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COMBINATORIAL BOUNDS OF OVERFITTING FOR

THRESHOLD CLASSIFIERS

Sh.Kh. ISHKINA

Abstract. Estimating the generalization ability is a fundamental objective of statistical
learning theory. However, accurate and computationally efficient bounds are still unknown
even for many very simple cases. In this paper, we study one-dimensional threshold deci-
sion rules. We use the combinatorial theory of overfitting based on a single probabilistic
assumption that all partitions of a set of objects into an observed training sample and
a hidden test sample are of equal probability. We propose a polynomial algorithm for
computing both probability of overfitting and of complete cross-validation. The algorithm
exploits the recurrent calculation of the number of admissible paths while walking over a
three-dimensional lattice between two prescribed points with restrictions of special form.
We compare the obtain sharp estimate of the generalized ability and demonstrate that the
known upper bound are too overstated and they can not be applied for practical problems.
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1. Introduction

We consider the following mathematical model of decisions making under the incompleteness
of an information. We are given a binary matrix and its rows correspond to objects and the
columns correspond to the rules of decisions making called also classifiers or predictors. An
entry of the matrix is one if and only if a given classifier makes an error at the given object.
In the set X of all rows of the matrix, we choose randomly and equiprobably the observed
training sample, a subset 𝑋 ⊂ X of a fixed cardinality. Then in the set A of all columns of the
matrix we choose the classifier with the minimal error rate on 𝑋. We want to estimate the the
error rate of this classifier on a hidden testing sample �̄� = X∖𝑋. If the difference of the error
frequencies on the testing and training samples exceeds 𝜀, one says that an overfitting occurs.
The obtaining of upper bounds for the probability of overfitting is one of the main issues in the
statistical learning theory [1]–[3].

Classical Vapnik–Červonenkis estimates [1] depend only on the size of the error matrix. Being
the “worst case” estimates, they are overstated by orders and do not fit well the experimental
results [4]. More gentle estimates depend on the properties of partial order relations on the set
of vector columns of the error matrix [5]. In the combinatorial theory of overfitting [6]–[8], there
was justified the necessity of combination of two properties, the splitting and connectivity [9,
12]. Thanks to the splitting, the classifiers with a high probability of error make a negligibly
small contribution into the overfitting. Thanks to the connectivity, the contribution into the
overfitting by the classifiers with close error vectors reduces essentially.
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In [13] there were obtained conditions, under which splitting and connectivity bounds were
sharp. In particular, they are satisfied by monotone and unimodal chains of classifiers [9]. In
practical problems of statistical learning such chains can be generated by elementary threshold
classifiers used in such classification algorithms as decision trees, logic algorithms [14], algo-
rithms for calculating estimates [15], as well as in constructing linear classifiers by the method
of coordinate-wise optimization. At that, one usually assumes the existence of error-free classi-
fier that is almost impossible in practical problems. In the general case, the threshold classifiers
generate sequences of classifiers called direct chains. Earlier, for them, there were known only
the upper bound of the expected error rate on the testing sample [16]. Various specifications
of the splitting and connectivity bounds taking into consideration, for instance, the pairwise
competition between the classifiers [17] or the stratified clustering of the set of classifiers [18, 19]
are still overstated for the direct chains.

In the present work we propose an algorithm of polynomial complexity for calculating the
probability of overfitting for an arbitrary direct chain. The algorithm is based on the recur-
rent calculation of the number of admissible paths while walking over a three-dimensional set
between two given points with restrictions of special form.

1.1. Main definitions. We are given a finite set X = {𝑥1, . . . , 𝑥𝐿}, whose elements are called
objects and a finite set A, whose elements are called classifiers. The set A is called the family
of classifiers.

We are given a function 𝐼 : A× X → {0, 1} called indicator function. If 𝐼(𝑎, 𝑥) = 1, we say
that the classifier 𝑎 makes an error at the object 𝑥. The binary matrix

(︀
𝐼(𝑎, 𝑥) : 𝑥 ∈ X, 𝑎 ∈ A

)︀
of the size |X|×|A| is called error matrix.

We suppose that each classifier 𝑎 ∈ A is in one-to-one correspondence with its error vec-
tor (𝐼(𝑎, 𝑥𝑖))

𝐿
𝑖=1, that is, the error matrix can not contain two equal columns. We assume that

the row ordering in the error matrix is not important. By 𝑎 we shall denote both the classifier
and its error vector.

A number of errors of a classifier 𝑎 on a sample 𝑋 ⊂ X is the quantity

𝑛(𝑎,𝑋) =
∑︁
𝑥∈𝑋

𝐼(𝑎, 𝑥).

An error rate of a classifier 𝑎 on a sample 𝑋 ⊂ X is the quantity

𝜈(𝑎,𝑋) = 𝑛(𝑎,𝑋)/|𝑋|.

By [𝑋]𝑙 we denote the set of all subsets X of a cardinality 𝑙 < 𝐿. The subsets 𝑋 ∈ [𝑋]𝑙 are
called training samples, and their complements �̄� = X∖𝑋 are called testing samples. On the
set [𝑋]𝑙 we introduce the uniform probability distribution:

P(𝑋) = 1/𝐶 𝑙
𝐿, 𝑋 ∈ [𝑋]𝑙.

An overfitting of a classifier 𝑎 on a partition (𝑋, �̄�) is the quantity

𝛿(𝑎,𝑋) = 𝜈(𝑎, �̄�) − 𝜈(𝑎,𝑋).

If 𝛿(𝑎,𝑋) > 𝜀, we say that the classifier 𝑎 is overfitted on 𝑋.
A learning algorithm is the mapping 𝜇 : [𝑋]𝑙 → A, which to each training sample 𝑋, a

classifier 𝑎 = 𝜇𝑋 in the family A associates to.
A pessimistic empirical risk minimization (PERM) is a learning algorithm, which chooses a

classifier making the smallest number of errors on a training sample 𝑋. If there are several
such classifiers in the family, then it chooses the classifier with the maximal number of error on
a testing sample �̄� [9].
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For a given learning algorithm 𝜇, a family of classifiers A, a set X and a size 𝑙 of a training
sample, a probability of overfitting is the functional

𝑄𝜀(𝜇,A,X, 𝑙) = P[𝛿(𝜇𝑋,𝑋) > 𝜀] =
1

𝐶 𝑙
𝐿

∑︁
𝑋∈[𝑋]𝑙

[𝛿(𝜇𝑋,𝑋) > 𝜀].

Hereinafter the square brackets stand for transformation of a logical condition into the numerical
value by the rule [true] = 1, [false] = 0.

A complete cross-validation is the functional equal to the expectation of the number of the
errors on a testing sample:

𝐶𝐶𝑉 (𝜇,A,X, 𝑙) = E𝜈(𝜇𝑋, �̄�) =
1

𝐶 𝑙
𝐿

∑︁
𝑋∈[𝑋]𝑙

𝜈(𝜇𝑋, �̄�).

An effective calculation of 𝑄𝜀 and 𝐶𝐶𝑉 directly by definition is possible only for small |�̄�| =
𝐿− 𝑙. If 𝑙 is close to 𝐿/2, the number of terms is exponentially large in 𝐿.

1.2. Direct sequences of classifiers. We consider the sets of objects, by which neighbour-
ing classifiers in the set A = {𝑎0, . . . , 𝑎𝑃} differ:

𝐺𝑝 =
{︀
𝑥 ∈ X | 𝐼(𝑎𝑝, 𝑥) ̸= 𝐼(𝑎𝑝+1, 𝑥)

}︀
, 𝑝 = 0, . . . , 𝑃 − 1. (1)

Definition 1. The set of classifiers is called a direct sequence if the sets 𝐺𝑝 are mutually
disjoint.

We note that it follows from the definition that the order of the classifiers is impor-
tant. Indeed, we consider two families of the classifiers; the first being a direct sequence
A = {𝑎0, . . . , 𝑎𝑃}, while the other is obtained from the first one by a permutation of the
classifiers 𝑎𝑝 and 𝑎𝑝+1 for some 𝑝: A′ = {𝑎0, . . . , 𝑎𝑝−1, 𝑎𝑝+1, 𝑎𝑝, 𝑎𝑝+2, . . . , 𝑎𝑃}.

We define the sets 𝐺𝑝 by (1). Then the family A′ is not a direct chain since the neighbouring
classifiers 𝑎𝑝−1 and 𝑎𝑝+1 differ by the set of objects 𝐺𝑝−1 ⊔𝐺𝑝, while the classifiers 𝑎𝑝+1 and 𝑎𝑝
differ by the set of objects 𝐺𝑝, that is, these sets intersect.

Definition 2. A direct sequence A = {𝑎0, . . . , 𝑎𝑃} is called a direct chain if each pair of
neighbouring classifiers differs by one object: |𝐺𝑝| = 1, 𝑝 = 0, . . . , 𝑃 − 1. The number 𝑃 is
called a length of the direct chain A.

Definition 3. A one-dimensional threshold classifier over a set X ⊂ R is the family of
threshold rules 𝑎(𝑥, 𝜃) = [𝑥 > 𝜃], where 𝜃 ∈ R is a parameter called threshold.

According to the following theorem, the notion of the direct sequence and the one-dimensional
threshold classifier are synonyms.

Theorem 1. We define the set 𝑉 of direct sequences A = {𝑎0, . . . , 𝑎𝑃} such that∑︀𝑃−1
𝑝=0 |𝐺𝑝| = 𝐿, where 𝐺𝑝 are defined by (1) and the set 𝑈 of one-dimensional classifiers

over the set X = {𝑥1, . . . , 𝑥𝐿} of the points in the real axis such that for each 𝑥𝑖, the true mark
in the class 𝑦𝑖 ∈ {0, 1} corresponds to. Then there exists a bijection between these sets.

Proof. In the sets 𝑉 and 𝑈 the objects are defined up to renaming the objects in the set X.
Each object 𝑢 ∈ 𝑈 is uniquely determined by the location of objects in two classes {0, 1} on

the real axis, that is, by the location of the points in the set X on the axis R and by the set
of correct answers {𝑦1, . . . , 𝑦𝐿}. The values of the thresholds are chosen so that they partition
the set X into two classes in all possible ways.

Each object in the set 𝑉 is uniquely determined by the numbers of units in the vector 𝑎0,
that is, 𝑛(𝑎0,X), and by the sequence of pairs (𝑛𝑝

0, 𝑛
𝑝
1)

𝑃−1
𝑝=0 , where 𝑛𝑝

0 is the number of zeroes
in the vector 𝑎𝑝 being the units in the 𝑎𝑝+1, and 𝑛𝑝

1 is the number of units in the vector 𝑎𝑝
being the zeroes in 𝑎𝑝+1. Under the presence of such information, the error matrix {𝑎0, . . . , 𝑎𝑃}
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is constructed as follows. The vector 𝑎0 is defined so that at the first 𝑛(𝑎0,X) positions this
vector contains the units followed by the zeroes. For each 𝑝, consequently starting from 𝑝 = 0,
the vector 𝑎𝑝+1 is obtained from the vector 𝑎𝑝 by inverting 𝑛𝑝

0 zeroes and 𝑛𝑝
1 units.

We construct a mapping 𝑓 : 𝑈 → 𝑉 as follows. Assume we are given an object 𝑢 ∈ 𝑈 , that
is, the set of the points 𝑥1 6 · · · 6 𝑥𝐿 and of correct answers 𝑦1, . . . , 𝑦𝐿. To this object, we
associate a direct sequence 𝑣 = 𝑓(𝑢) ∈ 𝑉 .

In order to do this, we introduce the indicator function 𝐼(𝑎, 𝑥𝑖) =
[︀
𝑎(𝑥𝑖, 𝜃) ̸= 𝑦𝑖

]︀
. Variation

of 𝜃 generates at most 𝐿 + 1 classifiers with pairwise distinct error vectors. They form a direct
sequence. If all objects 𝑥𝑖 are pairwise distinct, 𝑥1 < 𝑥2 < · · · < 𝑥𝐿, then the direct sequence
is a direct chain.

The mapping 𝑓 determines uniquely a direct chain by the family of threshold rules, that is,
it is an injection. Let us prove that it is a surjection.

Assume we are given a direct sequence 𝑣 ∈ 𝑉 , that is, the quantity 𝑛(𝑎0,X) and the set
of pairs (𝑛𝑝

0, 𝑛
𝑝
1)

𝑃−1
𝑝=0 . Let us construct the error matrix {𝑎0, . . . , 𝑎𝑃}. We define the family of

threshold rules 𝑢 ∈ 𝑈 as follows. To each set 𝐺𝑝, we associate the points 𝑥1
𝑝 = · · · = 𝑥

|𝐺𝑝|
𝑝

and we let 𝑥1
0 < 𝑥1

1 < · · · < 𝑥1
𝑃−1. We let 𝑦𝑖𝑝 = 1 if 𝐼(𝑎𝑝, 𝑥

𝑖
𝑝) = 0 and 𝑦𝑖𝑝 = 0 otherwise. It is

easy to check that the constructed family 𝑢 is the pre-image of 𝑣 under the mapping 𝑓 , that is,
𝑣 = 𝑓(𝑢). Thus, the mapping 𝑓 is a bijection.

Example 1. In figure 1, an example of a direct chain is shown. At the axis 𝑥 we indicate
the objects 𝑥𝑖. The correct answers 𝑦𝑖 are shown by the points ∘ and ∙. The thresholds 𝜃 are
chosen in the centers between the neighbouring objects. Below we show the graph of the number
of errors of classifiers and the error matrix.
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Figure 1. Example of a direct chain

Definition 4. A direct chain A = {𝑎0, . . . , 𝑎𝑃} is called increasing (decreasing) if each clas-
sifier 𝑎𝑝 makes an error 𝑚+𝑝 times (respectively, 𝑚−𝑝 times) on the set X for some value 𝑚.
A direct chain A is called monotone if it is decreasing or increasing.

A direct chain A can consist of several monotonicity segments. For instance, the chain
shown in figure 1 contains for monotonicity segments: {𝑎0, 𝑎1, 𝑎2} and {𝑎5, 𝑎6} are decreasing,
{𝑎2, 𝑎3, 𝑎4, 𝑎5} and {𝑎6, 𝑎7} are increasing.

1.3. Formulation of problem. We want to find a way for calculating the functionals of the
overfitting probability 𝑄𝜀 and of the complete cross-validation 𝐶𝐶𝑉 for PERM 𝜇 and for an
arbitrary direct sequence A in a polynomial in 𝐿 time.
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2. Overfitting of an arbitrary family

We are given an arbitrary subset D ⊆ X of the set X. Each partition (𝑋, �̄�) of the
set X = 𝑋 ⊔ �̄� induces the partition (𝑋 ∩ D, �̄� ∩ D) of the subset D. Also each pair of par-
titions (𝐷′, �̄�′) and (𝐷′′, �̄�′′) of subsets D′ ⊆ X and D′′ = X∖D′, respectively, defines a parti-
tion (𝑋, �̄�) of the set X by the rule 𝑋 = 𝐷′ ∪𝐷′′ and �̄� = �̄�′ ∪ �̄�′′.

A pair of classifiers 𝑎 and 𝑎′ are called indiscernible on a set X′ ⊂ X if 𝐼(𝑎, 𝑥) = 𝐼(𝑎′, 𝑥) for
all 𝑥 ∈ X′.

Assume that we are given an arbitrary family of classifiers A and on the set A × A × [𝑋]ℓ

we are given a strict order relation 𝑎 ≻𝑋 𝑎′. We call it finite if for all classifiers 𝑎, 𝑎′ ∈ A
indiscernible on a set X′ ⊂ X, the relation 𝑎 ≻𝑋 𝑎′ is independent of the choice of the partition
of the set X′.

Example 2. The order relations defined by the rules

1. 𝑎 ≻𝑋 𝑎′ ⇐⇒ 𝑛(𝑎,𝑋) < 𝑛(𝑎′, 𝑋);
2. 𝑎 ≻𝑋 𝑎′ ⇐⇒ 𝛿(𝑎,𝑋) > 𝛿(𝑎′, 𝑋);

are finite.
Indeed, for each 𝑋 ∈ [𝑋]ℓ and for each X′, the identity

𝑛(𝑎,𝑋) = 𝑛(𝑎,𝑋 ∩ X′) + 𝑛(𝑎,𝑋 ∖ X′)

holds. If the classifiers 𝑎 and 𝑎′ are indiscernible on the set X′, then 𝑛(𝑎,X′∩𝑋) = 𝑛(𝑎′,X′∩𝑋).
This implies the finiteness of relation 1.

To prove the finiteness of relation 2, we rewrite the overfitting as

𝛿(𝑎,𝑋) =
1

𝐿− ℓ
𝑛(𝑎,X) − 𝐿

(𝐿− ℓ)ℓ
𝑛(𝑎,𝑋).

Then the desired property follows the first statement.

The definition implies the following property:

Lemma 1. Assume that the classifiers of the family A′ ⊆ A are indiscernible on the set N′.
Then for each 𝑎 ∈ A′, the validity of a finite relation 𝑎 ≻𝑋 𝑎′ simultaneously for all 𝑎′ ∈ A′∖{𝑎}
is independent of the choice of the partition of the set N′.

We say that on a sample 𝑋 a classifier 𝑎 is better than 𝑎′ if 𝑎 ≻𝑋 𝑎′. We call a learning
algorithm 𝜇 : [𝑋]ℓ → A finite if the learning result is the classifier best from the point of view
of a finite relation ≻𝑋 :

𝑎 = 𝜇𝑋 ⇔ 𝑎 ≻𝑋 𝑎′, ∀𝑎′ ̸= 𝑎. (2)

Example 3. The algorithm of empirical risk minimization (ERM) choosing the classifier
with the minimal number of errors on a training sample and the algorithm of overfitting maxi-
mization (OM) choosing the classifier with the maximal overfitting are finite.

The OM method arises in the problem of combinatorial calculation of Rademacher complexity
of the class of decision rules [10]. Indeed, as ℓ = 𝐿

2
, the random variables

𝜎𝑖 =

{︃
+1 if 𝑥𝑖 ∈ �̄�,

−1 if 𝑥𝑖 /∈ �̄�

obey the Rademacher distribution 𝑃 (𝜎𝑖 = 1) = 𝑃 (𝜎𝑖 = −1) = 1
2
. Then the Rademacher

complexity of the family is equal to the expectation of the overfitting of the OM method 𝜇 [11]:

ℛ𝐿(A,X) = E sup
𝑎∈A

2

𝐿

𝐿∑︁
𝑖=1

𝜎𝑖𝑎𝑖 = E sup
𝑎∈A

𝜈(𝑎, �̄�) − 𝜈(𝑎,𝑋) = E𝛿(𝜇, �̄�).
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The Rademacher complexity can be considered as a quantity describing the complexity of
the class of decision rules. The more the Rademacher complexity, the errors of classifiers can
correlate better with the random noise 𝜎𝑖.

By D we denote the subset of objects by which the classifiers of the family A = {𝑎0, . . . , 𝑎𝑃}
are discernible

D = 𝐺0 ∪ · · · ∪𝐺𝑃−1 =
{︀
𝑥 ∈ X | ∃ 𝑎, 𝑎′ ∈ A : 𝐼(𝑎, 𝑥) ̸= 𝐼(𝑎′, 𝑥)

}︀
, (3)

where the sets 𝐺𝑝 are defined according to (1).
We call the objects in the set N = X∖D neutral. On the set N the classifiers of the family are

indiscernible and make the same number 𝑚 of errors. By 𝑚𝑝 we denote the number of errors
of the classifier 𝑎𝑝 on the set D:

𝑚 = 𝑛(𝑎,N), ∀𝑎 ∈ A; (4)

𝑚𝑝 = 𝑛(𝑎𝑝,D).

Let us reduce the problem on calculating the probability of ovefitting 𝑄𝜀 and of the complete
cross-validation 𝐶𝐶𝑉 to finding the number of partitions of the set D with some restrictions.

We denote by 𝑡 the number of the objects in D contained in the training sample 𝑋, while by 𝑒
we denote the number of errors of a classifier 𝑎𝑝 on these objects. We introduce two functions
of 𝑡 and 𝑒: the number of partitions of the set N such that the classifier 𝑎𝑝 is overfitted on 𝑋

𝑁𝑝(𝑡, 𝑒) = #
{︀

(𝑋 ∩ N, �̄� ∩ N)
⃒⃒
𝛿(𝑎𝑝, 𝑋) > 𝜀, 𝑡 = |𝑋 ∩ D|, 𝑒 = 𝑛(𝑎𝑝, 𝑋 ∩ D)

}︀
,

and the number of the partitions of the set D such that 𝑎𝑝 is the result of the learning:

𝐷𝑝(𝑡, 𝑒) = #
{︀

(𝑋 ∩ D, �̄� ∩ D)
⃒⃒
𝜇𝑋 = 𝑎𝑝, 𝑡 = |𝑋 ∩ D|, 𝑒 = 𝑛(𝑎𝑝, 𝑋 ∩ D)

}︀
.

We introduce a hypergeometric distribution function

𝐻 𝑙,𝑚
𝐿 (𝑠) =

1

𝐶 𝑙
𝐿

min{⌊𝑠⌋,𝑙,𝑚}∑︁
𝑖=0

𝐶𝑖
𝑚𝐶

𝑙−𝑖
𝐿−𝑚,

where ⌊𝑥⌋ is the integer part of 𝑥, that is, the greatest integer not exceeding 𝑥. Given a set
X of a cardinality 𝐿 and a sample 𝑋0 ⊂ X of size 𝑚, the hypergeometric distribution function
𝐻 𝑙,𝑚

𝐿 (𝑠) is equal to the part of the sample of the set X of size 𝑙 containing at most 𝑠 elements
in 𝑋0. We let 𝐶𝑖

𝑛 = 0 if the condition 0 6 𝑖 6 𝑛 fails.

Theorem 2. Given an arbitrary family of classifiers A = {𝑎0, . . . , 𝑎𝑃}, a finite learning
algorithm 𝜇, a set X of a cardinality 𝐿, a size 𝑙 of a training sample, a precision 𝜀 ∈ (0, 1), the
probability of overfitting is of the form

𝑄𝜀 =
1

𝐶 𝑙
𝐿

𝑃∑︁
𝑝=0

∑︁
(𝑡,𝑒)∈Ψ𝑝

𝐷𝑝(𝑡, 𝑒)𝑁𝑝(𝑡, 𝑒), (5)

where the set D, the parameters 𝑚𝑝 and 𝑚 are determined by (3) and (4) and

Ψ𝑝 =
{︀

(𝑡, 𝑒) | 0 6 𝑡 6 min{𝑙, |D|}, 0 6 𝑒 6 min{𝑡,𝑚𝑝}
}︀

; (6)

𝑁𝑝(𝑡, 𝑒) = 𝐶 𝑙−𝑡
𝐿−|D| 𝐻

𝑙−𝑡,𝑚
𝐿−|D|(𝑠𝑝(𝑒)); (7)

𝑠𝑝(𝑒) =
𝑙

𝐿
(𝑛(𝑎𝑝,X) − 𝜀(𝐿− 𝑙)) − 𝑒.

Proof. We represent the probability of overfitting as

𝑄𝜀 =
𝑃∑︁

𝑝=0

P
[︀
𝜇𝑋 = 𝑎𝑝 and 𝛿(𝑎𝑝, 𝑋) > 𝜀

]︀
.
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We consider the set of the partitions (𝑋, �̄�) for fixed values of 𝑡 and 𝑒:

𝑡 = |𝑋 ∩ D|, 𝑒 = 𝑛(𝑎𝑝, 𝑋 ∩ D). (8)

According to (6), the set of admissible values (𝑡, 𝑒) is Ψ𝑝.
For such partitions, the validity of the condition 𝛿(𝑎𝑝, 𝑋) > 𝜀 is independent of the choice

of the partition of the set D, while by Lemma 1, the validity of the condition 𝜇𝑋 = 𝑎𝑝 is
independent of the choice of the partition of the set N since the classifiers are independent of
the set N. This is why for each triple of the parameters 𝑝, 𝑡, 𝑒, the number of the partitions
of the set X such that the conditions 𝜇𝑋 = 𝑎𝑝 and 𝛿(𝜇𝑋,𝑋) > 𝜀 hold true simultaneously is
equal to the product 𝑁𝑝(𝑡, 𝑒)𝐷𝑝(𝑡, 𝑒).

Let us prove (7). Let 𝑛(𝑎𝑝, 𝑋 ∩ N) = 𝑠, then 𝑛(𝑎𝑝, 𝑋) = 𝑒 + 𝑠. The condition 𝛿(𝑎𝑝, 𝑋) > 𝜀
is equivalent to the condition 𝑛(𝑎𝑝, 𝑋) 6 𝑙

𝐿
(𝑛(𝑎𝑝,X) − 𝜀(𝐿 − 𝑙)), and thus, 𝑠 6 𝑠𝑝(𝑒). Given 𝑡

and 𝑠, the number of the partitions of the set N is equal to 𝐶𝑠
𝑚𝐶

𝑙−𝑡−𝑠
𝐿−|D|−𝑚, which implies

𝑁𝑝(𝑡, 𝑒) =

𝑠𝑝(𝑒)∑︁
𝑠=0

𝐶𝑠
𝑚𝐶

𝑙−𝑡−𝑠
𝐿−|D|−𝑚 = 𝐶 𝑙−𝑡

𝐿−|D|
1

𝐶 𝑙−𝑡
𝐿−|D|

𝑠𝑝(𝑒)∑︁
𝑠=0

𝐶𝑠
𝑚𝐶

𝑙−𝑡−𝑠
𝐿−|D|−𝑚 = 𝐶 𝑙−𝑡

𝐿−|D| 𝐻
𝑙−𝑡,𝑚
𝐿−|D|(𝑠𝑝(𝑒)).

For the functional of the complete cross-validation, a similar theorem holds.

Theorem 3. For an arbitrary family of the classifiers A = {𝑎0, . . . , 𝑎𝑃}, a finite learning
algorithm 𝜇, a set X of a cardinality 𝐿, a size 𝑙 of training sample, the functional of the complete
cross-validation is of the form

𝐶𝐶𝑉 =
1

(𝐿− 𝑙)𝐶 𝑙
𝐿

𝑃∑︁
𝑝=0

∑︁
(𝑡,𝑒)∈Ψ𝑝

𝐷𝑝(𝑡, 𝑒)𝐹𝑝(𝑡, 𝑒), (9)

where

𝐹𝑝(𝑡, 𝑒) =

min{𝑙−𝑡,𝑚}∑︁
𝑠=0

𝐶𝑠
𝑚𝐶

𝑙−𝑡−𝑠
𝐿−|D|−𝑚

(︀
𝑛(𝑎𝑝,X) − 𝑠− 𝑒

)︀
, (10)

the sets D and Ψ𝑝 are determined by (3) and (6), the parameters 𝑚𝑝 and 𝑚 are determined
by (4).

Proof. We write the formula for the complete cross-validation and interchange the summations
signs:

𝐶𝐶𝑉 =
1

𝐶 𝑙
𝐿

∑︁
𝑋∈[𝑋]𝑙

𝑃∑︁
𝑝=0

[𝜇𝑋 = 𝑎𝑝] 𝜈(𝑎𝑝, �̄�) =
1

𝐶 𝑙
𝐿

𝑃∑︁
𝑝=0

∑︁
𝑋∈[𝑋]𝑙

[𝜇𝑋 = 𝑎𝑝] 𝜈(𝑎𝑝, �̄�).

By Lemma 1, the validity of the condition 𝜇𝑋 = 𝑎𝑝 is independent of the choice of the partition
of the set N.

We represent the number of errors of the classifier 𝑎𝑝 on a testing sample as

𝑛(𝑎𝑝, �̄�) = 𝑛(𝑎𝑝,X) − 𝑛(𝑎𝑝, 𝑋) = 𝑛(𝑎𝑝,X) − 𝑛(𝑎𝑝, 𝑋 ∩ D) − 𝑛(𝑎𝑝, 𝑋 ∩ N).

We define the parameters 𝑡 and 𝑒 by formulae (8). We denote 𝑠 = 𝑛(𝑎𝑝, 𝑋 ∩ N). The restrictions
𝑠 + 𝑡 6 𝑙 and 𝑠 6 𝑚 imply the upper bound for the parameter 𝑠 in (10).

It is easy to check that the number of the partitions of the set N for given 𝑡 and 𝑠 is equal
to 𝐶𝑠

𝑚𝐶
𝑙−𝑡−𝑠
𝐿−|D|−𝑚. This completes the proof.

Thus, the problem is reduced to calculating 𝐷𝑝(𝑡, 𝑒) for each 𝑝 on the entire set Ψ𝑝. In
what follows, in the case of a direct sequence, we describe a recurrent algorithm for calculating
𝐷𝑝(𝑡, 𝑒).
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3. Calculation of the number of partitions of the edges in direct sequence

Assume that the family A = {𝑎0, . . . , 𝑎𝑃} is a direct sequence. We call the objects of the set
D edges of the direct sequence A.

3.1. Reduction to the problem on left and right sequences. We consider a classifier 𝑎𝑝
and fix a point (𝑡, 𝑒) ∈ Ψ𝑝. With respect to 𝑎𝑝, the direct sequence A is partitioned into two
sequences, the left one 𝑎0, 𝑎1, . . . , 𝑎𝑝 and the right one 𝑎𝑝, 𝑎𝑝+1, . . . , 𝑎𝑃 .

We are going to reduce the issue on calculating 𝐷𝑝(𝑡, 𝑒) to finding the number of partitions
with some restrictions of the set of edges for the left and the right sequence.

Theorem 4. Let 𝜇 be a finite learning algorithm. For each 𝑝, for all (𝑡, 𝑒) ∈ Ψ𝑝 the number
of partitions of the set D such that 𝑡 = |𝑋 ∩ D|, 𝑒 = 𝑛(𝑎𝑝, 𝑋 ∩ D) and 𝜇𝑋 = 𝑎𝑝 is equal to

𝐷𝑝(𝑡, 𝑒) =
∑︁

𝑡′+𝑡′′=𝑡

∑︁
𝑒′+𝑒′′=𝑒

𝐿𝑝(𝑡
′, 𝑒′)𝑅𝑝(𝑡

′′, 𝑒′′), (11)

where

𝐿𝑝(𝑡
′, 𝑒′) = #

{︂
(𝑋 ∩ L𝑝, �̄� ∩ L𝑝)

⃒⃒⃒⃒
∀𝑑 = 0, . . . , 𝑝 𝑎𝑝 ≻𝑋 𝑎𝑑,
𝑡′ = |𝑋 ∩ L𝑝|, 𝑒′ = 𝑛(𝑎𝑝, 𝑋 ∩ L𝑝)

}︂
, (12)

𝑅𝑝(𝑡
′′, 𝑒′′) = #

{︂
(𝑋 ∩ R𝑝, �̄� ∩ R𝑝)

⃒⃒⃒⃒
∀𝑑 = 𝑝 + 1, . . . , 𝑃 𝑎𝑝 ≻𝑋 𝑎𝑑,
𝑡′′ = |𝑋 ∩ R𝑝|, 𝑒′′ = 𝑛(𝑎𝑝, 𝑋 ∩ R𝑝)

}︂
, (13)

the sets L𝑝 and R𝑝 are the sets of the edges of the left and right sequences, respectively, the
point (𝑡′, 𝑒′) and (𝑡′′, 𝑒′′) are the elements of the sets Ψ′

𝑝 and Ψ′′
𝑝, respectively, where

Ψ′
𝑝 =

{︀
(𝑡′, 𝑒′)

⃒⃒
0 6 𝑡′ 6 min{𝑙, |L𝑝|}, 0 6 𝑒′ 6 min{𝑡′, 𝑛(𝑎𝑝,L𝑝)}

}︀
, (14)

Ψ′′
𝑝 =

{︀
(𝑡′′, 𝑒′′)

⃒⃒
0 6 𝑡′′ 6 min{𝑙, |R𝑝|}, 0 6 𝑒′′ 6 min{𝑡′′, 𝑛(𝑎𝑝,R𝑝)}

}︀
. (15)

Proof. The sets L𝑝 and R𝑝 do not intersect and hence, the classifiers of the left sequences
are indiscernible on R𝑝, the classifiers of the right sequence are indiscernible on L𝑝. Then by
Lemma 1, the validity of condition (2) is independent of the choice of the partition of the set
R𝑝. In the same way, the validity of condition (2) for all classifiers of the right sequence in
independent of the choice of the partition of the set L𝑝. Thus, the total number of partitions
of the set D, in which the learning algorithm chooses 𝑎𝑝, is the product of the number of the
partitions of the sets L𝑝 and R𝑝, in which 𝑎𝑝 is better than all classifiers of the left and right
sequence, respectively. The parameters 𝑡′, 𝑡′′, 𝑒′, 𝑒′′ are necessary to satisfy the conditions
defined by the parameters 𝑡 and 𝑒.

The partitions of the sets L𝑝 and R𝑝 satisfying conditions (12) and (13), respectively, will be
called admissible.

We consider the algorithm of PERM. Let us prove that it is finite; then Theorems 2–4 hold
for this method and for each 𝑝 the problem is reduced to calculating the number of admissible
partitions 𝐿𝑝(𝑡

′, 𝑒′) and 𝑅𝑝(𝑡
′′, 𝑒′′) for all points in the sets Ψ′

𝑝 and Ψ′′
𝑝.

We assume that among the classifiers minimizing the number of the errors on a training
sample 𝑋 and making the same number of errors on a testing sample �̄�, we choose the classifier
with the maximal index. This restriction makes no influence on the estimate for the probability
of overfitting and of complete cross-validation but allows us to calculate precisely the required
number of the partitions.

Definition 5. The error reserve of a classifier 𝑎 with respect to 𝑎𝑝 on a sample 𝑋 is the
quantity ∆𝑝(𝑎,𝑋) = 𝑛(𝑎,𝑋) − 𝑛(𝑎𝑝, 𝑋).

Lemma 2. The algorithm of PERM is finite with the order relation ≻𝑋 defined as follows:
a classifier 𝑎𝑝 is better than a classifier 𝑎 on a sampling 𝑋 if and only if one the following
conditions holds:
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1) ∆𝑝(𝑎,𝑋) > 0;
2) ∆𝑝(𝑎,𝑋) = 0 and 𝑎 is contained in the left sequence and 𝑛(𝑎,X) 6 𝑛(𝑎𝑝,X);
3) ∆𝑝(𝑎,𝑋) = 0 and 𝑎 is contained in the right sequence and 𝑛(𝑎,X) < 𝑛(𝑎𝑝,X).

This lemma is implied by the definition of PERM.
In what follows we consider the case, when the direct sequence A is a direct chain. Then the

left and right sequences L𝑝 and R𝑝 are also direct chains. We consider the algorithm of PERM
𝜇 with the order relation ≻𝑋 defined by Lemma 2.

3.2. Finding the number of admissible partitions of the edges in the left chain.
Let us find 𝐿𝑝(𝑡

′, 𝑒′) for each 𝑝 in each point (𝑡′, 𝑒′) ∈ Ψ′
𝑝. We observe that as 𝑝 = 0, this

problem can be solved trivially: the set Ψ′
0 consists of the single point (0, 0) and 𝐿0(0, 0) = 1.

Hereafter we assume 1 6 𝑝 6 𝑃 .
We renumber the classifiers so that the sequence begins at 𝑎𝑝 and ends at 𝑎0. We denote

{𝑏0, . . . , 𝑏𝑝}, where 𝑏𝑑 = 𝑎𝑝−𝑑 for each 𝑑 = 0, . . . , 𝑝. We write the reserve of the error with
respect to 𝑎𝑝 as ∆0(𝑏𝑑, 𝑋) = ∆𝑝(𝑎𝑝−𝑑, 𝑋) for each 𝑑.

The left chain L𝑝 is formed by increasing and decreasing monotone segments. We denote the
set of the edges of increasing segments by C𝑝, while I𝑝 stands for the monotone segments of the
chain. We have C𝑝 ⊔ I𝑝 = L𝑝.

The chain is direct and therefore, 𝑏0 makes no error on all objects C𝑝, that is,

C𝑝 = {𝑥 ∈ L𝑝 : 𝐼(𝑏0, 𝑥) = 0}, I𝑝 = {𝑥 ∈ L𝑝 : 𝐼(𝑏0, 𝑥) = 1}. (16)

Then the identity 𝑒′ = |𝑋 ∩ I𝑝| holds and |𝑋 ∩ C𝑝| = 𝑡′ − 𝑒′.
We note that since the classifiers of the left chain are discernible only on the objects of the

set L𝑝, for each classifier 𝑏 in the left chain we have

∆0(𝑏,𝑋) = ∆0(𝑏,𝑋 ∩ L𝑝), ∀𝑋 ⊆ X.
This implies that fixing a partition of the set L𝑝, we determine the reserve of the errors on all
corresponding training samples 𝑋.

We introduce the three-dimensional lattice

Ω𝑝 = {0, . . . , |L𝑝|} × {−|L𝑝|, . . . , |L𝑝|} × {0, . . . , |L𝑝|}.
Definition 6. On Ω𝑝 we define the set T𝑝 of the paths leaving the point (0, 0, 0) and formed

by the steps of three types:

1) “right”, from the point (𝑑,∆, 𝑖) to the point (𝑑 + 1,∆, 𝑖);
2) “right and up”, from the point (𝑑,∆, 𝑖) to the point (𝑑 + 1,∆ + 1, 𝑖);
3) “right and down”, from the point (𝑑,∆, 𝑖) to the point (𝑑 + 1,∆ − 1, 𝑖 + 1);

and for each 𝑑 the step from the point (𝑑,∆, 𝑖) satisfies the condition: assume that the classifiers
𝑏𝑑 and 𝑏𝑑+1 are connected by an edge 𝑥, then

1) if 𝑥 ∈ C𝑝, this is a step “right” or “right and up”;
2) if 𝑥 ∈ I𝑝, this is a step “right” or “right and down”.

Theorem 5. There exists a one-to-one correspondence between the partitions of the set L𝑝

and the paths in the set T𝑝. The paths corresponding to the partition (𝑋 ∩ L𝑝, �̄� ∩ L𝑝) passes
the points (𝑑,∆, 𝑖), where for each 𝑑 = 0, . . . , 𝑝 we have ∆ = ∆0(𝑏𝑑, 𝑋), and the coordinate 𝑖 is
equal to the number of the edges in 𝑋 ∩ I𝑝 between 𝑏0 and 𝑏𝑑.

Proof. Suppose that the classifiers 𝑏𝑑−1 and 𝑏𝑑 are connected by an edge 𝑥. If 𝑥 ∈ �̄�, then
∆0(𝑏𝑑, 𝑋) = ∆0(𝑏𝑑−1, 𝑋) since the reserve of the errors depends on 𝑋 only.

Assume that 𝑥 is an element of 𝑋. If 𝑥 is contained in an increasing chain, then 𝑏𝑑−1 makes
no error on this edge, while 𝑏𝑑 does. Then ∆0(𝑏𝑑, 𝑋) = ∆0(𝑏𝑑−1, 𝑋) + 1. If 𝑥 is contained in I𝑝,
then 𝑏𝑑−1 makes an error on this object, while 𝑏𝑑 does not. Hence, ∆0(𝑏𝑑, 𝑋) = ∆0(𝑏𝑑−1, 𝑋)−1.
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To the partition of the set L𝑝, we associate a path by the following rule. Let a path pass the
point (𝑑,∆, 𝑖). As 𝑑 = 0, we assume that this is the point (0, 0, 0). From this point along this
path, the step is of the form “right” if 𝑥 ∈ �̄�; “right and up” if 𝑥 ∈ 𝑋 ∩C𝑝; “right and down”
if 𝑥 ∈ 𝑋 ∩ I𝑝.

Then for each 𝑑 the coordinates ∆ and 𝑖 make the sense described in the formulation of the
theorem and in the described steps they change at most by 1. Hence, the path is located in
the lattice Ω𝑝 and therefore, in the set T𝑝 and it is determined uniquely.

By the same rule, to each path in T𝑝, we associate uniquely a partition of the set L𝑝. Hence,
the mapping from the set of partitions into the set of the paths is surjective and injective and
hence, is bijective.

Example 4. In Figure 2, the lower graph demonstrates a chain and its edges contained in
the training sample are highlighted by the double line. To such partition of the edges of the chain,
a path is associated and its projection on the plane (𝑑,∆) is shown in the upper graph. In this
example, the path passes the points with a negative coordinate ∆. Hence, the chain contains the
classifiers with a negative reserve of the errors. Therefore, by Lemma 2 and by conditions (2),
under such partition the classifier 𝑏0 is not chosen by the learning algorithm. Excluding the
paths not obeying Lemma 2 from the consideration, we exclude also non-admissible partitions.

𝑏0 𝑏𝑝
∙

∙
∙

∙
∙

∙
∙

//𝑑� � � � � � �

𝑛(𝑏𝑑,X)

//𝑑� � � �∙
∙ ∙

∙
∙ ∙ ∙Δ0(𝑏𝑑,𝑋)

Figure 2. Correspondence of the partition of a chain (lower graph) to the projection
of the path (upper graph). By the double line, we highlight the edges in the training

sample.

We introduce the set

Ω′
𝑝 =

{︂
(𝑑,∆, 𝑖) ∈ Ω𝑝

⃒⃒⃒⃒
0 6 𝑖 6 𝑑 and |∆| 6 𝑑 and(︀
or ∆ > 0, or (∆ = 0 and 𝑛(𝑏𝑑,X) 6 𝑛(𝑏0,X))

)︀ }︂
. (17)

Lemma 3. Each point (𝑑,∆, 𝑖) of the path in T𝑝 corresponding to an admissible partition of
the set L𝑝 belongs to the set Ω′

𝑝 ⊆ Ω𝑝.

Proof. First two conditions in Definition (17) are due to Theorem 5. The third condition repeats
the condition of Lemma 2.

Let 𝑇𝑝(𝑑, ∆, 𝑖) be the number of the paths in T𝑝 connecting the point (0, 0, 0) with (𝑑, ∆, 𝑖)
passing only the points in the set Ω′

𝑝. The rules of constructing the path by a partition of the
set L𝑝 imply the following lemma.

Lemma 4. At each point (𝑑, ∆, 𝑖) in the three-dimensional lattice Ω𝑝, the quantity
𝑇𝑝(𝑑, ∆, 𝑖) is calculated recurrently:

1) The initial condition is 𝑇𝑝(0, 0, 0) = 1.
2) If (𝑑, ∆, 𝑖) /∈ Ω′

𝑝, then 𝑇𝑝(𝑑, ∆, 𝑖) = 0.
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3) Assume that 𝑏𝑑−1 and 𝑏𝑑 are connected by the edge 𝑥. Then

𝑇𝑝(𝑑, ∆, 𝑖) =

{︃
𝑇𝑝(𝑑− 1, ∆, 𝑖) + 𝑇𝑝(𝑑− 1, ∆ − 1, 𝑖) if 𝑥 ∈ C𝑝,

𝑇𝑝(𝑑− 1, ∆, 𝑖) + 𝑇𝑝(𝑑− 1, ∆ + 1, 𝑖− 1) if 𝑥 ∈ I𝑝,
(18)

where the sets C𝑝 and I𝑝 are determined by (16).

Theorem 6. Assume that we are given an algorithm of PERM 𝜇, a set X of a cardinality 𝐿,
a size 𝑙 of a training sample and a direct chain A = {𝑎0, . . . , 𝑎𝑃}. Then for each 𝑝 = 1, . . . , 𝑃
at each point (𝑡′, 𝑒′) of the set Ψ′

𝑝 defined in (14), the number 𝐿𝑝(𝑡
′, 𝑒′) of admissible partitions

of the set L𝑝 determined by (12) is equal to

𝐿𝑝(𝑡
′, 𝑒′) = 𝑇𝑝(|L𝑝|, 𝑡′ − 2𝑒′, 𝑒′)

and is calculated recurrently by the rules described in Lemma 4, where 𝑏𝑑 = 𝑎𝑝−𝑑 for each 𝑑,
under the boundary conditions 𝐿0(0, 0) = 1.

Proof. It follows from Theorem 5 that

∆𝑝(𝑎0, 𝑋) = |𝑋 ∩ C𝑝|−|𝑋 ∩ I𝑝| = 𝑡′ − 2𝑒′.

There exists a bijection between the set of the edges of the left chain and the paths in T𝑝.
Thus, the number of the paths passing point (𝑝, 𝑡′ − 2𝑒′, 𝑒′) is equal to the number of the
partitions satisfying the conditions 𝑡′ = |𝑋 ∩ L𝑝| and 𝑒′ = 𝑛(𝑎𝑝, 𝑋 ∩ L𝑝). Keeping only the
paths passing the points in the set Ω′

𝑝(𝑡
′, 𝑒′), we keep only those associated with the admissible

partitions. Their number is equal to 𝑇𝑝(|L𝑝|, 𝑡′ − 2𝑒′, 𝑒′).

Remark 1. The restrictions 𝑖 6 𝑒′ and ∆ 6 𝑡′ − 𝑒′ implied by Theorem 5 hold immediately
for the paths connecting the points (0, 0, 0) and (𝑝, 𝑡′ − 2𝑒′, 𝑒′). Indeed, since the values 𝑖 and
∆ + 𝑖 do not increase, they do not exceed the values at the end point, that is, 𝑖 6 𝑒′ and

∆ + 𝑖 6 𝑡′ − 2𝑒′ + 𝑒′ = 𝑡′ − 𝑒′.

We have 𝑖 > 0 and hence, ∆ 6 ∆ + 𝑖 6 𝑡′ − 𝑒′. In view of this fact, the definition of the set Ω′
𝑝

do not involve these restrictions.

Thus, we have learned how to solve the problem for the left chain.

3.3. Finding admissible partitions for the set of the edges of the right chain. We
want to calculate 𝑅𝑝(𝑡

′′, 𝑒′′) for each 𝑝 at each point (𝑡′′, 𝑒′′) ∈ Ψ′′
𝑝. The procedure reproduces

almost literally that for the left chain after changing L𝑝 by R𝑝 and the point (𝑡′, 𝑒′) by (𝑡′′, 𝑒′′).
We also have the boundary conditions: as 𝑝 = 𝑃 , we have Ψ′′

𝑃 = {(0, 0)} and 𝑅𝑃 (0, 0) = 1. We
let 0 6 𝑝 6 𝑃 − 1.

For each 𝑑 = 0, . . . , 𝑃 − 𝑝, by 𝑏𝑑 = 𝑎𝑝+𝑑 we denote the classifiers in the chain. It follows from
Lemma 2 that Lemma 4 is true for the right chain once we replace the set Ω′

𝑝 by the set Ω′′
𝑝

defined as

Ω′′
𝑝 =

{︂
(𝑑,∆, 𝑖) ∈ Ω𝑝

⃒⃒⃒⃒
0 6 𝑖 6 𝑑 and |∆| 6 𝑑 and(︀
either ∆ > 0, or (∆ = 0 and 𝑛(𝑏𝑑,X) < 𝑛(𝑏0,X))

)︀ }︂
. (19)

Similar to Theorem 6, we have the following theorem for the right chain.

Theorem 7. Assume that we are given an algorithm of PERM 𝜇, a set X of a cardinality 𝐿,
a size 𝑙 of training sample 𝑙 and an arbitrary direct chain A = {𝑎0, . . . , 𝑎𝑃}. Then for each
𝑝 = 0, . . . , 𝑃 − 1 at each point (𝑡′′, 𝑒′′) of the set Ψ′′

𝑝 introduced in (15), the number 𝑅𝑝(𝑡
′′, 𝑒′′)

of admissible partitions of the set R𝑝 defined by (13) is equal to

𝑅𝑝(𝑡
′′, 𝑒′′) = 𝑇𝑝(|R𝑝|, 𝑡′′ − 2𝑒′′, 𝑒′′)

and it is calculated recurrently by the rules described in Lemma 4 with the set Ω′
𝑝 replaced by

Ω′′
𝑝 and 𝑏𝑑 replaced by 𝑎𝑝+𝑑 for each 𝑑. The boundary value are 𝑅𝑃 (0, 0) = 1.
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Remark 2. By Lemma 2, for each 𝑑 = 0, . . . , 𝑃 the reserve of errors for the classifier 𝑎𝑑 of
the chain can be negative for admissible partitions of the set of the edges of the left and right
chain. In particular, ∆𝑝(𝑎0, 𝑋) = 𝑡′−2𝑒′ > 0 and ∆𝑝(𝑎𝑃 , 𝑋) = 𝑡′′−2𝑒′′ > 0. Hence, the second
coordinates of the points in the sets Ψ𝑝, Ψ′

𝑝, Ψ′′
𝑝 range as

0 6 𝑒 6 min
{︀

1
2
𝑡, 𝑚𝑝

}︀
, 0 6 𝑒′ 6 min

{︀
1
2
𝑡′, 𝑛(𝑎𝑝,L𝑝)

}︀
, 0 6 𝑒′′ 6 min

{︀
1
2
𝑡′′, 𝑛(𝑎𝑝,R𝑝)

}︀
.

3.4. Finding the number of admissible partitions of the set of edges in direct
sequence. We consider the general case of a direct sequence A = {𝑎0, . . . , 𝑎𝑃}. We are going
to reduce the problem on calculating the number of admissible partitions for the left and right
sequences to similar problems for direct chains.

In order to do this, we construct a direct chain A𝑐 such that A ⊆ A𝑐 and the right and the
last classifiers in the family coincide. We do this as follows: for each 𝑖 such that |𝐺𝑖| > 1, we
add the direct chain G𝑖 into the sequence A

{𝑎0, . . . , 𝑎𝑖−1} ∪G𝑖 ∪ {𝑎𝑖+2, . . . , 𝑎𝑃},
where the direct chain G𝑖 is such that the first classifier of the chain is 𝑎𝑖 and the last classifier
is 𝑎𝑖+1. For the sake of definiteness we assume that G𝑖 is constructed as a direct chain formed
by two monotone ones: a decreasing chain of length 𝑛1 and an increasing chain of length 𝑛0,
where

𝑛1 = #{𝑥 ∈ 𝐺𝑖 | 𝐼(𝑎𝑖, 𝑥) = 1}, 𝑛0 = #{𝑥 ∈ 𝐺𝑖 | 𝐼(𝑎𝑖, 𝑥) = 0}.
We call the constructed chain A𝑐 interpolation of the chain A. Its length is equal to |D|.

For each 𝑎𝑝 ∈ A we consider the left sequence {𝑎𝑝, . . . , 𝑎0} ⊆ A and the left chain
{𝑎𝑝, . . . , 𝑎0} ⊆ A𝑐. By construction, the sets of the edges in these families coincide and hence,
the sets of the admissible partitions of the left chain and of the left sequence defined by (12)
also coincide. Let us calculate their number by Theorems 6 and 7, up to a single difference.

According to (2), the condition 𝑎𝑝 ≻𝑋 𝑎 should hold only for 𝑎 ∈ A. This restriction
determines the structure of the sets Ω′

𝑝 and Ω′′
𝑝 defined in (17) and (19). We redefine them for

the interpolation of the sequence A:

Ω′
𝑝 =

{︂
(𝑑,∆, 𝑖) ∈ Ω𝑝

⃒⃒⃒⃒
𝑏𝑑 ∈ A𝑐∖A or

(︀
𝑏𝑑 ∈ A and 0 6 𝑖 6 𝑑 and |∆| 6 𝑑

and
(︀
∆ > 0 or (∆ = 0 and 𝑛(𝑏𝑑,X) 6 𝑛(𝑏0,X))

)︀)︀ }︂
; (20)

Ω′′
𝑝 =

{︂
(𝑑,∆, 𝑖) ∈ Ω𝑝

⃒⃒⃒⃒
𝑏𝑑 ∈ A𝑐∖A or

(︀
𝑏𝑑 ∈ A and 0 6 𝑖 6 𝑑 and |∆| 6 𝑑

and
(︀
∆ > 0 or (∆ = 0 and 𝑛(𝑏𝑑,X) < 𝑛(𝑏0,X))

)︀)︀ }︂
. (21)

Theorem 8. Assume that we are given an algorithm of PERM 𝜇, a set X of a cardinality 𝐿,
a size 𝑙 of a training sample and a direct sequence A = {𝑎0, . . . , 𝑎𝑃}. Let the direct chain
A𝑐 = {𝑐0, . . . , 𝑐|D|} be an interpolation of the sequence A. To each classifier 𝑎𝑝 ∈ A, there
corresponds a classifier 𝑐𝑖𝑝 ∈ A𝑐.

Then for each 𝑝 = 1, . . . , 𝑃 at each point (𝑡′, 𝑒′) of the set Ψ′
𝑝 defined in (14), the num-

ber 𝐿𝑝(𝑡
′, 𝑒′) of admissible partitions of the set L𝑝 defined by (12) is equal to

𝐿𝑝(𝑡
′, 𝑒′) = 𝑇𝑝(|L𝑝|, 𝑡′ − 2𝑒′, 𝑒′) (22)

and is calculated recurrently by the rules described in Lemma 4, where 𝑏𝑑 = 𝑐𝑖𝑝−𝑑 for each 𝑑 and
the set Ω′

𝑝 is defined by (20). The boundary conditions are 𝐿0(0, 0) = 1.
For each 𝑝 = 0, . . . , 𝑃 − 1 at each point (𝑡′′, 𝑒′′) of the set Ψ′′

𝑝 defined in (15), the number
𝑅𝑝(𝑡

′′, 𝑒′′) of admissible partitions of the set R𝑝 defined by (13) is equal to

𝑅𝑝(𝑡
′′, 𝑒′′) = 𝑇𝑝(|R𝑝|, 𝑡′′ − 2𝑒′′, 𝑒′′) (23)

and is calculated recurrently by the rules described in Lemma 4 with replacing the set Ω′
𝑝 by

Ω′′
𝑝 defined in (21) and with replacing 𝑏𝑑 by 𝑐𝑖𝑝+𝑑 for each 𝑑. The boundary conditions are

𝑅𝑃 (0, 0) = 1.
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4. Algorithm of calculating the probability of overfitting and the
complete cross-validation

Thus, Theorem 8 describes an algorithm for finding the number of admissible partitions of
the sets of the edges in the left and the right sequence for each 𝑝. It remains to substitute the
found values into formulae (11), (5) and (9). To reduce the calculations by Theorems 2 and 3,
for each 𝑝, it is proposed to calculate in advance 𝐿𝑝(𝑡

′, 𝑒′), 𝑅𝑝(𝑡
′′, 𝑒′′), 𝑁𝑝(𝑡, 𝑒) and 𝐹𝑝(𝑡, 𝑒) and

to sum up the obtained values. The scheme of calculations is shown in algorithm 1.

Algorithm 1: Calculation of the probability of overfitting and of complete cross-
validation
Input: error matrix of the direct sequence A = {𝑎0, . . . , 𝑎𝑃}, parameters 𝑙, 𝜀.
Output: probability of overfitting 𝑄𝜀 and complete cross-validation CCV.

1 construct the direct chain A𝑐 being an interpolation of the sequence A;
2 find 𝑚 by (4);
3 for all 𝑝 = 0, . . . , 𝑃
4 partition the chain A𝑐 into two chains, the left one {𝑎𝑝, . . . , 𝑎0} and the right one

{𝑎𝑝, . . . , 𝑎𝑃};
5 for all points (𝑡′, 𝑒′) in the set Ψ′

𝑝 defined by (14)
6 find 𝐿𝑝(𝑡

′, 𝑒′) by formulae (22), (18) and (20);

7 for all points (𝑡′′, 𝑒′′) in the set Ψ′′
𝑝 defined by (15)

8 find 𝑅𝑝(𝑡
′′, 𝑒′′) by formulae (23), (18) and (21);

9 for all points (𝑡, 𝑒) in the set Ψ𝑝 defined by (6)
10 calculate 𝑁𝑝(𝑡, 𝑒) by formula (7);
11 calculate 𝐹𝑝(𝑡, 𝑒) by formula (10);

12 𝑄𝜀 :=
1

𝐶 𝑙
𝐿

𝑃∑︀
𝑝=0

∑︀
(𝑡′,𝑒′)∈Ψ′

𝑝

∑︀
(𝑡′′,𝑒′′)∈Ψ′′

𝑝

𝐿𝑝(𝑡
′, 𝑒′)𝑅𝑝(𝑡

′′, 𝑒′′)𝑁𝑝(𝑡
′ + 𝑡′′, 𝑒′ + 𝑒′′);

13 𝐶𝐶𝑉 :=
1

(𝐿− 𝑙)𝐶 𝑙
𝐿

𝑃∑︀
𝑝=0

∑︀
(𝑡′,𝑒′)∈Ψ′

𝑝

∑︀
(𝑡′′,𝑒′′)∈Ψ′′

𝑝

𝐿𝑝(𝑡
′, 𝑒′)𝑅𝑝(𝑡

′′, 𝑒′′)𝐹𝑝(𝑡
′ + 𝑡′′, 𝑒′ + 𝑒′′);

4.1. Complexity of the algorithm. Let us estimate the complexity of steps 5–11 of algo-
rithm 1.

Calculating 𝐿𝑝(𝑡
′, 𝑒′) by Theorem 6 at steps 5–6, we calculate 𝑇𝑝(𝑑,∆, 𝑖) once for all (𝑑,∆, 𝑖) ∈

Ω′
𝑝, then for each (𝑡′, 𝑒′) ∈ Ψ′

𝑝, we let the quantity 𝐿𝑝(𝑡
′, 𝑒′) to be equal to 𝑇𝑝(𝑑, 𝑡

′− 2𝑒′, 𝑒′). The
set Ω′

𝑝 is embedded into the cube with a side of the length 𝑂(|L𝑝|) since the absolute value
of each coordinate is bounded by the number of the edge in the left sequence. Therefore, the
complexity of steps 5–6 is 𝑂(|L𝑝|3). In the same way, the complexity of steps 7–8 is 𝑂(|R𝑝|)3).

In order to find 𝑁𝑝(𝑡, 𝑒) and 𝐹𝑝(𝑡, 𝑒), we need to calculate the binomial coefficients 𝐶𝑖
𝑚 and

𝐶𝑖
𝐿−𝑃−𝑚 for all possible 𝑖 in 𝑂(𝐿). The binomial coefficients are not recalculated for all 𝑝.

Under the known values of the binomial coefficients, the sought values 𝑁𝑝(𝑡, 𝑒) and 𝐹𝑝(𝑡, 𝑒)
are calculated in 𝑂(𝐿). The set Ψ𝑝 is embedded into the square with the side of the length
𝐿, and hence, the steps 9–11 are made in 𝑂(𝐿3). Therefore, the complexity of steps 5–11 is
𝑂(|D|3 + 𝐿3) = 𝑂(𝐿3) for each 𝑝.

The sets Ψ′
𝑝 and Ψ′′

𝑝 are embedded into the square with the side of the length 𝑃 and hence,

steps 12–13 are made in 𝑂(𝐿5) and the complexity of algorithm 1 is also 𝑂(𝐿5).
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Figure 3. Comparison of upper bounds for the probability of overfitting in the log-
arithmic scale. The horizontal line stands for the value 𝑄𝜀 = 1. The experiment
conditions are 𝐿 = 240, ℓ = 160, 𝑚 = 20, 𝜀 = 0.05. The horizontal direction indicates
the minimal number of the errors of the classifiers.

5. Comparison with the known estimates for the probability of overfitting

Let us consider the family of one-dimensional threshold rules in the classification problem
for the classes of equal cardinality. Let us show that for this problem the known upper bounds
for the probability of overfitting are overstated.

In figure 3, in the logarithmic scale, there shown the Vapnik–Červonenkis bounds [1], the
splitting and connectivity bounds [12] and Sokolov bounds [17] in comparison with the sharp
upper bound for the probability of overfitting of a direct sequence. The splitting and connectiv-
ity bounds and Sokolov bound are sharp in the only case, when the minimal number of errors
coincide with the parameter 𝑚. In this case the boundary between the classes is found exactly
and the family is a unimodal chain [9]. As the minimal number of errors grows, the Sokolov
bound exceeds the sharp upper bound. The Vapnik–Červonenkis estimates for the considered
sequence turn out to be overstated for any value of the minimal number of the errors.

6. Conclusion

We introduce the notion of the a finite learning algorithm, for which we develop the algo-
rithm for calculating the probability of overfitting and of complete cross-validation of direct
sequences of the classifiers generated by elementary threshold rules as the threshold parameter
varies. We show that the algorithm of empirical risk minimization (ERM) and the algorithm
of overfitting maximization (OM) are finite. For ERM we show that the known upper bounds
for the probability of overfitting of direct sequences are overstated and are not applicable for
practical problems.

A future issue for studying is application of this algorithm for increasing the learning ability
of the methods of statistical learning, in particular, for improving criteria of choosing features,
for the methods of seeking logical laws in data, for linear and logical classification algorithms.
Another direction is a generalization of this algorithm for other functional of generalizing abil-
ity, in particular, for the functional of expected overfitting of an algorithm of OM, which is
equal to the Rademacher complexity of a family and which connects the combinatorial the-
ory of overfitting with the theory of empirical processes and the theory of inequalities for a
concentration of a probability measure.

The author is deeply grateful to his scientific supervisor K.V. Vorontsov for a permanent
attention to the work and valuable remarks.
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