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UNSOLVABILITY CONDITIONS FOR SOME INEQUALITIES
AND SYSTEMS WITH FUNCTIONAL PARAMETERS AND
SINGULAR COEFFICIENTS ON BOUNDARY

E.I. GALAKHOV, O.A. SALIEVA

Abstract. We consider the problem on nonexistence of positive solutions for some non-
linear elliptic inequalities in a bounded domain. The principal parts of the considered
inequalities are p(z)-Laplacians with variable exponents. The lower terms of the consid-
ered inequalities can depend both on the unknown function and its gradient. We assume
that the coeflicients at the lower terms have singularities at the boundary. To the best of
the authors’ knowledge, the conditions for nonexistence of solutions to inequalities with
variable exponents were not considered before.

We obtain the sufficient conditions for nonexistence of positive solutions in terms of the
exponent p(x), of the singularities order and of parameters in the problem. To prove the
obtained conditions, we employ an original modification of the nonlinear capacity method
proposed by S.I. Pokhozhaev. The method is based on a special choice of test functions
in the generalized formulation of the problem and on algebraic transformations of the
obtained expression. This allows us to obtain asymptotically sharp apriori estimates for
the solutions leading to a contradiction under a certain choice of the parameters. This
implies the nonexistence of the solutions. We generalize the obtained results for the case
of nonlinear systems with similar conditions for the operators and coefficients.

Keywords: elliptic inequalities, variable exponents, nonexistence of solutions, singular
coeflicients.

Mathematics Subject Classification: 35J60, 35K55, 35R55

1. INTRODUCTION

Sufficient conditions for nonexistence of solutions to nonlinear elliptic equations, inequalities
and the systems of them was considered by many authors.

The first results for the Laplace operator with a point singularity inside a domain were
obtained by H. Brezis and X. Cabré [I] by means of the comparison principle.

S.I. Pokhozhaev proposed the nonlinear capacity method [9] for higher order operators not
satisfying the comparison principle. Later this method was developed in joint works with
E. Mitidieri and other authors, see monograph [§] and the references therein. This method
allowed them to obtain a series of new sharp sufficient unsolvability conditions for nonlinear
partial differential inequalities in various functional classes. The method was based on obtaining
asymptotically optimal apriori estimates by the algebraic analysis of the integral form of the
considered inequality under a special choice of the test functions. The application of this
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method to various types of elliptic equations and systems can be found, for instance, in [2], [3],
@, [1.

In the present work we employ a modification of the nonlinear capacity method for obtaining
sufficient unsolvability conditions for some nonlinear elliptic inequalities in a bounded domain
with variable exponents and coefficients with singularities at the boundary. To the best of the
authors’ knowledge, earlier the unsolvability conditions for inequalities with variable exponents
were not considered.

To prove the nonexistence of solutions by the nonlinear capacity method, we construct test
functions with various geometric structure taking into account a specific character of the con-
sidered problem. Our first results in this direction were published in [5], [6].

The rest of paper consists of two section. In Section 2 we obtain the results on nonexistence
of solutions to scalar nonlinear elliptic inequalities, while in Section 3 we do the same for the
systems of such inequalities.

Remark on notations: hereinafter the symbol ¢ stands for various positive constants, which
can depend on the parameters of the considered problems.

2. SCALAR INEQUALITIES

We consider the problem

{—div(|Du|p<w>—2Du) > p % (2)ut@ | Dul'™,  zeqQ, )

u(z) =0, x €,

where Q is a bounded domain with a smooth boundary, p(z), q(z), s(z) € C(Q) are functions
with a positive infimum, p(z) = dist(z, 0Q2), a € R.

The solutions of problem are treated in the weak sense (in the sense of distributions)
according to the following definition.

Definition 2.1. A non-negative function u € I/Vli’f(x)(Q) is called a weak solution (in the
sense of distributions) to problem (1)) if p~*(x)u?@|Dul*® € L (Q) and for each nonnegative
test function ¢ € C3(Q) the inequality

/ DuP®2(Du, Dy da > / p* (@)u?®)| Dul*@ de 2)
Q Q

holds.

Remark 2.1. Similarly to [8] we can show that if such solution exists and it is strictly
positive in 1, then @) holds also for test functions of form ¢ = uYp withy € R and ¢ € C}().
If u vanishes somewhere in 2 and v < 0, we can use the test functions 1» = (u+0)"¢ and pass
to the limit as 6 — 0. This leads to the same results as in the previous case. This is why in
what follows we assume that w > 0 if this exists.

We introduce the notation
Qy = {z € Q: p(x) = kn} (n>0,k=1,2).

Assume that

mf p(r) > 1, inf(g(z) —p(z)) > 1.
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We denote
b () = p(z)(q(z) +7) — s(z)(y — 1)
! g(x) +s(x) —p(x) +1
e (z) = plx) +7 -1
T (@) + s(z) —ple) + 1 (3)
D(y,n) = 0P pmee) dy,
Qn\/Q;TI

Then the following theorem holds.
Theorem 2.1. Assume that there exists 7o < 0 such that for v € (yy,0) we have
lim D(y,n) = 0. (4)

n—0+
Then inequality has no non-trivial solutions.
Example 2.1. Let Q = B1(0), p(z) = p = const, q(z) = ¢ = const, s(x) = 0. Then
p(x) =1—|z| and inequality becomes
Az i(l— [z (z € B(0)), 5)
while condition holds exactly as o > q+ 1. It is easy to see that once this condition fails,
that is, as o < q + 1, inequality has a solution of form C(1 — |x|>q§;§1 with an appropriate

constant C' = C(p,q,«) > 0, that is, the obtained unsolvability condition for inequality @ 18
optimal.

Proof. Assume that there exists a non-trivial solution u of inequality . We introduce the
family of functions ¢, € C§(Q2;[0,1]) of form ¢, (z) = &) (x) with

1 o€ Qy,
a@={y rgo ©)
De, @) <er! @eD) )

and with a sufficiently large A > 0. Then we obtain

[ 7@t Dul g, do < [(Dulr 2 Du, D) d
Q Q
:’y/vﬂl|Du]p(””)<p77 dx+/u7|Du|p(x)Z(Du,Dgon)dx
Q Q
<7/u”‘1|Du|p($)g0n dx+/u7|Du|p($)_1|Dg0n|dx,
Q Q

which implies

/po‘(x)uq(x)”\Du]s(x)gon dx + || /u”llDu\p(’:)gon dr < /u’Y]Du\p(x)l\Dgoﬂ dzx.
Q Q Q
We represent the integrand in the right hand side of this inequality as

u(@)  (a@) 7)) ay@  YEB @) ys(a)—(a(@)+y)y(=)

27 s(a) T|Du|y($)p_mgpﬁ(’:) . Qs(m)uT|Du|p($)—1—y(m)|D¢n| - p (@) @;Tx),

where y(z) will be chosen later. We apply the parametric Young inequality with the exponent
s(x)/y(z);we shall show later that s(x)/y(z) > 1 under an appropriate choice of y(z). This
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yields

1
2

SEN

p @D di+ | [ Dl da

vs(@)—(a(@)+7)y (=) (p(2)—1-y(2))s(=) s(z) ay(z) %
<clu s(x)—y(x) |Du| s(@)—y(z) |D<p77 @@ - psE-v@ @, dzx.
Q

We apply the Young inequality with the exponent z(zx) once again:

s (@)~ (q(2) +7)y(x) (p(z) —1—y())s(x) s(2) ay(z) —%
c |u () —y(2) |Du] s(@)—y(x) |D<p77 5@V - ps@—v@ @) Ay

Q
Y] (ys(@) = (a(@)+2)v(x))z(x) (p()=1—y(@))s(@)=(x)
<7 U s(@)—y(@) |Du| s(@)—y(2) ©On dx

+c |D¢|s<x> W . EQEIONCS dz,

where

We choose y(z) and z(x) so that
(p(2) = 1 —y(x))s(x)z(x) = p(x)(s(x) — y(z)),

vs(z) — (g(x) +V)y(z)
s(z) — y(z)

that is,

o sty
v@) =50 = ot 1) — @ 1)’
)

p(x)[p()(q(x) +7) — s(z)(y = 1) — (p(x) + v — 1)]
— D(p(x)(q(x) +v) = s(x)(y = 1)) = s(x)(p(x) +v—1)

We note that as v = 0, by our assumptions on ¢(z), p(z) and s(z), for each = € Q we have

2(a) = 5(2) = oo

s() _ p(z)q(x) + s(z)  p(x)q(z) + s(x) B @ i
yolz)  plx)—1 q(z) =p(z) + ) > p(x) > 1
and
2o(z) = p(x)(q(xr) — 1)+ s(x) + 1 s(z) +1

=14+
p(x)(q(z) —1) p(x)(q(z) = 1)
By the continuity, for sufficiently small || this yields: y‘ix)) > 1 and z,(x) > 1 for all x € Q
and this is needed to apply the Young inequality.

For such y(z) and z(z) and for ¢, with properties (6]), (7) and for sufficiently large A > 0, it
follows from that

1
3 [ @u a0, o+ L [0 D, de < ().

Q

> 1.

Passing to the limit as n — 40, by for v € (90,0) we obtain the contradiction to the
assumed nontriviality of u and this completes the proof. O
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3. SYSTEMS OF INEQUALITIES

We consider the system of inequalities

—div(|DuP D2 Du) > p~*(z)v®®| Dy| 2@ x €,
—div(|Dv|"™=2Dv) > p~ 8 (2)uP*@ | DuP2@ z e Q, (9)
u, v = 0, x e,

where €2 is a bounded domain with a smooth boundary.
We assume that p, ¢, p1, 1, D2, g2 € C(Q) are functions with a positive infimum, «, 8 € R.
The solutions of system (9) are treated in the weak sense (in the sense of distributions)
according to the following definition.

Definition 3.1. A pair of non-negative functions (u,v) € WP (Q) N W) is called a
weak solution (in the sense of distributions) to system (@ if p~%(x)v1@|Dy|2@) ¢ L1 (Q),
p P (x)uPr@ | DylP2@ ¢ Ll (Q) and for each non-negative test functions 1y, q(z) € CH(Q) the

mequalities

/ DuP®~*(Du, Diby) da / p (@)@ Do |y, da,

Q

/ Do 2(Du, Diy(2)) da > / 573(@)uP @ | DulP® sy () da
Q

Q

(10)

hold.

Remark 3.1. Similarly to Remark[2.1], we can assume that uw > 0 and v > 0 if they exist
and we can employ the test functions 1) = uV¢ y(z) = vV with ¢ € CJ().

We denote

o1 (2) = glz) +v—1 () = — (p(z) -1 —7)

7 @ (x) + ga(x) —q(x) —y+ 17 77 pi(x) + (p2(x) — p(z) + 1)(1 =)’
es(z) = — qlz) +vy—1 o) = — (g(z) = D1 =)

7 q(r) + @) —gl@) —y+1° 7 01(7) + (2(z) — q(z) + 1)(1 — )’

p()p1(x) + pa(z)(1 — ) _
Wl = @) o) - plw) -1 B
q(7)qi(7) + ga(x)(1 — )
@1 (7) + go(x) — q(x) =7+ 1’
(

Digtn) = [ 49 a) g o, j=1.2

QW\QQU

Dj~(n) = / a @ (z)  nB @ dy,  j =3 4.
Qn\an

Then the following theorem holds.

d3,7(5€)

Theorem 3.1. Assume that
mfp(x) > 1, fg(r)>1, nf(pi(2) +pa(r) —px)) > 1, nf(a(r) + () —qlz)) > 1
and there exists o < 0 such that
lim D;,(n) =0, j=1,...,4 (11)

n—0+

for v € (70,0). Then system @D has no nontrivial solutions.
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Proof. Let (u,v) be a non-trivial solution to system (9)), and ¢, € C§°(€2; 0, 1]) be test functions
of the same form as in the proof of Theorem 2.1 satisfying @ and .

Employing the test function v¢1(x) = w”(z)p,(x) in the first inequality in and the
function ¢ (x) = v7(x)p, () in the second inequality, where the number « is such that

max(inf (1 —p(z)), inf(1 — q(2)),70) <7 <0,

we get
[ @e Do, de <y [0 DU, dn [0 |DU Doy dn, (12)

/ §3 (@) @) | Du g, d < / o7 Dol dr + / o[ Do" Y D, . (13)
We employ the representation
L Dyl = @) Du‘bm)@ﬁ W @) Du|p(z>71—b1<x)¢;ﬁz>’ (14)

_1 1
U7|D,U|q(a:)—1 _ UaQ(x)|DU|b2(x)Q0;2(w> ,U'y—ag(ac)|l),U|q(x)—1—bz(ac)9017 ca(z) ’ (15)

and apply the parametric Young inequality to the right hand sides in and with the
exponents denoted respectively ¢;(z) and cy(x). We choose the parameters so that

(a1(x)cr(x) = — 1,

bl(‘r)cl<x) - p(‘r)7 (16)
y—a)  pe)

p(x) —=1=bi(z) pa(z)’

GQ(I CQ(x) =7 ]-7

bQ(x)C2<x) = Q(‘CC)’ (17)
T—ak) )

Lq(z) =1 —ba(x)  qa(w)

Remark 3.2. The meaning of the above choice is the preparation to the following use
of the Holder inequality; under appmpm’ate choice of the parameters, we want to obtain

[ p7P(2)uPr@| DulP2@ o, dx and [ p=*(x)v2@|Dv|2@yp, dz in the right hand sides of the in-
equalities.

\
P

Solving systems of equations and , we obtain

o) = = D) = Do) = )
p(x)p1(x) + pa(x) (1 — ) ’
p(@)((p(x) — Upa(x) — 7pa(a))
b = @ T @i =) (18)
o1 () = p(x)p1(z) + pa(x)(1 —7)
\ (p(z) = Dpi(x) — ypa(z)’
o) = (= D) = Vi) ~ 1)
@a@ T e@i-)
1(@)((a(@) — Var () — 10:(0))
) = @ T @) 19)
o) = A0 ) + )1 =)
=)= (@)~ Do) — o)
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We substitute ((18) and into and and we arrive at the representations:

(=1 ((p(2)~D)py (&) —yp (@) p(@)((p(2)—1)py (2)—ypa(2)) (@) =Vpi(@)—ypa(@)
u“/|Du|p(ac)—1 —qu P@p1@+p2(@) (A7) |Du| p(@)p1 (@) +p3 @) (1—) S07177(1)171(:c>+p2(sc>(1—w>

p1 (@) (p(a)+9=1) @) (p@)ty-n) @V (@) —apa ()
- U P@PL@ 2@ | Doy pEp1 ) +p2 @A) ¢, PP TP =)

)

(r=1)((a(2)=1)q; (2) =74 (2)) 1@ (g(@) =Dy (1) —vgp(x)) @@ =Da1(@)—793(@)
v7|Dv|‘1(“f)_1 =y d@a@re®) | Dyl d@a@teEi- pinEtein
a1 (2)(a(@)+y—1) a(@)(a(@)+y-1) @ Da @ -y

- YI@0@+aE- | Dy|i@a @@ o, a(@a1(@)+aa(@)(1=7)

We observe that as v = 0,

) 1006 £ 06 (0o) = Vo) ) | mle)
(q(z) = Dar(x) (¢(z) = V() (q(z) = D ()
and similar, cy(x) > co0 > 1. This is why the same inequalities ¢;(x) > 1 and ¢(x) > 1 hold
by the continuity for sufficiently small |y|. Thus, applying the parametric Young inequality

to the right hand sides in and with the exponents ¢;(x) and cp(x) in and (19),

respectively, we arrive at

=0 > 1

[ @ poeig, o+ Bl [itipupez, ai

p(z)p1 () +pa (=) (1—7)
p1(2)(P(2)+v—1) pa () (p(x)+y—1) ]D¢ \ p1(@)+p2(@)
< Cy u Pr@+pa(@) |Du| p1 (@) +p2 (@) N dg;j’

p(@)py (@) +pa() (A=) 4
p1(z)+p2(z)

©n
/p5(:c)up1(”‘")\Du]p2(z)W<pn dx + |—;| /v”llelq(m)gpn dx

a(z)q1 (z)+qa(z)(1—v)

m(zﬂ)(q-w—l) 22(z)(q(x)+v—1) |D90?7| q1 (z)+q2(x)
+ag () (@) +az2(@)
< Cl7 v @t ’Dv| a1 (z)Faz (= OO G

a1 (z)+q2(z)

dx,

"
where the constants ¢, and d, depend only on p(x), ¢(x), p1(x), ¢1(x), p2(x), ¢2(z) and . We
observe that under our assumptions for v = 0 we have

di(z) = p1(z) + pa(z) ¢ () + g2(z)
p(z) =1 q(z) —1
and this is why by the continuity d;(z) > 1 and dz(x) > 1 for sufficiently small |y|. Applying
the Young inequality with the exponents

) - PR () ()

>dio>1, dy(x) = = dyo > 1

plz) +y—1" pi(x) + po(x) — p(o) =7 +1
and
_ a@) + @), 7) = 0(7) + ga(2)
() = g(z) +~v -1’ (@) 0(7) + q2(z) —q(z) =7+ 1’
we obtain

/p_o‘(m)vql(m)]DU|‘Z2(x)u7g0n dm+%/u”’_l|Du|p(m)gpn dx

<67/p—ﬁ(%)um(fv)|Du|pz(w)()077 dr (20)

p(z)p1 (z)+po(z)(1—7)

B(p(x)+vy—1) |D90 ’p1($)+p2(x)_p(x)_,y+l
@) +p2(@)—p(@)—7+1 n
+f’7/pp1 P2 P v (l‘) p(z)p1 (z)+po(z)(1—7) 1
p1(z)+pa(z)—p(z)—v+1
n

dx,
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/p5(:c)up1(“)|Du\p2(x)v7g0nd:l:+%/N1|Dv|q(x)g0,7 dx

< —a a(z) q2()
\9”///) (@)™ Do|*# g, d (21)
(a(a) ty-1) Dy O e 2t o1
a(g(z)+vy—1 90 q1 (z)+q2(z)—q(z)—~
+h7/pql(z)+”(z)q(mw+l( S ETAGET G - dz.
OO Ot
Employing the test functions ¢y (z) = ¢s(z) = ¢, in (10)), we get
[ e @er Do o, do < [ 1Dur g, da 2
[ 7@ ODu g, dn < [ Dol Dy o (23)

We employ the representation

1

|Du|p(:c)—1 _ uas(:c)|Du|b3(:c) cs%z) —a3(as)|Du|p(z)—1—b3( )(P 90n> pdg(z) on 63(1) dg(z) (24)

)
1

|Dv|q(x)—1 _ ,Ua4(x)‘DU‘b4(x 7;4(96) —a4(x ’D'U’q l_b4(x)<P_aSD )d4(w),0d4(””)<,0 cy(x) d4(1) (25)

Y

in order to apply the triple Young inequality to the right hand sides in and with the
exponents denoted respectively c3(x), ds(x), es(z) and c4(z), dy(zx), 64(56). Here we choose the
parameters so that

(az(z)cs(x) = v — 1,
bs(x)cs(x) = p(a),
a3(:(:)d3($) = —pl(l’), (26)
(p(z) — 1 = bs(x))ds(x) = pa(2),
1 N 1 N I .
(c3(z)  ds(z)  es(x)
(ay(@)es(z) =7 — 1,
ba(z)ea() = (),
a4($)d4($) = _(h(x) (27)
(¢(z) = 1 = ba(2))da(x) = ga(),
! + ! + ! = 1.
(ca(@)  du(z)  ea(x)
Solving systems of equations and , we obtain
o) — 1= D@ o) =1
p(@)pi(z) + pa()(1 =)’
(o) — PO @) () ~ 1)
p(x)p1(z) + pa()(1 =)’
p(@)p1(z) + pa(x)(1 — )
1% @em -y )
p(@)p1(z) + pa(z)(1 —7)
R 7 T
(o) = POP() + (@)1 =)
( pi(@) + (p2(2) —p+1)(1 =)’
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o) = = D)) 1)
q(@)qi(z) + @2(x)(1 =)’
) = @) (5)(a(o) 1)
q(z)q1(x) + ga(x)(1 —7)’
q(z)q1(z) + ga(2)(1 — )
A 5 B VR 2
dy(z) = q(x)q1 () + q2(2)(1 — )
(gz) =D)L —~)
) = A)0) + )1~ )
L Q(7) + (@(r) — g+ 1)(1 —7)

We observe that as v =0

_ plz)pi(z) + pa(x) p1
@) = D@ -1 L h@e@ -1
D2

ds(x) = p($)];)l(%)j (@) = pi(z) + Pur) ¥ P2%) (p:v&;—le(a:) > pi(x) = dsp > 1,
p(@)p1(x) + p2() < p1(7) + pa() > 0> 1

es(@) = pi(z) +pa(x) —p(z) + 1~ pi(z) + pa(x) — p(x) +1 ’

and similar estimates hold for c4(x), dy(x), e4(x). Hence, the continuity implies that for suffi-
ciently small || all these exponents exceed 1 similarly to the above arguing.

Substituting and into and , we obtain the representations

(2)— (r=Dp1 (@) (@) =1) p@p) @@ -1 PUERE
|Du|p L p@p (@) 2 @) (- ’Y)|_DU|P(T)P1(Z)+P2(I)(1 N pp 2

p1 (@) (p(z)—1)(1—7) p2(@)(p(z)—1)(1—7) (p(x)-1)(1—7)
uP(E)P1(r>+P2(I>(1 v)|Du‘P(I p1(x)+p2(z)(1—7) (p ©n )p(w)Pl(w)erz(w)(l )

(v=p1(z)—1)(p(z)— 1)
e SSHEEy

1 41(@) (a(x)~1)

(y=1)ay () (a(@)~1) 9(2)q) (2)(q(z)~
|D»U|q(ff) = 1@ @ Fa2 @07 | Dy|1@a @ Fa@ -7 i@ @te =)
q1 (z)(q(z)—1)(1—) q2(z)(q(x)—1)(1—7) (g(z)—1)(1—~)

. pa@a (@) Faz (@) (I- w)|Dv\q<x)q1(x)+q2<w)<1—w) (p ©n )q<w>q1<x>+q2(x><1 0]

(y=a1 (@)~ 1)(a(x)~1)
alg(z)=1)(1=7)
- pI@a @ Faa ()(1-7) AN @+ a@ =)

and applying the triply Young inequality to the right hand sides in and with the
exponents c3(z), ds(z), es(x), ca(x), ds(z), es(x) in (28), (29) respectively, we arrive at

/ P2 (2)o" @) | Do @, di

<Oy | w— 1|Du|p (pndJT—i—Cg ( )up1 |Du|p2(z o, dx
(30)
p(x)pq (x)+po(x)(1—7)
C s 2 =) | Depy | PLr2tmr b d
x)+ x)—p+1 —
+Cs | pr@FeE IO (0) — o ey 9%
p1(z)+(p2(z)—p+1)(1—7)

n
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/p—ﬁ( )um ]Du‘pQ 0y da

<C4/,U'YI|D'U|(I(Z)QDT] dx+c5/pa($)Uql(x)|DU|q2(w)g0ndg;

(31)
a(@)ay (@) +az(x)(1—7)
a(g(z)=1) (1) |D<p | 1@+ (@@= F D=
@+ —q+D)(1—
+06 pa )+ (g2 (@) —q+ D) (A—7) (T R@0 ] dx .
a1 (@) +(az (@) —gT1H(1—7)
n
Employing (20) and (21), by the previous estimates we obtain
—(z) ql(w)|D ‘%(I) dr < C 75( ) pl(ff)‘D |p2(:v) d
p “(x)v v opdr < C7 | p " (x)uw U on dx
()/J‘(p((z);rvzl)) 1( )lD | (<Z)>P1(z2+>172(?)§1 v)l
p1(z)+p2(z)—p(z)—7+ p1(z)+p2(z)—p(x Y+
—|—Cs/p p<x>p1<x>+p2<f<1 N dz (32)
p1(@)+p2(@)—p(z)—7+1
n
p(z)p1 (x)+pa(z)(1—7v)
Bp(z)—=1)(1—7) |D¢ |m(z)+(p2<z> p(2)+1)(1—)
@)+ 2@ —p(@)F1)(1—7)
+Cy [ prire=t 7 (x) OGR4
P1(@) (P2 (@) —p(@) + (1)
]
/p—ﬁ( )um |Du|p2(w r < C’lo/p‘o‘(x)vql(’”)\Dv|q2(m)g0n dx
: )a(q((z))+w?1)) 1( )|D | q((z)ql(zer)tm((z);l**r)l
q1(z)+qg2(z)—q(z)—v+ q1(z)+qo(x z)—v+
+Cn P - dz
a(@)a1 (@) +ap(@) A=) 4 (33)
¢q1(z)+¢ZQ(I) q(z)—~+1
n

q(z)qq (2)+go(z)(1—7)

a(g(z)—1)(1—>) D q1(z)+(g2(z)—q(x)+1)(1—)
—|—012/p4n(z)+(¢12(1)Q(I)+1)(1“/)( )| nl dzx

q(z)q1 () +ao(z)(1—y)
q1 (2)+(q2(z) —q(z)+1)(1—)
n

where the constants depend only on p(z), ¢(x), pi(z), ¢1(x), p2(z), ¢2(x), v and on the param-
eters in the Young inequalities.

We substitute (34) into (35) and vice versa and move all the terms of form
c [ p=(z)v1@|Do| 2@y, dx and c [ p~?(x)uP@|DulP*@)p, dz into the left hand side. Then
by @ and , for C7C19 < 1 (which can be ensured by an appropriate choice of the parameters
in the Young inequalities) we have

4
[ oo @r e, de < €Y D), (34)

j=1

4
[ o P D, dn < 3 D). )

j=1
Passing to the limit as n — 0, by we arrive at the contradiction. This completes the
proof of the theorem. O
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