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BEHAVIOR OF SINGULAR INTEGRAL WITH HILBERT

KERNEL AT WEAK CONTINUITY POINT OF DENSITY

R.B. SALIMOV

Abstract. We consider the singular integral with the Hilbert kernel

𝐼(𝛾0) =

2𝜋∫︁
0

𝜙(𝛾) cot
𝛾 − 𝛾0

2
𝑑𝛾,

whose density 𝜙(𝛾) is a continuous in [0, 2𝜋] function, 𝛾0 ∈ [0, 2𝜋], 𝜙(0) = 𝜙(2𝜋), and the
integral is treated in the sense of its principal value. We assume that in the vicinity of a fixed
point 𝛾 = 𝑐, 𝑐 ∈ (𝑐−, 𝑐+) ⊂ [0, 2𝜋], 𝑐+−𝑐− < 1, the density 𝜙(𝛾) satisfies the representation

𝜙(𝛾) = Φ(𝛾)

(− ln sin2 𝛾−𝑐
2 )

𝛽 , 𝛾 ∈ (𝑐−, 𝑐+), where Φ(𝛾) is a given continuous in [𝑐−, 𝑐], [𝑐, 𝑐+]

function with not necessarily coinciding one-sided limits Φ(𝑐− 0) and Φ(𝑐+0), 𝛽 is a given

number, and 𝛽 > 1. We suppose that the representations Φ(𝛾)−Φ(𝑐± 0) = 𝜒(𝛾)

(− ln sin2 𝛾−𝑐
2 )

𝛿 ,

𝜒′(𝛾) = 𝜈(𝛾)

(− ln sin2 𝛾−𝑐
2 ) tan 𝛾−𝑐

2

, hold, where 𝛿 > 0 is a given number, 𝜒(𝛾), 𝜈(𝛾) are given

functions continuous in each of the intervals [𝑐−, 𝑐], [𝑐, 𝑐+], 𝜈(𝑐± 0) = 0, Φ(𝑐+ 0) is taken
as 𝛾 > 𝑐, Φ(𝑐− 0) is taken as 𝛾 < 𝑐.

We prove that under the above conditions the representation

𝐼(𝛾0)− 𝐼(𝑐) =
Φ(𝑐− 0)− Φ(𝑐+ 0)

(𝛽 − 1)
(︀
− ln sin2 𝛾0−𝑐

2

)︀𝛽−1

− 𝑈(𝑐+ 0)− 𝑈(𝑐− 0)

𝛽(𝛽 − 1)
(︀
− ln sin2 𝛾0−𝑐

2

)︀𝛽−1
+ 𝑜

⎛⎝ 1(︀
− ln sin2 𝛾0−𝑐

2

)︀𝛽−1

⎞⎠+𝑂

(︃
1(︀

− ln sin2 𝛾0−𝑐
2

)︀𝛽
)︃
,

holds as 𝛾0 → 𝑐. Here 𝛽 = 𝛽+𝛿, 𝛽 > 1, 𝛿 > 0, 𝑈(𝑐+0)−𝑈(𝑐−0) = 𝛽
(︀
𝜒(𝑐+0)−𝜒(𝑐−0)

)︀
.

We also consider the case 𝛽 = 1. A distinguishing feature of the paper is that while studying
the behavior of the considered singular integral in the vicinity of the weak continuity point
of its density, we need the Hölder condition no for the density neither for a component
of the density. This feature allowed us to extend the range of possible applications of our
results.
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1. Introduction. Formulation of problem

We consider a singular integral with a Hilbert kernel

𝐼(𝛾0) =

2𝜋∫︁
0

𝜙(𝛾) cot
𝛾 − 𝛾0

2
𝑑𝛾 (1)

assuming that the integral density 𝜙(𝛾) is a continuous function defined in the interval [0, 2𝜋],
𝛾0 ∈ [0, 2𝜋], 𝜙(0) = 𝜙(2𝜋), and the integral is treated in the sense of the principal value.

We suppose that in the vicinity of a fixed point 𝛾 = 𝑐, 𝑐 ∈ (𝑐−, 𝑐+) ⊂ [0, 2𝜋], 𝑐+ − 𝑐− < 1,
the integral density 𝜙(𝛾) satisfies the representation

𝜙(𝛾) =
Φ(𝛾)(︀

− ln sin2 𝛾−𝑐
2

)︀𝛽 , 𝛾 ∈ (𝑐−, 𝑐+), (2)

where Φ(𝛾) is a given function continuous in each of the intervals [𝑐−, 𝑐], [𝑐, 𝑐+]; in the general
situation, the one-sided limits Φ(𝑐 − 0), Φ(𝑐 + 0) do not coincide; 𝛽 is a given number and
𝛽 > 1.

Opposite to the conditions assumed in works [1], [2], here we suppose that the representations

Φ(𝛾) − Φ(𝑐± 0) =
𝜒(𝛾)(︀

− ln sin2 𝛾−𝑐
2

)︀𝛿 , (3)

𝜒′(𝛾) =
𝜈(𝛾)(︀

− ln sin2 𝛾−𝑐
2

)︀
tan 𝛾−𝑐

2

(4)

hold, where 𝛿 > 0 is a given number, 𝜒(𝛾), 𝜈(𝛾) are given functions continuous in each of the
intervals [𝑐−, 𝑐], [𝑐, 𝑐+], 𝜈(𝑐± 0) = 0. In formula (3) and in what follows the sign ‘+’ is chosen
for 𝛾 > 𝑐 and the sign ‘-’ corresponds to 𝛾 < 𝑐.

In view of (3), we write formula (2) as

𝜙(𝛾) =
𝜒(𝛾)(︀

− ln sin2 𝛾−𝑐
2

)︀𝛽+𝛿
+

Φ(𝑐± 0)(︀
− ln sin2 𝛾−𝑐

2

)︀𝛽 , 𝛾 ∈ (𝑐−, 𝑐+). (5)

2. Main results. I

Assuming for simplicity 𝑐− > 0, 𝑐+ < 2𝜋, we represent integral (1) as

𝐼(𝛾0) =

⎛⎝ 𝑐−∫︁
0

+

2𝜋∫︁
𝑐+

⎞⎠𝜙(𝛾) cot
𝛾 − 𝛾0

2
𝑑𝛾 +

𝑐+∫︁
𝑐−

𝜒(𝛾)(︀
− ln sin2 𝛾−𝑐

2

)︀𝛽+𝛿
cot

𝛾 − 𝛾0
2

𝑑𝛾

+

𝑐+∫︁
𝑐−

Φ(𝑐± 0)(︀
− ln sin2 𝛾−𝑐

2

)︀𝛽 cot
𝛾 − 𝛾0

2
𝑑𝛾 = 𝐽1(𝛾0) + 𝐽2(𝛾0) + 𝐽3(𝛾0) + 𝐽4(𝛾0), 𝛾0 ̸= 𝑐.

(6)

The integrals 𝐽1(𝛾0), 𝐽2(𝛾0) are differentiable in each interior point 𝛾0 of the interval (𝑐−, 𝑐+).
The integral densities 𝐽3(𝛾0), 𝐽4(𝛾0) are differentiable in the interval [𝑐−, 𝑐+] excluding the point
𝑐. This is why the integrals 𝐽3(𝛾0), 𝐽4(𝛾0) satisfy the Hölder condition, shortly 𝐻 condition, in
each closed interval located inside [𝑐−, 𝑐] or [𝑐, 𝑐+], see [3].

In what follows, to reduce the writing, we employ the shorthand notation

ls 𝛾 = − ln sin2 𝛾.
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The right hand side of the formula(︃
1(︀

ls 𝛾−𝑐
2

)︀𝛽
)︃′

𝛾

=
𝛽(︀

ls 𝛾−𝑐
2

)︀𝛽+1
tan 𝛾−𝑐

2

(7)

is a function decreasing in the interval (𝑐− 2𝑒−𝛽−1, 𝑐 + 2𝑒−𝛽−1) since[︃(︂
ls
𝛾 − 𝑐

2

)︂𝛽+1

tan
𝛾 − 𝑐

2

]︃′
𝛾

> 0 (8)

in each of the intervals 𝑐 < 𝛾 < 𝑐 + 2𝑒−𝛽−1, 𝑐− 2𝑒−𝛽−1 < 𝛾 < 𝑐. Indeed, as 0 < 𝛾 − 𝑐 < 1, we
observe that sin 𝑥 < 𝑥 as 𝑥 > 0 and we obtain[︃(︂

ls
𝛾 − 𝑐

2

)︂𝛽+1

tan
𝛾 − 𝑐

2

]︃′
𝛾

>

(︂
ls
𝛾 − 𝑐

2

)︂𝛽 (︂
−𝛽 − 1 + ln

2

𝛾 − 𝑐

)︂
> 0.

Here the sum in the brackets in the right hand side vanishes as 𝛾 = 𝑐 + 2𝑒−𝛽−1 being positive
for 𝑐 < 𝛾 < 𝑐 + 2𝑒−𝛽−1. Therefore, as 𝑐 < 𝛾 < 𝑐 + 2𝑒−𝛽−1, inequality (8) holds. It is easy to
check that the latter inequality holds also for 𝛾 ∈ (𝑐− 2𝑒−𝛽−1, 𝑐).

In what follows we assume that

𝑐− = 𝑐− 2𝑒−𝛽−1, 𝑐+ = 𝑐 + 2𝑒−𝛽−1 (9)

in formula (6).
Integrating by parts, we represent the term 𝐽4(𝛾0) in formula (6) as

𝐽4(𝛾0) = − Φ(𝑐 + 0)(︀
ls 𝑐+−𝑐

2

)︀𝛽 ls
𝑐+ − 𝛾0

2
+

Φ(𝑐− 0)(︀
ls 𝑐−−𝑐

2

)︀𝛽 ls
𝑐− − 𝛾0

2
+ 𝛽𝐾(𝛾0), (10)

where

𝐾(𝛾0) =

𝑐+∫︁
𝑐−

Φ(𝑐± 0)(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝛾−𝑐

2

(︂
ls
𝛾 − 𝛾0

2

)︂
𝑑𝛾. (11)

The first two terms in the right hand side of formula (10) are differentiable in each interior
point of the interval (𝑐−, 𝑐+). Therefore, we need to study the behavior of the function 𝐾(𝛾0)
as 𝛾0 → 𝑐.

We consider the case 𝛾0 > 𝑐. We assume that 𝛾0 < 𝑐 + 𝑒−𝛽−1 taking into consideration that
the difference 𝛾0 − 𝑐 is assumed to be small. Then by (9) we have

𝑐 < 𝛾0 < 2𝛾0 − 𝑐 < 𝑐 + 2𝑒−𝛽−1 = 𝑐+.

Denoting

𝑐−𝛾0 = 𝛾0 − 2𝑒−𝛽−1, (12)

for 𝑐 < 𝛾0 < 𝑐 + 𝑒−𝛽−1 we get 𝑐− < 𝑐−𝛾0 = 𝛾0 − 2𝑒−𝛽−1 < 2𝑐− 𝛾0 < 𝑐.
We write formula (11) as

𝐾(𝛾0) =

⎛⎜⎜⎝
𝑐−𝛾0∫︁

𝑐−

+

2𝑐−𝛾0∫︁
𝑐−𝛾0

+

𝑐∫︁
2𝑐−𝛾0

+

𝑐+𝛾0
2∫︁

𝑐

+

2𝛾0−𝑐∫︁
𝑐+𝛾0

2

+

𝑐+∫︁
2𝛾0−𝑐

⎞⎟⎟⎠ Φ(𝑐± 0)
(︀

ls 𝛾−𝛾0
2

)︀(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝛾−𝑐

2

𝑑𝛾

=Φ(𝑐− 0) [𝐾1(𝛾0) + 𝐾2(𝛾0) + 𝐾3(𝛾0)] + Φ(𝑐 + 0) [𝐾4(𝛾0) + 𝐾5(𝛾0) + 𝐾6(𝛾0)] .

(13)

The integrand for 𝐾4(𝛾0) is a function positive as 𝛾 ∈ (𝑐, 𝑐+𝛾0
2

), its factor ls 𝛾−𝛾0
2

is a
continuous increasing positive function in the integration interval.
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This is why, replacing the factor ls 𝛾−𝛾0
2

by its minimum in the formula for 𝐾4(𝛾0) and

replacing ls 𝑐−𝛾0
2

, ls 𝑐−𝛾0
4

by their maxima, we obtain two integrals which can be calculated due
to (7) and which bound the integral 𝐾4(𝛾0) from above and below, that is, for the values of the
mentioned integrals we obtain the inequalities

ls 𝛾0−𝑐
2

𝛽
(︀

ls 𝛾0−𝑐
4

)︀𝛽 < 𝐾4(𝛾0) <
ls 𝛾0−𝑐

4

𝛽
(︀

ls 𝛾0−𝑐
4

)︀𝛽 ,
which are equivalent to

ln
(︀
4 cos2 𝛾0−𝑐

4

)︀
𝛽
(︀

ls 𝛾0−𝑐
4

)︀𝛽 > −𝐾4(𝛾0) +
1

𝛽
(︀

ls 𝛾0−𝑐
4

)︀𝛽−1
> 0.

Therefore, for the values 𝛾0 close to 𝑐, we have

−𝐾4(𝛾0) +
1

𝛽
(︀

ls 𝛾0−𝑐
4

)︀𝛽−1
= 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
4

)︀𝛽)︁
.

Hereinafter, as usually, by 𝑂(𝜂) we mean a quantity, for which the absolute value of the fraction
𝑂(𝜂)

⧸︀
𝜂 is bounded for all sufficiently small (sufficiently large) absolute values of 𝜂.

In the first part of the latter formula, instead of 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
4

)︀𝛽)︁
, we can take

𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, since − ls 𝛾0−𝑐

2
∼ − ls 𝛾0−𝑐

4
as 𝛾0 → 𝑐, and moreover,

1
⧸︀(︀

ls 𝛾0−𝑐
4

)︀𝛽−1
= 1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+ 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (14)

Indeed,

1(︀
ls 𝛾0−𝑐

4

)︀𝛽−1
− 1(︀

ls 𝛾0−𝑐
2

)︀𝛽−1

=
1(︀

ls 𝛾0−𝑐
2

)︀𝛽−1

⎡⎣(︃1 +
ln
(︀
2 cos 𝛾0−𝑐

4

)︀2
ls 𝛾0−𝑐

2

)︃1−𝛽

− 1

⎤⎦ = 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

Thus, we arrive at the formula

𝐾4(𝛾0) =
1

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+ 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (15)

Since according (8), the factor 1
⧸︀[︁(︀

ls 𝛾−𝑐
2

)︀𝛽+1
tan 𝛾−𝑐

2

]︁
decreases in the integration interval

for 𝐾5(𝛾0), then

0 < 𝐾5(𝛾0) <
1(︀

ls 𝛾0−𝑐
4

)︀𝛽+1
tan 𝛾0−𝑐

4

2𝛾0−𝑐∫︁
𝑐+𝛾0

2

ls
𝛾 − 𝛾0

2
𝑑𝛾. (16)

The integral in this formula can be represented as
2𝛾0−𝑐∫︁
𝑐+𝛾0

2

ls
𝛾 − 𝛾0

2
𝑑𝛾 = (𝛾 − 𝛾0) ls

𝛾 − 𝛾0
2

⃒⃒⃒⃒2𝛾0−𝑐

𝑐+𝛾0
2

+

2𝛾0−𝑐∫︁
𝑐+𝛾0

2

(𝛾 − 𝛾0) cot
𝛾 − 𝛾0

2
𝑑𝛾.

Substituting this expression into formula (16) and taking into consideration that

0 <

2𝛾0−𝑐∫︁
𝑐+𝛾0

2

(𝛾 − 𝛾0) cot
𝛾 − 𝛾0

2
𝑑𝛾 < 𝑑(𝛾0 − 𝑐), 𝑑 = 𝑐𝑜𝑛𝑠𝑡,
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we obtain

𝐾5(𝛾0) = 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (17)

We represent the integral 𝐾6(𝛾0) in formula (13) as

𝐾6(𝛾0) =
1
⧸︀

(𝛽 − 1)(︁
ls 𝑐+−𝛾0

2

)︁𝛽−1
−

1
⧸︀

(𝛽 − 1)(︀
ls 𝛾0−𝑐

2

)︀𝛽−1
− 𝐸6(𝛾0), (18)

where

𝐸6(𝛾0) =

𝑐+∫︁
2𝛾0−𝑐

𝐴(𝛾, 𝛾0, 𝑐) ls
𝛾 − 𝛾0

2
𝑑𝛾, (19)

𝐴(𝛾, 𝛾0, 𝑐) = 1
⧸︀[︀

ls 𝑐−𝛾
2

]︀𝛽+1
tan

𝑐− 𝛾

2
− 1
⧸︀[︀

ls 𝛾0−𝛾
2

]︀𝛽+1
tan

𝛾0 − 𝛾

2
. (20)

It is easy to show that for each 𝛾0 ∈ (2𝛾0 − 𝑐, 𝑐+) the inequality

𝐴(𝛾, 𝛾0, 𝑐) > 0 (21)

holds. Indeed, by (8) we have [︃(︂
ls
𝜉 − 𝛾

2

)︂𝛽+1

tan
𝜉 − 𝛾

2

]︃′
𝜉

> 0 (22)

in the interval 𝛾 − 2𝑒−𝛽−1 < 𝜉 < 𝛾.
Let us consider the set of the latter intervals for 𝛾 ∈ (2𝛾0 − 𝑐, 𝑐+). In this case we have

𝛾 − 2𝑒−𝛽−1 < 𝑐, since 𝛾 < 𝑐 + 2𝑒−𝛽−1 = 𝑐+, and 𝛾 > 𝛾0 since 𝛾 > 2𝛾0 − 𝑐 > 𝛾0. Therefore, as
𝛾 ∈ (2𝛾0 − 𝑐, 𝑐+), the interval 𝛾 − 2𝑒−𝛽−1 < 𝜉 < 𝛾 contains the interval (𝑐, 𝛾0). This is why for
each 𝛾 ∈ (2𝛾0 − 𝑐, 𝑐+), condition (22) holds in the interval 𝑐 < 𝜉 < 𝛾0. This means that in the
latter interval the function 1

⧸︀[︀
ls 𝜉−𝛾

2
tan 𝜉−𝛾

2

]︀
decreases. This is why, according (20), inequality

(21) holds true.
Observing that in the interval 2𝛾0−𝑐 < 𝛾 < 𝑐+ the function ls 𝛾−𝛾0

2
decreases and is positive,

by (19) we get

0 < 𝐸6(𝛾0) < ls
𝛾0 − 𝑐

2
·

𝑐+∫︁
2𝛾0−𝑐

𝐴(𝛾, 𝛾0, 𝑐) 𝑑𝛾.

Calculating the integral in the right hand side, in view of (7) and (20) we arrive at the inequal-
ities

0 < 𝐸6(𝛾0) <
1

𝛽

(︂
ls
𝛾0 − 𝑐

2

)︂[︃
1(︀

ls
(︀
𝑐−𝛾0
2

+ 𝑒−𝛽−1
)︀)︀𝛽 − 1

( ls 𝑒−𝛽−1)𝛽

]︃

+
1

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1

[︃ (︀
ls 𝛾0−𝑐

2

)︀𝛽
( ls (𝛾0 − 𝑐))𝛽

− 1

]︃
.

(23)

The first difference in square brackets in the right hand side of the latter formula is an infin-
itesimal of order (𝛾0 − 𝑐) as 𝛾0 → 𝑐, as an increment of a differentiable function. The second
difference of the considered formula is equal to(︃

1 +
− ln

(︀
2 cos 𝛾0−𝑐

2

)︀2
ls 𝛾0−𝑐

2

)︃−𝛽

− 1

and is an infinitesimal of order 1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀
as 𝛾0 → 𝑐.
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This is why we obtain

𝐸6(𝛾0) = 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (24)

Taking into consideration the latter relation, we represent formula (18) as

𝐾6(𝛾0) =
1
⧸︀

(𝛽 − 1)(︀
ls 𝑐+−𝑐

2

)︀𝛽−1
−

1
⧸︀

(𝛽 − 1)(︀
ls 𝛾0−𝑐

2

)︀𝛽−1
+ 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (25)

Here we have employed that the difference between the first terms in the right hand sides of
formulae (18), (25) is an infinitesimal of order (𝛾0 − 𝑐) as 𝛾0 → 𝑐.

We assume that −𝐾3(𝛾0) is an integral of a positive function containing the factor tan 𝑐−𝛾
2

in

the denominator. Since the factor ls 𝛾−𝛾0
2

in the integrand in −𝐾3(𝛾0) is an increasing function

in the integration interval with the minimum ls (𝛾0 − 𝑐) and the maximum ls 𝛾0−𝑐
2

we proceed
as in studying the integral 𝐾4(𝛾0) to arrive to inequalities

ls (𝛾0 − 𝑐)

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽 < −𝐾3(𝛾0) <
ls 𝛾0−𝑐

2

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽 ,
which is equivalent to

ln
(︀
4 cos2 𝛾0−𝑐

2

)︀
𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽 > 𝐾3(𝛾0) +
1

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
> 0.

By this we see that

𝐾3(𝛾0) +
1

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
= 𝑂

(︃
1(︀

ls 𝛾0−𝑐
2

)︀𝛽
)︃
, 𝛾0 → 𝑐. (26)

Similar to formula (18), we have

𝐾2(𝛾0) =
1
⧸︀

(𝛽 − 1)

( ls (𝑐− 𝛾0))
𝛽−1

−
1
⧸︀

(𝛽 − 1)

( ls 𝑒−𝛽−1)𝛽−1
− 𝐸2(𝛾0), (27)

where

𝐸2(𝛾0) =

2𝑐−𝛾0∫︁
𝑐−𝛾0

𝐴(𝛾, 𝛾0, 𝑐) ls
𝛾 − 𝛾0

2
𝑑𝛾, (28)

𝐴(𝛾, 𝛾0, 𝑐) is the function defined by formula (20).
As 𝛾 ∈ (𝑐−𝛾0 , 2𝑐− 𝛾0), the interval 𝛾 < 𝜉 < 𝛾 + 2𝑒−𝛽−1 contains the interval (𝑐, 𝛾0) since here

we have 𝛾 < 2𝑐− 𝛾0 < 𝑐, 𝛾 + 2𝑒−𝛽−1 > 𝛾0 because 𝛾 > 𝑐−𝛾0 = 𝛾0 − 2𝑒−𝛽−1. Therefore, for each
𝛾 ∈ (𝑐−𝛾0 , 2𝑐 − 𝛾0), condition (22) holds in the interval 𝑐 < 𝜉 < 𝛾0 and this is why we have the

inequality 𝐴(𝛾, 𝛾0, 𝑐) > 0. Taking into consideration the latter and observing that ls 𝛾−𝛾0
2

is an
increasing positive function in the interval 𝑐−𝛾0 < 𝛾 < 2𝑐− 𝛾0, according (28) we have

0 < 𝐸2(𝛾0) < ls (𝛾0 − 𝑐) ·
2𝑐−𝛾0∫︁
𝑐−𝛾0

𝐴(𝛾, 𝛾0, 𝑐) 𝑑𝛾.



86 R.B. SALIMOV

Calculating the integral in this formula, we obtain

0 < 𝐸2(𝛾0) <
1

𝛽
ls (𝛾0 − 𝑐) ·

[︃
1(︀

ls
(︀
−𝛾0−𝑐

2
+ 𝑒−𝛽−1

)︀)︀𝛽 − 1

( ls (𝑒−𝛽−1))𝛽

]︃

+
1

𝛽 ( ls (𝛾0 − 𝑐))𝛽−1
·

[︃
1 − ( ls (𝛾0 − 𝑐))𝛽(︀

ls 𝛾0−𝑐
2

)︀𝛽
]︃
.

The first difference in square brackets in the right hand of this formula is the same as in
inequality (23), while the second term (product) in the right hand side of the latter formula
differs from the corresponding term (product) in the right hand side in (25) only by the factor
− ls (𝛾0 − 𝑐)

⧸︀
ls 𝛾0−𝑐

2
bounded as 𝛾0 → 𝑐. Therefore,

𝐸2(𝛾0) = 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (29)

We observe that similar to formula (14), for small 𝛾0 − 𝑐 we have

1

( ls (𝛾0 − 𝑐))𝛽−1
− 1(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
= 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
. (30)

We write representation (27) as

𝐾2(𝛾0) =
1
⧸︀

(𝛽 − 1)(︀
ls 𝛾0−𝑐

2

)︀𝛽−1
−

1
⧸︀

(𝛽 − 1)

( ls 𝑒−𝛽−1)𝛽−1
+ 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

Taking into consideration that in the interval 𝑐− < 𝛾 < 𝑐−𝛾0 the function ls 𝛾−𝛾0
2

increases and
is positive, we get

0 < −𝐾1(𝛾0) < ls (𝑒−𝛽−1) ·

𝑐−𝛾0∫︁
𝑐−

𝑑𝛾(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝑐−𝛾

2

= ls (𝑒−𝛽−1)
−1

𝛽
(︀

ls 𝛾−𝑐
2

)︀𝛽
⃒⃒⃒⃒
⃒
𝑐−𝛾0

𝑐−

.

Hence, we obtain
𝐾1(𝛾0) = 𝑂(𝛾0 − 𝑐), 𝛾0 → 𝑐. (31)

We substitute the obtained for 𝐾𝑗(𝛾0), 𝑗 = 1, 6, expressions into formula (13) and we arrive at
the following representation

𝐾(𝛾0) =
Φ(𝑐 + 0) − Φ(𝑐− 0)

(𝛽 − 1) ( ls (𝑒−𝛽−1))𝛽−1
+

Φ(𝑐− 0) − Φ(𝑐 + 0)

𝛽(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1

+ 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

(32)

Formulae (10), (11), (32) hold both in the case 𝛾0 = 𝑐. In particular, the first term in the right
hand side of formula (32) is equal to 𝐾(𝑐).

Employing formula (10), we write the expression for 𝐽4(𝛾0) − 𝐽4(𝑐) and we take into consid-
eration that

− ls
𝑐+ − 𝛾0

2
+ ls

𝑐+ − 𝑐

2
= 𝑂(𝛾0 − 𝑐); (33)

the difference in this formula is an infinitesimal of order (𝛾0 − 𝑐) as 𝛾0 → 𝑐 because of the

differentiability of the function − ls 𝑐+−𝛾0
2

at the point 𝑐 and there holds a similar identity
obtained by replacing 𝑐+ by 𝑐−.

Hence, taking into consideration (32), we obtain

𝐽4(𝛾0) − 𝐽4(𝑐) =
Φ(𝑐− 0) − Φ(𝑐 + 0)

(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+ 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (34)
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We also observe that similar to (33), for the integrals 𝐽1(𝛾0), 𝐽2(𝛾0) in formula (6) we have

𝐽1(𝛾0) − 𝐽1(𝑐) = 𝑂(𝛾0 − 𝑐), 𝐽2(𝛾0) − 𝐽2(𝑐) = 𝑂(𝛾0 − 𝑐). (35)

3. Main results. II

In the expression for the integral 𝐽3(𝛾0) in formula (6), we denote 𝛽 = 𝛽 + 𝛿 and by formulae
similar to (9), (12) we define

𝑐− = 𝑐− 2𝑒−𝛽−1, 𝑐+ = 𝑐 + 2𝑒−𝛽−1, 𝑐−𝛾0 = 𝛾0 − 2𝑒−𝛽−1,

and at that we have

𝑐− > 𝑐−, 𝑐+ < 𝑐+, 𝑐−𝛾0 > 𝑐−𝛾0 .

Moreover, we assume that 𝑐 < 𝛾0 < 𝑐 + 𝑒−𝛽−1.
We represent the integral𝐽3(𝛾0) as

𝐽3(𝛾0) =

⎛⎝ 𝑐−∫︁
𝑐−

+

𝑐+∫︁
𝑐−

+

𝑐+∫︁
𝑐+

⎞⎠ 𝜒(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽 cot
𝛾 − 𝛾0

2
𝑑𝛾 = 𝐽31(𝛾0) + 𝐽32(𝛾0) + 𝐽33(𝛾0). (36)

The integrals 𝐽31(𝛾0), 𝐽33(𝛾0) are differentiable at each interior point 𝛾0 of the interval (𝑐−, 𝑐+).
Integrating by parts, we write the integral 𝐽32(𝛾0) as

𝐽32(𝛾0) = − 𝜒(𝑐+)(︀
ls 𝑐+−𝑐

2

)︀𝛽 ls
𝑐+ − 𝛾0

2
+

𝜒(𝑐−)(︀
ls 𝑐−−𝑐

2

)︀𝛽 ls
𝑐− − 𝛾0

2
+ 𝐿(𝛾0), (37)

where

𝐿(𝛾0) =

𝑐+∫︁
𝑐−

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝛾−𝑐

2

· ls
𝛾 − 𝛾0

2
𝑑𝛾, (38)

𝑈(𝛾) = 𝜈(𝛾) + 𝛽𝜒(𝛾) is a function continuous in each of the intervals [𝑐−, 𝑐], [𝑐, 𝑐+] according
formulae (3), (4).

Let 𝐾̃𝑗(𝛾0) be the integral obtained by the formula for 𝐾𝑗(𝛾0) in representation (13) as

𝑗 = 1, 6 via replacing 𝐾, 𝑐−, 𝑐−𝛾0 , 𝑐
+, 𝛽 respectively by 𝐾̃, 𝑐−, 𝑐−𝛾0 , 𝑐

+, 𝛽.
We write integral (38) as

𝐿(𝛾0) = 𝐿1(𝛾0) + 𝐿2(𝛾0) + · · · + 𝐿6(𝛾0), (39)

where the terms in the right hand side are the integral taken respectively over the intervals

(𝑐−, 𝑐−𝛾0), (𝑐−𝛾0 , 2𝑐− 𝛾0), (2𝑐− 𝛾0, 𝑐), (𝑐,
𝑐 + 𝛾0

2
), (

𝑐 + 𝛾0
2

, 2𝛾0 − 𝑐), (2𝛾0 − 𝑐, 𝑐+).

In each of these intervals, the fraction at 𝑈(𝛾) in the integrand in (38) is sign-definite and
the function 𝑈(𝛾) is continuous. This is why by the mean value theorem [4] we get

𝐿𝑗(𝛾0) = 𝑈(𝜉𝑗)𝐾̃𝑗(𝛾0), 𝑗 = 1, 3, 4, 5, (40)

here 𝜉𝑗 is a point in the integration interval 𝐿𝑗(𝛾0).

For 𝐾̃1(𝛾0), 𝐾̃5(𝛾0), there hold the formulae obtained from (31), (17) via replacing 𝐾 and

𝛽 respectively by 𝐾̃ and 𝛽 and this is why by (40) we obtain 𝐿1(𝛾0) = 𝑂(𝛾0 − 𝑐), 𝐿5(𝛾0) =

𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.
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The integrals 𝐾̃3(𝛾0), 𝐾̃4(𝛾0) satisfy the representations obtained from (26), (15) by the
aforementioned replacement. This is why, taking into consideration that in formula (40) we
have 𝑈(𝜉𝑗) → 𝑈(𝑐− 0) for 𝑗 = 3 and 𝑈(𝜉𝑗) → 𝑈(𝑐 + 0) for 𝑗 = 4 as 𝛾0 → 𝑐, we get

𝐿3(𝛾0) =
−𝑈(𝑐− 0)

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+ 𝑜

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐,

𝐿4(𝛾0) =
𝑈(𝑐 + 0)

𝛽
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+ 𝑜

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

Here, as usually, 𝑜(𝛼) stands for an infinitesimal of order higher than the infinitesimal 𝛼.
Denoting

𝐿𝛾0
6 (𝑐) =

𝑐+∫︁
2𝛾0−𝑐

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝑐

2

𝑑𝛾,

we consider the difference

𝐿6(𝛾0) − 𝐿𝛾0
6 (𝑐) =

𝑐+∫︁
2𝛾0−𝑐

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝛾−𝑐

2

(︂
ls
𝛾 − 𝛾0

2
− ls

𝛾 − 𝑐

2

)︂
𝑑𝛾.

Since ls 𝛾−𝛾0
2

− ls 𝛾−𝑐
2

> 0, by the mean value theorem we have

𝐿6(𝛾0) − 𝐿𝛾0
6 (𝑐) = 𝑈(𝜉6)

𝑐+∫︁
2𝛾0−𝑐

1(︀
ls 𝛾−𝑐

2

)︀𝛽−1
tan 𝛾−𝑐

2

(︂
ls
𝛾 − 𝛾0

2
− ls

𝛾 − 𝑐

2

)︂
𝑑𝛾,

2𝛾0 − 𝑐 6 𝜉6 6 𝑐+

or

𝐿6(𝛾0) − 𝐿𝛾0
6 (𝑐) = 𝑈(𝜉6)

𝑐+∫︁
2𝛾0−𝑐

[︂
−𝐴(𝛾, 𝛾0, 𝑐) ls

𝛾 − 𝛾0
2

+
ls 𝛾−𝛾0

2(︀
ls 𝛾−𝛾0

2

)︀𝛽+1
tan 𝛾−𝛾0

2

−
ls 𝛾−𝑐

2(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝛾−𝑐

2

⎤⎦ 𝑑𝛾,

(41)

where 𝐴(𝛾, 𝛾0, 𝑐) is defined by the formula obtained from (20) via replacing 𝐴 and 𝛽 respectively

by 𝐴 and 𝛽. Calculating the integrals of two latter terms of the integrand, we obtain

𝐿6(𝛾0) − 𝐿𝛾0
6 (𝑐) = 𝑈(𝜉6)

⎧⎨⎩
𝑐+∫︁

2𝛾0−𝑐

−𝐴(𝛾, 𝛾0, 𝑐) ls
𝛾 − 𝛾0

2
𝑑𝛾

+
1

(𝛽 − 1)
(︀

ls 𝛾−𝛾0
2

)︀𝛽−1

⃒⃒⃒⃒
⃒⃒
𝑐+

2𝛾0−𝑐

− 1

(𝛽 − 1)
(︀

ls 𝛾−𝑐
2

)︀𝛽−1

⃒⃒⃒⃒
⃒⃒
𝑐+

2𝛾0−𝑐

⎫⎪⎬⎪⎭ .

(42)

Replacing 𝐴, 𝑐+, 𝛽 by 𝐴, 𝑐+, 𝛽, respectively, in formulae (19), (20), (24) we get

𝑐+∫︁
2𝛾0−𝑐

−𝐴(𝛾, 𝛾0, 𝑐) ls
𝛾 − 𝛾0

2
𝑑𝛾 = 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (43)
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The difference of two latter fractions in the right hand side in formula (42) as 𝛾 = 𝑐+ is an

infinitesimal of order (𝛾0 − 𝑐) as 𝛾0 → 𝑐, while as 𝛾 = 2𝛾0 − 𝑐 it is 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
by formula

(30) with 𝛽 = 𝛽.
Thus, formula (42) shows that

𝐿6(𝛾0) − 𝐿𝛾0
6 (𝑐) = 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (44)

Since 𝛽 > 1, the integral

𝐿6(𝑐) =

𝑐+∫︁
𝑐

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝑐

2

𝑑𝛾 (45)

is well-defined [4] since 𝑈(𝛾) is a continuous in the interval [𝑐, 𝑐+] function, and the second
factor in the integrand is a positive integrable function.

Employing the mean value theorem, we write the difference 𝐿6(𝑐) − 𝐿𝛾0
6 (𝑐) being an integral

over the interval (𝑐, 2𝛾0 − 𝑐) as

𝐿6(𝑐) − 𝐿𝛾0
6 (𝑐)

= 𝑈(𝜉*6)
1

(𝛽 − 1)
(︀

ls 𝛾−𝑐
2

)︀𝛽−1

⃒⃒⃒⃒
⃒⃒
2𝛾0−𝑐

𝑐

=
𝑈(𝜉*6)

(𝛽 − 1) ( ls (𝛾0 − 𝑐))𝛽−1
, 𝑐 6 𝜉*6 6 2𝛾0 − 𝑐.

By (30) this implies

𝐿6(𝑐)−𝐿𝛾0
6 (𝑐) =

𝑈(𝑐 + 0)

(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+𝑜
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

+𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (46)

Now by (44), (46) we write

𝐿6(𝛾0) − 𝐿6(𝑐) =
−𝑈(𝑐 + 0)

(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
− 𝑜

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

We introduce the notation

𝐿𝛾0
2 (𝑐) =

2𝑐−𝛾0∫︁
𝑐−𝛾0

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝑐

2

𝑑𝛾 (47)

and we consider the difference

𝐿2(𝛾0) − 𝐿𝛾0
2 (𝑐) =

2𝑐−𝛾0∫︁
𝑐−𝛾0

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽+1
tan 𝛾−𝑐

2

(︂
ls
𝛾 − 𝛾0

2
− ls

𝛾 − 𝑐

2

)︂
𝑑𝛾.

Taking into consideration that

ls
𝛾 − 𝛾0

2
− ls

𝛾 − 𝑐

2
< 0,

by the mean value theorem we obtain

𝐿2(𝛾0) − 𝐿𝛾0
2 (𝑐) = 𝑈(𝜉2)

2𝑐−𝛾0∫︁
𝑐−𝛾0

ls 𝛾−𝛾0
2

− ls 𝛾−𝑐
2(︀

ls 𝛾−𝑐
2

)︀𝛽+1
tan 𝛾−𝑐

2

𝑑𝛾, 𝑐−𝛾0 6 𝜉2 6 2𝑐− 𝛾0. (48)
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Proceeding as above, we write this formula as

𝐿2(𝛾0) − 𝐿𝛾0
2 (𝑐)

= 𝑈(𝜉2) ·
2𝑐−𝛾0∫︁
𝑐−𝛾0

⎡⎣−𝐴(𝛾, 𝛾0, 𝑐) ls
𝛾 − 𝛾0

2
𝑑𝛾 +

1(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝛾0

2

− 1(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝑐

2

⎤⎦ 𝑑𝛾,

where 𝐴(𝛾, 𝛾0, 𝑐) stands for the same as in formula (41). Hence, similar to formula (42), we get

𝐿2(𝛾0) − 𝐿𝛾0
2 (𝑐) = 𝑈(𝜉2)·

⎧⎪⎨⎪⎩
2𝑐−𝛾0∫︁
𝑐−𝛾0

−𝐴(𝛾, 𝛾0, 𝑐) ls
𝛾 − 𝛾0

2
𝑑𝛾 +

1

(𝛽 − 1)
(︀

ls 𝛾−𝛾0
2

)︀𝛽−1

⃒⃒⃒⃒
⃒⃒
2𝑐−𝛾0

𝑐−𝛾0

−

− 1

(𝛽 − 1)
(︀

ls 𝛾−𝑐
2

)︀𝛽−1

⃒⃒⃒⃒
⃒⃒
2𝑐−𝛾0

𝑐−𝛾0

⎫⎪⎬⎪⎭ .

(49)

On base of the formulae obtained from (20), (28), (29) by the aforementioned replacement,
for the integral in the right hand side in formula (49) we obtain a relation similar to (43); the
latter difference in the right hand side of formula (49) is estimated in the same way as the
corresponding difference in formula (42). Thus, we arrive at the relation

𝐿2(𝛾0) − 𝐿𝛾0
2 (𝑐) = 𝑂

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐. (50)

Since 𝛽 > 1, the integral

𝐿2(𝑐) =

𝑐∫︁
𝑐−

𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝑐

2

𝑑𝛾 (51)

similar to the integral 𝐿6(𝑐) in formula (45) is well-defined and according (38), the sum

𝐿(𝑐) = 𝐿2(𝑐) + 𝐿6(𝑐)

is well-defined.
By (47), (51) we have

𝐿2(𝑐) − 𝐿𝛾0
2 (𝑐) =

⎛⎜⎝ 𝑐−𝛾0∫︁
𝑐−

+

𝑐∫︁
2𝑐−𝛾0

⎞⎟⎠ 𝑈(𝛾)(︀
ls 𝛾−𝑐

2

)︀𝛽
tan 𝛾−𝑐

2

𝑑𝛾.

Here we write the integrals in the right hand side by employing the mean value theorem similar
to formula (48). Calculating the remaining integrals, we get

𝐿2(𝑐) − 𝐿𝛾0
2 (𝑐) = 𝑈(𝜉11)

1

(𝛽 − 1)
(︀

ls 𝛾−𝑐
2

)︀𝛽−1

⃒⃒⃒⃒
⃒⃒
𝑐−𝛾0

𝑐−

− 𝑈(𝜉31)
1

(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
,

𝑐− 6 𝜉11 6 𝑐−𝛾0 , 2𝑐− 𝛾0 6 𝜉31 6 𝑐.

The first term in the right hand side of the latter formula is an infinitesimal of order (𝛾0 − 𝑐)
as 𝛾0 → 𝑐. In the second term 𝑈(𝜉31) → 𝑈(𝑐− 0) as 𝛾0 → 𝑐. This is why

𝐿2(𝑐) − 𝐿𝛾0
2 (𝑐) =

−𝑈(𝑐− 0)

(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
+ 𝑜

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁
, 𝛾0 → 𝑐.
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In view of formula (50), this implies

𝐿2(𝛾0) − 𝐿𝛾0
2 (𝑐) =

𝑈(𝑐− 0)

(𝛽 − 1)
(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
− 𝑜

(︁
1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

On the base of formula (39) and subsequent relations we get

𝐿(𝛾0) =𝐿(𝑐) − 1

𝛽(𝛽 − 1)
· (𝑈(𝑐 + 0) − 𝑈(𝑐− 0)) · 1(︀

ls 𝛾0−𝑐
2

)︀𝛽−1

+ 𝑜
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽)︁
, 𝛾0 → 𝑐.

(52)

We substitute expression (37) into formula (36), then in the right hand side of the obtained
relation, thanks to the differentiability, each term except 𝐿(𝛾0) can be represented as the sum
of its value at the point 𝑐 and an infinitesimal of order (𝛾0 − 𝑐) as 𝛾0 → 𝑐. Observing that the
obtained relation holds also for 𝛾0 = 𝑐, we arrive at the identity

𝐽3(𝛾0) − 𝐽3(𝑐) = 𝐿(𝛾0) − 𝐿(𝑐) + 𝑂(𝛾0 − 𝑐), 𝛾0 → 𝑐. (53)

Formulae (52), (53) give a representation for 𝐽3(𝛾0).

Thanks to relations (34), (35), (52), (53) and in view of formula (6) implying 𝐼(𝑐) =
4∑︁

𝑗=1

𝐽𝑗(𝑐),

we arrive at the following representation

𝐼(𝛾0) − 𝐼(𝑐) =
Φ(𝑐− 0) − Φ(𝑐 + 0)

(𝛽 − 1)
(︀
− ln sin2 𝛾0−𝑐

2

)︀𝛽−1
− 𝑈(𝑐 + 0) − 𝑈(𝑐− 0)

𝛽(𝛽 − 1)
(︀
− ln sin2 𝛾0−𝑐

2

)︀𝛽−1

+ 𝑜
(︁

1
⧸︀(︀

− ln sin2 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

− ln sin2 𝛾0−𝑐
2

)︀𝛽)︁ (54)

as 𝛾0 → 𝑐 with 𝛽 = 𝛽 + 𝛿, 𝛽 > 1, 𝛿 > 0. In particular, this yields that the integral 𝐼(𝛾0) is a
function continuous at the point 𝑐.

Making appropriate changes in the above formulae and in arguing, it is easy to check that
this representation is also true for values 𝛾0 < 𝑐 close to 𝑐.

It is reasonable to note that in formula (54),

𝑈(𝑐 + 0) − 𝑈(𝑐− 0) = 𝛽 (𝜒(𝑐 + 0) − 𝜒(𝑐− 0)) ,

since 𝑈(𝛾) = 𝜈(𝛾) + 𝛽𝜒(𝛾), 𝜈(𝑐± 0) = 0.

As 𝛽 = 1, we have 𝛽 = 𝛽 + 𝛿 > 1 and representations (52), (53) and relations (35) are still
true. Making obvious changes in the above formulae for 𝐽4(𝛾0), we arrive at the representation

𝐼(𝛾0) =𝐽1(𝑐) + 𝐽2(𝑐) + [Φ(𝑐 + 0) − Φ(𝑐− 0)] ln

(︂
− ln sin2 𝛾0 − 𝑐

2

)︂
+ 𝑁

− 𝑈(𝑐 + 0) − 𝑈(𝑐− 0)

𝛽(𝛽 − 1)
· 1(︀

− ln sin2 𝛾0−𝑐
2

)︀𝛽−1

+ 𝑜
(︁

1
⧸︀(︀

− ln sin2 𝛾0−𝑐
2

)︀𝛽−1
)︁

+ 𝑂
(︁

1
⧸︀(︀

− ln sin2 𝛾0−𝑐
2

)︀)︁
, 𝛾0 → 𝑐,

(55)

where 𝑁 = [Φ(𝑐− 0) − Φ(𝑐 + 0)] ln
(︀
− ln sin2 𝑒−2

)︀
.

4. Conclusion

Thus, we arrive at the following statement.
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Theorem 1. If the density in integral (1) obeys formula (5), in which 𝜒(𝛾) is a function
with the derivative of form (4), then integral (1) satisfies representation (54) as 𝛽 > 1 and
representation (55) as 𝛽 = 1.

Remark 1. If the function 𝜈(𝛾) in formula (4) satisfies the representation

𝜈(𝛾) =
𝜈1(𝛾)(︀
ls 𝛾−𝑐

2

)︀κ , κ = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝛾 ∈ [𝑐−, 𝑐+],

where 𝜈1(𝛾) is a function continuous in each of the intervals [𝑐−, 𝑐], [𝑐, 𝑐+] and 𝜈1(𝑐) = 0,

the statement of the theorem can be specified by replacing the term 𝑜
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1
)︁

by

𝑂
(︁

1
⧸︀(︀

ls 𝛾0−𝑐
2

)︀𝛽−1+κ
)︁
.

Indeed, in this case by (4) we have

𝜒′(𝛾) = 𝜈1(𝛾)
⧸︀(︁(︀

ls 𝛾−𝑐
2

)︀κ+1
tan 𝛾−𝑐

2

)︁
.

Applying the mean value theorem, for 𝛾 > 𝑐 we obtain

𝜒(𝛾) − 𝜒(𝑐 + 0) =

𝛾∫︁
𝑐

𝜒′(𝛾) 𝑑𝛾 =
1

κ
𝜈1(𝜂)(︀
ls 𝛾−𝑐

2

)︀κ , 𝜂 ∈ [𝑐, 𝛾],

at that, for 𝛾 > 𝑐 we represent the function 𝑈(𝛾) = 𝜈(𝛾) + 𝛽𝜒(𝛾) in formula (38) as

𝑈(𝛾) = 𝑈(𝑐 + 0) +
𝜈1(𝛾) + 𝛽

κ𝜈1(𝜂)(︀
ls 𝛾−𝑐

2

)︀κ .

Hence, denoting 𝑀1 = max
𝑐6𝛾6𝑐+

|𝜈1(𝛾)|, we get

|𝑈(𝛾) − 𝑈(𝑐 + 0)| 6 𝑀1(1 + 𝛽
κ )
⧸︀(︀

ls 𝛾−𝑐
2

)︀κ
,

and for 𝜉 ∈ (𝑐, 𝛾) we obtain

|𝑈(𝜉) − 𝑈(𝑐 + 0)| 6 𝑀1(1 + 𝛽
κ )
⧸︀(︀

ls 𝜉−𝑐
2

)︀κ
6 𝑀1(1 + 𝛽

κ )
⧸︀(︀

ls 𝛾−𝑐
2

)︀κ
.

In the case 𝛾 < 𝑐, 𝛾 6 𝜉 6 𝑐 we arrive at the same inequality.
These inequalities justifies the aforementioned change in the formulae for 𝐿𝑗(𝛾0), 𝑗 = 2, 3, 4, 6

and in representations (52), (54).
The results of the present paper describe the behavior of integral (1) in the vicinity of a point

of weak singularity of its density. They are close to known results by N.I. Muskhelishvili on the
behavior of Cauchy type integral (and of singular integral) in the vicinity of a point of power
type singularity of the density [3] and they can be employed while studying the properties of
the solutions to various boundary value problems for analytic functions.

Rather weak restrictions imposed for the density in integral (1) in the present paper give
an opportunity to apply the results for studying the behavior of a conformal mapping near an
angular point at the boundary of a domain corresponding to a canonical domain with a smooth
boundary.

Papers [5], [6] and aforementioned papers [1], [2] belong to the same scientific field as the
present paper and they can be of interest for the reader.
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