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OPERATOR METHODS FOR CALCULATING LYAPUNOV

VALUES IN PROBLEMS ON LOCAL BIFURCATIONS OF

DYNAMICAL SYSTEMS

N.I. GUSAROVA, S.A. MURTAZINA, M.F. FAZLYTDINOV, M.G. YUMAGULOV

Abstract. In the work we consider basic scenarios of local bifurcations in dynamical
systems. We study the systems described by autonomous differential equations, discrete
equations, as well as by non-autonomous periodic equations. We provide new formulae for
calculating Lyapunov values. The formulae are obtained on the basis of a general operator
approach for studying local bifurcations and they do not assume passing to normal forms
and using the theorems on a central manifold. This method allows us to obtain new
bifurcation formulae for studying main scenarios of local bifurcations. In the work we show
how these bifurcation formulae lead one to new formulae for calculating Lyapunov values
in problems on equilibria bifurcation, in Andronov-Hopf problems, in problems of doubling
period, in problems on forced oscillations, etc.

In the paper, the main attention is paid to obtain the first and the second Lyapunov value.
The proposed approach allows us obtain Lyapunov values of higher order. As an application
of the obtained formulae, in the paper we analyze basic scenarios of local bifurcations. We
consider the problems on the direction of bifurcations, on stability of emerging solutions,
on leading asymptotics for the solutions, etc. As an example, we calculate the Lyapunov
values for Andronov-Hopf bifurcation in Langford system and for the problems on doubling
period in Henon model.
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1. Introduction

A key role in the bifurcation theory of dynamical systems is played by so-called Lyapunov
values allowing one to determine important properties of the bifurcations like the stability of
emerging solutions, the direction of bifurcations, etc. The calculating of Lyapunov values is
important also from the point of view of applications, for instance, in studying the behavior of
dynamical system for the parameters close to the boundary of the stability domain (safe and
unsafe boundaries).

There is a series of approaches allowing one to calculate the Lyapunov values. Here we
mention the following ones. The first approach is classical and usually exactly this approach is
employed for formal calculating of Lyapunov values. This approach relates to using the theorem
of central manifold and the normal form method (see [1]–[7]). In studying the main scenarios
of local bifurcations, this approach allows one to reduce the original equations to a rather
simple (canonical) form and the nonlinearity coefficients in this form determine the Lyapunov
values. The obtained formulae turn out to be very effective for analysing the bifurcation, which
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was demonstrated in a series of works. Here we specially mention works [1], [2] and [7], in
which the detailed study of main bifurcation scenarios was done depending on the Lyapunov
values. However, we should say that employing such formulae for studying particular equations
requires, as a rule, the preliminary transformation of given equation and quite often this is a
non-trivial problem.

Another approach is aimed on calculating Lyapunov values in terms of given equations. It is
often used in applications. The works by many authors were devoted to obtaining the formulae
and algorithms for calculating the Lyapunov values, see, for instance, [1], [2] and the references
therein. Although here the obtained formulae are quite complicated, their main advantage is
the fact that they allow one to analyse the bifurcations in terms of the given equations.

We should also mention the approaches based on using modern computer techniques and the
programs for symbolic calculations. These approaches made an essential progress in studying
Lyapunov values, in particular, in calculating the values of third and higher orders. While the
explicit expressions for the first and second Lyapunov values for many bifurcation scenarios
were obtained in 1940–1950, the expression for the next Lyapunov values in symbolic forms
were obtained rather recently (see, for instance, [8], [9] and the references therein).

The question which of the approaches is better has no definite answer since various classes of
problem possess various properties and therefore, in some situation one method is preferable,
while another is better in another situation. One should also remember that the applied
methods give the same final formula provided they are properly compared.

The results of the present work relate to the second approach. We propose a general scheme
allowing us to obtain new formulae for Lyapunov values in problems on main scenarios of local
bifurcations of dynamical systems in terms of the given equations. The provided formulae
allows us not only to calculate effectively the Lyapunov values, but also to make a new study
of the bifurcation properties.

The proposed formulae for calculating Lyapunov values are obtained on the base of the general
operator approach for studying local bifurcations of dynamical systems; the main aspects of this
method were exposed in [10]–[14]. In particular, this method allows us obtain new bifurcations
formulae for the main bifurcation scenarios. In their turn, these formulae allows to study
effectively the bifurcations and to answer the most important questions on the bifurcations
properties: transversality condition, direction of bifurcation, stability of emerging solutions,
leading terms in the asymptotics for solutions, etc. These bifurcation formulae turned out to
be closely related with the formulae for Lyapunov values that is shown in the present work.

The paper is organised as follows. In Sections 2–4 we consider dynamical systems described
by autonomous differential equations (Section 2), by discrete equations (Section 3) and non-
autonomous periodic equations (Section 4). Here we provide new formulae for Lyapunov values,
discuss some properties of the bifurcations and the obtained results are demonstrated by ex-
amples. In Section 5 we provide the proof of the main results of the work.

2. Autonomous differential equations

In this section we calculate Lyapunov values for dynamical systems described by the au-
tonomous differential equation

𝑥′ = 𝐹 (𝑥, 𝜇) , 𝑥 ∈ R𝑁 , (1)

in which 𝜇 is a scalar parameter, 𝐹 (𝑥, 𝜇) is a continuously differentiable in 𝑥 and 𝜇 function.

2.1. Bifurcation and central manifold. Assume that for some 𝜇 = 𝜇0 equation (1) has
the equilibrium 𝑥 = 0, that is, 𝐹 (0, 𝜇0) = 0. Then equation (1) can be represented as

𝑥′ = 𝐴(𝜇)𝑥+ 𝑏(𝑥, 𝜇) + 𝑢(𝜇) , 𝑥 ∈ R𝑁 , (2)
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where 𝐴(𝜇) = 𝐹 ′
𝑥(0, 𝜇) is the Jacobi matrix, 𝑢(𝜇) = 𝐹 (0, 𝜇), the function 𝑏(𝑥, 𝜇) obeys the

condition ‖𝑏(𝑥, 𝜇)‖ = 𝑜(‖𝑥‖) as 𝑥→ 0 uniformly in 𝜇, and the function 𝑢(𝜇) obeys the condition
𝑢(𝜇0) = 0.

In what follows we suppose that the function 𝑏(𝑥, 𝜇) is of the form:

𝑏(𝑥, 𝜇) = 𝑏2(𝑥, 𝜇) + 𝑏3(𝑥, 𝜇) + 𝑏4(𝑥, 𝜇) , (3)

where 𝑏2(𝑥, 𝜇) involves quadratic in 𝑥 terms, 𝑏3(𝑥, 𝜇) involves cubic terms and 𝑏4(𝑥, 𝜇) is smooth
and satisfies the condition ‖𝑏4(𝑥, 𝜇)‖ = 𝑂(‖𝑥‖4) as 𝑥→ 0 uniformly in 𝜇.

If the Jacobi matrix 𝐴0 = 𝐴(𝜇0) has one or several eigenvalues with zero real parts, then 𝜇0 is
a bifurcation point of system (1). In this case, as the parameter 𝜇 passes through 𝜇0, the phase
portrait of system (1) in the vicinity of the point 𝑥 = 0 usually transforms qualitatively. A
huge amount of works was devoted to studying various bifurcation scenarios, see, for instance,
[1], [2], [7]–[10]. In these works, there was proposed a series of effective methods like the normal
forms method, the methods based on the central manifolds theory, the method of parameter
functionalization, etc.

According the theorem on central manifold, see, for instance, [1], [2], the problem on local
bifurcations for 𝑁 -dimensional system (1) can be reduced to an equivalent (in the natural
formulation) problem for a system of a lower dimension. In view of this, we mention some
notions and facts which will be used later.

Assume that the spectrum 𝜎 of the matrix 𝐴0 consists of two non-empty parts: 𝜎 = 𝜎0 ∪ 𝜎0,
where 𝜎0 contains eigenvalues with zero real parts, and 𝜎0 are other eigenvalues. By 𝐸0 and
𝐸0 we denote the roots subspaces of the matrix 𝐴0 associated respectively with the parts 𝜎0
and 𝜎0 of its spectrum. Let 𝑘0 and 𝑘0 be the dimensions of the subspaces 𝐸0 and 𝐸0; then
𝑘0 + 𝑘0 = 𝑁 and 1 6 𝑘0, 𝑘

0 6 𝑁 − 1. The space R𝑁 can be represented as the direct sum
R𝑁 = 𝐸0

⨁︀
𝐸0 of the subspaces 𝐸0 and 𝐸0 invariant for the operator 𝐴0 : R𝑁 → R𝑁 . Finally,

we denote by 𝑃0 : R𝑁 → 𝐸0 and 𝑃 0 : R𝑁 → 𝐸0 the corresponding projectors.
According the theorem on central manifold, there exists a 𝛿1-neighbourhood 𝑇 (0, 𝛿1) of the

point 𝑥 = 0 and a 𝛿2-neighbourhood of the number 𝜇0 such that as |𝜇 − 𝜇0| < 𝛿2, system (1)
possesses a smooth invariant 𝑘0-dimensional manifold 𝑊 (𝜇) in 𝑇 (0, 𝛿1) containing the point
𝑥 = 0 and touching the subspace 𝐸0 (as 𝜇 = 𝜇0) at the point 𝑥 = 0. The invariance of the
manifold 𝑊 (𝜇) for system (1) means that if at some time, some its motion is located on the
manifold 𝑊 (𝜇), it will stay on the manifold 𝑊 (𝜇) at all other times until this motion stays
in the ball 𝑇 (0, 𝛿1). The manifold 𝑊 (𝜇) is called central; it can be defined by the equation of
form 𝑣 = 𝜓(𝑢, 𝜇), where 𝑢 ∈ 𝐸0, 𝑣 ∈ 𝐸0, and the function 𝜓(𝑢, 𝜇) is smooth and satisfies the
identities 𝜓(0, 𝜇0) = 0, 𝜓′

𝑢(0, 𝜇0) = 0.
By projecting into the subspaces 𝐸0 and 𝐸0, in the vicinity of the point 𝑥 = 0, equation (1)

can be represented as the equivalent system{︃
𝑢′ = 𝑓(𝑢, 𝑣, 𝜇) ,

𝑣′ = 𝑔(𝑢, 𝑣, 𝜇) ,
(4)

where 𝑢 = 𝑃0𝑥, 𝑣 = 𝑃 0𝑥, and 𝑓 and 𝑔 are smooth functions taking values in 𝐸0 and 𝐸0,
respectively. These functions can be represented as

𝑓(𝑢, 𝑣, 𝜇) = 𝐴0𝑢+ 𝜉(𝑢, 𝑣, 𝜇) , 𝑔(𝑢, 𝑣, 𝜇) = 𝐴0𝑣 + 𝜂(𝑢, 𝑣, 𝜇) , (5)

where the functions 𝜉(𝑢, 𝑣, 𝜇) and 𝜂(𝑢, 𝑣, 𝜇) satisfy the relations:{︃
𝜉(0, 0, 𝜇0) = 0 , 𝜂(0, 0, 𝜇0) = 0 , 𝜉′𝑢(0, 0, 𝜇0) = 0 ,

𝜉′𝑣(0, 0, 𝜇0) = 0 , 𝜂′𝑢(0, 0, 𝜇0) = 0 , 𝜂′𝑣(0, 0, 𝜇0) = 0 .
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Thus, the problem on local bifurcations in 𝑁 -dimensional equation (1) can be reduced to
studying 𝑘0-dimensional equation:

𝑢′ = 𝐺(𝑢, 𝜇) , 𝑢 ∈ 𝐸0 , (6)

where 𝐺(𝑢, 𝜇) = 𝑓(𝑢, 𝜓(𝑢, 𝜇), 𝜇). This equation involves all principal features of the bifurcation
scenario in initial equation (1). In particular, the analysis of equation (6) (usually by means of
the normal forms method) leads one to the notion of the Lyapunov values. In what follows, we
discuss this issue while considering main bifurcation scenarios.

In the present paper the problem on Lyapunov values is studied in the following main cases:

S1. The matrix 𝐴0 has a simple eigenvalue 0;
S2. The matrix 𝐴0 has a pair of simple eigenvalues of form ±𝜔0𝑖, where 𝜔0 > 0.

We assume that other eigenvalues of the matrix 𝐴0 has non-zero real parts.
We note that in studying local bifurcations in S2 as well as in some subcases in S1 one usually

assumes that the function 𝑢(𝜇) in equation (2) is zero, that is, this equation reads as

𝑥′ = 𝐴(𝜇)𝑥+ 𝑏(𝑥, 𝜇) , 𝑥 ∈ R𝑁 , (7)

where 𝑏(𝑥, 𝜇) is determined by identity (3).

2.2. Case S1: bifurcations of equilibria. We consider first case S1. In this case the
qualitative transformation of the behavior of system (1) in the vicinity of the point 𝑥 = 0 as
the parameter 𝜇 passes through 𝜇0 consists usually in emerging of non-zero equilibria. Such
transformation will be called equilibria bifurcation of system (1).

In case S1, equation (6) is one-dimensional and by assumption (3), for 𝜇 = 𝜇0 the function
𝐺(𝑢, 𝜇) can be represented as

𝐺(𝑢, 𝜇0) = 𝑙1𝑢
2 + 𝑙2𝑢

3 + 𝑜(𝑢3) , (8)

see, for instance, [1]. In other words, equation (6) for 𝜇 = 𝜇0 is of the form

𝑢′ = 𝑙1𝑢
2 + 𝑙2𝑢

3 + 𝑜(𝑢3) .

The numbers 𝑙1 and 𝑙2 are called respectively first and second Lyapunov value in the problem
on equilibria bifurcation in system (1).

Remark 1. Generally speaking, the first and second Lyapunov values 𝑙1 and 𝑙2 are deter-
mined non-uniquely. This is due to the fact that the basis in subspaces 𝐸0 and 𝐸0 (see the
previous subsection) can be chosen in various ways and hence, the function 𝐺(𝑢, 𝜇0) can be
different, but in all cases of form (8). However, we can show that if for some choice of the
basis the number 𝑙1 (or 𝑙2) is non-zero, it is non-zero in each other case. At that, the sign of
the number 𝑙1 can change, while the sign of the number 𝑙2 is kept.

Let us provide a statement allowing one to calculate the Lyapunov values 𝑙1 and 𝑙2 in terms
of initial equation (1). We denote by 𝑒 and 𝑔 the eigenvectors of the matrix 𝐴0 and the
transposition of the matrix 𝐴*

0, respectively, associated with the eigenvalue 0. These vectors
can be chosen according the identities

‖𝑒‖ = 1 , (𝑒, 𝑔) = 1 . (9)

Theorem 1. Assume that the matrix 𝐴0 has the simple eigenvalue 0 and its other eigenvalues
are not located at the imaginary axis. Then the first Lyapunov value of system (1) in the
problem of bifurcation of equilibrium is equal to 𝑙1 = (𝑏2(𝑒, 𝜇0), 𝑔). If 𝑏2(𝑥, 𝜇) ≡ 0, then 𝑙1 = 0
and 𝑙2 = (𝑏3(𝑒, 𝜇0), 𝑔).

The proof of this and other main statements is given in Section 5.
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Remark 2. Theorem 1 concerns calculating only the first and second Lyapunov values 𝑙1 and
𝑙2. This is due to assumption (3), according to which the nonlinearity 𝑏(𝑥, 𝜇) involves only the
terms 𝑏2(𝑥, 𝜇) and 𝑏3(𝑥, 𝜇) of second and third power. If the terms of higher order are assumed
to be given, we can obtain similar statements for the next Lyapunov values and, in particular,
we can consider the situations when several first Lyapunov values vanish simultaneously.

Remark 3. It is obvious that there are just two options for choosing the normalization for
the vectors 𝑒 and 𝑔 in accordance with identities (9): these options differ by the sign only.
This is why in Theorem 1 we provide in fact two versions of the formulae for Lyapunov values
𝑙1 and 𝑙2. Apart of the version provided in the theorem, these the following formulae: 𝑙1 =
(𝑏2(−𝑒, 𝜇0),−𝑔) = −(𝑏2(𝑒, 𝜇0), 𝑔) and 𝑙2 = (𝑏3(−𝑒, 𝜇0),−𝑔) = (𝑏3(𝑒, 𝜇0), 𝑔). In other words, in
the mentioned two cases the numbers 𝑙1 differ only by the sign, while the numbers 𝑙2 coincide.

The equilibria bifurcation of system (1) can follow various scenarios. The main of them
are saddle-node bifurcation, transcritical bifurcation and pitchfork bifurcation. Let us provide
some properties of the mentioned bifurcation scenarios; the proof of these properties employ
Theorem 1.

2.2.1. Saddle-node bifurcation. The model example of the saddle-node bifurcation is given by
the scalar equation 𝑥′ = 𝜇 − 𝑥2 . As 𝜇 < 0, this equation has no equilibria, as 𝜇 = 0 it has
only the zero equilibrium, while as 𝜇 > 0, it has two non-zero equilibria 𝑥 = ±√

𝜇. Thus, as
𝜇 passes the value 𝜇 = 0, in the vicinity of the point 𝑥 = 0 there emerges first (as 𝜇 = 0) the
single equilibrium 𝑥 = 0 for this equation and then (as 𝜇 > 0), this equilibrium “splits” into
two non-zero equilibria 𝑥1,2 = ±√

𝜇; one of them is stable, while the other is unstable. We can
assume here that the first Lyapunov value is equal to 𝑙1 = −1.

A similar scenario is the saddle-node bifurcation in equation (1) for arbitrary 𝑁 > 1 in the
case, when the first Lyapunov value 𝑙1 is non-zero. This relates to fusion (and then disappearing)
of two equilibria, one of which is of type “node”, while the other is of type “saddle”. Let us
provide the corresponding statement implied by the results of work [10].

Theorem 2. Suppose that under the assumptions of Theorem 1 the relations

𝑙1 = (𝑏2(𝑒, 𝜇0), 𝑔) ̸= 0 , 𝑢1 = (𝑢′(𝜇0), 𝑔) ̸= 0

hold. Let 𝜇1 ≡ −𝑙1/𝑢1 > 0. Then there exists 𝛿 > 0 such that

1. As 𝜇 ∈ (𝜇0−𝛿, 𝜇0), equation (1) has no equilibria in the 𝛿-neighbourhood of the point 𝑥 = 0,
while for each 𝜇 ∈ (𝜇0, 𝜇0 + 𝛿) it has two non-zero equilibria 𝑥 = 𝑥1(𝜇) and 𝑥 = 𝑥2(𝜇).

2. The functions 𝑥 = 𝑥1(𝜇) and 𝑥 = 𝑥2(𝜇) (𝑥1(𝜇0) = 𝑥2(𝜇0) = 0) defined for 𝜇 ∈ [𝜇0, 𝜇0 + 𝛿)
are continuously differentiable and as 𝜇 = 𝜇0, and the eigenvector 𝑒 of the matrix 𝐴0

associated with the eigenvalue 0 is tangent for thecir graphs.
3. Let the non-zero eigenvalues of the matrix 𝐴0 have negative real parts, then one of the

graphs of the functions 𝑥 = 𝑥1(𝜇) and 𝑥 = 𝑥2(𝜇) contains the asymptotically stable equi-
libria, while the other does the unstable ones.

A similar statement can be given also for the case 𝜇1 < 0. In this case only the bifurcation
direction changes, that is, the non-zero equilibria 𝑥 = 𝑥1(𝜇) and 𝑥 = 𝑥2(𝜇) emerge as 𝜇 ∈
(𝜇0 − 𝛿, 𝜇0).

Thus, if the first Lyapunov value 𝑙1 is non-zero, then as rule, in system (1) the usual scenario
of saddle-node bifurcation is realized, in which, in the vicinity of the point 𝑥 = 0 there exists
no equilibria of system (1) as 𝜇 < 𝜇0 (or as 𝜇 > 𝜇0) and there exist two equilibria for each
𝜇 > 𝜇0 (or as 𝜇 < 𝜇0).

We note that if 𝑙1 = 0 and 𝑙2 ̸= 0, then as a rule, in system (1) the scenario of saddle-node
bifurcation is realized, in which in the vicinity of the point 𝑥 = 0 there exists a single non-zero
equilibrium of system (1) both as 𝜇 < 𝜇0 and as 𝜇 > 𝜇0.
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2.2.2. Transcritical bifurcation and pitchfork bifuraction. In the framework of case S1, we
assume that we have 𝑢(𝜇) ≡ 0 in equation (2). In other words, we consider equation (7). For
all 𝜇, the point 𝑥 = 0 is the equilibrium for this equation. Then the main bifurcation scenarios
of system (7) in the vicinity of the point 𝑥 = 0 are transcritical bifurcaiton and pitchfork
bifurcation.

The model example of the transcritical bifurcation is given by the scalar equation 𝑥′ = 𝜇𝑥−𝑥2.
For all 𝜇, it has equilibrium 𝑥 = 0. As 𝜇 passes through 𝜇 = 0, there emerges the non-zero
equilibrium 𝑥 = 𝜇 for this equation in the vicinity of the point 𝑥 = 0. This equilibrium is stable
for 𝜇 > 0 and unstable for 𝜇 < 0. Here the first Lyapunov value is equal to 𝑙1 = −1.

A model example for the pitchfork bifurcation is provided by the scalar equation 𝑥′ = 𝜇𝑥−𝑥3 .
This equation also has the equilibrium 𝑥 = 0 for all 𝜇. For 𝜇 < 0 the system has no other
equilibrium, while as 𝜇 passes through 𝜇 = 0, in the vicinity of the point 𝑥 = 0 there arise
two non-zero equilibria 𝑥 = ±√

𝜇 of this equation and these equilibria are stable. Here the
Lyapunov values are 𝑙1 = 0 and 𝑙2 = −1.

For arbitrary 𝑁 > 1, the scenarios of transcritical bifurcation and pitchfork bifurcation in
equation (1) are similar. At that, if 𝑙1 ̸= 0, the transcritical bifurcation occurs, while if 𝑙1 = 0
and 𝑙2 ̸= 0, the pitchfork bifurcation arises.

Let us provide some properties of transcritical bifurcation implied by the results of work [10].

Theorem 3. Suppose that under the assumptions of Theorem 1 the relations

𝑙1 = (𝑏2(𝑒, 𝜇0), 𝑔) ̸= 0 , 𝛾1 = (𝐴′(𝜇0)𝑒, 𝑔) ̸= 0 (10)

hold true. Then there exists 𝛿 > 0 such that

1. For each 𝜇 ∈ (𝜇0, 𝜇0 + 𝛿) and 𝜇 ∈ (𝜇0 − 𝛿, 𝜇0), equation (7) has exactly one non-zero
equilibrium 𝑥 = 𝑥(𝜇) in the 𝛿-neighbourhood of the point 𝑥 = 0.

2. The function 𝑥 = 𝑥(𝜇) (𝑥(𝜇0) = 0) defined for 𝜇 ∈ (𝜇0 − 𝛿, 𝜇0 + 𝛿) is continuously differ-
entiable and as 𝜇 = 𝜇0, the eigenvector 𝑒 of the matrix 𝐴0 associated with the eigenvalue
0 is tangent to the graph of this function.

3. Let 𝛾1 < 0 (𝛾1 > 0) and the non-zero eigenvalues of the matrix 𝐴0 has negative real parts;
then the graph of the function 𝑥 = 𝑥(𝜇) contains unstable (asymptotically stable) equilibria
as 𝜇 > 𝜇0 and asymptotically stable (unstable) equilibria as 𝜇 < 𝜇0.

In particular, this theorem implies that the qualitative properties of the transcritical bifur-
cation are independent of the sign of the first Lyapunov value 𝑙1, which is natural in view of
Remarks 1 and 3.

Let us provide some properties of the pitchfork bifurcation implied by the results of work
[10].

Theorem 4. Suppose that under the assumptions of Theorem 1 the relations

𝑙1 = (𝑏2(𝑒, 𝜇0), 𝑔) = 0 , 𝑙2 = (𝑏3(𝑒, 𝜇0), 𝑔) ̸= 0 , 𝛾1 = (𝐴′(𝜇0)𝑒, 𝑔) ̸= 0

hold. Let 𝜇2 ≡ −𝑙2/𝛾1 > 0. Then there exists 𝛿 > 0 such that

1. For each 𝜇 ∈ (𝜇0, 𝜇0 + 𝛿), equation (7) has exactly two non-zero equilibria 𝑥 = 𝑥1(𝜇),
𝑥 = 𝑥2(𝜇) in the 𝛿-neighbourhood of the point 𝑥 = 0, while for each 𝜇 ∈ (𝜇0 − 𝛿, 𝜇0) this
equation has no non-zero equilibria.

2. The functions 𝑥 = 𝑥1(𝜇) and 𝑥 = 𝑥2(𝜇) (𝑥1(𝜇0) = 𝑥2(𝜇0) = 0) defined as 𝜇 ∈ [𝜇0, 𝜇0 + 𝛿)
are continuously differentiable and as 𝜇 = 𝜇0, the eigenvector 𝑒 of the matrix 𝐴0 associated
with the eigenvalue 0 is tangent to the graphs of these functions.

3. Let 𝑙2 < 0 (𝑙2 > 0) and let the non-zero eigenvalues of the matrix 𝐴0 have negative real
parts; then for each 𝜇 ∈ (𝜇0, 𝜇0 + 𝛿) the equilibria 𝑥 = 𝑥1(𝜇) and 𝑥 = 𝑥2(𝜇) of equation
(7) are asymptotically stable (unstable).
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A similar statement can be provided for the case 𝜇2 < 0. In this case only the bifurcation
direction changes but not the stability property, that is the non-zero equilibria 𝑥 = 𝑥1(𝜇) and
𝑥 = 𝑥2(𝜇) emerge as 𝜇 ∈ (𝜇0 − 𝛿, 𝜇0), and if 𝑙2 < 0 (𝑙2 > 0), these solutions are asymptotically
stable (unstable).

2.3. Case S2: Andronov-Hopf bifurcation. We continue studying equation (7). Assume
that Case S2 holds, that is, the matrix 𝐴0 has a pair of simple pure imaginary eigenvalues ±𝜔0𝑖
(𝜔0 > 0) and it has no other eigenvalue on the imaginary axis. In this case the main bifurcation
scenario is the Andronov-Hopf bifurcation, which is the emergence of non-stationary periodic
solutions 𝑥(𝑡, 𝜇) of small amplitude to equation (7) as the parameter 𝜇 passes through 𝜇0. The
Andronov-Hopf bifurcation is possible only as 𝑁 > 2.

As a rule, for small |𝜇 − 𝜇0|, the bifurcating solutions 𝑥(𝑡, 𝜇) of equation (7) emerge in one
of three cases: (S1) 𝜇 > 𝜇0 ; (S2) 𝜇 < 𝜇0 ; (S3) 𝜇 = 𝜇0 . The latter case is called degenerate;
it is typical for linear and conservative systems. The former two cases hold under some non-
degeneracy condition or non-linear term (3) in the right hand side in equation (7); one of the
versions of such condition will be given below. Under this condition, in Cases (S1) and (S2),
to each 𝜇, exactly one non-zero cycle 𝑥(𝑡, 𝜇) of a small amplitude is associated. At that, the
function 𝑥(𝑡, 𝜇) depends smoothly on 𝜇 and the relation holds: max

𝑡
‖𝑥(𝑡, 𝜇)‖ → 0 as 𝜇 → 𝜇0.

Finally, the period 𝑇 (𝜇) of the solutions 𝑥(𝑡, 𝜇) depends smoothly on 𝜇 and the relation holds:
𝑇 (𝜇) → 𝑇0 as 𝜇→ 𝜇0. Here 𝑇0 = 2𝜋/𝜔0.

In the problem on the Andronov-Hopf bifurcation, equation (6) is two-dimensional. As
𝜇 = 𝜇0, this equation can be represented as{︃

𝑢′1 = −𝜔0𝑢2 + 𝑓1(𝑢1, 𝑢2) ,

𝑢′2 = 𝜔0𝑢1 + 𝑓2(𝑢1, 𝑢2) ,
(11)

where the functions 𝑓1 and 𝑓2 vanish at the point 𝑢 = 0 together with its first derivatives and
these functions satisfy representations similar to (3).

According the normal forms theory, see, for instance, [1], [2], [6], there exists a polynomial
change of variables close to the identical one in the vicinity of the point 𝑢 = 0, which transforms
system (11) to the form:{︃

𝑥′1 = −𝜔0𝑥2 + (𝐿1𝑥1 − Ω1𝑥2)(𝑥
2
1 + 𝑥22) + 𝑜(𝑟3) ,

𝑥′2 = 𝜔0𝑥1 + (Ω1𝑥1 + 𝐿1𝑥2)(𝑥
2
1 + 𝑥22) + 𝑜(𝑟3) ,

(12)

where 𝑟 =
√︀
𝑥21 + 𝑥22. The number 𝐿1 is called the first Lyapunov value of system (7) in the

problem on the Andronov-Hopf bifurcation. In what follows, for simplicity, both numbers 𝐿1

and Ω1 are called Laypunov values of system (7).
In a series of works, see, for instance, [1], [2], [15], [16], there were proposed various approaches

and algorithms allowing one to calculate the Lyapunov values 𝐿1 and Ω1 directly in terms of
the initial equations. We provide a new scheme allowing us to calculate the Lyapunov values
𝐿1 and Ω1 in terms of initial equation (7).

2.3.1. Auxiliary constructions. Since the matrix 𝐴0 = 𝐴(𝜇0) has a pair of simple eigenvalues
±𝑖𝜔0, there exist non-zero vectors 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁 such that the identities

𝐴0(𝑒+ 𝑖𝑔) = 𝑖𝜔0(𝑒+ 𝑖𝑔), 𝐴*
0(𝑒

* + 𝑖𝑔*) = −𝑖𝜔0(𝑒
* + 𝑖𝑔*). (13)

Here 𝐴*
0 is the transposed matrix. The vectors 𝑒, 𝑔, 𝑒*, 𝑔* can be normalized according the

identities:

‖𝑒‖ = ‖𝑔‖ = 1 , (𝑒, 𝑒*) = (𝑔, 𝑔*) = 1, (𝑒, 𝑔*) = (𝑔, 𝑒*) = 0 . (14)
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In what follows we assume that the vectors 𝑒, 𝑔, 𝑒*, 𝑔* are chose according identities (14).
We let

𝑒(𝑡) = 𝑒 cos 2𝜋𝑡− 𝑔 sin 2𝜋𝑡 , (15)

𝑓3(𝑡) = 𝑏3(𝑒(𝑡), 𝜇0) + 𝐹2(𝑡)

𝑡∫︁
0

𝑒−𝜏𝑇0𝐴0𝑏2(𝑒(𝜏), 𝜇0) 𝑑𝜏 , (16)

where
𝐹2(𝑡) = 𝑇0𝑏

′
2𝑥(𝑒(𝑡), 𝜇0)𝑒

𝑇0𝐴0𝑡 . (17)

Here 𝑏′2𝑥(𝑥, 𝜇) is the Jacobi matrix of the vector function 𝑏2(𝑥, 𝜇).
Finally, we define the vector:

𝜌3 =

1∫︁
0

𝑒(1−𝑡)𝑇0𝐴0𝑓3(𝑡) 𝑑𝑡 . (18)

In what follows we shall make use of the following auxiliary statement. Let 𝑦(𝑡) be a contin-
uous 1-periodic 𝑁 -dimensional vector function. By 𝑦𝑐 and 𝑦𝑠 we denote the Fourier coefficients
of this functions corresponding to cos 2𝜋𝑡 and sin 2𝜋𝑡. We define the vector

𝑢 =

1∫︁
0

𝑒(1−𝑡)𝑇0𝐴0𝑦(𝑡) 𝑑𝑡 . (19)

Lemma 1. The identities

(𝑢, 𝑒*) =
1

2
[(𝑦𝑐, 𝑒

*) − (𝑦𝑠, 𝑔
*)] , (𝑢, 𝑔*) =

1

2
[(𝑦𝑐, 𝑔

*) + (𝑦𝑠, 𝑒
*)] (20)

hold true.

This lemma can be proved by straightforward calculations with using identities (13).

2.3.2. Lyapunov values for two-dimensional systems. We first provide the scheme of obtaining
Lyapunov values 𝐿1 and Ω1 for the case when equation (7) is two-dimensional, that is, for the
equation

𝑥′ = 𝐴(𝜇)𝑥+ 𝑏(𝑥, 𝜇), 𝑥 ∈ R2 . (21)

Theorem 5. The Lyapunov values 𝐿1 and Ω1 of two-dimensional system (21) are deter-
mined by the identities

𝐿1 = (𝜌3, 𝑒
*) , Ω1 = −(𝜌3, 𝑔

*) . (22)

Numbers (22) are independent of the choice of the vectors 𝑒, 𝑔, 𝑒*, 𝑔* according identities (14).

By Lemma 1 and identity (18) we obtain

Corollary 1. To calculate numbers (22), one can employ identities (20), in which one should
let 𝑢 = 𝜌3 and 𝑦(𝑡) = 𝑓3(𝑡), where 𝑓3(𝑡) is function (16).

2.3.3. Lyapunov values for case 𝑁 > 3. We return back to system (7). Let 𝑁 > 3 and 𝐸0

be the eigenspace of the operator 𝐴0 associated with the simple eigenvalues ±𝑖𝜔0. The space
𝐸0 is two-dimensional; as its basis we can employ the vectors 𝑒 and 𝑔. The space R𝑁 can be
represented as R𝑁 = 𝐸0⊕𝐸0, where 𝐸0 is an additional subspace of dimension 𝑁 −2 invariant
for 𝐴0.

The identity R𝑁 = 𝐸0 ⊕ 𝐸0 defines the projectors 𝑃0 : R𝑁 → 𝐸0 and 𝑃 0 : R𝑁 → 𝐸0 such
that 𝑃 0 = 𝐼 − 𝑃0 and the operator 𝑃0 can be represented as

𝑃0𝑥 = (𝑥, 𝑒*)𝑒+ (𝑥, 𝑔*)𝑔 ; (23)
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the latter is implied by the fact that by the assumptions, the vectors 𝑒, 𝑔, 𝑒*, 𝑔* according the
identities (14). We let 𝐵0 = 𝑒𝑇0𝐴0 . It is easy to establish that the operator 𝐼−𝐵0 +𝑃0 : R𝑁 →
R𝑁 is invertible.

We define the vector and the matrix

𝜌2 =

1∫︁
0

𝑒(1−𝑡)𝑇0𝐴0𝑏2(𝑒(𝑡), 𝜇0) 𝑑𝑡 , 𝐵2 =

1∫︁
0

𝑒(1−𝑡)𝑇0𝐴0𝐹2(𝑡) 𝑑𝑡 , (24)

where 𝑒(𝑡) is function (15) and 𝐹2(𝑡) is matrix (17). We note that by construction, the inclusion
𝜌2 ∈ 𝐸0 holds. Finally, we let

𝜙 = 𝐵2(𝐼 −𝐵0 + 𝑃0)
−1𝜌2 . (25)

Theorem 6. The Lyapunov values 𝐿1 and Ω1 of system (7) are determined by the identities

𝐿1 = (𝜙+ 𝜌3, 𝑒
*), Ω1 = −(𝜙+ 𝜌3, 𝑔

*) . (26)

Numbers (26) are independent of the choice of the vectors 𝑒, 𝑔, 𝑒*, 𝑔* according identities (14).

The analogue of Corollary 1 holds.

Corollary 2. To calculate numbers (26), one can employ identities (20), in which we should
let 𝑢 = 𝜙+ 𝜌3 and 𝑦(𝑡) = 𝑔(𝑡) + 𝑓3(𝑡), where 𝑓3(𝑡) is function (16),

𝑔(𝑡) = 𝐹2(𝑡)(𝐼 −𝐵0 + 𝑃0)
−1𝜌2 . (27)

In an important particular case, when nonlinearity (3) involves no quadratic term, that is,
𝑏2(𝑥, 𝜇) ≡ 0, formulae (26) are essentially simplified:

𝐿1 = (𝑏0, 𝑒
*), Ω1 = −(𝑏0, 𝑔

*) , (28)

where 𝑏0 =
∫︀ 1

0
𝑒(1−𝑡)𝑇0𝐴0𝑏3(𝑒(𝑡), 𝜇0) 𝑑𝑡 . At that, to calculate numbers (28), we can employ

identities (20), in which we should let 𝑢 = 𝑏0 and 𝑦(𝑡) = 𝑏3(𝑒(𝑡), 𝜇0).

2.3.4. Some properies of Andronov-Hopf bifurcation. We let

𝛾1 = (𝐴′𝑒, 𝑒*) + (𝐴′𝑔, 𝑔*) , 𝛾2 = (𝐴′𝑒, 𝑔*) − (𝐴′𝑔, 𝑒*) ; (29)

here 𝐴′ = 𝐴′(𝜇0). One can show that numbers (29) are independent of the choice of the vectors
𝑒, 𝑔, 𝑒*, 𝑔* according identities (14).

Let 𝛾1 ̸= 0 and

𝜇2 = − 2

𝛾1
𝐿1 . (30)

The results of work [10] imply the following statements.

Theorem 7. Let 𝜇2 > 0 (𝜇2 < 0). Then the bifurcating solutions 𝑥(𝑡, 𝜇) to system (21)
emerge as 𝜇 > 𝜇0 (𝜇 < 𝜇0).

Theorem 8. Assume that all eigenvalues of the matrix 𝐴0 not coinciding with ±𝜔0𝑖 have
negative real parts. Then for all small |𝜇− 𝜇0| the bifurcating solutions 𝑥(𝑡, 𝜇) to system (21)
existing under the assumptions of Theorem 7 are asymptotically orbitally stable provided 𝐿1 < 0.
If 𝐿1 > 0, they are unstable.
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2.3.5. Example: Langford model. As an illustration, we consider the Langford model (see, for
instance, [15]): ⎧⎪⎨⎪⎩

𝑥′1 = (2𝜇− 1)𝑥1 − 𝑥2 + 𝑥1𝑥3 ,

𝑥′2 = 𝑥1 + (2𝜇− 1)𝑥2 + 𝑥2𝑥3 ,

𝑥′3 = −𝜇𝑥3 − (𝑥21 + 𝑥22 + 𝑥23) .

(31)

This system is of form (7) as 𝑁 = 3 and

𝐴(𝜇) =

⎡⎣ 2𝜇− 1 −1 0
1 2𝜇− 1 0
0 0 −𝜇

⎤⎦ , 𝑏(𝑥, 𝜇) ≡ 𝑏2(𝑥) =

⎡⎣ 𝑥1𝑥3
𝑥2𝑥3

−𝑥21 − 𝑥22 − 𝑥23

⎤⎦ .

As 𝜇 = 𝜇0 = 1/2, the matrix 𝐴0 = 𝐴(𝜇0) has the eigenvalues 𝜆1,2 = ±𝑖 and 𝜆3 = −1/2. This
is why the value 𝜇 = 𝜇0 is the Andronov-Hopf bifurcation point of system (31) and we have:
𝜔0 = 1 and 𝑇0 = 2𝜋. Let us calculate Lyapunov values 𝐿1 and Ω1 of this system according
identities (26).

As the eigenvectors 𝑒, 𝑔, 𝑒*, 𝑔* satisfying identities (14), we choose the vectors

𝑒 = 𝑒* =

⎡⎣ 1
0
0

⎤⎦ , 𝑔 = 𝑔* =

⎡⎣ 0
−1
0

⎤⎦ .

Since

𝐴′ =

⎡⎣ 2 0 0
0 2 0
0 0 −1

⎤⎦ , 𝑏′2𝑥(𝑥) =

⎡⎣ 𝑥3 0 𝑥1
0 𝑥3 𝑥2

−2𝑥1 −2𝑥2 −2𝑥3

⎤⎦ ,
then, first, numbers (29) are equal: 𝛾1 = 4 and 𝛾2 = 0, second, we have:

𝑒𝑇0𝐴0𝑡 =

⎡⎣ cos 2𝜋𝑡 − sin 2𝜋𝑡 0
sin 2𝜋𝑡 cos 2𝜋𝑡 0

0 0 𝑒−𝜋𝑡

⎤⎦ , 𝑒(𝑡) =

⎡⎣ cos 2𝜋𝑡
sin 2𝜋𝑡

0

⎤⎦ ,
𝑏2(𝑒(𝑡)) ≡

⎡⎣ 0
0
−1

⎤⎦ , 𝑏′2𝑥(𝑒(𝑡)) =

⎡⎣ 0 0 cos 2𝜋𝑡
0 0 sin 2𝜋𝑡

−2 cos 2𝜋𝑡 −2 sin 2𝜋𝑡 0

⎤⎦ .

Finally, we have

(𝐼 −𝐵0 + 𝑃0)
−1 =

⎡⎣ 1 0 0
0 1 0
0 0 (1 − 𝑒−𝜋)−1

⎤⎦ ,
where 𝐵0 = 𝑒𝑇0𝐴0 and 𝑃 is the matrix of projector (23).

We are in position to calculate functions (16) and (27). As a result we get

𝑓3(𝑡) = −2

⎡⎣ (1 − 𝑒−𝜋𝑡) cos 2𝜋𝑡
(1 − 𝑒−𝜋𝑡) sin 2𝜋𝑡

0

⎤⎦ , 𝑔(𝑡) = −2

⎡⎣ 𝑒−𝜋𝑡 cos 2𝜋𝑡
𝑒−𝜋𝑡 sin 2𝜋𝑡

0

⎤⎦ .

Therefore, letting 𝑦(𝑡) = 𝑓3(𝑡) + 𝑔(𝑡) and denoting by 𝑦𝑐 and 𝑦𝑠 the Fourier coefficients of the
function corresponding to cos 2𝜋𝑡 and sin 2𝜋𝑡, we get:

𝑦(𝑡) = −2

⎡⎣ cos 2𝜋𝑡
sin 2𝜋𝑡

0

⎤⎦ , 𝑦𝑐 =

⎡⎣ −2
0
0

⎤⎦ , 𝑦𝑠 =

⎡⎣ 0
−2
0

⎤⎦ .

In view of Corollary 2, this implies: (𝜙 + 𝜌3, 𝑒
*) = −2 and (𝜙 + 𝜌3, 𝑔

*) = 0. Thus, by (26) we
finally get 𝐿1 = −2 and Ω1 = 0.
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We observe that here number (30) is equal to 𝜇2 = 1. This is why it follows from Theorems 7
and 8 that the bifurcating solutions to system (31) emerge as 𝜇 > 1/2 and they asymptotically
orbitally stable.

3. Discrete dynamical systems

In this section we study the constructing of Lyapunov values for the discrete dynamical
systems described by the equation:

𝑥𝑛+1 = 𝐴(𝜇)𝑥𝑛 + 𝑎(𝑥𝑛, 𝜇) + 𝑢(𝜇), 𝑥𝑛 ∈ R𝑁 , 𝑛 = 0, 1, 2, . . . , (32)

where the matrix 𝐴(𝜇) and the function 𝑎(𝑥, 𝜇) are continuously differentiable in 𝑥 and 𝜇. We
assume that the function 𝑎(𝑥, 𝜇) can be written as

𝑎(𝑥, 𝜇) = 𝑎2(𝑥, 𝜇) + 𝑎3(𝑥, 𝜇) + 𝑎̃4(𝑥, 𝜇), (33)

where 𝑎2(𝑥, 𝜇) and 𝑎3(𝑥, 𝜇) are respectively quadratic and cubic in 𝑥 terms and 𝑎̃4(𝑥, 𝜇) satisfies
the relation: ‖𝑎̃4(𝑥, 𝜇)‖ = 𝑂(‖𝑥‖4), 𝑥→ 0, uniformly in 𝜇. The function 𝑢(𝜇) is also supposed
to be smooth and for some value 𝜇 = 𝜇0, the identity 𝑢(𝜇0) = 0 holds. As 𝜇 = 𝜇0, system (32)
has the equilibrium 𝑥 = 0.

3.1. Bifurcations and central manifold. If the matrix 𝐴0 = 𝐴(𝜇0) has one or several
eigenvalues with absolute values equal to 1, then 𝜇0 is a bifurcation point for system (32).
In this case, as a rule, the phase portrait of system (32) in the vicinity of the point 𝑥 = 0
transforms qualitatively as the parameter 𝜇 passes 𝜇0.

As in the case of periodic dynamical systems, according the theorem on central manifold, the
problem on local bifurcations for 𝑁 -dimensional system (32) can be reduced to an equivalent
(in the natural formulation) problem for a system of a lower dimension. In view of this, we
provide some notions and facts to be used later.

Let the spectrum 𝜎 of the matrix 𝐴0 consists of two non-empty parts: 𝜎 = 𝜎0 ∪ 𝜎0, where
𝜎0 contains the eigenvalues with the absolute values equal to 1, and 𝜎0 are other eigenvalues.
We denote by 𝐸0 and 𝐸0 the root subspaces of the matrix 𝐴0 corresponding, respectively, the
parts 𝜎0 and 𝜎0 of its spectrum. Let 𝑘0 and 𝑘0 be the dimensions of the subspaces 𝐸0 and 𝐸0;
then 𝑘0 + 𝑘0 = 𝑁 and 1 6 𝑘0, 𝑘

0 6 𝑁 − 1. The space R𝑁 is represented as the direct sum
R𝑁 = 𝐸0

⨁︀
𝐸0 of the subspaces 𝐸0 and 𝐸0 invariant for 𝐴0 : R𝑁 → R𝑁 . Finally, we denote

by 𝑃0 : R𝑁 → 𝐸0 amd 𝑃 0 : R𝑁 → 𝐸0 the corresponding projectors.
According the theorem on central manifold, there exist a 𝛿1-neighbourhood 𝑇 (0, 𝛿1) of the

point 𝑥 = 0 and a 𝛿2-neighbourhood of the number 𝜇0 such that as |𝜇 − 𝜇0| < 𝛿2 system
(32) has a smooth invariant 𝑘0-dimensional manifold 𝑊 (𝜇) in the ball 𝑇 (0, 𝛿1); this manifold
contains 𝑥 = 0 and touches (as 𝜇 = 𝜇0) the subspace 𝐸0 at the point 𝑥 = 0. The invariance of
the manifold 𝑊 (𝜇) for system (32) means that some its trajectory is located on the manifold
𝑊 (𝜇), it stays on 𝑊 (𝜇) for all other times until this trajectory stays in the ball 𝑇 (0, 𝛿1). The
manifold 𝑊 (𝜇) is called central; it can be defined by the equation of form 𝑣 = 𝜓(𝑢, 𝜇), where
𝑢 ∈ 𝐸0, 𝑣 ∈ 𝐸0 and the function 𝜓(𝑢, 𝜇) is smooth and satisfies the identities: 𝜓(0, 𝜇0) = 0,
𝜓′
𝑢(0, 𝜇0) = 0.
By projecting on the subspaces 𝐸0 and 𝐸0, in the vicinity of the point 𝑥 = 0, equation (32)

can be represented as the system {︂
𝑢𝑛+1 = 𝑓(𝑢𝑛, 𝑣𝑛, 𝜇) ,
𝑣𝑛+1 = 𝑔(𝑢𝑛, 𝑣𝑛, 𝜇) ,

(34)

where 𝑢𝑛 = 𝑃0𝑥𝑛, 𝑣𝑛 = 𝑃 0𝑥𝑛, and 𝑓 and 𝑔 are smooth functions taking values in 𝐸0 and 𝐸0,
respectively, and same identities (5) as for continuous dynamical systems hold.
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Thus, the problem on local bifurcations in 𝑁 -dimensional equation (32) can be reduced to
studying the 𝑘0-dimensional equation

𝑢𝑛+1 = 𝐺(𝑢𝑛, 𝜇) , 𝑢𝑛 ∈ 𝐸0 , (35)

where 𝐺(𝑢, 𝜇) = 𝑓(𝑢, 𝜓(𝑢, 𝜇), 𝜇). It involves all main features of bifurcation scenarios in initial
equation (32). In particular, the analysis of equation (35) (usually by means of normal forms)
leads one to Lyapunov values.

Here we consider the following main cases:

P1. The matrix 𝐴0 has the simple eigenvale 1;
P2. The matrix 𝐴0 has the simple eigenvalue -1;
P3. The matrix 𝐴0 has a pair of simple eigenvalues of 𝑒±𝑖2𝜋𝜃0 , where 𝜃0 is irrational 𝜃0 = 𝑝/𝑞,

where 𝑝/𝑞 is a rational irreducible fraction and 𝑞 > 5.

In all these cases we assume that the other eigenvalues of the matrix 𝐴0 have absolute values
not coinciding with 1.

We note that the case, when the matrix 𝐴0 has a pair of pure simple eigenvalues of form
𝑒±𝑖2𝜋𝜃, where 𝜃 = 𝑝/𝑞 is a irreducible fraction and 1 6 𝑞 6 4 is usually called strong resonance
(see, for instance, [1]); we do not consider this case in the paper. We also note that Case P3,
when 𝜃0 = 𝑝/𝑞 and 𝑞 > 5, is called weak resonance.

Finally, we note that while studying local bifurcation in Cases P2 and P3 and in some
subcases of Case P1 one usually supposes that the function 𝑢(𝜇) in equation (32) vanishes, that
is, this is the equation of the form

𝑥𝑛+1 = 𝐴(𝜇)𝑥𝑛 + 𝑎(𝑥𝑛, 𝜇), 𝑥𝑛 ∈ R𝑁 , 𝑛 = 0, 1, 2, . . . (36)

3.2. Case P1: equilibria bifurcation. We consider first case P1. As in a similar Case S1
for autonomous equation (1), here the matter of the qualitative transformation of the behavior
of system (32) in the vicinity of the point 𝑥 = 0 as the parameter 𝜇 passes through 𝜇0 consists
in emerging the non-zero equilibria. Such transformation of the behavior of equation (as for
equation (1)) is called equilibria bifurcation of system (32).

In Case P1 equation (35) one-dimensional and by assumption (33) the function 𝐺(𝑢, 𝜇) at
𝜇 = 𝜇0 can be represented as

𝐺(𝑢, 𝜇0) = 𝑢+ 𝑙1𝑢
2 + 𝑙2𝑢

3 + 𝑜(𝑢3) .

In other words, as 𝜇 = 𝜇0, equation (35) is of the form

𝑢𝑛+1 = 𝑢𝑛 + 𝑙1𝑢
2
𝑛 + 𝑙2𝑢

3
𝑛 + 𝑜(𝑢3𝑛) .

The numbers 𝑙1 and 𝑙2 are respectively called first and second Lyapunov value in the problem
on equilibria bifurcation of system (32). We observe that Remark 1 also holds here up to an
appropriate modification.

The equilibria bifurcation for discrete system (32) is similar to that for continuous system
(2). This relates to the fact that the mentioned bifurcations are related with the emergence
of non-zero equilibria in the vicinity of the point 𝑥 = 0 and the problem on such equilibria is
reduced to the same equations:

𝐴(𝜇)𝑥+ 𝑏(𝑥, 𝜇) + 𝑢(𝜇) = 0 for system (2) ,

𝑥 = 𝐴(𝜇)𝑥+ 𝑎(𝑥, 𝜇) + 𝑢(𝜇) for system (32) .

This is why all facts and statements in Section 2.2 hold also for discrete system (32) up to an
appropriate modification.

Just to illustrate, we restrict ourselves by providing the analogue of Theorem 1. In other
words, we provide a statement allowing us to calculate the Lyapunov values 𝑙1 and 𝑙2 of discrete
system (32) for the mentioned bifurcation scenarios directly in terms of initial equation (32).
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By 𝑒 and 𝑔 we denote the eigenvectors of the matrix 𝐴0 and the transposed matrix 𝐴*
0,

respectively, associated with the simple eigenvalue 1. These vectors can be chosen in accordance
with identities (9).

Theorem 9. Let the matrix 𝐴0 has a simple eigenvalue 1 and its other eigenvalues have
absolute values not coinciding with 1. Then the first Lyapunov value of discrete system (32) in
the problem on equilibria bifurcation is equal to 𝑙1 = (𝑎2(𝑒, 𝜇0), 𝑔). If 𝑎2(𝑥, 𝜇) ≡ 0, then 𝑙1 = 0
and 𝑙2 = (𝑎3(𝑒, 𝜇0), 𝑔).

We note that here also Remarks 2 and 3 hold up to an appropriate modification.
As for continuous system (2), the equilibria bifurcation in system (32) can be realized as

saddle-node bifurcation or as the transcritial bifurcation or pitchfork bifurcation. We note that
two latter scenarios require the zero function 𝑢(𝜇) in equation (32), that is, this equation should
be of form (36). Finally, we note that Theorems 2-4 remain true for discrete system (32) up to
an appropriate modification.

In conclusion of this subsection, as an illustration, we provide model examples of the men-
tioned bifurcation scenarios.

A model example of saddle-node bifurcation is given by the scalar equation 𝑥𝑛+1 = 𝑥𝑛+𝜇−𝑥2𝑛.
As 𝜇 < 0, this equation has no equilibria, as 𝜇 = 0, it has only the equilibrium 𝑥 = 0, while
as 𝜇 > 0, it has two non-zero equilibria 𝑥 = ±√

𝜇. Thus, as 𝜇 passes through 𝜇 = 0, in the
vicinity of the point 𝑥 = 0, there emerges first the single equilibrium 𝑥 = 0 (as 𝜇 > 0) for the
considered equation and then (as 𝜇 > 0) it “splits” into two non-zero equilibria 𝑥1,2 = ±√

𝜇;
the one of them is stable while the other is not. Here the first Lyapunov value is equal to
𝑙1 = −1.

A model example of the transcritical bifurcation is given by the scalar equation 𝑥𝑛+1 =
𝜇𝑥𝑛 − 𝑥2𝑛 . For all 𝜇 this equation has the equilibrium 𝑥 = 0. As 𝜇 passes the value 𝜇 = 1, in
the vicinity of the point 𝑥 = 0, there arises the non-zero equilibrium 𝑥 = 𝜇−1 for this equation
and this equilibrium is stable as 𝜇 > 1 and unstable as 𝜇 < 1. Here we also have 𝑙1 = −1.

A model example of pitchfork bifurcation is given by the scalar equation 𝑥𝑛+1 = 𝜇𝑥𝑛 − 𝑥3𝑛 .
It also has the equilibrium 𝑥 = 0 for all 𝜇. As 𝜇 < 1, this equation has no other equilibria,
while as 𝜇 passes the value 𝜇 = 1, in the vicinity of the point 𝑥 = 0 there arise two non-zero
equilibria 𝑥 = ±

√
𝜇− 1, which are stable. Here we have 𝑙1 = 0 and 𝑙2 = −1.

3.3. Bifurcation of doubling period. We consider equation (36), in which 𝑎(𝑥, 𝜇) is de-
termined by identity (33). Assume that Case P2 holds. Then the main bifurcation scenarion
in the vicinity of the point 𝑥 = 0 is the bifurcation of doubling period.

A model example of bifurcation of doubling period is given by the scalar equation 𝑥𝑛+1 =
𝜇𝑥𝑛 + 𝑥3𝑛 . For all 𝜇 it has equilibrium 𝑥 = 0. As |𝜇| < 1, this point is stable while as 𝜇 < −1
and 𝜇 > 1, it is unstable. As 𝜇 passes the value 𝜇 = −1, in the vicinity of the point 𝑥 = 0
there arises a stable cycle of period 2: 𝑥1 =

√
−1 − 𝜇, 𝑥2 = −

√
−1 − 𝜇. The scenario of such

kind is called bifurcation of doubling period. We also observe that in this example, the point
𝜇 = 1 is a pitchfork bifurcation.

As 𝑁 > 2, the bifurcation of doubling period follows the same scenario.
Since the matrix 𝐴0 has the simple eigenvalue −1 and has no other eigenvalues with absolute

value equal to 1, then equation (35) is one-dimensional and by assumption (33), as 𝜇 = 𝜇0, the
function 𝐺(𝑢, 𝜇) can be represented as (see, for instance, [1]):

𝐺(𝑢, 𝜇0) = −𝑢− 𝑙1𝑢
3 + 𝑜(𝑢3) .

The number 𝑙1 is called first Lyapunov value for the bifurcation of doubling period in system
(36).

Let us provide a statement allowing us to calculate the Lyapunov value 𝑙1 directly in terms
of initial equation (36). In order to do this, by 𝑒 and 𝑔 we denote the eigenvectors of matrix
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𝐴0 and of the transposed matrix 𝐴*
0, respectively, associated with the eigenvalue −1. These

vectors can be chosen according identities (9). The subspace 𝐸0 is one-dimensional and it
contained the vector 𝑒. Finally, the projectors 𝑃0 : R𝑁 → 𝐸0 and 𝑃 0 : R𝑁 → 𝐸0 can be
defined by the identities: 𝑃0𝑥 = (𝑥, 𝑔)𝑒 and 𝑃 0 = 𝐼 − 𝑃0. It is easy to establish that the
operator 𝐼 − 𝐴2

0 + 𝑃0 : R𝑁 → R𝑁 is invertible.
To simplify the notations, we denote 𝑎2 = 𝑎2(𝑒, 𝜇0), 𝑎3 = 𝑎3(𝑒, 𝜇0) and 𝑎′2 = 𝑎′2𝑥(𝑒, 𝜇0).

Theorem 10. Assume that the matrix 𝐴0 = 𝐴(𝜇0) has the simple eigenvalue −1 and its
other eigenvalues have the absolute values not coinciding with 1. Then the first Lyapunov value
𝑙1 for the bifurcation of doubling period for system (36) is equal to

𝑙1 = −(2𝑎3 + 𝑎′2[𝑎2 + (𝐼 + 𝐴0)𝑒1], 𝑔)

2
, (37)

where 𝑒1 = (𝐼 − 𝐴2
0 + 𝑃0)

−1(𝐼 + 𝐴0)𝑎2.

Remark 4. Number (37) is independent of the normalization of the vectors 𝑒 and 𝑔 according
identities (9). Indeed, as we have mentioned above (see Remark 3), these options differ by the
sign. It is easy to see that in formula (37) both options leads one to the same number.

We consider an important particular case, when system (36) is scalar, namely, we consider
the equation

𝑥𝑛+1 = 𝛽1(𝜇)𝑥𝑛 + 𝛽2(𝜇)𝑥2𝑛 + 𝛽3(𝜇)𝑥3𝑛 +𝑂(𝑥4𝑛), 𝑥𝑛 ∈ R1 , (38)

in which the functions 𝛽𝑗(𝜇) are smooth and 𝛽1(𝜇0) = −1. In this case formula (37) is simplified

𝑙1 = −(𝛽2
2 + 𝛽3) , (39)

where 𝛽2 = 𝛽2(𝜇0) and 𝛽3 = 𝛽3(𝜇0).

3.3.1. Properties of bifurcation of doubling period. We provide some properties of bifurcation
of doubling period in equation (36) implied by the results of work [10].

Theorem 11. Suppose that under the assumptions of Theorem 10 the relations

𝑙1 ̸= 0 , 𝛾1 = (𝐴′(𝜇0)𝑒, 𝑔) ̸= 0 (40)

hold. Let 𝜇2 ≡ 𝑙1/𝛾1 > 0. Then there exists 𝛿 > 0 such that

1. As 𝜇 ∈ (𝜇0− 𝛿, 𝜇0], equation (36) has the unique equilibrium 𝑥 = 0 in the 𝛿-neighbourhood
of the point 𝑥 = 0 and has no cycles, while for each 𝜇 ∈ (𝜇0, 𝜇0+𝛿), apart of the equilibrium
𝑥 = 0, it has one non-zero cycle of period 2: 𝑥1 = 𝑥1(𝜇), 𝑥2 = 𝑥2(𝜇).

2. The functions 𝑥1(𝜇) and 𝑥2(𝜇) (𝑥1(𝜇0) = 𝑥2(𝜇0) = 0) defined for 𝜇 ∈ [𝜇0, 𝜇0 + 𝛿) are
continuously differentiable and as 𝜇 = 𝜇0, the eigenvector of the matrix 𝐴0 associated with
the eigenvalue −1 is tangent to their graphs.

3. Let 𝑙1 < 0 (𝑙1 > 0) and let the eigenvalues of the matrix 𝐴0 = 𝐴(𝜇0) not coinciding
with −1 have the absolute values less than 1. Then the cycle 𝑥1 = 𝑥1(𝜇), 𝑥2 = 𝑥2(𝜇) is
asymptotically stable (unstable) as 𝜇 ∈ (𝜇0, 𝜇0 + 𝛿).

A similar statement can be provided in the case 𝜇2 < 0. In this case only the direction of
the bifurcation changes, that is, the bifurcating solutions emerge as 𝜇 ∈ (𝜇0 − 𝛿, 𝜇0).

We also note that for scalar equation (38) introduced by the second identity in (40), the
number 𝛾1 is 𝛾1 = 𝛽′

1(𝜇0).
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3.3.2. Example: Henon model. As an example we consider the Henon model (see, for instance,
[1]): {︃

𝑢𝑛+1 = 𝑣𝑛 ,

𝑣𝑛+1 = 𝑎− 𝜇𝑢𝑛 − 𝑣2𝑛 ,
(41)

in which 0 < 𝑎 < 3 and −1 < 𝜇 < 1. In what follows the value 𝑎 is fixed, while 𝜇 is regarded
as the bifurcating parameter.

System (41) possesses the equilibrium (𝑢*(𝜇), 𝑣*(𝜇)), where

𝑢*(𝜇) = 𝑣*(𝜇) =
−(1 + 𝜇) +

√︀
(1 + 𝜇)2 + 4𝑎

2
.

Making the change 𝑢 = 𝑥+ 𝑢*(𝜇) and 𝑣 = 𝑦 + 𝑣*(𝜇) in (41), we pass to the system:{︃
𝑥𝑛+1 = 𝑦𝑛 ,

𝑦𝑛+1 = −𝜇𝑥𝑛 − 2𝑢*(𝜇)𝑦𝑛 − 𝑦2𝑛 ,

that is, to system of form (36) as 𝑁 = 2 with

𝐴(𝜇) =

[︂
0 1
−𝜇 −2𝑢*(𝜇)

]︂
, 𝑎(𝑤, 𝜇) = 𝑎2(𝑤) =

[︂
0

−𝑦2
]︂

;

here 𝑤 = (𝑥, 𝑦). As 𝜇 = 𝜇0 = 2
√︀
𝑎/3 − 1, the matrix 𝐴(𝜇) has the eigenvalues 𝜆1 = −1 and

𝜆2 = −𝜇0. Hence, we can expect that as the parameter 𝜇 passes the value 𝜇 = 𝜇0, in the
vicinity of the equilibrium (𝑢*(𝜇), 𝑣*(𝜇)) of system (41), the cycles of period 2 emerge. Let us
study this issue.

Let us find the eigenvectors 𝑒 and 𝑔 of the matrix

𝐴0 = 𝐴(𝜇0) =

[︂
0 1

−𝜇0 −(1 + 𝜇0)

]︂
and of the transposed matrix 𝐴*

0 associated with the eigenvalue −1 and satisfying the identities
‖𝑒‖ = 1 and (𝑒, 𝑔) = 1. We have

𝑒 =
1√
2

[︂
1
−1

]︂
, 𝑔 =

√
2

𝜇0 − 1

[︂
𝜇0

1

]︂
.

Let us calculate the expression in formula (37). We have

𝑎2 = −1

2

[︂
0
1

]︂
, 𝑎′2 =

[︂
0 0

0
√

2

]︂
, 𝑃0 =

1

𝜇0 − 1

[︂
𝜇0 1
−𝜇0 −1

]︂
,

(𝐼 − 𝐴2
0 + 𝑃0)

−1 = − 1

(1 − 𝜇0)2(1 + 𝜇0)

[︂
−𝜇3

0 + 𝜇0 − 1 −𝜇2
0

𝜇3
0 𝜇2

0 + 𝜇0 − 1

]︂
,

𝑒1 =
1

2(𝜇2
0 − 1)

[︂
1

−𝜇0

]︂
, 𝑎3 = 0.

We substitute these expression into formula (37) and we get

𝑙1 =
1

2(𝜇2
0 − 1)

,

that is, in the considered problem the first Lyapunov value is negative.
Since

𝐴′(𝜇0) =

[︂
0 0
−1 1/2

]︂
,
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then the number 𝛾1 defined by the second identity in (40) is 𝛾1 = 3
2(1−𝜇0)

. Then

𝜇2 ≡ 𝑙1/𝛾1 = − 1

3(𝜇0 + 1)
< 0.

By Theorem 11 this implies that the cycles of period 2 emerge in the vicinity of the equilibrium
(𝑢*(𝜇), 𝑣*(𝜇)) of system (41) as 𝜇 < 𝜇0 and they are asymptotically stable.

3.4. Andronov-Hopf bifurcation. We continue considering equation (36). We suppose
that Case P3 holds, that is, we assume that the matrix 𝐴0 has a pair of simple eigenvalues
of form 𝑒±𝑖2𝜋𝜃0 , where 𝜃0 is irrational or 𝜃0 = 𝑝/𝑞, where 𝑝/𝑞 is rational irreducible fraction
and 𝑞 > 5. For the sake of simplicity we assume that 𝑁 = 2, that is, equation (36) is two-
dimensional. Namely, we assume that it is of the form:

𝑥𝑛+1 = 𝐴(𝜇)𝑥𝑛 + 𝑎(𝑥𝑛, 𝜇), 𝑥𝑛 ∈ R2, 𝑛 = 0, 1, 2, . . . , (42)

and we assume that the matrix 𝐴(𝜇) is of the form

𝐴(𝜇) = (1 + 𝜙(𝜇))

[︂
cos 2𝜋(𝜃0 + 𝜓(𝜇)) − sin 2𝜋(𝜃0 + 𝜓(𝜇))
sin 2𝜋(𝜃0 + 𝜓(𝜇)) cos 2𝜋(𝜃0 + 𝜓(𝜇))

]︂
,

where the functions 𝜙(𝜇) and 𝜓(𝜇) are smooth and satisfy the identities: 𝜙(𝜇0) = 0 and
𝜓(𝜇0) = 0, and at that, 𝜙′(𝜇0) ̸= 0 and 𝜓′(𝜇0) ̸= 0 .

In the considered case the main scenario of local bifurcation in the vicinity of the equilibrium
𝑥 = 0 of equation (42) as the parameter 𝜇 passes through 𝜇0 is the emergence of an invariant
curve 𝛾(𝜇) in the vicinity of the point 𝑥 = 0 bordering the attraction or repulsion basin
of this point. Similar to the continuous case considered in Subsection 2.3, such scenario is
called Andronov-Hopf bifurcation, see, for instance, [1]. The dynamics of system (42) on the
mentioned invariant curve can turn out to be very complicated and can contain a family of
periodic and quasi-periodic orbits.

As a rule, for small |𝜇−𝜇0|, the invariant curve 𝛾(𝜇) of equation (42) emerges in of the three
cases: (S1), 𝜇 > 𝜇0; (S2), 𝜇 < 𝜇0; (S3), 𝜇 = 𝜇0. The latter case is called degenerate; it is
typical for linear and conservative systems. The first two cases hold under some non-degeneracy
condition for nonlinear term (33) in the right hand side of equation (42) (one of the versions
of such condition will be given below). Under this condition, in cases (S1) and (S2), to each
𝜇, exactly one invariant curve 𝛾(𝜇) corresponds and the function 𝛾(𝜇) depends smoothly on 𝜇
and it contracts to the point 𝑥 = 0 as 𝜇→ 𝜇0.

In the considered problem equation (35) is two-dimensional. Due to identity (33), by means
of the theory of normal forms, this equation as 𝜇 = 𝜇0 can be represented as (see, for instance,
[1]): {︃

𝑥𝑛+1 = 𝑥𝑛 cos 2𝜋𝜃0 − 𝑦𝑛 sin 2𝜋𝜃0 + (𝛼𝑥𝑛 − 𝛽𝑦𝑛)(𝑥2𝑛 + 𝑦2𝑛) + 𝑜(𝑟3𝑛) ,

𝑦𝑛+1 = 𝑥𝑛 sin 2𝜋𝜃0 + 𝑦𝑛 cos 2𝜋𝜃0 + (𝛽𝑥𝑛 + 𝛼𝑦𝑛)(𝑥2𝑛 + 𝑦2𝑛) + 𝑜(𝑟3𝑛) ,

where 𝑟𝑛 =
√︀
𝑥2𝑛 + 𝑦2𝑛. We let

𝐿1 = 𝛼 cos 2𝜋𝜃0 + 𝛽 sin 2𝜋𝜃0 , Ω1 = 𝛽 cos 2𝜋𝜃0 − 𝛼 sin 2𝜋𝜃0 .

The number 𝐿1 is called the first Lyapunov value of system (42) in the problem on Andronov-
Hopf bifurcation. For the sake of simplicity, in what follows, we call both numbers 𝐿1 and Ω1

Lyapunov values of system (42).
Let us provide a new scheme allowing one to calculate Lyapunov values 𝐿1 and Ω1 in terms

of initial equation (42) in the case, when the nonlinearity (33) begins with the cubic term, that
is, it is of the form:

𝑎(𝑥, 𝜇) = 𝑎3(𝑥, 𝜇) + 𝑎̃4(𝑥, 𝜇) . (43)

We let
𝜒(𝜙) = (𝑎3(𝑒(𝜙), 𝜇0), ℎ(𝜙)) , 𝜓(𝜙) = (𝑎3(𝑔(𝜙), 𝜇0), ℎ(𝜙)) ,
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where

𝑒(𝜙) =

[︂
cos𝜙
sin𝜙

]︂
, 𝑔(𝜙) =

[︂
sin𝜙

− cos𝜙

]︂
, ℎ(𝜙) =

[︂
cos(𝜙+ 2𝜋𝜃0)
sin(𝜙+ 2𝜋𝜃0)

]︂
.

Theorem 12. The Lyapunov values 𝐿1 and Ω1 for Andronov-Hopf bifurcation in system
(36) are equal to

𝐿1 =
1

2𝜋

2𝜋∫︁
0

𝜒(𝜙) 𝑑𝜙 , Ω1 =
1

2𝜋

2𝜋∫︁
0

𝜓(𝜙) 𝑑𝜙 . (44)

4. Non-autonomous periodic equations

In this section we study the issue on constructing Lyapunov values for dynamical systems
described by non-autonomous differential equation with a 𝑇 -periodic in 𝑡 right hand side:

𝑥′ = 𝐴(𝑡, 𝜇)𝑥+ 𝑎(𝑥, 𝑡, 𝜇) + 𝑔(𝑡, 𝜇) , 𝑥 ∈ R𝑁 , (45)

in which the matrix 𝐴(𝑡, 𝜇) and the functions 𝑎(𝑥, 𝑡, 𝜇) and 𝑔(𝑡, 𝜇) are continuous in 𝑡 and
continuous differentiable in 𝑥 and 𝜇. We assume that the function 𝑎(𝑥, 𝑡, 𝜇) can be represented
as

𝑎(𝑥, 𝑡, 𝜇) = 𝑎2(𝑥, 𝑡, 𝜇) + 𝑎3(𝑥, 𝑡, 𝜇) + 𝑎̃4(𝑥, 𝑡, 𝜇),

where 𝑎2(𝑥, 𝑡, 𝜇) and 𝑎3(𝑥, 𝑡, 𝜇) involves, respectively, the quadratic and cubic in 𝑥 terms and
the nonlinearity 𝑎̃4(𝑥, 𝑡, 𝜇) satisfies the relation: ‖𝑎̃4(𝑥, 𝑡, 𝜇)‖ = 𝑂(‖𝑥‖4), 𝑥→ 0, uniforlmy in 𝑡
and 𝜇. The function 𝑔(𝑡, 𝜇) vanishes for some value 𝜇 = 𝜇0: 𝑔(𝑡, 𝜇0) ≡ 0. As 𝜇 = 𝜇0, system
(45) has the equilibrium 𝑥 = 0.

If some 𝜇 = 𝜇0 the linear 𝑇 -periodic system

𝑥′ = 𝐴(𝑡, 𝜇)𝑥 , 𝑥 ∈ R𝑁 , (46)

has several multiplicators with absolute value equal to 1, then 𝜇0 is the bifurcation point of
system (45). In this case, as the parameter 𝜇 passes through 𝜇0, the behavior of system (45)
in the vicinity of the point 𝑥 = 0 usually transforms qualitatively.

Here we consider the following main cases:

S1. System (46) has the simple multiplicator 1;
S2. System (46) has the pair of simple multiplications of form 𝑒±𝑖2𝜋𝜃0 , where 𝜃0 is an irrational

number or 𝜃0 is a rational number of form 𝜃0 = 𝑝/𝑞, where 𝑝/𝑞 is a irreducible fraction
and 𝑞 > 5.

At that we suppose that the other multiplicators of system (46) have absolute values more or
less than 1.

We observe that system (46) can not have the simple multiplicator −1. As for discrete system
(32), the case, when system (46) has the pair of simple multiplicators of form 𝑒±𝑖2𝜋𝜃, where
𝜃 = 𝑝/𝑞 is a irreducible fraction and 1 6 𝑞 6 4, is called the strong resonance; we do not
consider this case the present paper. Case S2, when 𝜃0 = 𝑝/𝑞 and 𝑞 > 5, is usually called weak
resonance.

4.1. Passage to discrete equation. The problem on local bifurcations of system (45) is
equivalent in the natural sense to the problem on local bifurcations of discrete dynamical system

𝑥𝑛+1 = 𝑈(𝑥𝑛, 𝜇), 𝑛 = 0, 1, 2, . . . , (47)

where 𝑥𝑛 ∈ R𝑁 , 𝑈(*, 𝜇) : R𝑁 → R𝑁 , is the translation operator, (see, for instance, [17]) along
the trajectories of system (45) in time from 0 to 𝑇 . The operator 𝑈(*, 𝜇) called also Poincaré
mapping can be represented as

𝑈(𝑥, 𝜇) = 𝑉 (𝜇)𝑥+ 𝑣(𝑥, 𝜇) + 𝑢(𝜇) , (48)
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where 𝑉 (𝜇) is the monodromy matrix of linear system (46); the function 𝑢(𝜇) satisfies the
condition 𝑢(𝜇0) = 0; 𝑣(𝑥, 𝜇) is a nonlinear operator, which can be represented as

𝑣(𝑥, 𝜇) = 𝑣2(𝑥, 𝜇) + 𝑣3(𝑥, 𝜇) + 𝑣4(𝑥, 𝜇),

where 𝑣2(𝑥, 𝜇) and 𝑣3(𝑥, 𝜇) involve, respectively, quadratic and cubic in 𝑥 terms, while the
nonlinearity 𝑣4(𝑥, 𝜇) satisfies the relation: ‖𝑣4(𝑥, 𝜇)‖ = 𝑂(‖𝑥‖4), 𝑥→ 0, uniformly in 𝜇.

We note that the equilibria of equation (47) determine the initial values of 𝑇 -periodic so-
lutions to system (45), and each point of 𝑞-cycle of equation (47) determines initial values of
𝑞𝑇 -periodic solutions to this system.

The functions involved in (48) can be found explicitly provided, for instance, we know the
fundamental matrix 𝑋(𝑡, 𝜇) of solutions of linear system (46) obeying the initial condition
𝑋(0, 𝜇) = 𝐼. Then 𝑉 (𝜇) = 𝑋(𝑇, 𝜇) and, for instance,

𝑣2(𝑥, 𝜇) = 𝑉 (𝜇)

∫︁ 𝑇

0

𝑋−1(𝜏, 𝜇)𝑎2(𝑋(𝜏, 𝜇)𝑥, 𝜏, 𝜇) 𝑑𝜏 ,

𝑢(𝜇) = 𝑉 (𝜇)

∫︁ 𝑇

0

𝑋−1(𝜏, 𝜇)𝑔(𝜏, 𝜇) 𝑑𝜏 .

In particular, if 𝐴(𝑡, 𝜇) is a constant in 𝑡 matrix, that is, 𝐴(𝑡, 𝜇) ≡ 𝐴0(𝜇), then 𝑋(𝑡, 𝜇) = 𝑒𝑇𝐴0(𝜇).
The eigenvalues of the matrix 𝑉 (𝜇) are the multiplicators of linear system (46). This is

why here Cases S1 and S2 for differential equation (45) correspond to Cases P1 and P3 for
discrete system (47). Thus, the problem on Lyapunov values for differential equation (45) can
be reduced to a similar problem for discrete system (47). To study the latter, we can employ
the scheme proposed in the previous section. At that, the Lyapunov values for differential
equation (45) will be determined as Lyapunov values of system (47).

4.2. Main bifurcation scenarios. First we consider Case S1. This case corresponds to
Case P1 for discrete system (47). As it was mentioned above, in this case the matter of the
qualitative transformation of the behavior of system (47) as the parameter 𝜇 passes through 𝜇0

is the emergence of non-zero equilibria in the vicinity of the point 𝑥 = 0. But the equilibria of
equation (47) define initial values of 𝑇 -periodic solutions of system (45). This is why in Case S1
the main scenario of the transformation of the behavior of system (45) is the emergence of non-
zero 𝑇 -periodic solutions of small amplitude in the vicinity of the point 𝑥 = 0. Such scenario is
usually called the bifurcation of forced oscillations in system (45). In its turn, this bifurcation
can realizes as the saddle-node bifurcation or transcritial bifurcation or pitchfork bifurcation.

Suppose that Case S2 holds and for simplicity, let 𝑁 = 2. This case corresponds Case P3 for
discrete system (47). As it has been mentioned above, in this case the qualitative transformation
of the behavior of system (47) as the parameter 𝜇 passes 𝜇0 consists in the emergence of the
invariant curve 𝛾(𝜇) in the vicinity of the point 𝑥 = 0. This corresponds to the fact that in
the space R2 ×R1 (where 𝑥 ∈ R2 and 𝑡 ∈ R1) there emerges a smooth two-dimensional surface
𝛶 (𝜇) involving the axis 𝑡 and being invariant for differential equation (45). The dynamics of
system (45) on the surface 𝛶 (𝜇) can be very complicated and can include a family of periodic
and quasiperiodic solutions.

4.3. Lyapunov values. For each of the mentioned bifurcation scenarios in system (45), the
issues on calculating Lyapunov values and the properties of the bifurcations can be solved by
the scheme exposed in the previous section. Just to illustrate, we restrict ourselves by providing
an analogue of Theorem 9. Namely, we provide a statement allowing us to calculate the first
Lyapunov value for differential equation (45) in Case S1.

We denote by 𝑒 and 𝑔 the eigenvectors of the matrix 𝑉0 = 𝑉 (𝜇0) and of the transposed
matrix 𝑉 *

0 , respectively, associated with the simple eigenvalue 1. These vectors can be chosen
according identities (9).
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Theorem 13. Assume that Case S1 holds. Then the first Lyapunov value of system (45) in
the problem of forced oscillations is equal to

𝑙1 =

∫︁ 𝑇

0

(𝑋−1(𝜏, 𝜇0)𝑎2(𝑋(𝜏, 𝜇0)𝑒, 𝜏, 𝜇0), 𝑔) 𝑑𝜏 . (49)

In an important particular case when the matrix 𝐴(𝑡, 𝜇0) is constant, that is, 𝐴(𝑡, 𝜇0) ≡ 𝐴0,
formula (49) becomes very simple:

𝑙1 =

∫︁ 𝑇

0

(𝑎2(𝑒, 𝜏, 𝜇0), 𝑔) 𝑑𝜏 . (50)

In this formula 𝑒 and 𝑔 are the eigenvectors of the matrices 𝐴0 and 𝐴*
0, respectively, associated

with the simple eigenvalue 0 and obeying identities (9).

4.3.1. Example. As an illustration, we consider the scalar equation

𝑥′ = 𝜇(1 + cos 𝑡)𝑥+ 𝑥2 . (51)

This equation is of form (45) as 𝐴(𝑡, 𝜇) = 𝜇(1 + cos 𝑡), 𝑎(𝑥, 𝑡, 𝜇) ≡ 𝑎2(𝑥) = 𝑥2 and 𝑔(𝑡, 𝜇) ≡ 0.
The value 𝜇 = 0 is the bifurcation point for this equation and at that, Case S1 holds, that is,
as the parameter 𝜇 passes the value 𝜇 = 0, in the vicinity of the point 𝑥 = 0, the bifurcation
of forced oscillations hold for equation (51). Since in the considered example 𝑔(𝑡, 𝜇) ≡ 0 and
the nonlinearity involves 𝑎(𝑥, 𝑡, 𝜇) involves only quadratic terms, the bifurcation realizes as the
transcritical one.

Let us calculate the first Lyapunov value 𝑙1 for equation (51). Here we can employ formula
(50). As 𝑒 and 𝑔, we can take the numbers 𝑒 = 1 and 𝑔 = 1. Since 𝑇 = 2𝜋, we get

𝑙1 =

∫︁ 2𝜋

0

(𝑎2(𝑒) , 𝑔) 𝑑𝜏 = 2𝜋 .

To study the properties of bifurcation in equation (51), we proceed to the discrete model of
form (47). Here the operator 𝑉 (𝜇) is the function

𝑉 (𝜇) = exp

(︂
𝜇

∫︁ 2𝜋

0

(1 + cos 𝜏)𝑑𝜏

)︂
= 𝑒2𝜋𝜇 .

Then we employ Theorem 3, more precisely, by its analogue for discrete systems. Here the sec-
ond number in (10) is obviously equal to 𝛾1 = (𝑉 ′(0)𝑒, 𝑔) = 2𝜋 > 0. This is why the mentioned
theorem implies the emerging 2𝜋-periodic solutions of equation (51) are asymptotically stable
as 𝜇 > 0 and unstable as 𝜇 < 0.

5. Proof of main statements

5.1. Proof of Theorem 1. Under the assumptions of this theorem, subspace 𝐸0 is one-
dimensional and the projector 𝑃0 : R𝑁 → 𝐸0 can be defined by the identity 𝑃0𝑥 = (𝑥, 𝑔)𝑒.
This is why here equation (6) is also one-dimensional, namely, as 𝜇 = 𝜇0, it is of form:

𝑢′ = 𝑃0𝑏2(𝑢+ 𝜓(𝑢, 𝜇0), 𝜇0) + 𝑃0𝑏3(𝑢+ 𝜓(𝑢, 𝜇0), 𝜇0) + 𝑃0𝑏4(𝑢+ 𝜓(𝑢, 𝜇0), 𝜇0) .

By the identities 𝜓(0, 𝜇0) = 𝜓′
𝑢(0, 𝜇0) = 0 this implies the statement of the theorem.
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5.2. Proof of Theorem 5 and 6. Here we restrict ourselves by proving Theorem 5. Theo-
rem 6 can be proved by the same schemes but it requires more bulky constructions.

Without loss of generality we can assume that as 𝜇 = 𝜇0, equation (21) is of form

𝑥′ = 𝐴𝑥+ 𝑎2(𝑥) + 𝑎3(𝑥) + . . . , 𝑥 ∈ R2, (52)

where

𝐴 =

[︂
0 1
−1 0

]︂
, 𝑥 =

[︂
𝑥1
𝑥2

]︂
,

𝑎2(𝑥) =

[︂
𝑎20𝑥

2
1 + 𝑎11𝑥1𝑥2 + 𝑎02𝑥

2
2

𝑏20𝑥
2
1 + 𝑏11𝑥1𝑥2 + 𝑏02𝑥

2
2

]︂
, (53)

𝑎3(𝑥) =

[︂
𝑎30𝑥

3
1 + 𝑎21𝑥

2
1𝑥2 + 𝑎12𝑥1𝑥

2
2 + 𝑎03𝑥

3
2

𝑏30𝑥
3
1 + 𝑏21𝑥

2
1𝑥2 + 𝑏12𝑥1𝑥

2
2 + 𝑏03𝑥

3
2

]︂
. (54)

The eigenvectors 𝑒 + 𝑖𝑔 and 𝑒* + 𝑖𝑔* of the matrices 𝐴 and 𝐴* chosen in accordance with
identities (14) are determined by the identities:

𝑒 = 𝑒* =

[︂
1
0

]︂
, 𝑔 = 𝑔* =

[︂
0
1

]︂
.

Functions (15) and (16) cast into the form:

𝑒(𝑡) =

[︂
cos 2𝜋𝑡
− sin 2𝜋𝑡

]︂
, 𝑓3(𝑡) = 𝑎3(𝑒(𝑡)) + 𝐹2(𝑡)

𝑡∫︁
0

𝑒−𝑇0𝐴𝜏𝑎2(𝑒(𝜏)) 𝑑𝜏 ,

where 𝑇0 = 2𝜋, 𝐹2(𝑡) = 𝑇0𝑎
′
2𝑥(𝑒(𝑡))𝑒𝑇0𝐴𝑡; here 𝑎′2𝑥(𝑥) is the Jacobi matrix of the vector function

𝑎2(𝑥).
To prove Theorem 5, we need to show that the numbers defined by identities (22),

∆0 = (𝜌3, 𝑒
*) , ∆1 = −(𝜌3, 𝑔

*) , (55)

where 𝜌3 is vector (18) coincide with the Lyapunov values 𝐿1 and Ω1. We restrict ourselves by
checking the identity ∆0 = 𝐿1.

By Corollary 1 we obtain that to find the number ∆0, we should let 𝑦(𝑡) = 𝑓3(𝑡) in formulae
(19) and (20). We split calculation of the Fourier coefficients 𝑦𝑐 and 𝑦𝑠 of the function 𝑦(𝑡) =
𝑓3(𝑡) involved in (20) into two steps.

5.2.1. First step. At the first step we let 𝑎2(𝑥) ≡ 0. Then 𝑓3(𝑡) = 𝑎3(𝑒(𝑡)). By (54) we have

𝑎3(𝑒(𝑡)) =
1

4
cos 2𝜋𝑡

[︂
3𝑎30 + 𝑎12
3𝑏30 + 𝑏12

]︂
− 1

4
sin 2𝜋𝑡

[︂
𝑎21 + 3𝑎03
𝑏21 + 3𝑏03

]︂
+

1

4
cos 6𝜋𝑡

[︂
𝑎30 − 𝑎12
𝑏30 − 𝑏12

]︂
− 1

4
sin 6𝜋𝑡

[︂
𝑎21 − 𝑎03
𝑏21 − 𝑏03

]︂
.

We select the Fourier coefficients of this function corresponding to cos 2𝜋𝑡 and sin 2𝜋𝑡:

𝑦𝑐 =
1

4

[︂
3𝑎30 + 𝑎12
3𝑏30 + 𝑏12

]︂
, 𝑦𝑠 = −1

4

[︂
𝑎21 + 3𝑎03
𝑏21 + 3𝑏03

]︂
.

Then, according (20), the first number in (55) becomes

∆0 =
1

8
[3𝑎30 + 𝑎12 + 𝑏21 + 3𝑏03] =

1

8
[3(𝑎30 + 𝑏03) + (𝑎12 + 𝑏21)] . (56)
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5.2.2. Second step. At the second step we let 𝑎3(𝑥) ≡ 0. Then

𝑓3(𝑡) = 𝑇0𝑎
′
2𝑥(𝑒(𝑡)) 𝑒𝑇0𝐴𝑡

𝑡∫︁
0

𝑒−𝑇0𝐴𝜏𝑎2(𝑒(𝜏)) 𝑑𝜏 . (57)

Here we have

𝑒𝑇0𝐴𝑡 =

[︂
cos 2𝜋𝑡 sin 2𝜋𝑡
− sin 2𝜋𝑡 cos 2𝜋𝑡

]︂
,

𝑎2(𝑒(𝜏)) =
1

2

[︂
𝑎20 + 𝑎02
𝑏20 + 𝑏02

]︂
+

1

2
cos 4𝜋𝑡

[︂
𝑎20 − 𝑎02
𝑏20 − 𝑏02

]︂
− 1

2
sin 4𝜋𝑡

[︂
𝑎11
𝑏11

]︂
,

𝑎′2𝑥(𝑒(𝑡)) = cos 2𝜋𝑡

[︂
2𝑎20 𝑎11
2𝑏20 𝑏11

]︂
− sin 2𝜋𝑡

[︂
𝑎11 +2𝑎02
𝑏11 +2𝑏02

]︂
.

Substituting these expression into (57) and after appropriate calculations, we select the Fourier
coefficients of this function corresponding to cos 2𝜋𝑡 and sin 2𝜋𝑡:

𝑦𝑐 =
1

12

[︂
10𝑎20𝑏20 + 14𝑎20𝑏02 − 3𝑎11𝑎20 − 3𝑎11𝑎02 + 𝑎11𝑏11 − 4𝑎02𝑏20 + 4𝑎02𝑏02
10𝑏220 + 10𝑏20𝑏02 − 7𝑏11𝑎20 − 5𝑏11𝑎02 + 4𝑏20𝑎11 + 𝑏211 + 2𝑏02𝑎11 + 4𝑏202

]︂
,

𝑦𝑠 =
1

12

[︂
−5𝑏20𝑎11 − 7𝑏02𝑎11 + 10𝑎02𝑎20 + 10𝑎202 + 4𝑎220 + 2𝑏11𝑎20 + 𝑎211 + 4𝑏11𝑎02
−3𝑏11𝑏20 − 3𝑏11𝑏02 + 14𝑎20𝑏02 + 10𝑎02𝑏02 + 4𝑎20𝑏20 − 4𝑎02𝑏20 + 𝑎11𝑏11

]︂
.

Then, according (20), the first number in (55) becomes

∆0 =
1

24
{6𝑎20𝑏20 + 3𝑏11𝑏20 + 3𝑏11𝑏02 − 3𝑎11𝑎20 − 3𝑎11𝑎02 − 6𝑎02𝑏02}

= − 1

8
{[(𝑎11𝑎02 + 2𝑎02𝑏02) − (2𝑎20𝑏20 + 𝑏11𝑏20) − (𝑏11𝑏02 − 𝑎11𝑎20)] .

(58)

In the general case when the right hand side of system (52) involves both vector functions 𝑎2(𝑥)
and 𝑎3(𝑥), the number ∆0 is the sum of numbers (56) and (58)

5.2.3. Comparison of ∆0 with Lyapunov value 𝐿1. We consider equation (52), in which the
matrix 𝐴 is of form

𝐴 =

[︂
𝑎 𝑏
𝑐 −𝑎

]︂
,

and 𝜔2 = −𝑎2 − 𝑏𝑐 > 0. In [1], the first Lyapunov value for this equation was provided in the
form:

𝐿1 = − 1

8𝑏𝜔2
{[𝑎𝑐(𝑎211 + 𝑎11𝑏02 + 𝑎02𝑏11) + 𝑎𝑏(𝑏211 + 𝑎20𝑏11 + 𝑎11𝑏20)

+ 𝑐2(𝑎11𝑎02 + 2𝑎02𝑏02) − 2𝑎𝑐(𝑏202 − 𝑎20𝑎02) − 2𝑎𝑏(𝑎220 − 𝑏20𝑏02)

− 𝑏2(2𝑎20𝑏20 + 𝑏11𝑏20) + (𝑏𝑐− 2𝑎2)(𝑏11𝑏02 − 𝑎11𝑎20)]

− (𝑎2 + 𝑏𝑐)[3(𝑐𝑏03 − 𝑏𝑎30) + 2𝑎(𝑎21 + 𝑏12) + (𝑐𝑎12 − 𝑏𝑏21)]} .
We note that the cited work has a misprint in the formula for 𝐿1: it should be divided by the
number 2𝜋/𝜔.

Substituting 𝑎 = 0, 𝑏 = −𝑐 = 1, we obtain

𝐿1 = −1

8
{[(𝑎11𝑎02+2𝑎02𝑏02)−(2𝑎20𝑏20+𝑏11𝑏20)−(𝑏11𝑏02−𝑎11𝑎20)]+[3(−𝑏03−𝑎30)+(−𝑎12−𝑏21)]} .

Comparing the numbers ∆0 and 𝐿1, we see that these numbers coincide for system (52).
To complete the proof of Theorem 5, it remains to show that the numbers (22) are indepen-

dent of the choice of the vectors 𝑒, 𝑔, 𝑒*, 𝑔* in accordance with identities (14). Assume that
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we are given another set of the vectors 𝑒, 𝑔, 𝑒*, 𝑔*. We can show that each another set of the
vectors can be described as

𝑒1 = 𝑒 cos𝜙+𝑔 sin𝜙 , 𝑔1 = 𝑔 cos𝜙−𝑒 sin𝜙 , 𝑒*1 = 𝑒* cos𝜙+𝑔* sin𝜙 , 𝑔*1 = 𝑔* cos𝜙−𝑒* sin𝜙

for some 𝜙. Substituting these vectors into (22), it is easy to confirm that numbers (22) have
the same values for each 𝜙. The proof of Theorem 5 is complete.

5.3. Proof of Theorem 10. We shall need an auxiliary statement, which can be proved by
straightforward calculations and which is of an independent interest. We let

𝐵1 = 𝐼 − 𝐴0 , 𝐵2 = 𝐼 + 𝐴0 + 𝑃0 .

By construction, the operators 𝐵1 : R𝑁 → R𝑁 and 𝐵2 : R𝑁 → R𝑁 are invertible and the
subspaces 𝐸0 and 𝐸0 are invariant for them.

Lemma 2. Assume that the matrix 𝐴0 possesses the simple eigenvalue −1 and the absolute
values of its other eigenvalues are less or greater than 1. Then the central manifold 𝑊𝑐 of
system (36) can be described by the identity

𝑊𝑐 = {𝑥 : 𝑥 = 𝜀𝑒+ 𝜓(𝜀)} , (59)

where

𝜓(𝜀) = 𝜀2𝜓2 + 𝜀3𝜓3 + ̂︀𝜓4(𝜀). (60)

Here the coefficients 𝜓2 and 𝜓3 are determined by the identities

𝜓2 = 𝐵−1
1 𝑃 0𝑎2 , 𝜓3 = 𝐵−1

2 𝑃 0[−2(𝑎2, 𝑔)(𝐴0𝜓2 + 𝑎2) − 𝑎′2𝜓2 − 𝑎3] , (61)

and the function ̂︀𝜓4(𝜀) is smooth and satisfies the relation: ‖ ̂︀𝜓4(𝜀)‖ = 𝑂(𝜀4), 𝜀→ 0.

For the sake of simplicity we restrict ourselves by considering the situation when system (36)
is two-dimensional, that is, 𝑁 = 2. For the sake of simplicity we also assume that as 𝜇 = 𝜇0,
the matrix 𝐴(𝜇) is of the form

𝐴0 = 𝐴(𝜇0) =

[︂
−1 0
0 𝑏

]︂
,

where 𝑏 ̸= ±1. Finally, assume that as 𝜇 = 𝜇0 the quadratic and cubic terms in nonlinearity
(33) are respectively of form:

𝑎2(𝑥) =

[︂
𝑎20𝑥

2
1 + 2𝑎11𝑥1𝑥2 + 𝑎02𝑥

2
2

𝑏20𝑥
2
1 + 2𝑏11𝑥1𝑥2 + 𝑏02𝑥

2
2

]︂
, (62)

𝑎3(𝑥) =

[︂
𝑎30𝑥

3
1 + 3𝑎21𝑥

2
1𝑥2 + 3𝑎12𝑥1𝑥

2
2 + 𝑎03𝑥

3
2

𝑏30𝑥
3
1 + 3𝑏21𝑥

2
1𝑥2 + 3𝑏12𝑥1𝑥

2
2 + 𝑏03𝑥

3
2

]︂
. (63)

We have

𝑒 = 𝑔 =

[︂
1
0

]︂
, 𝑃0 =

[︂
1 0
0 0

]︂
, 𝑃 0 =

[︂
0 0
0 1

]︂
,

𝑎2 =

[︂
𝑎20
𝑏20

]︂
, 𝑎′2 = 2

[︂
𝑎20 𝑎11
𝑏20 𝑏11

]︂
, 𝑎3 =

[︂
𝑎30
𝑏30

]︂
.

First we determine the form of equation (35) as 𝜇 = 𝜇0 in the considered case. In order to do
this, we first observe that system (34) for system (36) is of form:{︃

𝑢𝑛+1 = 𝑃0[𝐴(𝜇)(𝑢𝑛 + 𝑣𝑛) + 𝑎(𝑢𝑛 + 𝑣𝑛, 𝜇)] ,

𝑣𝑛+1 = 𝑃 0[𝐴(𝜇)(𝑢𝑛 + 𝑣𝑛) + 𝑎(𝑢𝑛 + 𝑣𝑛, 𝜇)] ,
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where 𝑢𝑛 = 𝑃0𝑥𝑛 and 𝑣𝑛 = 𝑃 0𝑥𝑛; both equations in this system are scalar. Letting 𝑢𝑛 = 𝜀𝑛𝑒,
we obtain that as 𝜇 = 𝜇0, equation (35) is equivalent to the scalar equation

𝜀𝑛+1 = −𝜀𝑛 + (𝑎(𝜀𝑛𝑒+ 𝜓(𝜀𝑛), 𝜇0), 𝑔) .

Thus, as 𝜇 = 𝜇0, the right hand side of equation (35) is of form:

𝐺(𝜀, 𝜇0) = −𝜀+ (𝑎(𝜀𝑒+ 𝜓(𝜀), 𝜇0), 𝑔) .

Due to identities (33) and (60), we can show easily that for small 𝜀 we have

𝐺(𝜀, 𝜇0) = −𝜀+ 𝜀2(𝑎2, 𝑔) + 𝜀3[(𝑎′2𝜓2, 𝑔) + (𝑎3, 𝑔)] +𝑂(𝜀4) .

It was noted in [1] that if as 𝜇 = 𝜇0, here the right hand side of equation (35) is of form

𝐺(𝜀, 𝜇0) = −𝜀+ 𝛾2𝜀
2 + 𝛾3𝜀

3 +𝑂(𝜀4) ,

then the first Lyapunov value is determined by the formula:

𝑙1 = −(𝛾22 + 𝛾3) (64)

coinciding with formula (39); in fact, there is a misprint in the formula of 𝑙1 in the cited work,
the sign should be opposite.

It remains to confirm that numbers (37) and (64) (where 𝛾2 = (𝑎2, 𝑔) and 𝛾3 = [(𝑎′2𝜓2, 𝑔) +
(𝑎3, 𝑔)]) coincide. Taking into consideration formulae (61), by straightforward calculations we
obtain that 37) and (64) are equal to the same number:

𝑙1 = −
(︂
𝑎220 + 𝑎30 +

2

1 − 𝑏
𝑎11𝑏20

)︂
.

The proof is complete.

5.4. Proof of Theorem 12. We restrict ourselves by proving the first formula in (44).
Assume that as 𝜇 = 𝜇0, the function 𝑎3(𝑥, 𝜇) in nonlinearity (43) is determined by identity
(63). For this case, in [2], there was given the following formula for Lyapunov value 𝐿1:

𝐿1 =
3

8
[(𝑎30 + 𝑎12 + 𝑏21 + 𝑏03) cos 2𝜋𝜃0 + (𝑏30 + 𝑏12 − 𝑎21 − 𝑎03) sin 2𝜋𝜃0] . (65)

This is why the proof of the first formula in (44) reduces to substituting (63) into (44) and
calculating the corresponding integral. As a result, we obtain the number coinciding with (65).
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