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ON THE GROWTH OF SOLUTIONS OF SOME HIGHER

ORDER LINEAR DIFFERENTIAL EQUATIONS WITH

MEROMORPHIC COEFFICIENTS

M. SAIDANI, B. BELAÏDI

Abstract. In this paper, by using the value distribution theory, we study the growth and
the oscillation of meromorphic solutions of the linear differential equation

𝑓 (𝑘) +
(︁
𝐴𝑘−1,1(𝑧)𝑒

𝑃𝑘−1(𝑧) +𝐴𝑘−1,2(𝑧)𝑒
𝑄𝑘−1(𝑧)

)︁
𝑓 (𝑘−1)

+ · · ·+
(︁
𝐴0,1(𝑧)𝑒

𝑃0(𝑧) +𝐴0,2(𝑧)𝑒
𝑄0(𝑧)

)︁
𝑓 = 𝐹 (𝑧),

where 𝐴𝑗,𝑖(𝑧) (̸≡ 0) (𝑗 = 0, . . . , 𝑘 − 1) , 𝐹 (𝑧) are meromorphic functions of a finite order,
and 𝑃𝑗(𝑧), 𝑄𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2) are polynomials with degree 𝑛 > 1. Un-
der some conditions, we prove that as 𝐹 ≡ 0, each meromorphic solution 𝑓 ̸≡ 0 with
poles of uniformly bounded multiplicity is of infinite order and satisfies 𝜌2(𝑓) = 𝑛 and
as 𝐹 ̸≡ 0, there exists at most one exceptional solution 𝑓0 of a finite order, and all other
transcendental meromorphic solutions 𝑓 with poles of uniformly bounded multiplicities sat-
isfy 𝜆(𝑓) = 𝜆(𝑓) = 𝜌 (𝑓) = +∞ and 𝜆2 (𝑓) = 𝜆2 (𝑓) = 𝜌2 (𝑓) 6 max {𝑛, 𝜌 (𝐹 )} . Our results
extend the previous results due Zhan and Xiao [19].

Keywords: Order of growth, hyper-order, exponent of convergence of zero sequence, dif-
ferential equation, meromorphic function.

Mathematics Subject Classification: 34M10, 30D35

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna’s value distribution theory, see [12], [18]. Let 𝜌 (𝑓)
stands for the order of growth of a meromorphic function 𝑓 and the hyper-order of 𝑓 is defined
by

𝜌2 (𝑓) = lim sup
𝑟→+∞

log log 𝑇 (𝑟, 𝑓)

log 𝑟
,

where 𝑇 (𝑟, 𝑓) is the Nevanlinna characteristic function of 𝑓 , see [12], [14], [18].

Definition 1.1. ([15], [17]) Let 𝑓 be a meromorphic function. The convergence exponent of
the zero-sequence of a meromorphic function 𝑓 is defined by

𝜆 (𝑓) = lim sup
𝑟→+∞

log𝑁
(︁
𝑟, 1

𝑓

)︁
log 𝑟

,
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where 𝑁
(︁
𝑟, 1

𝑓

)︁
is the integrated counting function of zeros of 𝑓 in {𝑧 : |𝑧| 6 𝑟}, and the exponent

of convergence the sequence of distinct zeros of 𝑓 is defined by

𝜆 (𝑓) = lim sup
𝑟→+∞

log𝑁
(︁
𝑟, 1

𝑓

)︁
log 𝑟

,

where 𝑁
(︁
𝑟, 1

𝑓

)︁
is the integrated counting function of distinct zeros of 𝑓 in {𝑧 : |𝑧| 6 𝑟} . The

hyper convergence exponents of the zero-sequence and the distinct zeros of 𝑓 are defined respec-
tively by

𝜆2 (𝑓) = lim sup
𝑟→+∞

log log𝑁
(︁
𝑟, 1

𝑓

)︁
log 𝑟

, 𝜆2 (𝑓) = lim sup
𝑟→+∞

log log𝑁
(︁
𝑟, 1

𝑓

)︁
log 𝑟

.

Several authors [3], [9], [14] have study the growth of solutions of the second order linear
differential equation

𝑓 ′′ + 𝐴1(𝑧)𝑒𝑃 (𝑧)𝑓 ′ + 𝐴2(𝑧)𝑒𝑄(𝑧)𝑓 = 0, (1.1)

where 𝑃 (𝑧), 𝑄(𝑧) are nonconstant polynomials, 𝐴1(𝑧), 𝐴2(𝑧) ( ̸≡ 0) are entire functions such that
𝜌 (𝐴1) < deg𝑃 (𝑧), 𝜌 (𝐴2) < deg𝑄(𝑧). Gundersen showed in [9] that if deg𝑃 (𝑧) ̸= deg𝑄(𝑧),
then each nonconstant solution of (1.1) is of infinite order. If deg𝑃 (𝑧) = deg𝑄(𝑧), then
(1.1) may have nonconstant solutions of a finite order. For instance 𝑓(𝑧) = 𝑒𝑧 + 1 satisfies
𝑓 ′′ + 𝑒𝑧𝑓 ′ − 𝑒𝑧𝑓 = 0.

In [10], Habib and Beläıdi studied the order and hyper-order of solutions of some higher order
linear differential equations and they proved the following result.

Theorem 1.1. ([10]) Let 𝐴𝑗(𝑧) ( ̸≡ 0), (𝑗 = 1, 2), 𝐵𝑙(𝑧) (̸≡ 0) (𝑙 = 1, . . . , 𝑘 − 1), 𝐷𝑚

(𝑚 = 0, . . . , 𝑘 − 1) be entire functions with

max {𝜌 (𝐴𝑗) , 𝜌 (𝐵𝑙) , 𝜌 (𝐷𝑚)} < 1,

𝑏𝑙 (𝑙 = 1, . . . , 𝑘 − 1) be complex constants such that (𝑖) arg 𝑏𝑙 = arg 𝑎1 and 𝑏𝑙 = 𝑐𝑙𝑎1 (0 < 𝑐𝑙 < 1)
(𝑙 ∈ 𝐼1) and (𝑖𝑖) 𝑏𝑙 is a real constant such that 𝑏𝑙 6 0 (𝑙 ∈ 𝐼2), where 𝐼1 ̸= ∅, 𝐼2 ̸= ∅, 𝐼1∩𝐼2 = ∅,
𝐼1 ∪ 𝐼2 = {1, 2, . . . , 𝑘 − 1}, and 𝑎1, 𝑎2 are complex numbers such that 𝑎1𝑎2 ̸= 0, 𝑎1 ̸= 𝑎2
(suppose that |𝑎1| 6 |𝑎2|). If arg 𝑎1 ̸= 𝜋 or 𝑎1 is a real number such that 𝑎1 <

𝑏
1−𝑐

, where
𝑐 = max {𝑐𝑙 : 𝑙 ∈ 𝐼1} and 𝑏 = min {𝑏𝑙 : 𝑙 ∈ 𝐼2}, then each solution 𝑓 ̸≡ 0 of the equation

𝑓 (𝑘) +
(︀
𝐷𝑘−1 +𝐵𝑘−1𝑒

𝑏𝑘−1𝑧
)︀
𝑓 (𝑘−1) + . . .+

(︀
𝐷1 +𝐵1𝑒

𝑏1𝑧
)︀
𝑓 ′

+ (𝐷0 + 𝐴1𝑒
𝑎1𝑧 + 𝐴2𝑒

𝑎2𝑧) 𝑓 = 0
(1.2)

satisfies 𝜌 (𝑓) = +∞ and 𝜌2 (𝑓) = 1.

And in [2], they studied the order and hyper-order of solutions of some higher order linear
differential equations with meromorphic coefficient and they proved the following result.

Theorem 1.2. ([2]) Let 𝐴𝑗(𝑧) (̸≡ 0) (𝑗 = 1, 2 ), 𝐵𝑙(𝑧) (̸≡ 0) (𝑙 = 1, . . . , 𝑘 − 1) be mero-
morphic functions with

max {𝜌 (𝐴𝑗) (𝑗 = 1, 2) , 𝜌 (𝐵𝑙) (𝑙 = 1, . . . , 𝑘 − 1)} < 1,

𝑏𝑙 (𝑙 = 1, . . . , 𝑘 − 1 ) be complex constants such that (𝑖) 𝑏𝑙 = 𝑐𝑙𝑎1 (0 < 𝑐𝑙 < 1) (𝑙 ∈ 𝐼1) and
(𝑖𝑖) 𝑏𝑙 is a real constant such that 𝑏𝑙 < 0 (𝑙 ∈ 𝐼2), where 𝐼1 ̸= ∅, 𝐼2 ̸= ∅, 𝐼1 ∩ 𝐼2 = ∅,
𝐼1 ∪ 𝐼2 = {1, 2, . . . , 𝑘 − 1}, and 𝑎1, 𝑎2 are complex numbers such that 𝑎1𝑎2 ̸= 0, 𝑎1 ̸= 𝑎2
(suppose that |𝑎1| 6 |𝑎2|). If arg 𝑎1 ̸= 𝜋 or 𝑎1 is a real number such that 𝑎1 <

𝑏
1−𝑐

, where
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𝑐 = max {𝑐𝑙, 𝑙 ∈ 𝐼1} and 𝑏 = min {𝑏𝑙, 𝑙 ∈ 𝐼2}, then each meromorphic solution 𝑓 (̸≡ 0) with poles
of uniformly bounded multiplicities of the equation

𝑓 (𝑘) +𝐵𝑘−1𝑒
𝑏𝑘−1𝑧𝑓 (𝑘−1) + · · · +𝐵1𝑒

𝑏1𝑧𝑓 ′ + (𝐴1𝑒
𝑎1𝑧 + 𝐴2𝑒

𝑎2𝑧) 𝑓 = 0 (1.3)

satisfies 𝜌 (𝑓) = +∞ and 𝜌2 (𝑓) = 1.

In [19], Zhan and Xiao studied the homogeneous and nonhomogeneous higher order differen-
tial equations and obtained the following results.

Theorem 1.3. ([19]) Let 𝐴𝑗𝑖(𝑧) ( ̸≡ 0) be entire functions with 𝜌 (𝐴𝑗𝑖) < 𝑛, 𝑛 > 1 is
a positive integer, 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2. Let 𝑃𝑗(𝑧) = 𝑎𝑗,𝑛𝑧

𝑛 + · · · + 𝑎𝑗,0 and
𝑄𝑗(𝑧) = 𝑏𝑗,𝑛𝑧

𝑛 + · · · + 𝑏𝑗,0 be polynomials, where 𝑎𝑗,𝑞, 𝑏𝑗,𝑞 (𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑞 = 0, 1, . . . , 𝑛) are
complex numbers such that 𝑎𝑗,𝑛𝑏𝑗,𝑛 ̸= 0, 𝑎0,𝑛 ̸= 𝑏0,𝑛 and 𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1,
𝑗 = 1, . . . , 𝑘 − 1 are distinct numbers. Then each solution 𝑓 (̸≡ 0) of the equation

𝑓 (𝑘) +
(︀
𝐴𝑘−1,1(𝑧)𝑒𝑃𝑘−1(𝑧) + 𝐴𝑘−1,2(𝑧)𝑒𝑄𝑘−1(𝑧)

)︀
𝑓 (𝑘−1)

+ · · · +
(︀
𝐴0,1(𝑧)𝑒𝑃0(𝑧) + 𝐴0,2(𝑧)𝑒𝑄0(𝑧)

)︀
𝑓 = 0

(1.4)

of a finite order.

Theorem 1.4. ([19]) Let 𝐴𝑗𝑖(𝑧) ( ̸≡ 0) be entire functions with 𝜌 (𝐴𝑗𝑖) < 𝑛, where 𝑛 > 1
is a positive integer, 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2. Let 𝑃𝑗(𝑧) = 𝑎𝑗,𝑛𝑧

𝑛 + · · · + 𝑎𝑗,0 and
𝑄𝑗(𝑧) = 𝑏𝑗,𝑛𝑧

𝑛 + · · · + 𝑏𝑗,0 be polynomials, where 𝑎𝑗,𝑞, 𝑏𝑗,𝑞 (𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑞 = 0, 1, . . . , 𝑛) are
complex numbers such that 𝑎𝑗,𝑛𝑏𝑗,𝑛 ̸= 0, 𝑎0,𝑛 ̸= 𝑏0,𝑛 and 𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1,
𝑗 = 1, . . . , 𝑘 − 1 are distinct numbers. 𝐹 (𝑧)(̸≡ 0) is an entire function of a finite order. Then
the equation

𝑓 (𝑘) +
(︀
𝐴𝑘−1,1(𝑧)𝑒𝑃𝑘−1(𝑧) + 𝐴𝑘−1,2(𝑧)𝑒𝑄𝑘−1(𝑧)

)︀
𝑓 (𝑘−1)

+ · · · +
(︀
𝐴0,1(𝑧)𝑒𝑃0(𝑧) + 𝐴0,2(𝑧)𝑒𝑄0(𝑧)

)︀
𝑓 = 𝐹 (𝑧)

(1.5)

satisfies the following statements:
(i) There exists at most one exceptional solution 𝑓0 of a finite order, and all other solutions
satisfy 𝜆 (𝑓) = 𝜆 (𝑓) = 𝜌 (𝑓) = +∞ and 𝜆2 (𝑓) = 𝜆2 (𝑓) = 𝜌2 (𝑓) 6 max {𝑛, 𝜌 (𝐹 )} .
(ii) If there exists 𝑓0 of a finite order, then 𝜌 (𝑓0) 6 max

{︀
𝑛, 𝜆 (𝑓0) , 𝜌 (𝐹 )

}︀
.

(iii) If 𝐹 (𝑧) is an entire function of order less than 𝑛 and arg 𝑎0,𝑛 ̸= arg 𝑏0,𝑛, then each solution
of (1.5) is of infinite order.

In this paper, we are concerned with a more general problem. We extend and improve
Theorem 1.3 and Theorem 1.4. In fact, we will prove the following theorems.

Theorem 1.5. Let 𝐴𝑗𝑖(𝑧) ( ̸≡ 0) be meromorphic functions of a finite order such that
max{𝜌 (𝐴𝑗𝑖) , 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2} < 𝑛, where 𝑛 > 1 is a positive integer. Let
𝑃𝑗(𝑧) = 𝑎𝑗,𝑛𝑧

𝑛 + · · · + 𝑎𝑗,0 and 𝑄𝑗(𝑧) = 𝑏𝑗,𝑛𝑧
𝑛 + · · · + 𝑏𝑗,0 be polynomials, where 𝑎𝑗,𝑞, 𝑏𝑗,𝑞

(𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑞 = 0, 1, . . . , 𝑛) are complex numbers such that 𝑎𝑗,𝑛𝑏𝑗,𝑛 ̸= 0, 𝑎0,𝑛 ̸= 𝑏0,𝑛 and
𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1 are distinct numbers. Then each meromor-
phic solution 𝑓 (̸≡ 0) of equation (1.4) with poles of uniformly bounded multiplicity is of infinite
order and satisfies 𝜌2(𝑓) = 𝑛.

Theorem 1.6. Let 𝐴𝑗𝑖(𝑧) (̸≡ 0), 𝐹 (𝑧)(̸≡ 0) be meromorphic functions of a finite order
with max{𝜌 (𝐴𝑗𝑖) , 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2} < 𝑛, where 𝑛 > 1 is a positive integer. Let
𝑃𝑗(𝑧) = 𝑎𝑗,𝑛𝑧

𝑛 + · · · + 𝑎𝑗,0 and 𝑄𝑗(𝑧) = 𝑏𝑗,𝑛𝑧
𝑛 + · · · + 𝑏𝑗,0 be polynomials, where 𝑎𝑗,𝑞, 𝑏𝑗,𝑞

(𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑞 = 0, 1, . . . , 𝑛) are complex numbers such that 𝑎𝑗,𝑛𝑏𝑗,𝑛 ̸= 0, 𝑎0,𝑛 ̸= 𝑏0,𝑛 and
𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1 are distinct numbers. Then the equation
(1.5) satisfies:
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(i) There exists at most one exceptional meromorphic solution 𝑓0 with finite order, and all other
transcendental meromorphic solutions 𝑓 with poles of uniformly bounded multiplicities satisfy

𝜆 (𝑓) = 𝜆 (𝑓) = 𝜌 (𝑓) = +∞

and

𝜆2 (𝑓) = 𝜆2 (𝑓) = 𝜌2 (𝑓) 6 max {𝑛, 𝜌 (𝐹 )} .
(ii) If there exists 𝑓0 of a finite order, then 𝜌 (𝑓0) 6 max

{︀
𝑛, 𝜆 (𝑓0) , 𝜌 (𝐹 )

}︀
.

(iii) If 𝐹 (𝑧) is a meromorphic function of order less than 𝑛 and arg 𝑎0,𝑛 ̸= arg 𝑏0,𝑛, then each
meromorphic solution 𝑓 of (1.5) with poles of uniformly bounded multiplicities is of infinite
order and satisfies 𝜌2(𝑓) = 𝑛.

2. Auxiliary lemmata

First, we recall the following definitions. The linear measure of a set 𝐸 ⊂ [0,+∞) is defined
as

𝑚 (𝐸) =

∫︁ +∞

0

𝜒𝐸 (𝑡) 𝑑𝑡

and the logarithmic measure of a set 𝐹 ⊂ [1,+∞) is defined by

𝑙𝑚 (𝐹 ) =

∫︁ +∞

1

𝜒𝐹 (𝑡)

𝑡
𝑑𝑡,

where 𝜒𝐻 (𝑡) is the characteristic function of a set 𝐻.

Lemma 2.1. ([1]) Let 𝑃𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑘) be polynomials with deg𝑃0 = 𝑛 (𝑛 > 1) and
deg𝑃𝑗 6 𝑛 (𝑗 = 1, . . . , 𝑘) . Let 𝐴𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑘) be meromorphic functions of a finite
order and max {𝜌 (𝐴𝑗) , 𝑗 = 0, 1, . . . , 𝑘} < 𝑛 such that 𝐴0(𝑧) ̸≡ 0. We denote

𝐹 (𝑧) = 𝐴𝑘𝑒
𝑃𝑘(𝑧) + 𝐴𝑘−1𝑒

𝑃𝑘−1(𝑧) + · · · + 𝐴1𝑒
𝑃1(𝑧) + 𝐴0𝑒

𝑃0(𝑧).

If deg (𝑃0(𝑧) − 𝑃𝑗(𝑧)) = 𝑛 for all 𝑗 = 1, . . . , 𝑘, then 𝐹 is a nontrivial meromophic function with
finite order satisfying 𝜌 (𝐹 ) = 𝑛.

Lemma 2.2. ([8]) Let 𝑓(𝑧) be a transcendental meromorphic function and let 𝛼 > 1 and
𝜀 > 0 be given constants. Then there exist a set 𝐸1 ⊂ (1,+∞) of a finite logarithmic measure
and a constant 𝐵 > 0 that depends only on 𝛼 and positive integers (𝑛,𝑚) obeying 𝑛 > 𝑚 > 0
such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸1, we have⃒⃒⃒⃒

𝑓 (𝑛)(𝑧)

𝑓 (𝑚)(𝑧)

⃒⃒⃒⃒
6 𝐵

[︂
𝑇 (𝛼𝑟, 𝑓)

𝑟
(log𝛼 𝑟) log 𝑇 (𝛼𝑟, 𝑓)

]︂𝑛−𝑚

.

Lemma 2.3. ([11]) Let 𝑃 (𝑧) = (𝛼 + 𝑖𝛽) 𝑧𝑛 + · · · (𝛼, 𝛽 are real numbers, |𝛼| + |𝛽| ̸= 0) be
a polynomial with degree 𝑛 > 1 and 𝐴(𝑧) be a meromorphic function with 𝜌 (𝐴) < 𝑛. Let

𝑓(𝑧) = 𝐴(𝑧)𝑒𝑃 (𝑧), 𝑧 = 𝑟𝑒𝑖𝜃, 𝛿 (𝑃, 𝜃) = 𝛼 cos𝑛𝜃 − 𝛽 sin𝑛𝜃.

Then for any given 𝜀 > 0, there exists a set 𝐸2 ⊂ [1,+∞) of a finite logarithmic measure such
that for each 𝜃 ∈ [0, 2𝜋) ∖ 𝐻 (𝐻 = {𝜃 ∈ [0, 2𝜋) : 𝛿 (𝑃, 𝜃) = 0}) and for |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸2,
𝑟 → +∞, we have
(i) if 𝛿 (𝑃, 𝜃) > 0, then

exp {(1 − 𝜀) 𝛿 (𝑃, 𝜃) 𝑟𝑛} 6
⃒⃒
𝑓
(︀
𝑟𝑒𝑖𝜃
)︀⃒⃒

6 exp {(1 + 𝜀) 𝛿 (𝑃, 𝜃) 𝑟𝑛} ,

(ii) if 𝛿 (𝑃, 𝜃) < 0, then

exp {(1 + 𝜀) 𝛿 (𝑃, 𝜃) 𝑟𝑛} 6
⃒⃒
𝑓
(︀
𝑟𝑒𝑖𝜃
)︀⃒⃒

6 exp {(1 − 𝜀) 𝛿 (𝑃, 𝜃) 𝑟𝑛} .
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Lemma 2.4. ([5]) Let 𝑓(𝑧) be a meromorphic function of order 𝜌 (𝑓) = 𝜌 < +∞. Then
for any given 𝜀 > 0, there exists a set 𝐸3 ⊂ (1,+∞) that has finite linear measure and finite
logarithmic measure such that as |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸3, 𝑟 → +∞, we have |𝑓(𝑧)| 6 exp (𝑟𝜌+𝜀) .

It is well known that due to the Wiman-Valiron theory [13], [15], it is important to studyt
the properties of entire solutions of differential equations. In [4], Chen extended the Wiman-
Valiron theory from entire functions to meromorphic functions. Here we give a special form of
the result given by Wang and Yi in [17], when meromorphic function has infinite order.

Let 𝑔(𝑧) =
∞∑︀
𝑛=0

𝑎𝑛 𝑧
𝑛 be an entire function. By 𝜇 (𝑟) = max{|𝑎𝑛| 𝑟𝑛; 𝑛 = 0, 1, . . .} we denote

the maximum term of 𝑔 and by 𝜈𝑔 (𝑟) = max{𝑚 : 𝜇 (𝑟) = |𝑎𝑚| 𝑟𝑚} we denote the central index
of 𝑔.

Lemma 2.5. ([17]) Let 𝑓(𝑧) = 𝑔(𝑧)/𝑑(𝑧) be a meromorphic function of infinite order obey-
ing 𝜌2 (𝑓) = 𝜎, 𝑔(𝑧) and 𝑑(𝑧) are entire functions, where 𝜌 (𝑑) < +∞. Then there exists a
sequence of complex numbers

{︀
𝑧𝑚 = 𝑟𝑚𝑒

𝑖𝜃𝑚
}︀
𝑚∈N satisfying

𝑟𝑚 → +∞, 𝜃𝑚 ∈ [0, 2𝜋) ; 𝑚 ∈ N, lim
𝑚→+∞

𝜃𝑚 = 𝜃0 ∈ [0, 2𝜋) , |𝑔 (𝑧𝑚)| = 𝑀 (𝑟𝑚, 𝑔)

and for sufficiently large 𝑚 we have

𝑓 (𝑛)(𝑧𝑚)

𝑓(𝑧𝑚)
=

(︂
𝜈𝑔 (𝑟𝑚)

𝑧𝑚

)︂𝑛

(1 + 𝑜 (1)) (𝑛 ∈ N),

lim sup
𝑟𝑚→+∞

log log 𝜈𝑔(𝑟𝑚)

log 𝑟𝑚
= 𝜌2(𝑔) = 𝜎.

Lemma 2.6. ([9]) Let 𝜙 : [0,+∞) → R and 𝜓 : [0,+∞) → R be a monotone nondecreasing
functions such that 𝜙(𝑟) 6 𝜓(𝑟) for all 𝑟 /∈ (𝐸4 ∪ [0, 1]), where 𝐸4 is a set of a finite logarithmic
measure. Let 𝛼 > 1 be a given constant. Then there exists an 𝑟1 = 𝑟1(𝛼) > 0 such that
𝜙(𝑟) 6 𝜓(𝛼𝑟) for all 𝑟 > 𝑟1.

Lemma 2.7. Suppose that 𝑘 > 2 and 𝐹 , 𝐴0, 𝐴1, . . . , 𝐴𝑘−1 are meromorphic functions such
that 𝜌 = max {𝜌 (𝐴𝑗) 𝑗 = 0, 1, 2, . . . , 𝑘 − 1, 𝜌 (𝐹 )} < +∞. Let 𝑓(𝑧) be a transcendental mero-
morphic solution with all poles of 𝑓 are of uniformly bounded multiplicity, of equation

𝑓 (𝑘) + 𝐴𝑘−1 𝑓
(𝑘−1) + · · · + 𝐴1𝑓

′ + 𝐴0 𝑓 = 𝐹. (2.1)

Then 𝜌2 (𝑓) 6 𝜌.

Proof. We assume that 𝑓 is a transcendental meromorphic solution of equation (2.1). If
𝜌 (𝑓) < +∞, then 𝜌2 (𝑓) = 0 6 𝜌. Assume that 𝑓 is a meromorphic solution to equation
(2.1) of infinite order with poles of uniformly bounded multiplicity. By (2.1) we have⃒⃒⃒⃒

𝑓 (𝑘)

𝑓

⃒⃒⃒⃒
6 |𝐴𝑘−1(𝑧)|

⃒⃒⃒⃒
𝑓 (𝑘−1)

𝑓

⃒⃒⃒⃒
+ · · · + |𝐴1(𝑧)|

⃒⃒⃒⃒
𝑓 ′

𝑓

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝐹

𝑓

⃒⃒⃒⃒
+ |𝐴0(𝑧)| . (2.2)

By (2.1) it follows that the poles of 𝑓 can locate only at the poles of 𝐴𝑗 (𝑗 = 0, . . . , 𝑘 − 1) and
𝐹 . Note that the poles of 𝑓 are of uniformly bounded multiplicity. Hence, 𝜆 (1/𝑓) 6 𝜌. By the

Hadamard factorization theorem, we know that 𝑓 can be expressed as 𝑓(𝑧) = 𝑔(𝑧)
𝑑(𝑧)

, where 𝑔(𝑧)

and 𝑑(𝑧) are entire functions with

𝜆 (𝑑) = 𝜌 (𝑑) = 𝜆 (1/𝑓) 6 𝜌 < 𝜌 (𝑓) = 𝜌 (𝑔) = +∞

and 𝜌2 (𝑓) = 𝜌2 (𝑔). By Lemma 2.5, there exists a sequence
{︀
𝑧𝑚 = 𝑟𝑚𝑒

𝑖𝜃𝑚
}︀
𝑚∈N satisfying

𝑟𝑚 → +∞, 𝜃𝑚 ∈ [0, 2𝜋), lim
𝑚→+∞

𝜃𝑚 = 𝜃0 ∈ [0, 2𝜋), |𝑔(𝑧𝑚)| = 𝑀(𝑟𝑚, 𝑔)
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such that for 𝑚 sufficiently large we have

𝑓 (𝑛)(𝑧𝑚)

𝑓(𝑧𝑚)
=

(︂
𝜈𝑔(𝑟𝑚)

𝑧𝑚

)︂𝑛

(1 + 𝑜(1)) (𝑛 ∈ N) (2.3)

and

lim sup
𝑟𝑚→+∞

log log 𝜈𝑔(𝑟𝑚)

log 𝑟𝑚
= 𝜌2(𝑔). (2.4)

By Lemma 2.4, for each given 𝜀 > 0, there exists a set 𝐸3 ⊂ (1,+∞) of a finite logarithmic
measure such that

|𝐹 (𝑧)| 6 exp
{︀
𝑟𝜌+𝜀

}︀
, |𝑑(𝑧)| 6 exp

{︀
𝑟𝜌+𝜀

}︀
(2.5)

and

|𝐴𝑗(𝑧)| 6 exp
{︀
𝑟𝜌+𝜀

}︀
(𝑗 = 0, . . . , 𝑘 − 1) (2.6)

hold for |𝑧| = 𝑟 /∈ [0, 1]∪𝐸3, 𝑟 → +∞. Since 𝑀 (𝑟, 𝑔) > 1 for 𝑟 sufficiently large, it follows from
(2.5) that ⃒⃒⃒⃒

𝐹 (𝑧)

𝑓(𝑧)

⃒⃒⃒⃒
=

|𝐹 (𝑧)| |𝑑(𝑧)|
|𝑔(𝑧)|

=
|𝐹 (𝑧)| |𝑑(𝑧)|
𝑀 (𝑟, 𝑔)

6 exp
{︀

2𝑟𝜌+𝜀
}︀
. (2.7)

Substituting (2.3), (2.6) and (2.7) into (2.2), we obtain(︂
𝜈𝑔(𝑟𝑚)

𝑟𝑚

)︂𝑘

|1 + 𝑜(1)| 6
𝑘−1∑︁
𝑗=1

𝑒𝑟
𝜌+𝜀
𝑚

(︂
𝜈𝑔(𝑟𝑚)

𝑟𝑚

)︂𝑗

|1 + 𝑜(1)| + 𝑒𝑟
𝜌+𝜀
𝑚 + 𝑒2𝑟

𝜌+𝜀
𝑚 .

It follows that

(𝜈𝑔(𝑟𝑚))𝑘 |1 + 𝑜(1)| 6 (𝑘 + 1) 𝑒2𝑟
𝜌+𝜀
𝑚 𝑟𝑘𝑚 (𝜈𝑔(𝑟𝑚))𝑘−1 |1 + 𝑜(1)| .

Hence,

𝜈𝑔(𝑟𝑚) 6 (𝑘 + 1)𝐴𝑟𝑘𝑚𝑒
2𝑟𝜌+𝜀

𝑚 , (2.8)

where the sequence
{︀
𝑧𝑚 = 𝑟𝑚𝑒

𝑖𝜃𝑚
}︀
𝑚∈N satisfies

𝑟𝑚 /∈ [0, 1] ∪ 𝐸3, 𝑟𝑚 → +∞, 𝜃𝑚 ∈ [0, 2𝜋), lim
𝑚→+∞

𝜃𝑚 = 𝜃0 ∈ [0, 2𝜋), |𝑔(𝑧𝑚)| = 𝑀 (𝑟𝑚, 𝑔)

and 𝐴 > 0 is some constant. Then by (2.8), Lemma 2.6 and 𝜀 > 0 being arbitrary, we obtain
that 𝜌2(𝑔) = 𝜌2(𝑓) 6 𝜌.

Remark 2.1. For 𝐹 ≡ 0, Lemma 2.7 was proved by Chen and Xu in [7].

Lemma 2.8. ([16]) Let 𝑔(𝑧) be a transcendental entire function and 𝜈𝑔(𝑟) be the central index
of 𝑔. For each sufficiently large |𝑧| = 𝑟, let 𝑧𝑟 = 𝑟𝑒𝑖𝜃𝑟 be a point satisfying |𝑔 (𝑧𝑟)| = 𝑀 (𝑟, 𝑔).
Then there exist a constant 𝛿𝑟 (> 0) and a set 𝐸5 of a finite logarithmic measure such that for
all 𝑧 satisfying |𝑧| = 𝑟 /∈ 𝐸5 and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] , we have

𝑔(𝑛)(𝑧)

𝑔(𝑧)
=

(︂
𝜈𝑔 (𝑟)

𝑧

)︂𝑛

(1 + 𝑜 (1)) (𝑛 > 1 is an integer) .

Lemma 2.9. ([8]) Let 𝑓(𝑧) be a transcendental meromorphic function of a finite order 𝜌.
Let Γ = {(𝑘1, 𝑗1) , (𝑘2, 𝑗2) , . . . , (𝑘𝑚, 𝑗𝑚)} denote a set of distinct pairs of integers satisfying
𝑘𝑖 > 𝑗𝑖 > 0 (𝑖 = 1, 2, . . . ,𝑚) and let 𝜀 > 0 be a given constant. Then there exists a set
𝐸6 ⊂ [1,+∞) of a finite logarithmic measure such that for all 𝑧 obeying |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸6

and (𝑘, 𝑗) ∈ Γ, we have ⃒⃒⃒⃒
𝑓 (𝑘)(𝑧)

𝑓 (𝑗)(𝑧)

⃒⃒⃒⃒
6 |𝑧|(𝑘−𝑗)(𝜌−1+𝜀) .
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Lemma 2.10. Let 𝑓(𝑧) = 𝑔(𝑧)/𝑑(𝑧) be a meromorphic function with 𝜌 (𝑓) = 𝜌 6 +∞,
where 𝑔(𝑧) and 𝑑(𝑧) are entire functions satisfying one of the following conditions:
(i) 𝑔 is transcendental and 𝑑 is polynomial,
(ii) 𝑔, 𝑑 are transcendental and 𝜆 (𝑑) = 𝜌 (𝑑) = 𝛽 < 𝜌 (𝑔) = 𝜌.
For each sufficiently large |𝑧| = 𝑟, let 𝑧𝑟 = 𝑟𝑒𝑖𝜃𝑟 be a point satisfying |𝑔 (𝑧𝑟)| = 𝑀 (𝑟, 𝑔) and
let 𝜈𝑔(𝑟) be the central index of 𝑔. Then there exist a constant 𝛿𝑟 (> 0) , a sequence {𝑟𝑚}𝑚∈N ,
𝑟𝑚 → +∞ and a set 𝐸7 of finite logarithmic measure such that the estimation

𝑓 (𝑛)(𝑧)

𝑓(𝑧)
=

(︂
𝜈𝑔 (𝑟𝑚)

𝑧

)︂𝑛

(1 + 𝑜 (1)) (𝑛 > 1 is an integer)

holds for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ 𝐸7, 𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] .

Proof. By mathematical induction, we obtain

𝑓 (𝑛) =
𝑔(𝑛)

𝑑
+

𝑛−1∑︁
𝑗=0

𝑔(𝑗)

𝑑

∑︁
(𝑗1···𝑗𝑛)

𝐶𝑗𝑗1···𝑗𝑛

(︂
𝑑′

𝑑

)︂𝑗1

· · ·
(︂
𝑑(𝑛)

𝑑

)︂𝑗𝑛

, (2.9)

where 𝐶𝑗𝑗1···𝑗𝑛 are constants and 𝑗 + 𝑗1 + 2𝑗2 + · · · + 𝑛𝑗𝑛 = 𝑛. Hence,

𝑓 (𝑛)

𝑓
=
𝑔(𝑛)

𝑔
+

𝑛−1∑︁
𝑗=0

𝑔(𝑗)

𝑔

∑︁
(𝑗1···𝑗𝑛)

𝐶𝑗𝑗1···𝑗𝑛

(︂
𝑑′

𝑑

)︂𝑗1

· · ·
(︂
𝑑(𝑛)

𝑑

)︂𝑗𝑛

. (2.10)

For each sufficiently large |𝑧| = 𝑟, let 𝑧𝑟 = 𝑟𝑒𝑖𝜃𝑟 be a point satisfying |𝑔 (𝑧𝑟)| = 𝑀 (𝑟, 𝑔). By
Lemma 2.8, there exist a constant 𝛿𝑟 (> 0) and a set 𝐸5 of a finite logarithmic measure such
that for all 𝑧 obeying |𝑧| = 𝑟 /∈ 𝐸5 and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟], we have

𝑔(𝑗)(𝑧)

𝑔(𝑧)
=

(︂
𝜈𝑔 (𝑟)

𝑧

)︂𝑗

(1 + 𝑜 (1)) (𝑗 = 1, 2, . . . , 𝑛) , (2.11)

where 𝜈𝑔 (𝑟) is the central index of 𝑔. Substituting (2.11) into (2.10) yields

𝑓 (𝑛)(𝑧)

𝑓(𝑧)
=

(︂
𝜈𝑔 (𝑟)

𝑧

)︂𝑛 [︂
(1 + 𝑜 (1))

+
𝑛−1∑︁
𝑗=0

(︂
𝜈𝑔 (𝑟)

𝑧

)︂𝑗−𝑛

(1 + 𝑜 (1))
∑︁

(𝑗1···𝑗𝑛)

𝐶𝑗𝑗1···𝑗𝑛

(︂
𝑑′

𝑑

)︂𝑗1

· · ·
(︂
𝑑(𝑛)

𝑑

)︂𝑗𝑛 ]︂
.

(2.12)

We can choose a constant 𝜎 such that 𝛽 < 𝜎 < 𝜌. By Lemma 2.9, for any given 𝜀
(0 < 2𝜀 < 𝜎 − 𝛽) , we have ⃒⃒⃒⃒

𝑑(𝑠)(𝑧)

𝑑(𝑧)

⃒⃒⃒⃒
6 𝑟𝑠(𝛽−1+𝜀) (𝑠 = 1, 2, . . . , 𝑛) , (2.13)

where |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸6, 𝐸6 ⊂ (1,+∞) with 𝑙𝑚 (𝐸6) < +∞. From this and
𝑗1 + 2𝑗2 + · · · + 𝑛𝑗𝑛 = 𝑛− 𝑗, we have

|𝑧|𝑛−𝑗

⃒⃒⃒⃒
⃒
(︂
𝑑′

𝑑

)︂𝑗1

· · ·
(︂
𝑑(𝑛)

𝑑

)︂𝑗𝑛
⃒⃒⃒⃒
⃒ 6 |𝑧|(𝑛−𝑗)(𝛽+𝜀) (2.14)

for |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸6. By 𝜌 (𝑔) = 𝜌, there exists a sequence {𝑟′𝑚} (𝑟′𝑚 → +∞) satisfying

lim
𝑟′𝑚→+∞

log 𝜈𝑔(𝑟
′
𝑚)

log 𝑟′𝑚
= 𝜌. (2.15)
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Setting the logarithmic measure of 𝐸7 = [0, 1] ∪ 𝐸5 ∪ 𝐸6, 𝑙𝑚 (𝐸7) = 𝛿 < +∞, there exists a
point 𝑟𝑚 ∈ [𝑟′𝑚, (𝛿 + 1) 𝑟′𝑚] ∖ 𝐸7. Since

log 𝜈𝑔(𝑟𝑚)

log 𝑟𝑚
>

log 𝜈𝑔(𝑟
′
𝑚)

log [(𝛿 + 1) 𝑟′𝑚]
=

log 𝜈𝑔(𝑟
′
𝑚)

(log 𝑟′𝑚)
[︁
1 + log(𝛿+1)

log 𝑟′𝑚

]︁ , (2.16)

we get

lim
𝑟𝑚→+∞

log 𝜈𝑔(𝑟𝑚)

log 𝑟𝑚
= 𝜌. (2.17)

Hence, for sufficiently large 𝑚, we obtain

𝜈𝑔 (𝑟𝑚) > 𝑟𝜌−𝜀
𝑚 > 𝑟𝜎−𝜀

𝑚 , (2.18)

where 𝜌− 𝜀 can be replaced by a large enough number 𝑀 if 𝜌 = +∞. This and (2.14) imply⃒⃒⃒⃒
⃒
(︂
𝜈𝑔 (𝑟)

𝑧

)︂𝑗−𝑛(︂
𝑑′

𝑑

)︂𝑗1

· · ·
(︂
𝑑(𝑛)

𝑑

)︂𝑗𝑛
⃒⃒⃒⃒
⃒ 6 𝑟(𝑛−𝑗)(𝛽−𝜎+2𝜀)

𝑚 → 0, 𝑟𝑚 → +∞, (2.19)

where |𝑧| = 𝑟𝑚 /∈ 𝐸7 and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] . From (2.12) and (2.19), we obtain our
result.

Lemma 2.11. Let 𝑓(𝑧) = 𝑔(𝑧)/𝑑(𝑧) be a meromorphic function with 𝜌 (𝑓) = 𝜌 6 +∞,
where 𝑔(𝑧) and 𝑑(𝑧) are entire functions satisfying one of the following conditions
(i) 𝑔 is transcendental and 𝑑 is polynomial,
(ii) 𝑔, 𝑑 are transcendental and 𝜆 (𝑑) = 𝜌 (𝑑) = 𝛽 < 𝜌 (𝑔) = 𝜌.
For each sufficiently large |𝑧| = 𝑟, let 𝑧𝑟 = 𝑟𝑒𝑖𝜃𝑟 be a point satisfying |𝑔 (𝑧𝑟)| = 𝑀 (𝑟, 𝑔) . Then
there exist a constant 𝛿𝑟 (> 0) , a sequence {𝑟𝑚}𝑚∈N , 𝑟𝑚 → +∞ and a set 𝐸8 of a finite
logarithmic measure such that the estimate⃒⃒⃒⃒

𝑓(𝑧)

𝑓 (𝑛)(𝑧)

⃒⃒⃒⃒
6 𝑟2𝑛𝑚 (𝑛 > 1 is an integer)

holds for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ 𝐸8, 𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟].

Proof. Let 𝑧𝑟 = 𝑟𝑒𝑖𝜃𝑟 be a point satisfying |𝑔 (𝑧𝑟)| = 𝑀 (𝑟, 𝑔) . By Lemma 2.10, there exist a
constant 𝛿𝑟 (> 0) , a sequence {𝑟𝑚}𝑚∈N , 𝑟𝑚 → +∞ and a set 𝐸8 of a finite logarithmic measure
such that the estimate

𝑓 (𝑛)(𝑧)

𝑓(𝑧)
=

(︂
𝜈𝑔 (𝑟𝑚)

𝑧

)︂𝑛

(1 + 𝑜 (1)) (𝑛 > 1 is an integer) (2.20)

holds for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ 𝐸8, 𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] . On the
other hand, for any given 𝜀 > 0 and sufficiently large 𝑚 we obtain

𝜈𝑔 (𝑟𝑚) > 𝑟𝜌−𝜀
𝑚 , (2.21)

where 𝜌− 𝜀 can be replaced by a large enough number 𝑀 if 𝜌 = +∞. Hence, we have⃒⃒⃒⃒
𝑓(𝑧)

𝑓 (𝑛)(𝑧)

⃒⃒⃒⃒
6 𝑟2𝑛𝑚 . (2.22)

This completes the proof.

Lemma 2.12. ([12]) Let 𝑓 be a meromorphic function and let 𝑘 ∈ N. Then

𝑚

(︂
𝑟,
𝑓 (𝑘)

𝑓

)︂
= 𝑆 (𝑟, 𝑓) ,
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where 𝑆 (𝑟, 𝑓) = 𝑂 (log 𝑇 (𝑟, 𝑓) + log 𝑟), possibly outside a set 𝐸9 ⊂ (0,+∞) with a finite linear
measure. If 𝑓 is of a finite order of growth, then

𝑚

(︂
𝑟,
𝑓 (𝑘)

𝑓

)︂
= 𝑂 (log 𝑟) .

Lemma 2.13. ([6]) Let 𝐴0, 𝐴1, . . . , 𝐴𝑘−1, 𝐹 ̸≡ 0 are meromorphic functions of a finite order.
If 𝑓 is a meromorphic solution with 𝜌 (𝑓) = +∞ of the equation

𝑓 (𝑘) + 𝐴𝑘−1𝑓
(𝑘−1) + · · · + 𝐴1𝑓

′ + 𝐴0𝑓 = 𝐹,

then

𝜆 (𝑓) = 𝜆 (𝑓) = 𝜌 (𝑓) = +∞.

3. Proof of Theorem 1.5

First, we prove that each meromorphic solution 𝑓 (̸≡ 0) of the equation (1.4) is transcendental
of order 𝜌 (𝑓) > 𝑛. We assume that 𝑓 ( ̸≡ 0) is a meromorphic solution of equation (1.4) with
𝜌 (𝑓) < 𝑛. We can rewrite equation (1.4) as

(𝐴𝑘−1,1(𝑧)𝑒𝑃𝑘−1(𝑧) + 𝐴𝑘−1,2(𝑧)𝑒𝑄𝑘−1(𝑧))𝑓 (𝑘−1)

+ · · · +
(︀
𝐴0,1(𝑧)𝑒𝑃0(𝑧) + 𝐴0,2(𝑧)𝑒𝑄0(𝑧)

)︀
𝑓 = −𝑓 (𝑘).

(3.1)

Since

max {𝜌 (𝐴𝑗𝑖) , 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2} < 𝑛

and

𝜌 (𝑓) < 𝑛,

then 𝐴𝑗𝑖𝑓
(𝑗), 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2 and 𝑓 (𝑘) are meromorphic functions of a finite order

with

𝜌
(︀
𝐴𝑗𝑖𝑓

(𝑗)
)︀
< 𝑛 and 𝜌

(︀
𝑓 (𝑘)
)︀
< 𝑛.

We have also 𝑎0,𝑛 ̸= 𝑏0,𝑛 and 𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1. Hence,
𝑎𝑗,𝑛 ̸= 𝑏𝑗,𝑛 and therefore deg (𝑃𝑗 − 𝑃0) = deg (𝑄𝑗 −𝑄0) = 𝑛. Since 𝐴0,1(𝑧)𝑓 ̸= 0, 𝐴0,2(𝑧)𝑓 ̸= 0,
by Lemma 2.1, we find that the order of growth of the left side of equation (3.1) is 𝑛, this
contradicts the inequality 𝜌

(︀
𝑓 (𝑘)
)︀
< 𝑛. Thus, each meromorphic solution 𝑓 (̸≡ 0) of equation

(1.4) is transcendental with order 𝜌 (𝑓) > 𝑛.
Let 𝑧 = 𝑟𝑒𝑖𝜃, 𝑎0,𝑛 = |𝑎0,𝑛| 𝑒𝑖𝜃1 , 𝑏0,𝑛 = |𝑏0,𝑛| 𝑒𝑖𝜃2 , 𝜃1, 𝜃2 ∈ [0, 2𝜋). Then

𝛿 (𝑃0, 𝜃) = |𝑎0,𝑛| cos (𝑛𝜃 + 𝜃1) , 𝛿 (𝑄0, 𝜃) = |𝑏0,𝑛| cos (𝑛𝜃 + 𝜃2) . (3.2)

Since 𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1, and 𝑐𝑗 are distinct numbers, we have

𝛿 (𝑃𝑗, 𝜃) = 𝑐𝑗𝛿 (𝑃0, 𝜃) , 𝛿 (𝑄𝑗, 𝜃) = 𝑐𝑗𝛿 (𝑄0, 𝜃) , (3.3)

and there exists exactly one 𝑐𝑠 such that 𝑐𝑠 = max {𝑐𝑗, 𝑗 = 0, 1, . . . , 𝑘 − 1} . Let 𝑐0 = 1.
We split our proof into two cases: 𝜃1 = 𝜃2 and 𝜃1 ̸= 𝜃2
Case 1. As 𝜃1 = 𝜃2, because of 𝑎0,𝑛 ̸= 𝑏0,𝑛, we suppose |𝑎0,𝑛| < |𝑏0,𝑛| without loss of

generality. Assume that 𝑓 is a meromorphic solution to equation (1.4) with poles of uniformly
bounded multiplicity. From (1.4), we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧) + 𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)|

6

⃒⃒⃒⃒
𝑓

𝑓 (𝑠)

⃒⃒⃒⃒ (︃⃒⃒⃒⃒
𝑓 (𝑘)

𝑓

⃒⃒⃒⃒
+

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

{︂⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒ ⃒⃒⃒⃒𝑓 (𝑗)

𝑓

⃒⃒⃒⃒}︂)︃
.

(3.4)
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Since 𝑓 is transcendental, then by Lemma 2.2, for 𝛼 = 2, there exist a set 𝐸1 ⊂ (1,+∞) with
𝑚𝑙(𝐸1) < +∞ and a constant 𝐵 > 0 such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1]∪𝐸1, we have⃒⃒⃒⃒

𝑓 (𝑗)(𝑧)

𝑓(𝑧)

⃒⃒⃒⃒
6 𝐵 [𝑇 (2𝑟, 𝑓)]𝑘+1 , 𝑗 = 1, 2, . . . , 𝑘, 𝑗 ̸= 𝑠. (3.5)

By (1.4), it follows that the poles of 𝑓 can be located only at the poles of 𝐴𝑗𝑖(𝑧),
𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2. We observe that the poles of 𝑓 are of uniformly bounded mul-
tiplicity. Hence,

𝜆 (1/𝑓) 6 max{𝜌 (𝐴𝑗𝑖) , 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2} < 𝑛.

By Hadamard factorization theorem, we know that 𝑓 can be expressed as 𝑓(𝑧) = 𝑔(𝑧)
𝑑(𝑧)

, where

𝑔(𝑧) and 𝑑(𝑧) are entire functions with

𝜆 (𝑑) = 𝜌 (𝑑) = 𝜆 (1/𝑓) < 𝑛 6 𝜌 (𝑓) = 𝜌 (𝑔) .

For each sufficiently large |𝑧| = 𝑟, let 𝑧𝑟 = 𝑟𝑒𝑖𝜃𝑟 be a point satisfying |𝑔 (𝑧𝑟)| = 𝑀 (𝑟, 𝑔). By
Lemma 2.11, there exist a constant 𝛿𝑟 (> 0), a sequence {𝑟𝑚}𝑚∈N , 𝑟𝑚 → +∞ and a set 𝐸8 of
a finite logarithmic measure such that the estimate⃒⃒⃒⃒

𝑓(𝑧)

𝑓 (𝑠)(𝑧)

⃒⃒⃒⃒
6 𝑟2𝑠𝑚 (3.6)

holds for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ 𝐸8, 𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟].

(i) If 𝛿 (𝑃0, 𝜃) > 0, then by (3.3) we have

𝛿 (𝑄𝑗, 𝜃) > 𝛿 (𝑄0, 𝜃) > 0, 𝛿 (𝑄𝑗, 𝜃) > 𝛿 (𝑃𝑗, 𝜃) > 𝛿 (𝑃0, 𝜃) > 0.

By Lemma 2.3, for any given 𝜀 obeying

0 < 𝜀 < min

{︂
1

2

(︂
𝑐𝑠 − 𝑐𝑗
𝑐𝑠 + 𝑐𝑗

)︂
, 𝑗 ̸= 𝑠

}︂
,

there exists a set 𝐸2 ⊂ [1,+∞) of a finite logarithmic measure such that for all 𝑧 satisfying
|𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸2, 𝑟 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻, where

𝐻 = {𝜃 ∈ [0; 2𝜋) : 𝛿 (𝑃0, 𝜃) = 0, 𝛿 (𝑄0, 𝜃) = 0}

is a finite set, we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧) + 𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)| >
⃒⃒
𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)

⃒⃒
−
⃒⃒
𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧)

⃒⃒
> exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟

𝑛} − exp {(1 + 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟
𝑛}

>
1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟

𝑛} ,
(3.7)

|𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)| 6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟

𝑛} + exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

6 2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛} , 𝑗 = 0, 1, 2, . . . , 𝑘 − 1, 𝑗 ̸= 𝑠.

(3.8)

Substituting (3.5), (3.6), (3.7), (3.8) into (3.4), for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1]∪𝐸1∪𝐸2∪𝐸8,
𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻 we obtain

1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟

𝑛
𝑚} 6𝑟2𝑠𝑚

(︂
𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

+𝐵

[︃
𝑇 (2𝑟𝑚, 𝑓)

]︂𝑘+1 𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚}

)︃
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64𝑟2𝑠𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1
𝑘−1∑︁

𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚}

which gives

exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚} 6 8𝑟2𝑠𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚} . (3.9)

Since 0 < 𝜀 < min
{︁

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
, then by Lemma 2.6 and (3.9) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞,

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and from equation (1.4), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛.

(ii) If 𝛿 (𝑃0, 𝜃) < 0, then by (3.2) and (3.3) we have

𝛿 (𝑄𝑗, 𝜃) < 𝛿 (𝑄0, 𝜃) < 𝛿 (𝑃0, 𝜃) < 0, 𝛿 (𝑃𝑗, 𝜃) < 𝛿 (𝑃0, 𝜃) < 0.

By Lemma 2.3, for any given 0 < 𝜀 < 1, there exists a set 𝐸2 ⊂ [1,+∞) of a finite
logarithmic measure such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸2, 𝑟 → +∞ and
arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖ 𝐻, where 𝐻 = {𝜃 ∈ [0; 2𝜋) : 𝛿 (𝑃0, 𝜃) = 0, 𝛿 (𝑄0, 𝜃) = 0} is
a finite set, we get⃒⃒

𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)
⃒⃒
6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 − 𝜀) 𝛿 (𝑃𝑗, 𝜃) 𝑟

𝑛} + exp {(1 − 𝜀) 𝛿 (𝑄𝑗, 𝜃) 𝑟
𝑛}

6 2 exp {(1 − 𝜀) 𝛿 (𝑃0, 𝜃) 𝑟
𝑛} , 𝑗 = 0, 1, 2, . . . , 𝑘 − 1.

(3.10)

By (1.4) we have

1 6

⃒⃒⃒⃒
𝑓

𝑓 (𝑘)

⃒⃒⃒⃒ 𝑘−1∑︁
𝑗=0

{︂⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒ ⃒⃒⃒⃒𝑓 (𝑗)

𝑓

⃒⃒⃒⃒}︂
. (3.11)

Substituting (3.5), (3.6) and (3.10) into (3.11), for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1]∪𝐸1∪𝐸2∪𝐸8,
𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻 we obtain

1 6 𝑟2𝑘𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

(︃
𝑘−1∑︁
𝑗=0

2 exp {(1 − 𝜀) 𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚}

)︃
6 2𝑘𝑟2𝑘𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 exp {(1 − 𝜀) 𝛿 (𝑃0, 𝜃) 𝑟

𝑛
𝑚}

(3.12)

which gives

exp {(𝜀− 1) 𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚} 6 2𝑘𝑟2𝑘𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 . (3.13)

By Lemma 2.6 and (3.13) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log+ 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞,

and

𝜌2 (𝑓) = lim sup
𝑟→+∞

log+
2 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and equation (1.4), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛.
Case 2 Assume that 𝜃1 ̸= 𝜃2.
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(i) If 𝛿 (𝑃0, 𝜃) > 0, 𝛿 (𝑄0, 𝜃) < 0, then by (3.3), we get

𝛿 (𝑃𝑗, 𝜃) > 𝛿 (𝑃0, 𝜃) > 0, 𝛿 (𝑄𝑗, 𝜃) < 𝛿 (𝑄0, 𝜃) < 0,

by Lemma 2.3, for any given 0 < 𝜀 < min{1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠}, there exists a set 𝐸2 ⊂ [1,+∞)

of a finite logarithmic measure such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸2, 𝑟 → +∞ and
arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1, where

𝐻1 = {𝜃 ∈ [0, 2𝜋) : 𝛿 (𝑃0, 𝜃) = 0, 𝛿 (𝑄0, 𝜃) = 0, 𝛿 (𝑃0, 𝜃) = 𝛿 (𝑄0, 𝜃)}
is a finite set, we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧)+𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)| >
⃒⃒
𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧)

⃒⃒
−
⃒⃒
𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)

⃒⃒
> exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛} − exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

>
1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛} ,
(3.14)

|𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)| 6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟

𝑛} + exp {(1 − 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

6 2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛} , 𝑗 = 0, 1, 2, . . . , 𝑘 − 1, 𝑗 ̸= 𝑠.

(3.15)

By (3.4), (3.5), (3.6), (3.14) and (3.15), for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1] ∪ 𝐸1 ∪ 𝐸2 ∪ 𝐸8,
𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1 we have

1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛
𝑚} 6𝑟2𝑠𝑚

(︂
𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

+𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1
𝑘−1∑︁

𝑗=0,𝑗 ̸=𝑠

2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚}
)︂

64𝑟2𝑠𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1
𝑘−1∑︁

𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚}

which gives

exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚} 6 8𝑟2𝑠𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚} . (3.16)

Since 0 < 𝜀 < min
{︁

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
, then by Lemma 2.6 and (3.16) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞,

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and from equation (1.4), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛.
(ii) If 𝛿 (𝑃0, 𝜃) < 0, 𝛿 (𝑄0, 𝜃) > 0, by (3.3), we have

𝛿 (𝑃𝑗, 𝜃) < 𝛿 (𝑃0, 𝜃) < 0, 𝛿 (𝑄𝑗, 𝜃) > 𝛿 (𝑄0, 𝜃) > 0.

By Lemma 2.3, for any given 0 < 𝜀 < min
{︁

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
, there exists a set 𝐸2 ⊂ [1,+∞)

of a finite logarithmic measure such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1]∪𝐸2, 𝑟 → +∞ and
arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1, where

𝐻1 = {𝜃 ∈ [0, 2𝜋) : 𝛿 (𝑃0, 𝜃) = 0, 𝛿 (𝑄0, 𝜃) = 0, 𝛿 (𝑃0, 𝜃) = 𝛿 (𝑄0, 𝜃)}
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is a finite set, we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧) + 𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)| >
⃒⃒
𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)

⃒⃒
−
⃒⃒
𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧)

⃒⃒
> exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟

𝑛} − exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟
𝑛}

>
1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟

𝑛} ,
(3.17)

|𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)| 6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 + 𝜀) 𝑐𝑗𝛿 (0, 𝜃) 𝑟

𝑛} + exp {(1 − 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛}

6 2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛} , 𝑗 = 0, 1, 2, . . . , 𝑘 − 1, 𝑗 ̸= 𝑠.

(3.18)

Proceeding as in the proof of (i) , for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1]∪𝐸1 ∪𝐸2 ∪𝐸8, 𝑟𝑚 → +∞
and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1 we obtain

1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟

𝑛
𝑚} 6 𝑟2𝑠𝑚

(︂
𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

+𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1
𝑘−1∑︁

𝑗=0,𝑗 ̸=𝑠

2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚}
)︂

64𝑟2𝑠𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1
𝑘−1∑︁

𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚} ,

which gives

exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚} 6 8𝑟2𝑠𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛
𝑚} . (3.19)

Since 0 < 𝜀 < min
{︁

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
, then by Lemma 2.6 and (3.19) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and from equation (1.4), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛.

(iii) If 𝛿 (𝑃0, 𝜃) > 0, 𝛿 (𝑄0, 𝜃) > 0, then by (3.3), we have

𝛿 (𝑃𝑗, 𝜃) > 𝛿 (𝑃0, 𝜃) > 0, 𝛿 (𝑄𝑗, 𝜃) > 𝛿 (𝑄0, 𝜃) > 0.

We suppose 𝛿 (𝑃0, 𝜃) > 𝛿 (𝑄0, 𝜃) without loss of generality. By Lemma 2.3, for any given

0 < 𝜀 < min
{︁

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
, there exists a set 𝐸2 ⊂ [1,+∞) of a finite logarithmic measure

such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1]∪𝐸2, 𝑟 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟]∖𝐻1,
where

𝐻1 = {𝜃 ∈ [0, 2𝜋) : 𝛿 (𝑃0, 𝜃) = 0, 𝛿 (𝑄0, 𝜃) = 0, 𝛿 (𝑃0, 𝜃) = 𝛿 (𝑄0, 𝜃)}
is a finite set, we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧) + 𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)| >
⃒⃒
𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧)

⃒⃒
−
⃒⃒
𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)

⃒⃒
> exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛} − exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

>
1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛} ,
(3.20)
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|𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)| 6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟

𝑛} + exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

6 2 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛} , 𝑗 = 0, 1, 2, . . . , 𝑘 − 1, 𝑗 ̸= 𝑠.

(3.21)

From (3.4), (3.5), (3.6), (3.20) and (3.21), we have for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1] ∪ 𝐸1 ∪
𝐸2 ∪ 𝐸8, 𝑟𝑚 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1

1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛
𝑚} 6 4𝑟2𝑠𝑚 𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚} ,

which gives

exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚} 6 8𝑟2𝑠𝑚 𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟
𝑛
𝑚} . (3.22)

Since 0 < 𝜀 < min
{︁

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
, then by Lemma 2.6 and (3.22) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞,

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and from equation (1.4), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛.

(iv) If 𝛿 (𝑃0, 𝜃) < 0, 𝛿 (𝑄0, 𝜃) < 0, then by (3.3), we have

𝛿 (𝑃𝑗, 𝜃) < 𝛿 (𝑃0, 𝜃) < 0, 𝛿 (𝑄𝑗, 𝜃) < 𝛿 (𝑄0, 𝜃) < 0.

Let 𝛿 = max {𝛿 (𝑃0, 𝜃) , 𝛿 (𝑄0, 𝜃)} . Then, by Lemma 2.3, for any given 0 < 𝜀 < 1, there exists a
set 𝐸2 ⊂ [1,+∞) of a finite logarithmic measure such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ [0, 1]∪𝐸2,
𝑟 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1, where

𝐻1 = {𝜃 ∈ [0, 2𝜋) : 𝛿 (𝑃0, 𝜃) = 0, 𝛿 (𝑄0, 𝜃) = 0, 𝛿 (𝑃0, 𝜃) = 𝛿 (𝑄0, 𝜃)}
is a finite set, we get⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 − 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟

𝑛} + exp {(1 − 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

62 exp {(1 − 𝜀) 𝑐𝑗𝛿𝑟
𝑛} , 𝑗 = 0, 1, . . . , 𝑘 − 1.

(3.23)

By (3.5), (3.6), (3.11) and (3.23) for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1]∪𝐸1 ∪𝐸2 ∪𝐸8, 𝑟𝑚 → +∞
and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻1 we have

1 6𝑟2𝑘𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

{︃
𝑘−1∑︁
𝑗=0

2 exp {(1 − 𝜀) 𝑐𝑗𝛿𝑟
𝑛
𝑚}

}︃

62𝑟2𝑘𝑚𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

{︃
𝑘−1∑︁
𝑗=0

exp {(1 − 𝜀) 𝑐𝑗𝛿𝑟
𝑛
𝑚}

}︃
.

(3.24)

Since 𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1 and 𝛿 < 0, we obtain

exp {(1 − 𝜀) 𝑐𝑗𝛿𝑟
𝑛
𝑚} 6 exp {(1 − 𝜀) 𝛿𝑟𝑛𝑚} , 𝑗 = 1, . . . , 𝑘 − 1

so (3.24) becomes

1 6 2𝑟2𝑘𝑚 𝑘𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 exp {(1 − 𝜀) 𝛿𝑟𝑛𝑚}
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which gives

exp {(𝜀− 1) 𝛿𝑟𝑛𝑚} 6 2𝑟2𝑘𝑚𝐵𝑘 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 . (3.25)

By Lemma 2.6 and (3.25) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and from equation (1.4), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛. This
completes the proof of Theorem 1.5.

4. Proof of Theorem 1.6

(i) Suppose 𝑓0 is a meromorphic solution of a finite order to equation (1.5) with poles of
uniformly bounded multiplicities. If 𝑓1(̸≡ 𝑓0) is an another meromorphic solution of a finite
order to equation (1.5) with poles of uniformly bounded multiplicities, the function 𝑓1 − 𝑓0 is
a nonzero meromorphic solution to equation (1.4) with 𝜌(𝑓1 − 𝑓0) < +∞. This contradicts
Theorem 1.5. Hence, equation (1.5) has at most one meromorphic solution of a finite order.
We assume that 𝑓(𝑧) is a meromorphic solution of infinite order to (1.5) with poles of uniformly
bounded multiplicity. By (1.5), it is easy to see that if 𝑓 has a zero of order 𝛼 (𝛼 > 𝑘)at 𝑧0,
and 𝐵0, 𝐵1, . . . , 𝐵𝑘−1 are analytic at 𝑧0, then 𝐹 must have a zero at 𝑧0 of order at least 𝛼− 𝑘.
Hence,

𝑛

(︂
𝑟,

1

𝑓

)︂
6 𝑘𝑛

(︂
𝑟,

1

𝑓

)︂
+ 𝑛

(︂
𝑟,

1

𝐹

)︂
+

𝑘−1∑︁
𝑗=0

𝑛 (𝑟, 𝐵𝑗)

and

𝑁

(︂
𝑟,

1

𝑓

)︂
6 𝑘𝑁

(︂
𝑟,

1

𝑓

)︂
+𝑁

(︂
𝑟,

1

𝐹

)︂
+

𝑘−1∑︁
𝑗=0

𝑁 (𝑟, 𝐵𝑗) , (4.1)

where 𝐵𝑗(𝑧) = 𝐴𝑗1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗2(𝑧)𝑒𝑄𝑗(𝑧), 𝑗 = 0, 1, 2, . . . , 𝑘 − 1. Now (1.5) can be rewritten as

1

𝑓
=

1

𝐹

(︂
𝑓 (𝑘)

𝑓
+𝐵𝑘−1(𝑧)

𝑓 (𝑘−1)

𝑓
+ · · · +𝐵1(𝑧)

𝑓 ′

𝑓
+𝐵0(𝑧)

)︂
. (4.2)

By Lemma 2.12 and (4.2), we get for |𝑧| = 𝑟 outside a set 𝐸9 of finite linear measure, we have

𝑚

(︂
𝑟,

1

𝑓

)︂
6𝑚

(︂
𝑟,

1

𝐹

)︂
+

𝑘∑︁
𝑗=1

𝑚

(︂
𝑟,
𝑓 (𝑗)

𝑓

)︂
+

𝑘−1∑︁
𝑗=0

𝑚 (𝑟, 𝐵𝑗) +𝑂 (1)

6𝑚

(︂
𝑟,

1

𝐹

)︂
+

𝑘−1∑︁
𝑗=0

𝑚 (𝑟, 𝐵𝑗) +𝑂 (log 𝑟𝑇 (𝑟, 𝑓)) .

(4.3)

Therefore, by (4.1), (4.3) and the first main theorem, there holds

𝑇 (𝑟, 𝑓) = 𝑇 (𝑟,
1

𝑓
) +𝑂 (1) 6 𝑇 (𝑟, 𝐹 ) +

𝑘−1∑︁
𝑗=0

𝑇 (𝑟, 𝐵𝑗) + 𝑘𝑁

(︂
𝑟,

1

𝑓

)︂
+𝑂 (log 𝑟𝑇 (𝑟, 𝑓)) (4.4)

for all sufficiently large 𝑟 /∈ 𝐸9. For sufficiently large 𝑟, we have

𝑂 (log 𝑟𝑇 (𝑟, 𝑓)) 6
1

2
𝑇 (𝑟, 𝑓). (4.5)
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Let 𝜌1 = max {𝑛, 𝜌 (𝐹 )} . By Lemma 2.4, for any given 𝜀 > 0, there exists a set 𝐸3 ⊂ (1,+∞)
of a finite logarithmic measure such that

𝑇 (𝑟, 𝐹 ) 6 𝑟𝜌1+𝜀, 𝑇 (𝑟, 𝐵𝑗) 6 𝑟𝜌1+𝜀, 𝑗 = 0, 1, . . . , 𝑘 − 1, (4.6)

when |𝑧| = 𝑟 /∈ [0, 1]∪𝐸3, 𝑟 → +∞. By (4.4), (4.5) and (4.6), for 𝑟 /∈ [0, 1]∪𝐸3∪𝐸9 sufficiently
large, we obtain

𝑇 (𝑟, 𝑓) 6 𝑟𝜌1+𝜀 + 𝑘𝑟𝜌1+𝜀 + 𝑘𝑁

(︂
𝑟,

1

𝑓

)︂
+

1

2
𝑇 (𝑟, 𝑓)

which gives

𝑇 (𝑟, 𝑓) 6 2 (𝑘 + 1) 𝑟𝜌1+𝜀 + 2𝑘𝑁

(︂
𝑟,

1

𝑓

)︂
. (4.7)

Hence,

𝜌2 (𝑓) 6 𝜆2 (𝑓)

and therefore,

𝜌2 (𝑓) 6 𝜆2 (𝑓) 6 𝜆2 (𝑓) .

Since by the definition we have 𝜆2 (𝑓) 6 𝜆2 (𝑓) 6 𝜌2 (𝑓), we get

𝜆2 (𝑓) = 𝜆2 (𝑓) = 𝜌2 (𝑓) .

On the other hand, max {𝜌 (𝐴𝑗𝑖) , 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2} < 𝑛 and 𝜌 (𝐵𝑗) < +∞ for all
𝑗 = 0, 1, . . . , 𝑘 − 1, and 𝑓(𝑧) is a solution to (1.5) of infinite order. Hence, by Lemma 2.13
we obtain 𝜆 (𝑓) = 𝜆 (𝑓) = 𝜌 (𝑓) = +∞. Since 𝜌 (𝐵𝑗) 6 𝑛, by Lemma 2.7, we have
𝜌2 (𝑓) 6 max {𝑛, 𝜌 (𝐹 )} .
(ii) Suppose 𝑓0 is a meromorphic solution of the equation (1.5) with finite order, by Lemma 2.12,

we have 𝑚

(︂
𝑟,

𝑓
(𝑗)
0

𝑓0

)︂
= 𝑂 (log 𝑟) , 𝑗 = 1, . . . , 𝑘 − 1. Using (4.2), we can get for |𝑧| = 𝑟 outside a

set 𝐸9 of finite linear measure, we have

𝑚

(︂
𝑟,

1

𝑓0

)︂
6𝑚

(︂
𝑟,

1

𝐹

)︂
+

𝑘∑︁
𝑗=1

𝑚

(︃
𝑟,
𝑓
(𝑗)
0

𝑓0

)︃
+

𝑘−1∑︁
𝑗=0

𝑚 (𝑟, 𝐵𝑗) +𝑂 (1)

6𝑚

(︂
𝑟,

1

𝐹

)︂
+

𝑘−1∑︁
𝑗=0

𝑚 (𝑟, 𝐵𝑗) +𝑂 (log 𝑟)

(4.8)

and

𝑁

(︂
𝑟,

1

𝑓0

)︂
6 𝑘𝑁

(︂
𝑟,

1

𝑓0

)︂
+𝑁

(︂
𝑟,

1

𝐹

)︂
+

𝑘−1∑︁
𝑗=0

𝑁 (𝑟, 𝐵𝑗) . (4.9)

By (4.8) and (4.9), we get

𝑇 (𝑟, 𝑓0) = 𝑇 (𝑟,
1

𝑓0
) +𝑂 (1) 6 𝑇

(︂
𝑟,

1

𝐹

)︂
+

𝑘−1∑︁
𝑗=0

𝑇 (𝑟, 𝐵𝑗) + 𝑘𝑁

(︂
𝑟,

1

𝑓0

)︂
+𝑂 (log 𝑟) . (4.10)

By (4.6) and (4.10), we get

𝑇 (𝑟, 𝑓0) 6 (𝑘 + 1) 𝑟𝜌1+𝜀 + 𝑘𝑁

(︂
𝑟,

1

𝑓0

)︂
+𝑂 (log 𝑟) .

Hence, we obtain

𝜌 (𝑓0) 6 max
{︀
𝜆 (𝑓0) , 𝜌1

}︀
= max

{︀
𝑛, 𝜆 (𝑓0) , 𝜌 (𝐹 )

}︀
.
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(iii) First we prove that each meromorphic solution 𝑓 to equation (1.5) is transcendental of
order 𝜌 (𝑓) > 𝑛. We assume that 𝑓 is a meromorphic solution to equation (1.5) with 𝜌 (𝑓) < 𝑛.
We can rewrite equation (1.5) as(︀
𝐴𝑘−1,1(𝑧)𝑒𝑃𝑘−1(𝑧) + 𝐴𝑘−1,2(𝑧)𝑒𝑄𝑘−1(𝑧)

)︀
𝑓 (𝑘−1) + · · · +

(︀
𝐴0,1(𝑧)𝑒𝑃0(𝑧) + 𝐴0,2(𝑧)𝑒𝑄0(𝑧)

)︀
𝑓 = 𝐵(𝑧),

(4.11)
where

𝐵(𝑧) = 𝐹 (𝑧) − 𝑓 (𝑘).

Since max {𝜌(𝐴𝑗𝑖), 𝑗 = 0, 1, . . . , 𝑘 − 1; 𝑖 = 1, 2, 𝜌 (𝐹 )} < 𝑛 and 𝜌 (𝑓) < 𝑛, then 𝐴𝑗𝑖𝑓
(𝑗),

𝑗 = 0, 1, . . . , 𝑘 − 1, 𝑖 = 1, 2, and 𝐵(𝑧) are meromorphic functions of a finite order with
𝜌
(︀
𝐴𝑗𝑖𝑓

(𝑗)
)︀
< 𝑛 and 𝜌 (𝐵) < 𝑛. We also have 𝑎0,𝑛 ̸= 𝑏0,𝑛 and 𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛,

𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1,. Hence, 𝑎𝑗,𝑛 ̸= 𝑏𝑗,𝑛 and deg (𝑃𝑗 − 𝑃0) = deg (𝑄𝑗 −𝑄0) = 𝑛. Since
𝐴0,1(𝑧)𝑓 ̸≡ 0, 𝐴0,2(𝑧)𝑓 ̸≡ 0, by Lemma 2.1 we find that the order of growth of the left hand side
of equation (4.11) is 𝑛. This contradicts the inequality 𝜌 (𝐵) < 𝑛. Therefore, each meromorphic
solution 𝑓 to equation (1.5) is transcendental and is of order 𝜌 (𝑓) > 𝑛.

Let 𝑧 = 𝑟𝑒𝑖𝜃, 𝑎0,𝑛 = |𝑎0,𝑛| 𝑒𝑖𝜃1 , 𝑏0,𝑛 = |𝑏0,𝑛| 𝑒𝑖𝜃2 , 𝜃1, 𝜃2 ∈ [0, 2𝜋). Then

𝛿 (𝑃0, 𝜃) = |𝑎0,𝑛| cos (𝑛𝜃 + 𝜃1) , 𝛿 (𝑄0, 𝜃) = |𝑏0,𝑛| cos (𝑛𝜃 + 𝜃2) . (4.12)

Since 𝑎𝑗,𝑛 = 𝑐𝑗𝑎0,𝑛, 𝑏𝑗,𝑛 = 𝑐𝑗𝑏0,𝑛, 𝑐𝑗 > 1, 𝑗 = 1, . . . , 𝑘 − 1, and 𝑐𝑗 are distinct numbers, we have

𝛿 (𝑃𝑗, 𝜃) = 𝑐𝑗𝛿 (𝑃0, 𝜃) , 𝛿 (𝑄𝑗, 𝜃) = 𝑐𝑗𝛿 (𝑄0, 𝜃) , (4.13)

and there exists exactly one 𝑐𝑠 such that 𝑐𝑠 = max {𝑐𝑗, 𝑗 = 0, 1, . . . , 𝑘 − 1}. Let 𝑐0 = 1,
𝛿1 = max {𝛿 (𝑃0, 𝜃) , 𝛿 (𝑄0, 𝜃)} . We split our proof into two cases:
Case 1. Assume that 𝛿1 > 0. By Lemma 2.3, for any given

0 < 𝜀 < min

{︂
𝑛− 𝜌1,

1

2

(︂
𝑐𝑠 − 𝑐𝑗
𝑐𝑠 + 𝑐𝑗

)︂
, 𝑗 ̸= 𝑠

}︂
,

there exists a set 𝐸2 ⊂ [1,+∞) of a finite logarithmic measure such that for all 𝑧 satisfying
|𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸2, 𝑟 → +∞ and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻3, where

𝐻3 = {𝜃 ∈ [0, 2𝜋) : 𝛿 (𝑃0, 𝜃) = 𝛿 (𝑄0, 𝜃)}

is a finite set, we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧) + 𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)| >
⃒⃒
𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧)

⃒⃒
−
⃒⃒
𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)

⃒⃒
> exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑃0, 𝜃) 𝑟

𝑛} − exp {(1 − 𝜀) 𝑐𝑠𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

>
1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿1𝑟

𝑛} ,
(4.14)

⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟

𝑛} + exp {(1 + 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

62 exp {(1 + 𝜀) 𝑐𝑗𝛿1𝑟
𝑛} , 𝑗 = 0, 1, . . . , 𝑘 − 1, 𝑗 ̸= 𝑠.

(4.15)

By (1.5) we have

|𝐴𝑠,1(𝑧)𝑒𝑃𝑠(𝑧) + 𝐴𝑠,2(𝑧)𝑒𝑄𝑠(𝑧)|

6

⃒⃒⃒⃒
𝑓

𝑓 (𝑠)

⃒⃒⃒⃒ {︃⃒⃒⃒⃒
𝐹 (𝑧)

𝑓

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑓 (𝑘)

𝑓

⃒⃒⃒⃒
+

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

{︂⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒ ⃒⃒⃒⃒𝑓 (𝑗)

𝑓

⃒⃒⃒⃒}︂}︃
.

(4.16)

Since 𝑓 is transcendental, from Lemma 2.2, there exists a set 𝐸1 ⊂ (1,+∞) with 𝑚𝑙(𝐸1) < +∞
and constant 𝐵 > 0, such that for all 𝑧 satisfying |𝑧| = 𝑟 /∈ 𝐸1, we have (3.5) holds and by
Lemma 2.11, there exists a set 𝐸8 of finite logarithmic measure such that |𝑧| = 𝑟 /∈ 𝐸8,
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|𝑔(𝑧)| = 𝑀 (𝑟, 𝑔) and for 𝑟 sufficiently large inequality (3.6) holds. We know that 𝑓 is tran-
scendental with 𝜌 (𝑓) > 𝑛, and by the assumptions, the poles of 𝑓 are of uniformly bounded

multiplicities. By Hadamard factorization theorem, we can express 𝑓 as 𝑓(𝑧) = 𝑔(𝑧)
𝑑(𝑧)

, where

𝑔(𝑧) and 𝑑(𝑧) are entire functions with

𝜆 (𝑑) = 𝜌 (𝑑) = 𝜆

(︂
1

𝑓

)︂
< 𝑛, 𝜌 (𝑔) = 𝜌 (𝑓) > 𝑛.

Let 𝜌1 = max {𝜌 (𝐹 ) , 𝜌 (𝑑)} < 𝑛. Since |𝑔(𝑧)| = 𝑀 (𝑟, 𝑔) > 1, then, by Lemma 2.4 we obtain⃒⃒⃒⃒
𝐹 (𝑧)

𝑓(𝑧)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑑(𝑧)𝐹 (𝑧)

𝑔(𝑧)

⃒⃒⃒⃒
=

|𝑑(𝑧)𝐹 (𝑧)|
𝑀 (𝑟, 𝑔)

6 exp
(︀
𝑟𝜌1+𝜀

)︀
exp

(︀
𝑟𝜌1+𝜀

)︀
= exp

(︀
2𝑟𝜌1+𝜀

)︀
(4.17)

as |𝑧| = 𝑟 /∈ [0, 1] ∪ 𝐸3, 𝑟 → +∞.
By (3.5), (3.6), (4.14),(4.15), (4.16) and (4.17), for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈

/∈ [0, 1] ∪ 𝐸1 ∪ 𝐸3 ∪ 𝐸8, 𝑟𝑚 → +∞, |𝑔(𝑧)| = 𝑀(𝑟𝑚, 𝑔) and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟] ∖𝐻3,
we have

1

2
exp {(1 − 𝜀) 𝑐𝑠𝛿1𝑟

𝑛
𝑚} 6𝑟2𝑠𝑚

{︂
exp

(︀
2𝑟𝜌1+𝜀

𝑚

)︀
+𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

+𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1
𝑘−1∑︁

𝑗=0,𝑗 ̸=𝑠

2 exp {(1 + 𝜀) 𝑐𝑗𝛿1𝑟
𝑛
𝑚}
}︂

64𝑟2𝑠𝑚 exp
(︀
2𝑟𝜌1+𝜀

𝑚

)︀
𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿1𝑟
𝑛
𝑚}

which gives

exp {(1 − 𝜀) 𝑐𝑠𝛿1𝑟
𝑛
𝑚} 6 8𝑟2𝑠𝑚 exp

(︀
2𝑟𝜌1+𝜀

𝑚

)︀
𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1

𝑘−1∑︁
𝑗=0,𝑗 ̸=𝑠

exp {(1 + 𝜀) 𝑐𝑗𝛿1𝑟
𝑛
𝑚} . (4.18)

Since 𝜀 < min
{︁
𝑛− 𝜌1,

1
2

(︁
𝑐𝑠−𝑐𝑗
𝑐𝑠+𝑐𝑗

)︁
, 𝑗 ̸= 𝑠

}︁
is arbitrary, so by Lemma 2.6 and (4.18) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log+ 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and equation (1.5), we have 𝜌2 (𝑓) 6 𝑛, so 𝜌2 (𝑓) = 𝑛. Then, each
meromorphic solution to (1.5) with poles of uniformly bounded multiplicities is of infinite order
and satisfies 𝜌2 (𝑓) = 𝑛.

Case 2. Assume that 𝛿1 < 0. By Lemma 2.3, for any given 𝜀 > 0 we obtain

|𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)| 6
⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧)

⃒⃒
+
⃒⃒
𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒
6 exp {(1 − 𝜀) 𝑐𝑗𝛿 (𝑃0, 𝜃) 𝑟

𝑛} + exp {(1 − 𝜀) 𝑐𝑗𝛿 (𝑄0, 𝜃) 𝑟
𝑛}

62 exp {(1 − 𝜀) 𝑐𝑗𝛿1𝑟
𝑛} , 𝑗 = 0, 1, 2, . . . , 𝑘 − 1.

(4.19)

By (1.5) we get

1 6

⃒⃒⃒⃒
𝑓

𝑓 (𝑘)

⃒⃒⃒⃒ (︃⃒⃒⃒⃒
𝐹 (𝑧)

𝑓(𝑧)

⃒⃒⃒⃒
+

𝑘−1∑︁
𝑗=0

{︂⃒⃒
𝐴𝑗,1(𝑧)𝑒𝑃𝑗(𝑧) + 𝐴𝑗,2(𝑧)𝑒𝑄𝑗(𝑧)

⃒⃒ ⃒⃒⃒⃒𝑓 (𝑗)

𝑓

⃒⃒⃒⃒}︂)︃
. (4.20)
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As in Case 1, by (3.5), (3.6), (4.17),(4.19) and (4.20), for all 𝑧 satisfying |𝑧| = 𝑟𝑚 /∈ [0, 1]∪𝐸1∪
𝐸3∪𝐸8, 𝑟𝑚 → +∞, at which |𝑔(𝑧)| = 𝑀(𝑟𝑚, 𝑔), and arg 𝑧 = 𝜃 ∈ [𝜃𝑟 − 𝛿𝑟, 𝜃𝑟 + 𝛿𝑟]∖𝐻3, we have

1 6 𝑟2𝑘𝑚

(︃
exp

(︀
2𝑟𝜌1+𝜀

𝑚

)︀
+

𝑘−1∑︁
𝑗=0

𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 2 exp {(1 − 𝜀) 𝑐𝑗𝛿1𝑟
𝑛
𝑚}

)︃
. (4.21)

Since 𝑐𝑗 > 1, 𝑗 = 0, . . . , 𝑘 − 1, 𝑟𝑚 > 𝑅1 > 1 and 𝛿1 < 0, we obtain

exp {(1 − 𝜀) 𝑐𝑗𝛿1𝑟
𝑛
𝑚} 6 exp {(1 − 𝜀) 𝛿1𝑟

𝑛
𝑚} , 𝑗 = 0, . . . , 𝑘 − 1

so (4.21) becomes

1 6 2𝑟2𝑘𝑚 (𝑘 + 1) exp
(︀
𝑟𝜌1+𝜀
𝑚

)︀
𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 exp {(1 − 𝜀) 𝛿1𝑟

𝑛
𝑚}

which gives

exp
{︀

(𝜀− 1) 𝛿1𝑟
𝑛
𝑚 − 𝑟𝜌1+𝜀

𝑚

}︀
6 2𝑟2𝑘𝑚 (𝑘 + 1)𝐵 [𝑇 (2𝑟𝑚, 𝑓)]𝑘+1 . (4.22)

By Lemma 2.6 and (4.22) we obtain

𝜌 (𝑓) = lim sup
𝑟𝑚→+∞

log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
= +∞

and

𝜌2 (𝑓) = lim sup
𝑟𝑚→+∞

log log 𝑇 (𝑟𝑚, 𝑓)

log 𝑟𝑚
> 𝑛.

In addition, by Lemma 2.7 and equation (1.5) we get 𝜌2 (𝑓) 6 𝑛 and hence, 𝜌2 (𝑓) = 𝑛. Then,
each meromorphic solution to (1.5) with poles of uniformly bounded multiplicities is of infinite
order and satisfies 𝜌2 (𝑓) = 𝑛.
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10. H. Habib and B. Beläıdi. On the growth of solutions of some higher order linear differential
equations with entire coefficients // Electron. J. Qual. Theory Differ. Equ. 2011:93, 1-13 (2011).



134 M. SAIDANI, B. BELAÏDI
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