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ON MEASURES GENERATING

ORTHOGONAL POLYNOMIALS WITH SIMILAR

ASYMPTOTIC BEHAVIOR OF THE RATIO AT INFINITY

A.A. KONONOVA

Abstract. We consider the influence of the measure perturbations on the asymptotic
behavior of the ratio of orthogonal polynomials. We suppose that the absolutely continuous
part of the measure is supported on finitely many Jordan curves. The weight function
satisfies the modified Szegö condition.

The singular part of the measure consists of finitely many point masses outside the
polynomial convex hull of the support of the absolutely continuous part of the measure.
We study the stability of asymptotics of the ratio in the following sense:

𝑃𝜈,𝑛(𝑧)

𝑃𝜈,𝑛+1(𝑧)
− 𝑃𝜇,𝑛(𝑧)

𝑃𝜇,𝑛+1(𝑧)
→ 0, 𝑛 → ∞.

The problem is a generalization of the problem on compactness of the perturbation of
Jacobi operator generated by the perturbation of its spectral measure. We find a condition
necessary (or necessary and sufficient under some additional restriction) for the stability of
the asymptotical behavior of the corresponding orthogonal polynomials. One of the main
tools in the study are the Riemann theta functions.
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1. Introduction

The present work continues studying the stability of the asymptotics of the ratio of orthogonal
polynomials under a perturbation of the orthogonality measure; the beginning of this study was
published in paper [3].

For a finite Borel measure 𝜇 with a compact infinite support 𝐸 ⊂ C we consider a sequence of
polynomials with the leading coefficient equalling to one, 𝑃𝜇,𝑛(𝑧) = 𝑧𝑛 + . . .; these polynomials
are orthogonal w.r.t. the measure 𝜇:∫︁

𝐸

𝑃𝜇,𝑛𝑃𝜇,𝑘𝑑𝜇 = 𝛼𝑛𝛿𝑛,𝑘, 𝛼𝑛 > 0.

We consider the measures concentrated on a finite set of Jordan curves 𝐸 = ∪𝑝
𝑘=0𝐸𝑘 ⊂ C

and on a finite set of discrete masses located outside a polynomially convex hull of the set 𝐸.
It is well known that as supp(𝜇) ⊂ R, the orthogonal polynomials satisfy the three-term

recurrent relation:
𝑃𝑛+1(𝑧) = (𝑧 − 𝑏𝑛+1)𝑃𝑛(𝑧) − 𝑎2𝑛𝑃𝑛−1(𝑧).
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A three-diagonal matrix, whose entries are the coefficients of the recurrent relation

𝐽𝜇 =

⎛⎜⎜⎜⎝
𝑏1 𝑎1 0 0 . . .
𝑎1 𝑏2 𝑎2 0 . . .
0 𝑎2 𝑏3 𝑎3 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎠ ,

is called Jacobi matrix. If the set supp(𝜇) is compact and infinite, the Jacobi matrix generates
a bounded self-adjoint operator in 𝑙2(N), whose spectral measure is the measure 𝜇. It is known
[2] that the operator 𝐽𝜈 is a compact perturbation of the operator 𝐽𝜇 (that is, the operator
𝐽𝜈 − 𝐽𝜇 is compact) if and only if

𝑃𝜈,𝑛(𝑧)

𝑃𝜈,𝑛+1(𝑧)
− 𝑃𝜇,𝑛(𝑧)

𝑃𝜇,𝑛+1(𝑧)
→ 0, 𝑛→ ∞; (1)

the convergence is uniform on compact neighbourhood of the infinity.
In the general case supp(𝜇) ⊂ C, as a generalization of the Jacobi matrix, we can consider

Hessenberg matrices, that is, the matrices corresponding to the operator of multiplication
by the independent variable in the space 𝐿2(𝜇) in the basis of the corresponding orthogonal
polynomials. It was shown in work [5] by B. Simanek that as supp(𝜇) ⊂ C, condition (1) is
equivalent to coinciding of the right limits of the corresponding Hessenberg matrices.

In work [3] there was found a condition for the measure 𝜈 sufficient (and necessary in some
cases) for (1). In the present work, instead of condition (1) we consider a similar condition with
a shift: for some fixed 𝑙 ∈ N

lim
𝑛→∞

(︂
𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛+𝑙,𝜈(𝑧)

𝑃𝑛+𝑙+1,𝜈(𝑧)

)︂
= 0,

where the convergence is uniform on compact neighbourhood of the infinity, and we also consider
the case, when this condition holds for 𝑛 tending to infinity over a subsequence.

2. Main definitions and auxiliary data

In this section we provide main definitions and facts needed for the future exposition; for
more details see [7]–[10].

2.1. Main notations. We say that a rectifiable curve belongs to the class 𝐶2+ if the second
derivatives of its coordinate functions, as functions of the arc length, satisfy the Lipschitz
condition with some positive exponent.

Let Ω be a domain in the extended complex plane containing the infinity; the boundary of
this domain consists of finitely many disjoint Jordan curves 𝐸𝑘, 𝑘 = 0, . . . , 𝑝, belonging to the
class 𝐶2+:

∞ ∈ Ω ⊂ C, 𝜕Ω = 𝐸 :=

𝑝⋃︁
𝑘=0

𝐸𝑘.

We consider the real Green function 𝑔(𝑧, 𝑧0) with the logarithmic singularity at the point
𝑧0 ∈ Ω (in the case 𝑧0 = ∞, instead of 𝑔(𝑧,∞), we write 𝑔(𝑧)), it can be defined by the
following properties:

∙ 𝑔(𝑧, 𝑧0) is harmonic in Ω ∖ 𝑧0;
∙ 𝑔(𝑧, 𝑧0)− log |𝑧− 𝑧0|−1 is harmonic in a neighbourhood of 𝑧0, and as 𝑧0 = ∞, the function
𝑔(𝑧) − ln |𝑧| is harmonic in a neighbourhood of ∞;

∙ lim
𝑧→𝜁
𝑧∈Ω

𝑔(𝑧, 𝑧0) = 0 for a.e. 𝜁 ∈ 𝐸.
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Let Φ(𝑧, 𝑧0) = exp[𝑔(𝑧, 𝑧0) + 𝑖𝑔(𝑧, 𝑧0)]
1. We recall that the solution to the Dirichlet problem

with a boundary function 𝑓 can be obtained by means of the normal derivative of the Green
function:2

ℎ(𝑧) =
1

2𝜋

∮︁
𝐸

𝑓(𝜁)
𝜕𝑔(𝜁, 𝑧)

𝜕𝑛𝜁

|𝑑𝜁|.

A logarithmic capacity of the set 𝐸 is the number 𝐶(𝐸):

ln(𝐶(𝐸)) := − lim
𝑧→∞

(𝑔(𝑧) − log |𝑧|).

A harmonic measure 𝜔𝑘(𝑧) (𝑘 = 0, . . . , 𝑝) is the solution to the Dirichlet problem in Ω with
the boundary function

𝜒𝑘(𝜁) =

{︃
1, 𝜁 ∈ 𝐸𝑘;

0, 𝜁 ∈ 𝐸 ∖ 𝐸𝑘;

this solution reads as

𝜔𝑘(𝑧) :=
1

2𝜋

∮︁
𝐸𝑘

𝜕𝑔(𝜁, 𝑧)

𝜕𝑛𝜁

|𝑑𝜁|.

We let

Ω𝑘(𝑧) :=
1

2
(𝜔𝑘(𝑧) + 𝑖𝜔̃𝑘(𝑧)).

2.2. Class of measures. In what follows we assume that

𝜔𝑘(∞) ∈ Q, 𝑘 = 1, . . . , 𝑝.

We say that a weighted function 𝜌(𝜁) > 0 defined on 𝐸 and being such that∫︁
𝐸

𝜌(𝜁)|𝑑𝜁| < +∞

satisfies a modified Szegö condition if∮︁
𝐸

log 𝜌(𝜁)
𝜕𝑔(𝜁)

𝜕𝑛𝜁

|𝑑𝜁| > −∞. (2)

We define a class of measures 𝒮(𝐸) as follows:

𝜇 ∈ 𝒮(𝐸) ⇔ 𝑑𝜇(𝜁) = 𝜌(𝜁)|𝑑𝜁| +
𝑁∑︁
𝑘=1

𝐴𝑘𝛿𝑧*𝑘(𝜁),

where

1) 𝜌(𝜁) satisfies the modified Szegö condition on 𝐸;
2) 𝑧*𝑘 ∈ Ω, 𝐴𝑘 > 0, 𝑘 = 1, . . . , 𝑁 and 𝛿𝑧 is the Dirac measure supported at the point 𝑧.

Given a measure 𝜇 ∈ 𝒮(𝐸) with a weight function 𝜌(𝑧), we define a locally analytic function
𝑅𝜇(𝑧):

𝑅𝜇(𝑧) := exp
(︁
ℎ(𝑧) + 𝑖ℎ̃(𝑧)

)︁
, where ℎ(𝑧) =

1

2𝜋

∮︁
𝐸

ln 𝜌(𝜁)
𝜕𝑔(𝜁, 𝑧)

𝜕𝑛𝜁

|𝑑𝜁|.

1Hereinafter ℎ̃(𝑧) stands for the function harmonically conjugate with a harmonic function ℎ(𝑧).
2Employing the symbol

∮︀
, we mean that while integrating over a non-closed curve, it should be passed twice,

once each side:

∮︁
𝐸𝑘

𝐹 (𝜁)|𝑑𝜁| =
∫︁
𝐸+

𝑘

𝐹+(𝜁)|𝑑𝜁|+
∫︁
𝐸−

𝑘

𝐹−(𝜁)|𝑑𝜁|
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2.3. Multi-valuedness class. Given a multi-valued function 𝑓 defined in the domain Ω
with a single-valued absolute value, we introduce the vector Γ(𝑓) := (𝛾1(𝑓), . . . , 𝛾𝑝(𝑓)) ∈ T𝑝,

𝛾𝑘(𝑓) :=
1

2𝜋
∆𝑘 arg 𝑓 (mod 1),

where ∆𝑘𝑓 is the increment of the function 𝑓 while passing around 𝐸𝑘. The vector Γ(𝑓) is
called a multi-valuedness class of the function 𝑓 .

We can show that Γ(Φ(𝑧, 𝑧0)) = (𝜔1(𝑧0), . . . , 𝜔𝑝(𝑧0)). We introduce the notation:

Γ𝑛 := Γ(Φ−𝑛), 𝑛 ∈ Z.

2.4. Space 𝐻2(Ω, 𝜇,Γ). We consider the 𝑝-dimensional real torus T𝑝. Given a vector Γ =
(𝛾1, . . . , 𝛾𝑝) ∈ T𝑝 and a measure 𝜇 ∈ 𝒮(𝐸), we define a multi-valued Hardy space 𝐻2(Ω, 𝜇,Γ)
as follows:
𝑓 ∈ 𝐻2(Ω, 𝜇,Γ) if and only if

∙ 𝑓 is locally analytic in Ω and has there a single-valued absolute value;
∙ the function |𝑓 2𝑅𝜇| is subharmonic;
∙ 𝑓(𝑧*𝑘) = 0;

∙ 1

2𝜋
∆𝑘 arg 𝑓 ≡ 𝛾𝑘 (mod 1),

where ∆𝑘𝑓 , as above, stands for the increment of the function 𝑓 while passing around 𝐸𝑘. The
space 𝐻2(Ω, 𝜇,Γ) is a Hilbert one with the scalar product

(𝑓, 𝑔)𝜇 =

∮︁
𝐸

𝑓(𝜁)𝑔(𝜁)𝑑𝜇(𝜁).

We introduce a vector characteristic 𝒥 (𝜇) ∈ T𝑝 for a measure 𝜇 ∈ 𝒮(𝐸) with a weight 𝜌(𝑧)
and masses 𝑧*𝑗 ∈ Ω, 𝑗 = 1, . . . , 𝑁 , as follows:

𝒥𝑘(𝜇) =
1

4𝜋
∆𝑘 arg𝑅𝜇(𝑧) +

𝑁∑︁
𝑗=1

𝜔𝑘(𝑧*𝑗 ) (mod 1), 𝑘 = 1, . . . , 𝑝. (3)

2.5. Riemann theta function. (see also [9].) We form a compact Riemann surface Ω𝑑𝑜𝑢𝑏𝑙𝑒

of genus 𝑝 by the topological gluing of two copies Ω∪𝐸 (Ω+,Ω−) and identifying the points of
𝐸; the complex structure is continued to the “second” sheet Ω− via changing local parameters
by complex conjugate ones. The functions analytic on Ω are continued on Ω𝑑𝑜𝑢𝑏𝑙𝑒:

𝑓(𝑧) := 𝑓(𝑧), 𝑧 ∈ Ω−.

We define a homological basis on Ω𝑑𝑜𝑢𝑏𝑙𝑒 as follows:

∙ 𝑏-cycles 𝑏𝑗 := 𝐸𝑗, 𝑗 = 1, . . . , 𝑝
∙ 𝑎-cycles are the curves 𝑎𝑗, 𝑗 = 1, . . . , 𝑝 such that 𝑎𝑗 ∩ Ω+ connects a fixed point 𝑃 ∈ 𝐸0

with 𝐸𝑗 and 𝑎𝑗 ∩ Ω− goes symmetrically over the second sheet Ω𝑑𝑜𝑢𝑏𝑙𝑒 and ∩𝑝
𝑗=1𝑎𝑗 = {𝑃}.

The surface obtained from Ω𝑑𝑜𝑢𝑏𝑙𝑒 by a dissection along the homological basis is denoted bỹ︀Ω𝑑𝑜𝑢𝑏𝑙𝑒. The differentials 𝑑Ω𝑘 (Abelian differentials of the first kind) form a normed basis of the
Abelian differentials of the surface Ω𝑑𝑜𝑢𝑏𝑙𝑒. Let us calculate their periods along our homological
basis: ∮︁

a𝑗

𝑑Ω𝑘(𝜁) = 𝑖𝐵𝑘,𝑗, 𝐵𝑘,𝑗 ∈ R,

where 𝐵𝑘,𝑗 are the entries of some real positive definite matrix 𝐵.
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We define a theta function of several variables:

𝜃(𝑢1, 𝑢2, . . . , 𝑢𝑝) =
∑︁

𝑛1,𝑛2,...,𝑛𝑝∈𝑍

exp(−𝜋
𝑝∑︁

𝜇=1

𝑝∑︁
𝜈=1

𝐵𝜇,𝜈𝑛𝜇𝑛𝜈 + 2𝜋𝑖

𝑝∑︁
𝜈=1

𝑛𝜈𝑢𝜈); (4)

the positive definiteness of the matrix 𝐵 with the entries 𝐵𝑘,𝑗 ensures the convergence of the
series. The theta function possesses the following properties:

𝜃(𝑢1, . . . , 𝑢𝜇 + 1, . . . , 𝑢𝑝) = 𝜃(𝑢1, . . . , 𝑢𝜇, . . . , 𝑢𝑝);

𝜃(𝑢1 + 𝑖𝐵1,𝜈 , . . . , 𝑢𝜇 + 𝑖𝐵𝜇,𝜈 , . . . , 𝑢ℎ + 𝑖𝐵𝑝,𝜈) = 𝑒𝜋𝐵𝜈,𝜈−2𝜋𝑖𝑢𝜈𝜃(𝑢1, . . . , 𝑢𝜇, . . . , 𝑢𝑝).
(5)

For an arbitrary vector (𝛽1, 𝛽2, . . . , 𝛽𝑝), a Riemann theta function for the Riemann surface
Ω𝑑𝑜𝑢𝑏𝑙𝑒 with a vector of parameters (𝛽1, 𝛽2, . . . , 𝛽𝑝) is introduced as follows:

Θ(𝑧) = 𝜃(

∫︁ 𝑧

𝑃

𝑑Ω1(𝜁) − 𝛽1, . . . ,

∫︁ 𝑧

𝑃

𝑑Ω𝑝(𝜁) − 𝛽𝑝);

in each integral the integration is made over the same path. The Riemann theta function has

exactly 𝑝 zeroes on ̃︀Ω𝑑𝑜𝑢𝑏𝑙𝑒 or it vanishes identically. Its boundary values satisfy the following
relations:

Θ+(𝜁) = Θ−(𝜁), 𝜁 ∈ a𝑗, 𝑗 = 1, . . . , 𝑝;

Θ+(𝜁) = 𝑒𝜋𝐵𝑗,𝑗−2𝜋𝑖(Ω𝑗+(𝜁)−𝛽𝑗)Θ−(𝜁), 𝜁 ∈ b𝑗, 𝑗 = 1, . . . , 𝑝.
(6)

Let 𝑧𝑘, 𝑘 = 1, 2, . . . , 𝑝 be the zeroes of the Riemann theta function. The numbers

𝑘𝜈 ≡ −
𝑝∑︁

𝑘=1

∫︁ 𝑧𝑘

𝑧0

𝑑Ω𝜈(𝜁) + 𝑏𝜈 (7)

are called Riemann constants and they are independent of the choice of 𝑏𝜈 .

2.6. Extremal problem in space 𝐻2(Ω, 𝜇,Γ). The linear functional mapping a function
𝐹 ∈ 𝐻2(Ω, 𝜇,Γ) into its value at a point 𝑧0 ∈ Ω (in particular, at infinity) is continuous.
Therefore, in this space, there exists a reproducing kernel 𝐾𝜇,Γ(𝑧, 𝑧0):

𝐹 (𝑧0) =

∮︁
𝐸

𝐹 (𝜁)𝐾𝜇,Γ(𝜁, 𝑧0)𝑑𝜇(𝜁).

Given a measure 𝜇 ∈ 𝑆(𝐸) and a multi-valuedness class Γ ∈ T𝑝, we define the function

𝜓𝜇,Γ(𝑧) =
𝐾𝜇,Γ(𝑧,∞)

𝐾𝜇,Γ(∞,∞)
.

It is easy to show that the function 𝜓𝜇,Γ(𝑧) possesses the following extremal property:

‖𝜓𝜇,Γ‖2𝜇 = inf
{︀
‖𝐹‖2𝜇, 𝐹 ∈ 𝐻2(Ω, 𝜇,Γ), |𝐹 (∞)| = 1, 𝐹 (𝑧*𝑘) = 0, 𝑘 = 1, . . . 𝑁

}︀
.

Indeed,

1 = |𝐹 (∞)|2 =
⃒⃒⃒
(𝐹 (·), 𝐾𝜇,Γ(·,∞))𝜇

⃒⃒⃒2
6 ‖𝐹‖2𝜇 · ‖𝐾𝜇,Γ(·,∞)‖2𝜇 = ‖𝐹‖2𝜇 ·𝐾𝜇,Γ(∞,∞),

and therefore,

‖𝜓𝜇,Γ‖2𝜇 =
‖𝐾𝜇,Γ(·,∞)‖2𝜇
|𝐾𝜇,Γ(∞,∞)|2𝜇

=
1

𝐾𝜇,Γ(∞,∞)
6 ‖𝐹‖2𝜇.

One can show (see [7], [10]) that the zeroes of this function different from 𝑧*1 , . . . , 𝑧
*
𝑁 belong

to the convex hull of the set 𝐸. This function can be expressed in terms of the Riemann theta
function [8], [10]:

𝜓𝜇,Γ(𝑧) =
𝐾𝜇,Γ(𝑧,∞)

𝐾𝜇,Γ(∞,∞)
= 𝜒(𝑧)

√︃
𝑅𝜇(∞)

𝑅𝜇(𝑧)

Θ(Γ, 𝜇, 𝑧)

Θ(Γ, 𝜇,∞)

𝑁∏︁
𝑘=1

Φ(∞, 𝑧*𝑘)

Φ(𝑧, 𝑧*𝑘)
, 𝑛 ∈ Z+, (8)
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where 𝜒(𝑧) is some single-valued function having no zeroes, depending only on the domain Ω
and being independent both of Γ and 𝜇; in paper [8], a formula for 𝜒(𝑧) was given but we do
not need it in the present work. The symbol Θ(Γ, 𝜇, 𝑧) stands for the Riemann theta function
with the vector of the parameters

𝛽𝑗(Γ, 𝜇) = 𝑑𝑗 + 𝛾𝑗 + 𝒥𝑗(𝜇), 𝑗 = 1, 2, . . . , 𝑝,

where 𝒥𝑗(𝜇) was defined above in (3), and the constants 𝑑𝑗 are depend only on Ω and are
independent both of Γ and 𝜇; for more details see [8], [10].

We introduce the following notations:

Θ𝑛,𝜇(𝑧) := Θ(Γ𝑛, 𝜇, 𝑧), 𝜓𝑛,𝜇(𝑧) := 𝜓𝜇,Γ𝑛 .

2.7. Strong asymptotics of orthogonal polynomials. We shall need the following result,
see [7], [10].

Theorem 1. Let 𝜇 ∈ 𝒮(𝐸) with a weight 𝜌 and discrete masses at the points 𝑧*𝑘, 𝑘 =
1, . . . , 𝑁 . Assume that polynomials 𝑃𝑛,𝜇 with the unit leading coefficient are orthogonal w.r.t.
the measure 𝜇. Then

1) ‖𝑃𝑛,𝜇‖2𝜇/𝐶(𝐸)2𝑛 ∼ ‖𝜓𝑛,𝜇‖2𝜇, 𝑛→ ∞;

2) 𝑃𝑛,𝜇(𝑧) = 𝐶(𝐸)𝑛Φ𝑛(𝑧)[𝜓𝑛,𝜇(𝑧) + 𝜖𝑛(𝑧)], where 𝜖𝑛 → 0 as 𝑛→ ∞,

uniformly on compact subsets Ω ∖ {𝑧*1 , 𝑧*2 , . . . , 𝑧*𝑁}.

3. Formulation of problem

To each measure 𝜇 ∈ 𝒮(𝐸), a system of polynomials 𝑃𝑛,𝜇(𝑧) = 𝑧𝑛 + . . . of a degree 𝑛
orthogonal w.r.t. 𝜇 corresponds to. We say that the polynomials 𝑃𝑛,𝜇 and 𝑃𝑛,𝜈 have a similar
asymptotic behavior at infinity1 if

𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛,𝜈(𝑧)

𝑃𝑛+1,𝜈(𝑧)
→ 0, 𝑛→ ∞, (9)

uniformly on compact neighbourhoods of the infinity.
It was shown in [3] that the condition

𝒥𝑗(𝜇) ≡ 𝒥𝑗(𝜈)(mod 1), 𝑗 = 1, 2, . . . , 𝑝, (10)

is sufficient for ensuring condition (9) and it was proved that this condition is necessary in the
case 𝑝 < 4. It was also shown that conditions (10) and (9) are equivalent for the measures
𝜇 ∈ 𝒮(𝐸) such that 𝐸 ⊂ R (at that, the discrete component does not necessary belong to
R). It follows from the results of work [4] that if 𝐸 ⊂ R possesses a discrete part consisting of
countably many masses on R (the accumulation point must belong 𝐸) satisfying the modified
Blaschke condition, under an obvious modification of 𝒥 (𝜇) for infinitely many masses, condition
(10) is necessary and sufficient for condition (9) in the case of infinitely many discrete masses
(see [4]).

In the present work, following B. Simanek (see [5]), we consider a more general condition
instead of condition (9): for some fixed 𝑙 ∈ N,

lim
𝑛→∞

(︂
𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛+𝑙,𝜈(𝑧)

𝑃𝑛+𝑙+1,𝜈(𝑧)

)︂
= 0,

1It is important to note that the phrase “orthogonal polynomials have a similar asymptotic behavior at
infinity” should be treated as a whole. This does not mean that for each measure the ratio possesses an
asymptotics and these asymptotics coincide. There can be no asymptotics of the ratio for each measure.
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uniformly in compact neighbourhoods of the infinity. In this case we say that the orthogonal
polynomials have same asymptotic behavior of the ratio with a shift.

4. Main results

For some multi-valuedness class ̃︀Γ ∈ T𝑝 we define ̃︀Γ−𝑛 := ̃︀Γ − Γ𝑛.

Let 𝐾𝜇,̃︀Γ−𝑛
(𝑧, 𝑧0) be a reproducing kernel in the space 𝐻2(Ω, 𝜇, ̃︀Γ−𝑛):∮︁

𝐸

𝑓(𝑧)𝐾𝜇,̃︀Γ−𝑛
(𝑧, 𝑧0)𝑑𝜇(𝑧) = 𝑓(𝑧0), ∀𝑓 ∈ 𝐻2(Ω, 𝜇, ̃︀Γ−𝑛).

We observe that the function 𝑓 ∈ 𝐻2(Ω, 𝜇, ̃︀Γ−𝑛) satisfies 𝑓(𝑧)Φ−1(𝑧) ∈ 𝐻2(Ω, 𝜇, ̃︀Γ−(𝑛−1)). Thus,
we obtain a chain of embedded spaces

. . . ⊂ Φ−𝑛(𝑧)𝐻2(Ω, 𝜇, ̃︀Γ−𝑛) ⊂ Φ−𝑛+1(𝑧)𝐻2(Ω, 𝜇, ̃︀Γ−(𝑛−1)) ⊂ . . .

. . . ⊂ Φ−1(𝑧)𝐻2(Ω, 𝜇, ̃︀Γ−1) ⊂ 𝐻2(Ω, 𝜇, ̃︀Γ).

By the assumption, 𝜔𝑗(∞) ∈ Q, and therefore, Γ𝑞+𝑘 = Γ𝑘 for all 𝑘, where 𝑞 is the com-
mon denominator of the numbers 𝜔𝑗(∞) ∈ Q. Thus, the reproducing kernels also satisfy the
periodicity condition w.r.t. the subscript:

𝐾𝜇,̃︀Γ−𝑛
(𝑧, 𝑧0) = 𝐾𝜇,̃︀Γ−(𝑛+𝑞)

(𝑧, 𝑧0).

We introduce the notation

𝐾𝑛,𝜇(𝑧,∞) := 𝐾𝜇,̃︀Γ−𝑛
(𝑧,∞), 𝜑𝑛,𝜇(𝑧) := 𝐾𝑛,𝜇(𝑧,∞)Φ−𝑛(𝑧). (11)

The next lemma generalizes Lemma 7.6 in work [6].

Lemma 1. The system of functions {𝜑𝑛,𝜇(𝑧)}∞𝑛=0 is an orthogonal basis in the space

𝐻2(Ω, 𝜇, Γ̃).

Proof. a) Let 𝑛 < 𝑚, then Φ𝑛−𝑚(∞) = 0. The definition of the reproducing kernel implies∮︁
𝐸

𝜑𝑛,𝜇(𝜁)𝜑𝑚,𝜇(𝜁)𝑑𝜇(𝜁) =

∮︁
𝐸

𝐾𝑛,𝜇(𝜁,∞)Φ𝑛(𝜁)𝐾𝑚,𝜇(𝜁,∞)Φ𝑚(𝜁)𝑑𝜇(𝜁)

=

∮︁
𝐸

𝐾𝑛,𝜇(𝜁,∞)Φ𝑛−𝑚(𝜁)𝐾𝑚,𝜇(𝜁,∞)𝑑𝜇(𝜁) = 𝐾𝑛,𝜇(∞,∞)Φ𝑛−𝑚(∞) = 0.

As 𝑛 = 𝑚, ∮︁
𝐸

|𝜑𝑛(𝜁)|2𝑑𝜇(𝜁) =

∮︁
𝐸

|𝐾𝑛,𝜇(𝜁,∞)Φ𝑛(𝜁)|2𝑑𝜇(𝜁) =

∮︁
𝐸

|𝐾𝑛,𝜇(𝜁,∞)|2𝑑𝜇(𝜁)

=‖𝐾𝑛(·,∞)‖2 ∈ (0,∞).

b) Let us prove that the system {𝜑𝑛,𝜇(𝑧)}∞𝑛=0 is complete. Assume that there exists a non-zero

vector 𝜑 ∈ 𝐻2(Ω, 𝜇, Γ̃) such that∮︁
𝐸

𝜑(𝜁)𝜑𝑛,𝜇(𝜁)𝑑𝜇(𝜁) = 0 𝑛 = 0, 1, . . . .

The orthogonality of the vectors 𝜑 and 𝜑0,𝜇 and definition of the reproducing kernel yield
that

0 =

∮︁
𝐸

𝜑(𝜁)𝜑0,𝜇(𝜁)𝑑𝜇(𝜁) =

∮︁
𝐸

𝜑(𝜁)𝐾0,𝜇(𝜁,∞)𝑑𝜇(𝜁) = 𝜑(∞),
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and therefore, 𝜑(𝑧)Φ(𝑧) ∈ 𝐻2(Ω, 𝜇, Γ̃1) and 𝜑 ∈ Φ−1𝐻2(Ω, 𝜇, Γ̃1). It follows from the orthogo-
nality of the vectors 𝜑 and 𝜑1,𝜇 that

0 =

∮︁
𝐸

𝜑(𝜁)𝜑1,𝜇(𝜁)𝑑𝜇(𝜁) =

∮︁
𝐸

𝜑(𝜁)Φ−1(𝜁)𝐾1,𝜇(𝜁,∞)𝑑𝜇(𝜁)

=

∮︁
𝐸

𝜑(𝜁)Φ(𝜁)𝐾1,𝜇(𝜁,∞)𝑑𝜇(𝜁) = (𝜑Φ)(∞).

Thus, the function 𝜑Φ vanishes at the point ∞, and therefore, 𝜑Φ2(𝑧) ∈ 𝐻2(Ω, 𝜇, Γ̃1) and
𝜑(𝑧) ∈ Φ−2(𝑧)𝐻2(Ω, 𝜇, Γ̃1). Arguing by induction, we obtain that an analytic in Ω function
𝜑 has a zero of order 𝑚 at infinity for arbitrary 𝑚. Therefore, there exists no function 𝜑
orthogonal to all functions 𝜑𝑛.

The following result allows us to “get rid” of the discrete component of a measure by changing
the weight function so that the corresponding polynomials have the same asymptotic behavior
of the ratio.

Lemma 2. Given a measure 𝜇 ∈ 𝒮(𝐸), there exists an absolutely continuous measure 𝜈0 ∈
𝒮(𝐸) such that

𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
−

𝑃𝑛+𝑙,𝜈0(𝑧)

𝑃𝑛+𝑙+1,𝜈0(𝑧)
→ 0, 𝑛→ ∞, (12)

uniformly on compact neighbourhoods of the infinity.

This lemma is a simple corollary of the following stronger statement generalizing Corollary 3.2
in [11].

Theorem 2. Given two measures 𝜇, 𝜈 ∈ 𝒮(𝐸) and an arbitrary number 𝑙 ∈ N, there exists
an absolutely continuous measure 𝜈0 ∈ 𝒮(𝐸) such that

𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
−

𝑃𝑛+𝑙,𝜈0(𝑧)

𝑃𝑛+𝑙+1,𝜈0(𝑧)
→ 0, 𝑛→ ∞,

uniformly in compact neighbourhoods of the infinity. At that, 𝜈0 can be chosen so that on each
connected component of the set 𝐸, the measures 𝜈 and 𝜈0 differ by a constant factor:

𝜈0
⃒⃒
𝐸𝑘

= 𝐶𝑘 · 𝜈|𝐸𝑘
, 𝑘 = 0, . . . , 𝑝.

Proof. We consider the function

𝑉 (𝑧) := exp

(︃
𝑝∑︁

𝑘=0

2𝜏𝑘Ω𝑘(𝑧)

)︃
,

where the numbers 𝜏𝑘 are determined uniquely by the following system of equations (see [7]):

1

4𝜋

𝑝∑︁
𝑘=0

𝜏𝑘∆𝑗𝜔̃𝑘 = 𝒥𝑗(𝜇) − 𝒥𝑗(𝜈) − 𝑙 · 𝜔𝑗(∞);

𝑝∑︁
𝑘=0

𝜏𝑘 = 0, 𝑗 = 0, . . . , 𝑝.

It is easy to see that the absolute value of this function is constant on each connected component
of 𝐸. Let

𝐶𝑘 := |𝑉 (𝑧)| = 𝑒𝜏𝑘 , 𝜈0
⃒⃒
𝐸𝑘

= 𝐶𝑘 · 𝜈|𝐸𝑘
, 𝑘 = 0, . . . , 𝑝.

Then

𝑅𝜈0 = 𝑉 ·𝑅𝜈 , 𝒥𝑗(𝜈
0) =

1

4𝜋
∆𝐸𝑘

arg 𝑉 (𝑧) + 𝒥𝑗(𝜈) =
1

4𝜋

𝑝∑︁
𝑘=0

𝜏𝑘∆𝐸𝑗
𝜔̃𝑘 + 𝒥𝑗(𝜈) = 𝒥𝑗(𝜇)

and therefore,
𝒥𝑗(𝜇) − 𝒥𝑗(𝜈

0) ≡ 0(mod 1), 𝑗 = 1, . . . , 𝑝.
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As it was shown in [3], this condition is sufficient for the validity of (12).

The main difficulty arising in proving conditions necessary for the behavior of ratio of or-
thogonal polynomials to be same is the possible cancelation of the zeroes of the functions Θ𝑛,𝜇,
𝑛 ∈ N (see [3], [11]). In the next lemma we show that if such cancellation arises, such zeroes
should belong to 𝐸.

Lemma 3. Consider the space 𝐻2(Ω, 𝜇,Γ). The functions Θ𝑛,𝜇, 𝑛 ∈ N, can have a common
zero only in the set 𝐸, that is, the existence of a common zero 𝑧0 ∈ Ω𝑑𝑜𝑢𝑏𝑙𝑒: Θ𝑛,𝜇(𝑧0) = 0 for
all 𝑛 ∈ N implies that 𝑧0 ∈ 𝐸.

Proof. By the measure 𝜇, we construct the measure 𝜈0 as in Lemma 2. Since by the construction

𝒥𝑗(𝜇) − 𝒥𝑗(𝜈
0) = 0(mod 1), 𝑗 = 1, . . . , 𝑝,

then

Θ𝑛,𝜇 = Θ𝑛,𝜈0 .

We split the proof into two parts. First we prove that 𝑧0 /∈ Ω+, and in the second part we show
that 𝑧0 /∈ Ω−.

1) Assume that 𝑧0 ∈ Ω+.
Since the measure 𝜈0 is absolutely continuous, as formula (8) shows, the zeroes of the functions

𝐾𝜈0,Γ𝑛
coincide with the zeroes Θ𝑛,𝜇. Then, by the assumption, 𝐾𝜈0,Γ𝑛

(𝑧0) = 0 for all 𝑛 ∈ N
and definition (11) implies that each function in the system 𝜑𝑛 = Φ−𝑛𝐾𝜈0,Γ𝑛

vanishes at the
point 𝑧0 ∈ Ω. As it was shown in Lemma 1, the functions 𝜑𝑛, 𝑛 > 𝑛0, forms a basis in the space
𝐻2(Ω, 𝜈0,Γ𝑛0) for each 𝑛0 ∈ N. However, as it was shown in [7], one can construct a function
𝑉𝑛0 ∈ 𝐻2(Ω, 𝜈0,Γ𝑛0) not vanishing in Ω:

𝑉𝑛0(𝑧) := exp

(︃
𝑝∑︁

𝑘=0

2𝜏𝑘Ω𝑘(𝑧)

)︃
,

where the numbers 𝜏𝑘 are uniquely determined by the following system of equations (a more
detailed construction of the functions 𝑉Γ𝑛0

can be found in [7]):

𝑝∑︁
𝑘=0

𝜏𝑘∆𝐸𝑗
𝜔̃𝑘 = 𝛾𝑗;

𝑝∑︁
𝑘=0

𝜏𝑘 = 0, 𝑗 = 0, . . . , 𝑝.

The obtained contradiction shows that 𝑧0 /∈ Ω+.
The proven statement is also implied by the Ambroladze theorem [1].
2) Now we consider the case 𝑧0 ∈ Ω−.
We recall that the extremal function 𝜓𝑛,𝜈0 has the same zeroes as the function Θ𝑛,𝜈0 (8). In

Theorem 6.2 in [7], there was provided a system of equation determining uniquely the zeroes
of the function 𝜓𝑛,𝜈0 :

𝑝∑︁
𝑗=1

(︀̃︀𝜔𝑘(𝑧0𝑗 ) − ̃︀𝜔𝑘(𝑧*𝑗 )
)︀

=

𝑝∑︁
𝑙=1

𝑚𝑙∆𝑘̃︀𝜔𝑙,

1

2

𝑝∑︁
𝑗=1

𝜖𝑗𝜔𝑘(𝑧0𝑗 ) = 𝒥𝑘(𝜈0) −
𝜔𝑘(∞) − 1

2
− 𝑛𝜔𝑘(∞) (mod 1)

(13)

where 𝑧*0 are finite zeroes of 𝐺′(𝑧); 𝑚𝑙 are arbitrary natural numbers. The parameters 𝜖𝑗 = ±1
and the points 𝑧0𝑗 are determined uniquely by the system and at that, the numbers 𝜖𝑗 serve for
indicating the sheet of the Riemann surface, on which one should put the corresponding point
𝑧0𝑗 : if 𝜖𝑗 = 1, then 𝑧0𝑗 ∈ Ω+, and if 𝜖𝑗 = −1, then 𝑧0𝑗 ∈ Ω−.
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By our assumption, one of the points 𝑧0𝑗 is the point 𝑧0, and the corresponding parameter

is equal to −1. Without loss of generality, we suppose that 𝑧01 = 𝑧0, 𝜖1 = −1. To the right
hand side of the second equation in system (13), we add the term 2𝜔𝑘(𝑧01). It is obvious that
this equation is also satisfied by the same system of the points with the same parameters 𝜖𝑗,
𝑗 = 2, . . . , 𝑝, and the parameter 𝜖1 = 1.

On the other hand, the same system of equations can be obtained by solving the extremal
problem for the weight function ̃︀𝜈0 such that

𝒥𝑘(𝜈0) = 𝒥𝑘(𝜈) + 2𝜔𝑘(𝑧0), 𝑘 = 0, . . . , 𝑝;

the construction of such function reproduces that in the proof of Theorem 2. Thus, we obtain
that the extremal functions 𝜓𝑛,𝜈0 , and therefore, Θ𝑛,𝜈0 , have the common zero at a point in the
domain Ω+. But, as it follows from Statement (1), this is impossible.

Theorem 3. Let 𝜔𝑘(∞) ∈ Q, 𝑘 = 1, . . . , 𝑝, 𝜇, 𝜈 ∈ 𝒮(𝐸) and

lim
𝑛→∞

(︂
𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛+𝑙,𝜈(𝑧)

𝑃𝑛+𝑙+1,𝜈(𝑧)

)︂
= 0 (14)

for some fixed 𝑙 ∈ N; the convergence is uniform on compact neighbourhoods of the infinity.
Then

𝒥𝑗(𝜇) ≡ 𝒥𝑗(𝜈) − 𝑙 · 𝜔𝑗(∞)

(︂
mod

1

2

)︂
, 𝑗 = 1, 2, . . . , 𝑝. (15)

Proof. We assume that

𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛+𝑙,𝜈(𝑧)

𝑃𝑛+𝑙+1,𝜈(𝑧)
→ 0, 𝑛→ ∞,

uniformly in compact neighbourhoods of the infinity. Then

𝜓𝑛,𝜇(𝑧)

𝜓𝑛+1,𝜇(𝑧)
− 𝜓𝑛+𝑙,𝜈(𝑧)

𝜓𝑛+𝑙+1,𝜈(𝑧)
→ 0, 𝑛→ ∞.

Employing representations (8), we obtain

Θ𝑛,𝜇(𝑧)Θ𝑛+1,𝜇(∞)

Θ𝑛+1,𝜇(𝑧)Θ𝑛,𝜇(∞)
− Θ𝑛+𝑙,𝜈(𝑧)Θ𝑛+𝑙+1,𝜈(∞)

Θ𝑛+𝑙+1,𝜈(𝑧)Θ𝑛+𝑙,𝜈(∞)
→ 0, 𝑛→ ∞.

Let 𝑞 ∈ N be a common denominator of the numbers 𝜔𝑘(∞) ∈ Q, 𝑘 = 1, . . . , 𝑝, then
Γ𝑛 = Γ𝑛+𝑞 for all 𝑛 ∈ N and therefore, Θ𝑛,𝜇 = Θ𝑛+𝑞,𝜇. Then the asymptotic formulae imply
that

Θ𝑟,𝜇(𝑧)Θ𝑟+1,𝜇(∞)

Θ𝑟+1,𝜇(𝑧)Θ𝑟, 𝜇(∞)
=

Θ𝑟+𝑙,𝜈(𝑧)Θ𝑟+𝑙+1,𝜈(∞)

Θ𝑟+𝑙,𝜈(𝑧)Θ𝑟+𝑙+1,𝜈(∞)
𝑟 ∈ N, 𝑟 6 𝑞 − 1. (16)

If none of 𝑝 zeroes of the theta function Θ𝜇,𝑟(𝑧) cancels out with a zero of the function

Θ𝜇,𝑟+1(𝑧), then the zeroes of Θ𝜇,𝑟(𝑧) and Θ𝜈,𝑟+𝑙(𝑧) should coincide. If for some 𝑧𝜇 ∈ ̃︀Ω we have
Θ𝜇,𝑟(𝑧𝜇) = Θ𝜇,𝑟+1(𝑧𝜇), then the cancelation occurs also in the left hand side of identity (16).
Let Θ𝜈,𝑟+𝑙(𝑧𝜈) = Θ𝜈,𝑟+𝑙+1(𝑧𝜈) and 𝑧𝜇 ̸= 𝑧𝜈 . By Lemma 3, if 𝑧𝜇 /∈ 𝐸, there exists 𝑟0 such that
Θ𝜇,𝑟0(𝑧𝜇) ̸= 0. But then the corresponding identity of the ratios of theta functions (16) implies
that Θ𝜈,𝑟0+𝑙(𝑧𝜈) ̸= 0 and 𝑧𝜇 = 𝑧𝜈 .
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We write the expressions for the Riemann constants of the surface Ω𝑑𝑜𝑢𝑏𝑙𝑒 in two ways (see
(7)):

𝑘𝑗 ≡−
𝑝∑︁

𝑘=1

∫︁ 𝑧𝑘,𝜇

𝑧0

𝑑Ω𝑗(𝜁) + 𝑑𝑗 − 𝑟0𝜔𝑗(∞) + 𝒥𝑗(𝜇)

≡
𝑝∑︁

𝑘=1

∫︁ 𝑧𝑘,𝜈

𝑧0

𝑑Ω𝑗(𝜁) + 𝑑𝑗 − (𝑟0 + 𝑙)𝜔𝑗(∞) + 𝒥𝑗(𝜈),

where 𝑧𝑘,𝜇 and 𝑧𝑘,𝜈 are the zeroes of the functions Θ𝜇,𝑟(𝑧) and Θ𝜈,𝑟(𝑧), repsectively. And since
all zeroes of the functions Θ𝜇,𝑟(𝑧) and Θ𝜈,𝑟(𝑧) coincide except, probably, those in the set 𝐸, we
obtain (15).

Let us formulate a stronger statement being a simple corollary of the above arguing for the
case, when the functions Θ𝑛,𝜇,Θ𝑛+1,𝜇 have no common zeroes in 𝐸 for some subsequence. Since
there are no coinciding zeroes, in this case, the identity in condition (15) holds modulo 1.

Theorem 4. Let 𝜔𝑘(∞) ∈ Q, 𝑘 = 1, . . . , 𝑝, 𝜇, 𝜈 ∈ 𝒮(𝐸). If for some infinite subset of natural
numbers Λ ⊂ N the functions Θ𝑛,𝜇 and Θ𝑛+1,𝜇 have no common zeroes in 𝐸 for each 𝑛 ∈ Λ,
that is, Θ2

𝑛,𝜇(𝑧) + Θ2
𝑛+1,𝜇(𝑧) ̸= 0 for all 𝑧 ∈ 𝐸, for all 𝑛 ∈ Λ, then the following conditions are

equivalent:

∙ for some fixed 𝑙 ∈ N

𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛+𝑙,𝜈(𝑧)

𝑃𝑛+𝑙+1,𝜈(𝑧)
→ 0, 𝑛→ ∞, 𝑛 ∈ Λ,

uniformly in compact neighbourhoods of the infinity;
∙ 𝒥𝑗(𝜇) ≡ 𝒥𝑗(𝜈) − 𝑙 · 𝜔𝑗(∞) (mod 1), 𝑗 = 1, 2, . . . , 𝑝;
∙ for some fixed 𝑙 ∈ N

𝑃𝑛,𝜇(𝑧)

𝑃𝑛+1,𝜇(𝑧)
− 𝑃𝑛+𝑙,𝜈(𝑧)

𝑃𝑛+𝑙+1,𝜈(𝑧)
→ 0, 𝑛→ ∞,

uniformly in compact neighbourhoods of the infinity.

Thus, under the assumptions of Theorem 4, the preservation of the asymptotics of the ratio
of two orthogonal polynomials with a shift is equivalent to preservation the asymptotic behavior
over some subsequence.

The conditions of the measure in Theorem 4 are implicit. As an example of the measures
obeying this statement, we provide the following corollary.

Corollary 1. If 𝜔𝑘(∞) ∈ Q, 𝑘 = 1, . . . , 𝑝, 𝜇, 𝜈 ∈ 𝒮(𝐸), and the measure 𝜇 is invariant

w.r.t. the rotations by the angle
2𝜋

𝑝+ 1
, then the assumptions of Theorem 4 hold.

Proof. The uniqueness of the extremal function 𝜓𝜇,𝑘 and the invariance of the measure w.r.t.
the rotations imply that if some zero 𝑧* of the extremal function 𝜓𝜇,𝑘 belongs to a connected
component 𝐸𝑗, then the points obtained by rotation by the angle 2𝜋

𝑝+1
are also the zeroes of

the extremal function. But this is impossible since the extremal function has at most 𝑝 zeroes,
while the number of the connected components of the set 𝐸 is equal to 𝑝+ 1.

The author expresses his gratitude to the referee for valuable remarks.
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