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APPROXIMATION OF SOLUTIONS TO SINGULAR

INTEGRO-DIFFERENTIAL EQUATIONS BY

HERMITE-FEJER POLYNOMIALS

A.I. FEDOTOV

Abstract. Singular integral and integro-differential equations have a lot of applications
and thus were thoroughly studied by domestic and foreign mathematicians since the be-
ginning of 20th century, and by the 70th years the theory of such equations was finally
completed. It is known from this theory that the exact solutions to such equations exist
only in rarely particular cases, so since that time the approximate methods for solving these
equations as well as the techniques of the justification of these methods were developed.
Justification of the approximate method means the proof of the existence and the unique-
ness of the approximate solution, estimation of its error and the proof of the convergence
of the approximate solutions to the exact solution. Moreover, to compare the approximate
methods in different aspects, the optimization theory for approximate methods was created.

However, sometimes, depending on the particular problem, an important role is also
played by the form of an approximate solution. For instance, sometimes it is desirable
to have an approximate solution as a spline, sometimes, as a polynomial, sometimes it is
enough to have just the approximate values of the solution at the nodes. It is quite obvious
that depending on the kind of the approximate solution the technique of the justification
of the method should be chosen. Unfortunately, there are very few of such techniques, that
is why the theory of justification of the approximate methods is now intensively studied.

In the present work we justify an approximate method for solving singular integro-
differential equations in the periodic case. An approximate solution is sought as a trigono-
metric interpolation Hermite-Fejer polynomials. For justification of this approximate
method, the technique developed by B.G. Gabdulkhaev and his pupils is used. The conver-
gence of the method is proved and the errors of the approximate solutions are estimated.

Keywords: singular integro-differential equations, justification of the approximate meth-
ods.
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1. Introduction

Algebraic interpolation polynomials with multiple nodes called Hermite polynomials are well
studied and are employed successfully for a wide range of applied problems. Their trigonometric
analogue is substantially less and many issues on existence, uniqueness and approximative
properties of such polynomials are still open.

The first studies of trigonometric interpolation polynomials with multiple nodes seemed to
be initiated from the ends of 30s in the last century. S.M. Lozinsky [1] considered issues on ap-
proximating the functions of one complex variable regular inside the unit circle and continuous
up to the boundary by trigonometric interpolation polynomials with multiple nodes located
at the unit circumference. Also he first called such polynomials Hermite-Fejer polynomials.
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Generalizing the results of the predecessors [4], [5], [6], [7], È.O. Zeel’ proved the existence of
trigonometric interpolation polynomials over the system of equidistributed nodes of an arbi-
trary multiplicity 𝑚 > 0 for real-valued 2𝜋-periodic functions and he proposed a method for
constructing corresponding fundamental polynomials. Moreover, he obtained the conditions of
uniform convergence of such polynomials to an interpolated function subject on its smoothness
and on the parity of 𝑚.

B.G. Gabdulkhaev obtained order sharp estimates in a convenient form for the convergence
rate of trigonometric interpolation polynomials of first multiplicity in the space of continuously
differentiable functions [8]. Moreover, in this work he first studied the properties of quadrature
formulae for singular integrals with the Hilbert kernel obtained in multiple interpolation of the
density. Basing on the results of work [3] and employing the approach by B.G. Gabdulkhaev [8],
Yu.S. Soliev studied systematically the quadrature formulae with nodes of various multiplicity
for singular integrals with the Cauchy and Hilbert kernels [9], [10], [11].

Up to now, the Hermite-Fejer polynomials were employed for approximate solving operator
equations only in works by the author [12] , [13].

In the present work we construct a numerical scheme and justify the collocation method for
a complete singular integro-differential equation in a periodic case. We prove the convergence
of the method and obtain effective estimates for the error of the approximate solution.

2. Formulation of problem

We consider a singular integro-differential equation

1∑︁
𝜈=0

(𝑎𝜈(𝑡)𝑥(𝜈)(𝑡) + 𝑏𝜈(𝑡)(𝐽𝑥(𝜈))(𝑡) + (𝐽0ℎ𝜈𝑥
(𝜈))(𝑡)) = 𝑦(𝑡), 𝑡 ∈ [0, 2𝜋], (2.1)

where 𝑥 is the unknown, 𝑎𝜈 , 𝑏𝜈 , ℎ𝜈 (w.r.t. the both variables), 𝜈 = 0, 1, and 𝑦 are known
continuous 2𝜋-periodic functions, the singular integrals

(𝐽𝑥(𝜈))(𝑡) =
1

2𝜋

∫︁ 2𝜋

0

𝑥(𝜈)(𝜏) cot
𝜏 − 𝑡

2
𝑑𝜏, 𝜈 = 0, 1, 𝑡 ∈ [0, 2𝜋],

are treated in the sense of the Cauchy-Lebesgue principal value, while

(𝐽0ℎ𝜈𝑥
(𝜈))(𝑡) =

1

2𝜋

∫︁ 2𝜋

0

ℎ𝜈(𝑡, 𝜏)𝑥(𝜈)(𝜏)𝑑𝜏, 𝜈 = 0, 1, 𝑡 ∈ [0, 2𝜋],

are regular integrals.

3. Numerical scheme

As usually, by N we denote the set of natural numbers, the symbol N0 stands for the set of
natural numbers and zero, R is the set of real numbers and C is the set of complex numbers.

We fix 𝑛 ∈ N. We seek an approximate solution to problem (2.1) as the Hermite-Fejer
polynomial

𝑥𝑛(𝑡) =
1

𝑛2

𝑛−1∑︁
𝑘=0

(𝑥2𝑘 + 𝑥′2𝑘 sin(𝑡− 𝑡2𝑘))
sin2 𝑛

2
(𝑡− 𝑡2𝑘)

sin2 𝑡− 𝑡2𝑘
2

, 𝑡 ∈ [0, 2𝜋], (3.1)

where 𝑡2𝑘, 𝑘 = 0, 1, . . . , 𝑛− 1, are the nodes with the even indices of the grid

𝑡𝑘 =
𝜋𝑘

𝑛
, 𝑘 = 0, 1, . . . , 2𝑛− 1. (3.2)



APPROXIMATION OF SOLUTIONS TO SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS. . . 111

We determine the unknown coefficients 𝑥2𝑘, 𝑥′2𝑘, 𝑘 = 0, 1, . . . , 𝑛− 1, of polynomial (3.1) by the
system of linear algebraic equations

1∑︁
𝜈=0

(𝑎𝜈(𝑡𝑘)𝑥(𝜈)𝑛 (𝑡𝑘) + 𝑏𝜈(𝑡𝑘)(𝐽𝑥(𝜈)𝑛 )(𝑡𝑘) + (𝐽0𝑃 𝜏
2𝑛(ℎ𝜈𝑥

(𝜈)
𝑛 ))(𝑡𝑘)) = 𝑦(𝑡𝑘), 𝑘 = 0, 1, . . . , 2𝑛− 1,

(3.3)
where

𝑃 𝜏
2𝑛(ℎ𝜈𝑥

(𝜈)
𝑛 )(𝑡, 𝜏) =

1

2𝑛

2𝑛−1∑︁
𝑘=0

ℎ𝜈(𝑡, 𝑡𝑘)𝑥(𝜈)𝑛 (𝑡𝑘)
sin𝑛(𝜏 − 𝑡𝑘) cos 𝜏−𝑡𝑘

2

sin 𝜏−𝑡𝑘
2

, 𝜈 = 0, 1, 𝑡, 𝜏 ∈ [0, 2𝜋],

is a Lagrange operator 𝑃2𝑛 over nodes (3.2) applied in the variable 𝜏 to the functions ℎ𝜈𝑥
(𝜈)
𝑛 ,

𝜈 = 0, 1. At that1

(𝐽𝑥𝑛)(𝑡𝑘) =
1

𝑛

𝑛−1∑︁
𝑗=0

(𝛼0
0,𝑘−2𝑗𝑥2𝑗 + 𝛼1

0,𝑘−2𝑗𝑥
′
2𝑗), 𝑘 = 0, 1, . . . , 2𝑛− 1,

𝛼0
0,𝑟 =

{︁
− cot

𝑟𝜋

2𝑛
as 𝑟 ̸= 0, 0 as 𝑟 = 0

}︁
,

𝛼1
0,𝑟 =

{︂
− 1

𝑛
as 𝑟 ̸= 0, 2 − 1

𝑛
as 𝑟 = 0

}︂
;

(𝐽𝑥′𝑛)(𝑡2𝑘) =
1

𝑛

𝑛−1∑︁
𝑗=0

(𝛼0
1,2𝑘−2𝑗𝑥2𝑗 + 𝛼1

1,2𝑘−2𝑗𝑥
′
2𝑗), 𝑘 = 0, 1, . . . , 𝑛− 1,

(𝐽𝑥′𝑛)(𝑡2𝑘+1) =
1

𝑛

𝑛−1∑︁
𝑗=0

𝛼0
1,2𝑘−2𝑗+1𝑥2𝑗, 𝑘 = 0, 1, . . . , 𝑛− 1,

𝛼0
1,𝑟 =

{︂
csc2

𝑟𝜋

2𝑛
as 𝑟 ̸= 0, −𝑛

2 − 1

3
as 𝑟 = 0

}︂
,

𝛼1
1,𝑟 = {(−1)𝑟 csc

𝑟𝜋

2𝑛
as 𝑟 ̸= 0, 0 as 𝑟 = 0};

(𝐽0𝑃 𝜏
2𝑛(ℎ𝜈𝑥

(𝜈)
𝑛 ))(𝑡𝑘) =

1

2𝑛

2𝑛−1∑︁
𝑗=0

ℎ𝜈(𝑡𝑘, 𝑡𝑗)𝑥
(𝜈)
𝑛 (𝑡𝑗), 𝜈 = 0, 1, 𝑘 = 0, 1, . . . , 2𝑛− 1.

4. Auxiliary results

We denote by C the set of continuous 2𝜋-periodic functions with the usual norm

‖𝑓‖C = sup
𝑡∈R

| 𝑓(𝑡) |, 𝑓 ∈ C.

For a fixed 𝑚 ∈ N0 we denote by C𝑚 ⊂ C the set of the functions having on R a bounded 𝑚th
derivative (C0 = C). The norm on the set C𝑚 is introduced by the identity

‖𝑓‖C𝑚 = max
06𝜈6𝑚

‖𝑓 (𝜈)‖C, 𝑓 ∈ C𝑚.

1We observe that in works [8], formulae (4), (5) and (6) being the trigonometric interpolation polynomial
with nodes of first multiplicity, the quadrature formula constructed on the base of this polynomial and the
corresponding quadrature sum were given with misprints. The quadrature formulae free of the misprints can
be found, for instance, in dissertation [11], while the formulae for the polynomial and quadrature sum are given
in this work.
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The set of the functions satisfying the Hölder condition with the exponent 𝛼 ∈ R, 0 < 𝛼 6 1,
is denoted by H𝛼. For the functions in H𝛼 we introduce the quantity

𝐻(𝑓 ;𝛼) = sup
𝑡̸=𝜏

𝑡,𝜏∈R

| 𝑓(𝑡) − 𝑓(𝜏) |
| 𝑡− 𝜏 |𝛼

.

This is the smallest constant in the Hölder condition of a function 𝑓 ∈ H𝛼. The introduced
quantity allows us to define the norm on the set H𝛼, namely,

‖𝑓‖H𝛼 = max{‖𝑓‖C, 𝐻(𝑓 ;𝛼)}.
Given a fixed constant 𝛼 ∈ R, 0 < 𝛼 6 1, in the set of functions C𝑚, we select a set of functions
H𝑚

𝛼 , whose derivatives of order 𝑚 satisfy the Hölder condition

| 𝑓 (𝑚)(𝑡) − 𝑓 (𝑚)(𝜏) |6 𝐻(𝑓 (𝑚);𝛼) | 𝑡− 𝜏 |𝛼, 𝑡, 𝜏 ∈ R.
The norm on the set H𝑚

𝛼 (H0
𝛼 = H𝛼) is defined by the relation

‖𝑓‖H𝑚
𝛼

= max{‖𝑓‖C𝑚 , 𝐻(𝑓 (𝑚);𝛼)}.
By 𝒯𝑛 we denote the set of all trigonometrical polynomials of degree at most 𝑛. In what

follows we make use of two lemmata implying the results of work [14].

Lemma 4.1. Let numbers 𝛼, 𝛽 ∈ R, 0 < 𝛼 6 1, 0 < 𝛽 6 1, and 𝑚, 𝑟 ∈ N0, 𝑚 6 𝑟, be such
that 𝑚+ 𝛽 6 𝑟 + 𝛼. Then for each 𝑛 ∈ N and each function 𝑥 ∈ H𝑟

𝛼 the estimate holds 1

‖𝑥− 𝑇𝑛‖H𝑚
𝛽
6 𝑐𝑛𝑚−𝑟−𝛼+𝛽𝐻(𝑥(𝑟);𝛼),

where 𝑇𝑛 ∈ 𝒯𝑛 is the polynomial of the best uniform approximation of the function 𝑥.

Lemma 4.2. For each 𝑛 ∈ N, 𝛽 ∈ R, 0 < 𝛽 6 1 and arbitrary trigonometrical polynomial
𝑇𝑛 ∈ 𝒯𝑛 the following estimate holds

‖𝑇𝑛‖H𝛽
6 (1 + 21−𝛽𝑛𝛽)‖𝑇𝑛‖C.

The operator 𝑃2𝑛 is exact for each trigonometrical polynomial of degree 𝑛− 1 and, as it was
shown in [15,16], it possesses the following properties:

‖𝑃2𝑛‖H𝑚
𝛽 →H𝑚

𝛽
6 𝑐‖𝑃2𝑛‖C→C 6 𝑐 ln𝑛 (4.1)

for each 𝑛 ∈ N, 𝑛 > 2, 𝛽 ∈ R, 0 < 𝛽 6 1 and arbitrary fixed 𝑚 ∈ N.

5. Justification of the method

For numerical scheme (3.1)–(3.3) for equation (2.1) the following theorem holds.

Theorem 5.1. Assume that equation (2.1) satisfies the following conditions:
A1 The functions 𝑎𝜈, 𝑏𝜈, 𝜈 = 0, 1, and 𝑦 satisfy the Hölder condition with some exponent

𝛼 ∈ R, 0 < 𝛼 6 1; the functions ℎ𝜈, 𝜈 = 0, 1, satisfy the Hölder with the same 𝛼 w.r.t. each
variable uniformly in the other variable;

A2 𝑎21(𝑡) + 𝑏21(𝑡) ̸= 0, 𝑡 ∈ [0, 2𝜋],
A3 𝜅 = ind(𝑎1 + 𝑖𝑏1) = 0,
A4 Equation (2.1) has the unique solution 𝑥* ∈ H1

𝛽 for each right hand side 𝑦 ∈ H𝛽, 0 <
𝛽 < 𝛼 6 1.

Then for sufficiently large 𝑛 system of equations (3.3) is uniquely solvable and solutions 𝑥*𝑛
converge to the exact solution 𝑥* of equation (2.1) in the norm of the space H1

𝛽 as 𝑛→ ∞ with
the rate

‖𝑥* − 𝑥*𝑛‖H1
𝛽
6 𝑐𝑛−𝛼+𝛽 ln𝑛, 0 < 𝛽 < 𝛼 6 1.

1Hereinafter 𝑐 denotes certain constants independent of 𝑛, generally speaking, different in different
inequalities.
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Proof. Let us show that Condition A4 is non-empty that in the considered class there exist
equations obeying this condition. Indeed, we consider the equation

𝑎1(𝑡)(𝑥
′(𝑡) + 𝑥(𝑡)) + 𝑏1(𝑡)((𝐽𝑥

′)(𝑡) + (𝐽𝑥)(𝑡)) = 𝑦(𝑡), 𝑡 ∈ [0, 2𝜋]. (5.1)

It is known [17] that the characteristic operator

𝐵𝑥 ≡ 𝑎1(𝑡)𝑥(𝑡) + 𝑏1(𝑡)(𝐽𝑥)(𝑡), 𝐵 : 𝐻𝛽 → 𝐻𝛽,

of equation (5.1) is invertible and the inverse operator 𝐵−1 : 𝐻𝛽 → 𝐻𝛽 can be written explicitly.
We apply the operator 𝐵−1 to equation (5.1). This leads us to the equivalent equation

𝑥′(𝑡) + 𝑥(𝑡) = (𝐵−1𝑦)(𝑡), 𝑡 ∈ [0, 2𝜋]. (5.2)

In the pair of the spaces (𝐻1
𝛽, 𝐻𝛽), equation (5.2) is Fredholm. The homogeneous equation

𝑥′(𝑡) + 𝑥(𝑡) = 0, 𝑡 ∈ [0, 2𝜋],

in space of real-valued functions has the solution 𝑥(𝑡) = 𝑐𝑒−𝑡, 𝑡 ∈ [0, 2𝜋], but this solution is not
periodic as 𝑐 ̸= 0 and this is why the only appropriate value is 𝑐 = 0, that is, the homogeneous
equation has only the trivial solution in the space of periodic functions 𝐻1

𝛽. This means that
equation (5.2), and hence, equation (5.1), are uniquely solvable for each right hand side 𝑦 ∈ 𝐻𝛽,
0 < 𝛽 < 𝛼 6 1.

In the rest of the proof we employ the methods of works [18], [19].
We fix 𝛽 ∈ R, 0 < 𝛽 < 𝛼 6 1, and let X = H1

𝛽, Y = H𝛽. Then problem (2.1) can be written
as the operator equation

𝑄𝑥 = 𝑦, 𝑄 : X → Y. (5.3)

To each function 𝑥 ∈ X, we associate the Cauchy type integral of form

Φ(𝑧) = Φ(𝑥; 𝑧) =
1

2𝜋

2𝜋∫︁
0

𝑥(𝜏)𝑑𝜏

1 − 𝑧 exp(−𝑖𝜏)
, 𝑧 ∈ C.

We denote by 𝑥+(𝑡) and 𝑥−(𝑡) the limiting values of the function Φ(𝑧) as 𝑧 tends to the point
exp(𝑖𝑡) respectively inside and outside the unit circumference. The functions 𝑥+ and 𝑥− satisfy
Sokhotski formulae1

𝑥±(𝑡) =
1

2
((±𝐼 − 𝑖𝐽)𝑥)(𝑡) +

1

2
𝐽0𝑥, 𝑡 ∈ R. (5.4)

Differentiating (5.4) and employing the known formulae

(𝑥′(𝑡))± = (𝑥±(𝑡))′, (𝐽𝑥)′(𝑡) = (𝐽𝑥′)(𝑡),

we have
𝑥′(𝑡) = 𝑥′+(𝑡) − 𝑥′−(𝑡), (𝐽𝑥′)(𝑡) = 𝑖(𝑥′+(𝑡) + 𝑥′−(𝑡)). (5.5)

By Conditions A2, A3 and according [20],

𝑎1 − 𝑖𝑏1
𝑎1 + 𝑖𝑏1

=
𝜓+

𝜓− ,

where

𝜓(𝑧) = 𝑒𝜃(𝑧), 𝜃(𝑧) = Φ(𝑢; 𝑧), 𝑢 = ln
𝑎1 − 𝑖𝑏1
𝑎1 + 𝑖𝑏1

, 𝑧 ∈ C.

Then, employing (5.5), we can represent the characteristic part of equation (2.1) as [17], [20]

𝑎1(𝑡)𝑥
′(𝑡) + 𝑏1(𝑡)(𝐽𝑥

′)(𝑡) =
(𝑎1(𝑡) + 𝑖𝑏1(𝑡))

𝜓−(𝑡)
(𝜓−(𝑡)𝑥′+(𝑡) − 𝜓+(𝑡)𝑥′−(𝑡)).

we write equation (2.1) or, the same, equation (5.3) as the equivalent operator equation

𝐾𝑥 ≡ 𝑈𝑥+ 𝑉 𝑥 = 𝑓, 𝐾 : X → Y, (5.6)

1I stands for the identity mapping.
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where

𝑈𝑥 = 𝜓−𝑥′+ − 𝜓+𝑥′−, 𝑉 𝑥 = 𝐴𝑥+𝐵𝑥+𝑊𝑥,

𝐴𝑥 = 𝑣−1𝑎0𝑥, 𝐵𝑥 = 𝑣−1𝑏0𝐽𝑥, 𝑊𝑥 = 𝑣−1

1∑︁
𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈),

𝑓 = 𝑣−1𝑦, 𝑣 =
𝑎1 + 𝑖𝑏1
𝜓− ;

at that, by Condition A2 of Theorem 1, 𝑣(𝑡) ̸= 0, 𝑡 ∈ [0, 2𝜋]. The equivalence is understood in
the sense that equations (2.1) and (5.6) are solvable simultaneously and their solutions coincide.

Let X𝑛 ⊂ 𝒯𝑛 be the set of trigonometrical polynomials of form (3.1), and Y𝑛 = 𝑃2𝑛Y ⊂ 𝒯𝑛.
Then system of equations (3.3) is equivalent to the operator equation

𝐾𝑛𝑥𝑛 ≡ 𝑈𝑛𝑥𝑛 + 𝑉𝑛𝑥𝑛 = 𝑓𝑛, 𝐾𝑛 : X𝑛 → Y𝑛, (5.7)

where

𝑈𝑛 = 𝑃2𝑛𝑈, 𝑉𝑛𝑥𝑛 = 𝑃2𝑛𝐴𝑥𝑛 + 𝑃2𝑛𝐵𝑥𝑛 +𝑊𝑛𝑥𝑛,

𝑊𝑛𝑥𝑛 = 𝑃2𝑛

1∑︁
𝜈=0

𝐽0(𝑃
𝜏
2𝑛(ℎ𝜈𝑥

(𝜈)
𝑛 )), 𝑓𝑛 = 𝑃2𝑛𝑓.

Here the equivalence is understood in the sense that if system of equations (3.3) has solution
𝑥*2𝑘, 𝑥

′*
2𝑘, 𝑘 = 0, 1, . . . , 𝑛− 1, then equation (5.7) also has the polynomial solution

𝑥*𝑛(𝑡) =
1

𝑛2

𝑛−1∑︁
𝑘=0

(𝑥*2𝑘 + 𝑥′*2𝑘 sin(𝑡− 𝑡2𝑘))
sin2 𝑛

2
(𝑡− 𝑡2𝑘)

sin2 𝑡−𝑡2𝑘
2

, 𝑡 ∈ R.

Let us prove that the operators 𝐾 and 𝐾𝑛 are closed on X𝑛.
For each 𝑥𝑛 ∈ X𝑛, employing the polynomial of the best uniform approximation 𝑇𝑛−1 ∈ 𝒯𝑛−1

for the function 𝐴𝑥𝑛, we obtain

‖𝐴𝑥𝑛 − 𝑃2𝑛𝐴𝑥𝑛‖Y 6 (1 + ‖𝑃2𝑛‖Y→Y)‖𝐴𝑥𝑛 − 𝑇𝑛−1‖Y. (5.8)

Taking into consideration the structural properties of the function 𝐴𝑥𝑛, we estimate

𝐻(𝐴𝑥𝑛;𝛼) 6 𝑐(‖𝑥𝑛‖𝐶 + ‖𝑥′𝑛‖C) 6 𝑐‖𝑥𝑛‖X. (5.9)

By (5.8), employing Lemma 4.1, estimate (4.1) and taking into consideration (5.9), we find

‖𝐴𝑥𝑛 − 𝑃2𝑛𝐴𝑥𝑛‖Y 6 𝑐(𝑛−𝛼+𝛽 ln𝑛)‖𝑥𝑛‖X. (5.10)

Arguing as above, we obtain

‖𝐵𝑥𝑛 − 𝑃2𝑛𝐵𝑥𝑛‖Y 6 𝑐(𝑛−𝛼+𝛽 ln𝑛)‖𝑥𝑛‖X. (5.11)

Since the quadrature formulae for the regular integrals employed in (3.3) are exact for trigono-
metric polynomials, we can write

‖𝑊𝑥𝑛 −𝑊𝑛𝑥𝑛‖Y 6‖
1∑︁

𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈)
𝑛 − 𝑃2𝑛

1∑︁
𝜈=0

𝐽0𝑃 𝜏
2𝑛(ℎ𝜈𝑥

(𝜈)
𝑛 )‖Y

6‖
1∑︁

𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈)
𝑛 − 𝑃2𝑛

1∑︁
𝜈=0

𝐽0(ℎ𝜈𝑥
(𝜈)
𝑛 )‖Y

+ ‖𝑃2𝑛

1∑︁
𝜈=0

𝐽0(𝑥(𝜈)𝑛 (ℎ𝜈 − 𝑃 𝜏
2𝑛ℎ𝜈))‖Y.

(5.12)
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Employing now the polynomial of the best uniform approximation 𝑇𝑛−1 ∈ 𝒯𝑛−1 for the function
1∑︀

𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈)
𝑛 , we obtain

‖
1∑︁

𝜈=0

𝐽0(ℎ𝜈𝑥
(𝜈)
𝑛 ) − 𝑃2𝑛

1∑︁
𝜈=0

𝐽0(ℎ𝜈𝑥
(𝜈)
𝑛 )‖Y 6 (1 + ‖𝑃2𝑛‖Y→Y)‖

1∑︁
𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈)
𝑛 − 𝑇𝑛−1‖Y. (5.13)

Taking into consideration the structural properties of the function ℎ𝜈(𝑡, 𝜏) w.r.t. the variable
𝑡, it is easy to show that

𝐻(
1∑︁

𝜈=0

𝐽0(ℎ𝜈𝑥
(𝜈)
𝑛 );𝛼) 6 𝑐

1∑︁
𝜈=0

‖𝑥(𝜈)𝑛 ‖C 6 𝑐‖𝑥𝑛‖X. (5.14)

Employing Lemma 4.1 and estimate (4.1), by (5.13) and (5.14) we find

‖
1∑︁

𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈)
𝑛 − 𝑃2𝑛

1∑︁
𝜈=0

𝐽0ℎ𝜈𝑥
(𝜈)
𝑛 ‖Y 6 𝑐(𝑛−𝛼+𝛽 ln𝑛)‖𝑥𝑛‖X. (5.15)

Taking into consideration the structural properties of the functions ℎ𝜈(𝑡, 𝜏) w.r.t. the variable
𝜏 , the estimate for the error term of the employed quadrature formulae and Lemma 4.2, for the
second term in the right hand side of estimate (5.12) we obtain

‖𝑃2𝑛

1∑︁
𝜈=0

𝐽0(𝑥(𝜈)𝑛 (ℎ𝜈 − 𝑃 𝜏
2𝑛ℎ𝜈))‖Y 6𝑐(𝑛𝛽 ln𝑛)‖

1∑︁
𝜈=0

𝐽0(𝑥(𝜈)𝑛 (ℎ𝜈 − 𝑃 𝜏
2𝑛ℎ𝜈))‖C

6𝑐(𝑛−𝛼+𝛽 ln𝑛)‖𝑥𝑛‖X.
(5.16)

Finally, employing estimates (5.12), (5.15) and (5.16), we find

‖𝑊𝑥𝑛 −𝑊𝑛𝑥𝑛‖Y 6 𝑐(𝑛−𝛼+𝛽 ln𝑛)‖𝑥𝑛‖X. (5.17)

We denote by 𝜓𝑛−1(𝑡) ∈ 𝒯𝑛−1 the polynomial of the best uniform approximation of the
function 𝜓(𝑡). Employing the auxiliary operator,

𝑈̄𝑛 : X𝑛 → Y𝑛, 𝑈̄𝑛𝑥𝑛 = 𝜓−
𝑛−1𝑥

′+
𝑛 − 𝜓+

𝑛−1𝑥
′−
𝑛 ,

we find:
‖𝑈𝑥𝑛 − 𝑈𝑛𝑥𝑛‖Y 6 (1 + ‖𝑃2𝑛‖Y→Y)‖𝑈𝑥𝑛 − 𝑈̄𝑛𝑥𝑛‖Y. (5.18)

Then we have:

‖𝑈𝑥𝑛 − 𝑈̄𝑛𝑥𝑛‖Y 6 ‖(𝜓− − 𝜓−
𝑛−1)𝑥

′+
𝑛 ‖Y + ‖(𝜓+ − 𝜓+

𝑛−1)𝑥
′−
𝑛 ‖Y. (5.19)

We estimate each term in the right hand side in (5.19) by applying Lemma 4.1 as follows:

‖(𝜓∓ − 𝜓∓
𝑛−1)𝑥

′±
𝑛 ‖Y 6 ‖𝜓∓ − 𝜓∓

𝑛−1‖Y‖𝑥′±𝑛 ‖Y 6 𝑐𝑛−𝛼+𝛽‖𝑥𝑛‖X. (5.20)

Now, in view of (5.19), (5.20) and (4.1), inequality (5.18) becomes

‖𝑈𝑥𝑛 − 𝑈𝑛𝑥𝑛‖Y 6 𝑐(𝑛−𝛼+𝛽 ln𝑛)‖𝑥𝑛‖X. (5.21)

Finally, employing estimates (5.10), (5.11), (5.17) and (5.21), we obtain

‖𝐾 −𝐾𝑛‖X𝑛→Y 6 𝑐𝑛−𝛼+𝛽 ln𝑛.

Since the operators 𝑄 and 𝐾 are invertible simultaneously and

‖𝐾−1‖Y→X 6 ‖𝑣‖Y‖𝑄−1‖Y→X, (5.22)

for sufficiently large 𝑛 we have:

‖𝐾−1‖Y→X‖𝐾 −𝐾𝑛‖X𝑛→Y 6 𝑐𝑛−𝛼+𝛽 ln𝑛 6
1

2
.
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By Theorem 1.1 in work [19], for such 𝑛 there exist the operators 𝐾−1
𝑛 : Y𝑛 → X𝑛 and they are

bounded. Moreover, similar to (5.8), we employ Condition A1 of Theorem 1, Lemma 1 and
estimate (4.1) and for the right hand sides of equation (5.6), (5.7) we obtain

‖𝑦 − 𝑦𝑛‖Y = ‖𝑦 − 𝑃2𝑛𝑦‖Y 6 𝑐𝑛−𝛼+𝛽 ln𝑛. (5.23)

Employing Corollary of Theorem 1.2 in work [19] for solutions 𝑥* and 𝑥*𝑛 of equations (5.6),
(5.7), taking into consideration estimates (5.22), (5.23), we find

‖𝑥* − 𝑥*𝑛‖X 6 𝑐𝑛−𝛼+𝛽 ln𝑛.

The proof is complete.

Corollary 1. Suppose that under the assumptions of Theorem 1, the functions 𝑎𝜈, 𝑏𝜈, ℎ𝜈
(w.r.t. the both variables), 𝜈 = 0, 1, and 𝑦 belong to H𝑟

𝛼, 𝑟 ∈ N. Then the approximate solutions
𝑥*𝑛 converge to the exact solution 𝑥* of equation (2.1) in the norm of the space H1

𝛽 as 𝑛 → ∞
with the rate

‖𝑥* − 𝑥*𝑛‖H1
𝛽
6 𝑐𝑛−𝑟−𝛼+𝛽 ln𝑛, 𝑟 + 𝛼 > 𝛽. (5.24)

Proof. Employing Theorem 6 in [18], we write

‖𝑥* − 𝑥*𝑛‖X 6 (1 + ‖𝐾−1
𝑛 𝑃2𝑛𝐾‖)‖𝑥* − 𝑥̄𝑛‖X + ‖𝐾−1

𝑛 ‖‖𝐾𝑛𝑥̄𝑛 − 𝑃2𝑛𝐾𝑥̄𝑛‖Y, (5.25)

where 𝑥̄𝑛 is arbitrary element in X𝑛. Under the assumptions of Corollary 1, solution 𝑥* of
equation (2.1) is such that 𝑥*′ ∈ H𝑟

𝛼 as 0 < 𝛼 < 1 and 𝑥*(𝑟+1) ∈ 𝑍 as 𝛼 = 1’; 𝑍 is the
Zygmund class. Choosing the polynomial of the best uniform approximation for the function
𝑥* as 𝑥̄𝑛 ∈ 𝒯𝑛 and employing Lemma 4.1, for the first term in the right hand side in (5.25) we
find

(1 + ‖𝐾−1
𝑛 𝑃2𝑛𝐾‖)‖𝑥* − 𝑥̄𝑛‖X 6 𝑐𝑛−𝑟−𝛼+𝛽 ln𝑛. (5.26)

Taking into consideration the structural properties of the functions ℎ𝜈(𝑡, 𝜏), 𝜈 = 0, 1, in the
variable 𝜏 , the estimate for the error in quadrature formulae, employing Lemma 4.2 and estimate
(4.1) for the second term in the right hand side in inequality (5.25), we get:

‖𝐾𝑛𝑥̄𝑛 − 𝑃2𝑛𝐾𝑥̄𝑛‖Y =‖𝑊𝑛𝑥̄𝑛 − 𝑃2𝑛𝑊𝑥̄𝑛‖Y 6 ‖𝑃2𝑛

1∑︁
𝜈=0

𝐽0(𝑥̄
(𝜈)
𝑛 (ℎ𝜈 − 𝑃 𝜏

2𝑛ℎ𝜈))‖Y

6𝑐(𝑛𝛽 ln𝑛)‖
1∑︁

𝜈=0

𝐽0(𝑥̄
(𝜈)
𝑛 (ℎ𝜈 − 𝑃 𝜏

2𝑛ℎ𝜈))‖C 6 𝑐(𝑛−𝑟−𝛼+𝛽) ln𝑛‖𝑥̄𝑛‖X.

(5.27)

Substituting estimates (5.26) and (5.27) into (5.25) and taking into consideration that

‖𝑥̄𝑛‖X 6 ‖𝑥*‖X + ‖𝑥* − 𝑥̄𝑛‖X 6 ‖𝑥*‖X + 𝑐𝑛−𝑟−𝛼+𝛽,

we arrive at estimate (5.24). The proof is complete.
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