𝜇𝑚(𝑝),𝑣(𝑝),0(𝑔) = 𝑑𝑝𝑐𝑝, 𝜇𝑚(𝑝),𝑣(𝑝),𝑛(𝑔) = 0, 𝑛 = 1, 𝑛𝑚(𝑝),𝑣(𝑝) − 1, 𝑝 > 1, (3.12)

𝜇𝑚(𝑝),𝑣,𝑛(𝑔) = 0, 𝑛 = 0, 𝑛𝑚(𝑝),𝑣 − 1, 𝑣 = 1,𝑀𝑚(𝑝), 𝑣 ̸= 𝑣(𝑝), 𝑝 > 1, (3.13)

where {𝜇𝑚(𝑝),𝑣,𝑛} ∈ Ξ(Λ, 𝐷) is a system biorthogonal to the system {𝑧𝑛 exp(𝜆𝑚(𝑝),𝑣𝑧)}.
By assumption, the function 𝑔 is expanded into series (2.5) converging uniformly on compact

sets in 𝐷. Then

𝑐𝑚(𝑝),𝑣,𝑛 = 𝜇𝑚(𝑝),𝑣,𝑛(𝑔), 𝑛 = 0, 𝑛𝑚(𝑝),𝑣 − 1, 𝑣 = 1,𝑀𝑚(𝑝), 𝑝 > 1. (3.14)
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In view of (3.12) and (3.13) this implies that the term of series (2.5) with the index 𝑚 = 𝑚(𝑝)
reads as

𝑑𝑝𝑐𝑝 exp(𝜆𝑚(𝑝),𝑣(𝑝)𝑧), 𝑝 > 1. (3.15)

According the definition of the support function, there exists a point 𝑧0 ∈ 𝐷 such that

Re(𝑧0𝑒
𝑖𝜙0) > 𝐻𝐷(𝑒𝑖𝜙0) − 𝛽/2.

Since { 𝜆𝑚(𝑝),𝑣(𝑝)

|𝜆𝑚(𝑝),𝑣(𝑝)|
}∞𝑝=1 converges to 𝑒𝑖𝜙0 , then

Re
𝜆𝑚(𝑝),𝑣(𝑝)𝑧0
|𝜆𝑚(𝑝),𝑣(𝑝)|

> 𝐻𝐷(𝑒𝑖𝜙0) − 𝛽, 𝑝 > 𝑝0.

Therefore, in view of (3.11), (3.2) and the definition of 𝑐𝑝 we have:

|𝑑𝑝𝑐𝑝 exp(𝜆𝑚(𝑝),𝑣(𝑝)𝑧0)| =
exp(−|𝜆𝑚(𝑝),𝑣(𝑝)|𝐻𝐷(𝑒𝑖𝜙0)

|𝑞𝑚(𝑝)
Λ,𝑈 (𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝)|

exp(Re(𝜆𝑚(𝑝),𝑣(𝑝)𝑧0))

> exp(|𝜆𝑚(𝑝),𝑣(𝑝)|(𝛽 −𝐻𝐷(𝑒𝑖𝜙0))) exp

(︂
|𝜆𝑚(𝑝),𝑣(𝑝)|Re

𝜆𝑚(𝑝),𝑣(𝑝)𝑧0
|𝜆𝑚(𝑝),𝑣(𝑝)|

)︂
> 1

as 𝑝 > 𝑝0. This contradicts the convergence of series (2.5) at the point 𝑧0 ∈ 𝐷. Hence, our
initial assumption is wrong and 𝑆Λ(𝑈,𝐷) > 0. As it has been mentioned above, the inequality
𝑆Λ(𝑈,𝐷) 6 0 is true as well. Therefore, 𝑆Λ(𝑈,𝐷) = 0. The proof is complete.

Lemma 3.2. Let 𝐷 be a convex domain and a sequence Λ is partitioned into groups 𝑈 =
{𝑈𝑚}∞𝑚=1 (𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚

𝑣=1) of relatively small diameter. Assume that the system ℰ(Λ) is
incomplete in 𝐻(𝐷) and 𝑆Λ(𝑈) = −∞. Then there exists 𝑔 ∈ 𝑊 (Λ,C), which can not be
represented as series (2.5) converging uniformly on compact sets in 𝐷.

Proof. By assumption, 𝑆Λ(𝑈) = −∞. This is why there exist numbers 𝛿𝑝 ∈ (0, 1/4𝑝), 𝑝 > 1,
and a sequence {𝜆𝑚(𝑝),𝑣(𝑝)} such that

lim
𝑝→∞

ln |𝑞𝑚(𝑝)
Λ,𝑈 (𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝)|
|𝜆𝑚(𝑝),𝑣(𝑝)|

= −∞. (3.16)

We can assume that (3.3) holds for all 𝑝 > 1.
We define 𝑔𝑝(𝑧), 𝑝 > 1, by formula (3.4). Then, as in Lemma 3.1, relations (3.6), (3.10) and

(3.11) hold. We consider the function 𝑔(𝑧) defined by formula (3.9), where we let

𝑐𝑝 =

√︁
|𝑞𝑚(𝑝)

Λ,𝑈 (𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝)|, 𝑝 > 1.

Let 𝑅 > 0. By (3.16), there exists an index 𝑝0 such that

𝑐𝑝 = |𝑐𝑝| 6 exp(−2𝑅|𝜆𝑚(𝑝),𝑙(𝑝)|), 𝑝 > 𝑝0.

Then in view of (3.6) we get

∞∑︁
𝑝=1

|𝑐𝑝|max
|𝑧|6𝑅

|𝑔𝑝(𝑧)| 6 𝐴+
∞∑︁
𝑝=𝑝0

exp
(︀
(−2𝑅 +𝑅 + 5𝛿𝑝𝑅)|𝜆𝑚(𝑝),𝑙(𝑝)|

)︀
.

Since 𝛿𝑝 → 0 and (3.3) holds, the latter series converges. Therefore, the latter series converges.
Therefore, by (3.10), the belonging 𝑔 ∈ 𝑊 (Λ,C) holds, and as in Lemma 3.1, identities (3.12),
(3.13) hold.

Assume that the function 𝑔 can be represented by series (2.5) converging uniformly on com-
pact sets in the domain 𝐷. Then (3.14) holds. This is why, as in Lemma 3.1, the term of series



76 O.A. KRIVOSHEEVA

(2.5) with an index 𝑚 = 𝑚(𝑝) is of form (3.15). It follows from (3.11), the definition of the
numbers 𝑐𝑝 and convergence of series (2.5) that

|𝑑𝑝𝑐𝑝 exp(𝜆𝑚(𝑝),𝑣(𝑝)𝑧)| =
| exp(𝜆𝑚(𝑝),𝑣(𝑝)𝑧)|√︁
|𝑞𝑚(𝑝)

Λ,𝑈 (𝜆𝑚(𝑝),𝑣(𝑝), 𝛿𝑝)|
→ 0, 𝑝→ ∞, 𝑧 ∈ 𝐷.

By (3.16), it is impossible. Thus, our assumption is wrong. The proof is complete.

Lemmata 3.1 and 3.2 imply immediately the following result.

Theorem 3.3. Let 𝐷 be a convex domain and a sequence Λ is partitioned into groups
𝑈 = {𝑈𝑚}∞𝑚=1

(︀
𝑈𝑚 = {𝜆𝑚,𝑣}𝑀𝑚

𝑣=1

)︀
of relatively small diameter. Assume that the system ℰ(Λ) is

incomplete in 𝐻(𝐷) and each function 𝑔 ∈ 𝑊 (Λ, 𝐷) is expanded into series (2.5) converging
w.r.t. 𝑚 uniformly on compact sets 𝐷. Then 𝑆Λ(𝑈,𝐷) = 0 and 𝑆Λ(𝑈) > −∞.

Remark. 1. Earlier the result of Theorem 3.3 was obtained in Theorem 5.1 in work [4].
In this theorem there was considered a case, when 𝑈 = {𝑈𝑚}∞𝑚=1 is the trivial partition; here
𝑈𝑚 are immediately groups of relatively small diameter. At that, an additional condition was
imposed: 𝑚𝐷(Λ) = 0, that is, 𝑛𝑘(𝑗)/|𝜆𝑘(𝑗)| → 0, 𝑗 → ∞ for an arbitrary subsequence {𝜆𝑘(𝑗)}
such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝜉 and 𝐻𝐷(𝜉) < +∞. Under this condition, the groups 𝑈𝑚 become
relatively small. We also observe that in work [4], this result was obtained via solving a rather
complicated interpolation problem in the space of entire functions of exponential type.

2. Theorem 3.3 and Corollary 2.4 imply Theorem 9.1 in work [12].
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