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SPECTRAL DECOMPOSITION OF

NORMAL OPERATOR IN REAL HILBERT SPACE

M.N. ORESHINA

Abstract. We consider normal unbounded operators acting in a real Hilbert space. The
standard approach to solving spectral problems related with such operators is to apply
the complexification, which is a passage to a complex space. At that, usually, the final
results are to be decomplexified, that is, the reverse passage is needed. However, the
decomplexification often turns out to be nontrivial.

The aim of the present paper is to extend the classical results of the spectral theory for
the case of normal operators acting in a real Hilbert space. We provide two real versions
of the spectral theorem for such operators.

We construct the functional calculus generated by the real spectral decomposition of
a normal operator. We provide examples of using the obtained functional calculus for
representing the exponent of a normal operator.
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theorem, functional calculus.
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1. Introduction

Many results in the theory of normal operators are based on the spectral theorem [1]–[5],
which to each normal operator 𝑁 associates the resolution of the identity 𝐸 defined on Borel
subsets C and supported on the spectrum of the operator 𝑁 . By means of 𝐸, this allows one
to represent the operator as some integral. At that one usually assumes that the operator 𝑁
acts in a complex Hilbert space and it is recommended to make the complexification in the real
case. Nevertheless, in many applications, for instance, in numerics [6]–[14], it is desired to have
statements formulated in terms of a real space.

In this paper we discuss the constructing of a real spectral decomposition in a real Hilbert
space. In Section 2 we recall basic facts on unbounded normal operators and their complex-
ification. To formulate the spectral theorem, in Section 3 we employ the representation of a
normal operator as a sum of a self-adjoint and a skew-adjoint operator. As a result, the oper-
ator is expanded into the sum of two integrals and the spectral decomposition consists of two
families of the operators defined on Borel sets in R and acting in a real Hilbert space. Despite
such approach is natural, this turns out to be not very appropriate since we failed extending
it to one of the most important results in the spectral theory, the construction of functional
calculus. This is why in Section 4 we provide another version of the spectral theorem and in
Section 5 we provide the corresponding theorem on functional calculus. In this case the spectral
decomposition is again two families of the operators acting in a real Hilbert space but defined
on Borel sets in the upper complex half-plane.
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2. Complexification of normal operator

Let HR be a real Hilbert space with a scalar product ⟨·, ·⟩R.
Let 𝑁R : 𝐷(𝑁R) ⊂ HR → HR be a linear unbounded operator. We assume the domain

𝐷(𝑁R) of the operator 𝑁R is dense in HR. The adjoint operator 𝑁*
R is defined similar to the

case of a complex Hilbert space [3]. An operator 𝐴R is called self-adjoint if 𝐴R = 𝐴*
R. The

operator 𝐵R is called skew-adjoint if 𝐵R = −𝐵*
R. An operator 𝑁R is called normal if it is

densely defined, is closed and satisfies the condition 𝑁R𝑁
*
R = 𝑁*

R𝑁R. Similar to the complex
case [3, Thm. 13.32] one can prove that a normal operator satisfies relation 𝐷(𝑁R) = 𝐷(𝑁*

R).
Self-adjoint and skew-adjoint operators are obviously normal.

Lemma 1. Let 𝐵R : 𝐷(𝐵R) ⊂ HR → HR be a skew-adjoint operator. Then for each 𝜙 ∈
𝐷(𝐵R) the identity ⟨𝐵R𝜙, 𝜙⟩R = 0 holds true.

The proof is reduced to straightforward calculations.
A linear space HR×HR over the field C with the rule of external multiplication by complex

numbers (𝛼 + 𝑖𝛽)(𝜙, 𝜓) = (𝛼𝜙 − 𝛽𝜓, 𝛼𝜓 + 𝛽𝜙), 𝛼, 𝛽 ∈ R, (𝜙, 𝜓) ∈ HR × HR is called com-
plexification of the real Hilbert space HR and is denoted by HC [15], [16], [17], [18], [19]. It
is convenient to write the elements in HC as 𝜙 + 𝑖𝜓, where 𝜙, 𝜓 ∈ HR and 𝑖 is the imaginary
unit. We shall identify HR with the subspace HR × {0} of the space HC. It is obvious that
HC is a complex Hilbert space w.r.t. the scalar product

⟨𝜙1 + 𝑖𝜓1, 𝜙2 + 𝑖𝜓2⟩C = ⟨𝜙1, 𝜙2⟩R + ⟨𝜓1, 𝜓2⟩R + 𝑖⟨𝜓1, 𝜙2⟩R − 𝑖⟨𝜙1, 𝜓2⟩R.
The complexification of the operator 𝑁R : 𝐷(𝑁R) ⊂ HR → HR is called [16]–[19] the operator

𝑁C : 𝐷(𝑁C) ⊂ HC → HC with the domain 𝐷(𝑁C) = 𝐷(𝑁R) × 𝐷(𝑁R) acting by the rule

𝑁C(𝜙+ 𝑖𝜓) = 𝑁R𝜙+ 𝑖𝑁R𝜓, 𝜙, 𝜓 ∈ 𝐷(𝑁R).

Proposition 2. Let an operator 𝑁C be the complexification of the operator 𝑁R : 𝐷(𝑁R) ⊂
HR → HR, and 𝐷(𝑁R) is dense in HR. Then

(a) the domain 𝐷(𝑁C) of the operator 𝑁C is dense in HC;
(b) the operator 𝑁C

* adjoint for 𝑁C is the complexification of the adjoint operator 𝑁*
R;

(c) for a normal operator 𝑁R the operator 𝑁C is also normal.

The proposition can be checked by straightforward calculations.
By the symbols 0C : HC → HC and 0R : HR → HR we denote the zero operators, while

1C : HC → HC and 1R : HR → HR stand for the identity mappings. It is obvious that 0C is a
complexification of 0R and 1C is the complexification of 1R.

The inverse operator of an unbounded operator 𝑁R : 𝐷(𝑁R) ⊂ HR → HR is the operator
𝑁R

−1 : HR → 𝐷(𝑁R) satisfying the identities

𝑁R𝑁R
−1𝜙 = 𝜙, 𝜙 ∈ HR; 𝑁R

−1𝑁R𝜓 = 𝜓, 𝜓 ∈ 𝐷(𝑁R).

Let 𝑁C be a closed operator. The set 𝜌(𝑁C) of all 𝜆 ∈ C, for which the operator 𝜆1C −𝑁C
has a bounded inverse, is called the resolvent set [3]–[5] of the operator 𝑁C, while the function
𝜆 ↦→ (𝜆1C−𝑁C)−1 is called the resolvent. The complement 𝜎(𝑁C) of the resolvent set is called
the spectrum of the operator 𝑁C. The spectrum of a closed operator is a closed set [3], [5]. It
can be shown [3] that the spectrum of the self-adjoint operator is located on the real axis. For
a normal operator 𝑁R acting in the space HR, we shall make use of the following auxiliary sets:
the projections of the spectrum of its complexification 𝑁C on the real and the imaginary axes

𝜎Re(𝑁R) = 𝜎Re(𝑁C) =
{︀

Re𝜆 : 𝜆 ∈ 𝜎(𝑁C)
}︀
, 𝜎Im(𝑁R) = 𝜎Im(𝑁C) =

{︀
Im𝜆 : 𝜆 ∈ 𝜎(𝑁C)

}︀
;

the projection of the spectrum of the complexification 𝑁C on the non-negative imaginary axis

𝜎Im+(𝑁R) = 𝜎Im+(𝑁C) =
{︀

Im𝜆 : 𝜆 ∈ 𝜎(𝑁C), Im𝜆 > 0
}︀
,
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the pure real spectrum

𝜎0(𝑁R) = 𝜎0(𝑁C) = {𝜆 ∈ 𝜎(𝑁C) : Im𝜆 = 0},

and the upper part (w.r.t. the real axis) of the spectrum of the complexification 𝑁C:

𝜎+(𝑁R) = 𝜎+(𝑁C) = {𝜆 ∈ 𝜎(𝑁C) : Im𝜆 > 0}.

For 𝜔 ⊂ C, by 𝜔 ⊂ C we denote the set {𝜉 : 𝜉 ∈ 𝜔} consisting of adjoint numbers. Thus, the
set 𝜔 is symmetric with the set 𝜔 w.r.t. the real axis. We note that the notation 𝜔 is often
used to denote the closure of a set 𝜔, but in the present paper the closure of a set 𝜔 is denoted
by [𝜔].

By 𝐽 : HC → HC we denote the operator defined by the formula

𝐽(𝜙+ 𝑖𝜓) = 𝜙− 𝑖𝜓, 𝜙, 𝜓 ∈ HR.

It is obvious that 𝐽2 = 1C and 𝐽−1 = 𝐽 . We note that the operator 𝐽 is adjoint-linear, that is,
𝐽(𝜙+ 𝜓) = 𝐽𝜙+ 𝐽𝜓, 𝐽(𝜉𝜙) = 𝜉𝐽𝜙 for all 𝜙, 𝜓 ∈ HC, 𝜉 ∈ C.

We provide a criterion for the possibility to decomplexify an operator 𝑁C, that is, to represent
it as the complexification of an operator acting in HR. A similar statement was provided in [16,
Lm. 3.5].

Lemma 3. The operator 𝑁C : 𝐷(𝑁C) ⊂ HC → HC is the complexification of some operator
𝑁R : 𝐷(𝑁R) ⊂ HR → HR if and only if it commutes with the operator 𝐽 or, equivalently, the
relation 𝐽𝑁C𝐽 = 𝑁C holds true.

The lemma is checked by straightforward calculations.
The next proposition states that the spectrum and the resolvent set of the complexification

are symmetric w.r.t. the real axis.

Proposition 4. Let 𝑁C : 𝐷(𝑁C) ⊂ HC → HC be the complexification of an operator

𝑁R : 𝐷(𝑁R) ⊂ HR → HR. Then 𝜌(𝑁C) = 𝜌(𝑁C) and 𝜎(𝑁C) = 𝜎(𝑁C).

The proof reproduces that of Lemma 4.1 in [16].

3. First spectral theorem (on real axis)

By ℬ(HC) we denote the Banach algebra [2]–[4] of all linear bounded operators acting in HC.
In the same way we define ℬ(HR). An operator 𝑃 ∈ ℬ(HC) (or 𝑃 ∈ ℬ(HR)) is called a projector
if 𝑃 2 = 𝑃 . An operator 𝑃 ∈ ℬ(HC) is called self-adjoint if ⟨𝑃𝜙, 𝜓⟩C = ⟨𝜙, 𝑃𝜓⟩C, 𝜙, 𝜓 ∈ HC.
An operator 𝑃 ∈ ℬ(HC) is called skew-adjoint if ⟨𝑃𝜙, 𝜓⟩C = −⟨𝜙, 𝑃𝜓⟩C, 𝜙, 𝜓 ∈ HC. In the
same way we define a self-adjoint and a skew-adjoint operator in ℬ(HR). We note that these
definitions can be regarded as the particular cases of the definition of unbounded self-adjoint
and skew-adjoint operators in the previous section. Lemma 1 is obviously true for a bounded
skew-adjoint operator.

Let Ω be a Borel subset of R or C. The (complex) resolution of the identity [3] on the
𝜎-algebra Σ of all Borel subsets of R or C supported by a set Ω is the mapping 𝐸 : Σ → ℬ(HC)
possessing the properties:

1) 𝐸
(︀
R ∖ Ω

)︀
= 0C,

(︁
𝐸
(︀
C ∖ Ω

)︀
= 0C

)︁
, 𝐸(Ω) = 1C;

2) for each 𝜔 ∈ Σ, the operator 𝐸(𝜔) is a self-adjoint projector;
3) the identity 𝐸(𝜔′ ∩ 𝜔′′) = 𝐸(𝜔′)𝐸(𝜔′′) holds for all 𝜔′, 𝜔′′ ∈ Σ;
4) the identity 𝐸(𝜔′ ∪ 𝜔′′) = 𝐸(𝜔′) + 𝐸(𝜔′′) holds for all 𝜔′, 𝜔′′ ∈ Σ, 𝜔′ ∩ 𝜔′′ = ∅;
5) for all 𝜙, 𝜓 ∈ HC the function 𝐸𝜙𝜓(𝜔) = ⟨𝐸(𝜔)𝜙, 𝜓⟩C is a complex measure [3], [20], [21]

on Σ.
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Let us recall the spectral theorem for a normal operator 𝑁C acting in the complex Hilbert
space. The complex resolution of the identity discussed in this theorem is called the (complex)
spectral decomposition of an operator 𝑁C. It is denoted by 𝐸𝑁C to stress that it is related with
the operator 𝑁C.

Theorem 5 ([3, Thm. 13.33]). Let 𝑁C : 𝐷(𝑁C) ⊂ HC → HC be a normal operator. Then
there exists the unique complex resolution of the identity 𝐸𝑁C supported by 𝜎(𝑁C) ⊂ C satisfying
the relation

⟨𝑁C𝜙, 𝜓⟩C =

∫︁
C

𝜉 𝑑𝐸𝑁C
𝜙𝜓 (𝜉), 𝜙 ∈ 𝐷(𝑁C), 𝜓 ∈ HC. (1)

Moreover, 𝐸𝑁C(𝜔)𝑆 = 𝑆𝐸𝑁C(𝜔) for each set 𝜔 ⊂ Σ and each operator 𝑆 ∈ ℬ(HC) commuting
with the operator 𝑁C in the sense that 𝑆𝑁C ⊆ 𝑁C𝑆.

Assume that we are given the spectral decomposition 𝐸𝑁C of a normal operator 𝑁C. The
essential range of a Borel measurable function 𝑓 : C→ C is the intersection of the sets of form[︀
𝑓(𝜔)

]︀
for all 𝜔 ∈ Σ such that 𝐸𝑁C(𝜔) = 1C, where [·] denotes the closure of a set [3], [5]. The

function 𝑓 is called essentially bounded w.r.t. 𝐸𝑁C if its essential range is bounded [3], [5].
In a complex Hilbert space, the following theorem on functional calculus is true.

Theorem 6 ([3, Thm. 13.24, 13.25, 13.27]). Let 𝐸𝑁C be the spectral decomposition of a nor-
mal operator 𝑁C : 𝐷(𝑁C) ⊂ HC → HC. To each Borel measurable function 𝑓 : C → C, the
formula ⟨︀

ΨC(𝑓)𝜙, 𝜓
⟩︀
C

=

∫︁
C

𝑓(𝜉) 𝑑𝐸𝑁C
𝜙𝜓 (𝜉), 𝜙 ∈ 𝐷

(︀
ΨC(𝑓)

)︀
, 𝜓 ∈ HC, (2)

associates a densely defined closed operator

ΨC(𝑓) : 𝐷
(︀
ΨC(𝑓)

)︀
⊂ HC → HC

with the domain 𝐷
(︀
ΨC(𝑓)

)︀
=

{︁
𝜙 ∈ HC :

∫︀
C
|𝑓 |2 𝑑𝐸𝑁C

𝜙𝜙 < ∞
}︁
. At that, the mapping ΨC

possesses the following properties:

(a) For each 𝜙 ∈ 𝐷
(︀
ΨC(𝑓)

)︀
the relation

‖ΨC(𝑓)𝜙‖2C =

∫︁
C

|𝑓 |2 𝑑𝐸𝑁C
𝜙𝜙

holds true.
(b) The operator ΨC(𝑓) is normal and the identities

ΨC(𝑓)* = ΨC(𝑓), ΨC(𝑓)ΨC(𝑓)* = ΨC

(︀
|𝑓 |2

)︀
= ΨC(𝑓)*ΨC(𝑓)

hold true.
(c) If a function 𝑓 : C → C is essentially bounded w.r.t. 𝐸𝑁C, then the operator ΨC(𝑓) is

bounded.
(d) For all Borel measurable functions 𝑓, 𝑔 : C→ C the inclusions

ΨC(𝑓) + ΨC(𝑔) ⊆ ΨC(𝑓 + 𝑔), ΨC(𝑓)ΨC(𝑔) ⊆ ΨC(𝑓𝑔)

hold. If at that the function 𝑔 is bounded, then

ΨC(𝑓) + ΨC(𝑔) = ΨC(𝑓 + 𝑔), ΨC(𝑓)ΨC(𝑔) = ΨC(𝑓𝑔).

(e) The spectrum 𝜎
(︀
ΨC(𝑓)

)︀
of the operator ΨC(𝑓) is the essential range of the function 𝑓 .

The formula (2) is often shortly written as ΨC(𝑓) =
∫︀
C
𝑓 𝑑𝐸𝑁C .

The next theorem is called the change of measure principle [3].
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Theorem 7. Let 𝐸 be a complex resolution of the identity on a 𝜎-algebra Σ supported on a
set Ω and Ω′ ∈ Σ. Assume that we are given a mapping 𝑔 : Ω → Ω′, for which 𝜔′ ∈ Σ implies
𝑔−1(𝜔′) ∈ Σ. Then the mapping 𝐸 ′ : Σ → ℬ(HC) defined by the formula 𝐸 ′(𝜔′) = 𝐸(𝑔−1

(︀
𝜔)

)︀
is the complex resolution of the identity supported on Ω′ and at that,∫︁

C

𝑓 𝑑𝐸 ′
𝜙𝜓 =

∫︁
C

𝑓 ∘ 𝑔 𝑑𝐸𝜙𝜓

for each Borel measurable function 𝑓 : Ω′ → C and for each 𝜙 and 𝜓, for which at least one of
the integrals exists.

The proof reproduces that of Theorem 13.28 in [3].

Corollary 8. If under the assumptions of Theorem 7 the inclusion Ω′ ⊂ R holds, then∫︁ +∞

−∞
𝑓 𝑑𝐸 ′

𝜙𝜓 =

∫︁
C

𝑓 ∘ 𝑔 𝑑𝐸𝜙𝜓.

This corollary is implied immediately by Theorem 7.

Proposition 9. Let 𝑁C : 𝐷(𝑁C) ⊂ HC → HC be the complexification of a normal operator
𝑁R : 𝐷(𝑁R) ⊂ HR → HR. Then for the operators 𝐸𝑁C(𝜔) in the spectral decomposition of the
operator 𝑁C the relation

𝐽𝐸𝑁C(𝜔)𝐽 = 𝐸𝑁C(𝜔), 𝜔 ∈ Σ,

holds true.

This proposition is implied by Proposition 2, Lemma 3, Theorem 5 and Theorem 6(b).

Corollary 10. Let 𝐴C : 𝐷(𝐴C) ⊂ HC → HC be the complexification of a self-adjoint opera-
tor 𝐴R : 𝐷(𝐴R) ⊂ HR → HR. Then the operators 𝐸𝐴C(𝜔), 𝜔 ∈ Σ, in the spectral decomposition
of the operator 𝐴C commutes with the operator 𝐽 and therefore, they are the complexifications
of some operators.

Proof. Since 𝐸𝐴C is supported on 𝜎(𝐴C) ⊂ R, then 𝐽𝐸𝐴C(𝜔)𝐽 = 𝐸𝐴C(𝜔) = 𝐸𝐴C(𝜔).

Theorem 11. Let 𝑁C : 𝐷(𝑁C) ⊂ HC → HC be the complexification of a normal operator
𝑁R : 𝐷(𝑁R) ⊂ HR → HR, and 𝑓 : C → C is a Borel measurable function. Then the operator

ΨC(𝑓) possesses the property 𝐽ΨC(𝑓)𝐽 = ΨC( ̃︀𝑓), where ̃︀𝑓(𝜉) = 𝑓(𝜉).

The theorem can be checked by straightforward calculations.

Corollary 12. Let 𝑁C : 𝐷(𝑁C) ⊂ HC → HC be the complexification of a normal operator
𝑁R : 𝐷(𝑁R) ⊂ HR → HR, and 𝑓 : C → C is a Borel measurable function possessing the

property 𝑓(𝜉) = 𝑓(𝜉). Then the operator ΨC(𝑓) commutes with the operator 𝐽 and therefore, it
is a complexification of some operator.

This corollary is implied by Theorem 11.

Proposition 13. Let 𝑁C : 𝐷(𝑁C) ⊂ HC → HC be a normal operator. Then there exists
a self-adjoint operator 𝐴C : 𝐷(𝐴C) ⊂ HC → HC and a skew-adjoint operator 𝐵C : 𝐷(𝐵C) ⊂
HC → HC such that

(a) the representations 𝑁C = 𝐴C +𝐵C, 𝑁
*
C = 𝐴C −𝐵C hold true;

(b) their spectra satisfy the formulae 𝜎(𝐴C) = 𝜎Re(𝑁C), 𝜎(𝐵C) = 𝑖 𝜎Im(𝑁C);
(c) the operators 𝐴C and 𝐵C commutes on 𝐷(𝑁C𝑁C

*);
(d) if 𝑁C is the complexification of a normal operator 𝑁R : 𝐷(𝑁R) ⊂ HR → HR, then the

operators 𝐴C and 𝐵C commute with the operator 𝐽 and, therefore, are the complexifications
of some operators.
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Proof. We introduce the auxiliary functions 𝑓(𝜉) = Re 𝜉, 𝑔(𝜉) = 𝑖 Im 𝜉, and according Theo-
rem 6 we let

𝐴C = ΨC(𝑓) =

∫︁
C

Re 𝜉 𝑑𝐸𝑁C(𝜉), (3)

𝐷(𝐴C) =
{︁
𝜙 ∈ HC :

∫︁
C

(︀
Re 𝜉

)︀2
𝑑𝐸𝑁C

𝜙𝜙 (𝜉) <∞
}︁
,

𝐵C = ΨC(𝑔) =

∫︁
C

𝑖 Im 𝜉 𝑑𝐸𝑁C(𝜉), (4)

𝐷(𝐵C) =
{︁
𝜙 ∈ HC :

∫︁
C

(︀
Im 𝜉

)︀2
𝑑𝐸𝑁C

𝜙𝜙 (𝜉) <∞
}︁
.

At that, the following identities are obvious: 𝑁C = 𝐴C +𝐵C, 𝑁C
* = 𝐴C −𝐵C.

Other statements of this theorem can be checked by straightforward calculations.

Corollary 14. Let 𝑁R : 𝐷(𝑁R) ⊂ HR → HR be a normal operator. Then there exist a self-
adjoint operator 𝐴R : 𝐷(𝐴R) ⊂ HR → HR and a skew-adjoint operator 𝐵R : 𝐷(𝐵R) ⊂ HR →
HR such that the representations 𝑁R = 𝐴R +𝐵R, 𝑁

*
R = 𝐴R−𝐵R hold. The operators 𝐴R and

𝐵R commute on 𝐷(𝑁R𝑁
*
R).

The corollary is implied by Proposition 13.
Let Ω be Borel subset of R or C. The real resolution of the identity on the 𝜎-algebra Σ of

all Borel subsets of R or C supported on the set Ω is the mapping 𝐸 : Σ → ℬ(HR) possessing
the properties:

1) 𝐸
(︀
R ∖ Ω

)︀
= 0R,

(︁
𝐸
(︀
C ∖ Ω

)︀
= 0R

)︁
, 𝐸(Ω) = 1R;

2) for each 𝜔 ∈ Σ, the operator 𝐸(𝜔) is a self-adjoint projector;
3) for all 𝜔′, 𝜔′′ ∈ Σ the identity 𝐸(𝜔′ ∩ 𝜔′′) = 𝐸(𝜔′)𝐸(𝜔′′) holds;
4) for all 𝜔′, 𝜔′′ ∈ Σ, 𝜔′ ∩ 𝜔′′ = ∅, the identity 𝐸(𝜔′ ∪ 𝜔′′) = 𝐸(𝜔′) + 𝐸(𝜔′′) holds;
5) for each 𝜙, 𝜓 ∈ HR the function 𝐸𝜙𝜓(𝜔) = ⟨𝐸(𝜔)𝜙, 𝜓⟩R is a real measure on Σ.

It follows from properties 1 and 3 that 𝐸(∅) = 0R and 𝐸(𝜔 ∩ Ω) = 𝐸(𝜔). The property 3
implies also that each two projectors 𝐸(𝜔) and 𝐸(𝜔′) commute. The property 2 implies that
for all 𝜙 ∈ HR the measure 𝐸𝜙𝜙(𝜔) = ⟨𝐸(𝜔)𝜙, 𝜙⟩R is positive.

Let 𝑃R ∈ ℬ(HR) be a self-adjoint projector. It is obvious that the operator 1R − 𝑃R is
also a self-adjoint projector. By ℛ(1R − 𝑃R) we denote the image of the operator 1R − 𝑃R.
Let ∆ be a Borel subset in the non-negative real axis R+ = [0,+∞) or in the upper complex
half-plane C+ = {𝜆 ∈ C : Im𝜆 > 0}. The real skew resolution of the identity in the subspace
ℛ(1R − 𝑃R) on the 𝜎-algebra Σ of all Borel subsets R+ or C+ supported on the set ∆ is the
mapping 𝐺 : Σ → ℬ(HR) possessing the properties

1) 𝐺
(︀
R+ ∖ ∆

)︀
= 0R

(︁
𝐺
(︀
C+ ∖ ∆

)︀
= 0R

)︁
,
(︀
𝐺(∆)

)︀2
= −1R + 𝑃R;

2) for each 𝜔 ∈ Σ, the operator 𝐺(𝜔) is skew-adjoint;
3) for all 𝜔′, 𝜔′′, 𝜔′′′ ∈ Σ the identity 𝐺(𝜔′ ∩ 𝜔′′ ∩ 𝜔′′′) = −𝐺(𝜔′)𝐺(𝜔′′)𝐺(𝜔′′′) holds;
4) for each 𝜔′, 𝜔′′ ∈ Σ, 𝜔′ ∩ 𝜔′′ = ∅, the identity 𝐺(𝜔′ ∪ 𝜔′′) = 𝐺(𝜔′) +𝐺(𝜔′′) holds;
5) for all 𝜙, 𝜓 ∈ HR the function 𝐺𝜙𝜓(𝜔) = ⟨𝐺(𝜔)𝜙, 𝜓⟩R is a real measure on Σ.

Properties 1 and 3 imply that 𝐺(∅) = 0R and 𝐺(𝜔∩∆) = 𝐺(𝜔)(1R−𝑃R) = (1R−𝑃R)𝐺(𝜔).

Property 3 implies also that
(︀
𝐺(𝜔)

)︀3
= −𝐺(𝜔). Lemma 1 and Property 2 yield that 𝐺𝜙𝜙(𝜔) =

⟨𝐺(𝜔)𝜙, 𝜙⟩R = 0.
In the same way we define the complex skew resolution of the identity in the subspace

ℛ(1C − 𝑃C) corresponding to the projector 𝑃C ∈ ℬ(HC).

Theorem 15. Let 𝑁R : 𝐷(𝑁R) ⊂ HR → HR be a normal operator. Then there exists a
real resolution of the identity 𝐸𝐴R supported on 𝜎Re(𝑁R) ⊂ R, the self-adjoint projector 𝑃R
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and the real skew resolution of the identity 𝐺𝐵R in the subspace ℛ(1R − 𝑃R) supported on
𝜎Im+(𝑁R) ⊂ R+, for which the relation

⟨𝑁R𝜙, 𝜓⟩R =

∫︁ +∞

−∞
𝛼 𝑑𝐸𝐴R

𝜙𝜓 (𝛼) +

∫︁ +∞

0

𝛽 𝑑𝐺𝐵R
𝜙𝜓(𝛽), 𝜙 ∈ 𝐷(𝑁R), 𝜓 ∈ HR, (5)

holds. At that, each two operators 𝐸𝐴R(𝜔) and 𝐺𝐵R(𝜔′) commute.
The complexification 𝑃C of the projector 𝑃R and the complexifications 𝐸𝐴C(𝜔), 𝐺𝐵C(𝜔) of the

operators 𝐸𝐴R(𝜔), 𝐺𝐵R(𝜔) are related with the spectral decomposition 𝐸𝑁C of the complexifica-
tion 𝑁C of the operator 𝑁R by the formulae

𝑃C = 𝐸𝑁C
(︀
𝜎0(𝑁R)

)︀
, (6)

𝐸𝐴C(𝜔) = 𝐸𝑁C
(︀
𝜔 + 𝑖R

)︀
, (7)

𝐺𝐵C(𝜔) = 𝑖𝐸𝑁C
(︀
R+ 𝑖𝜔

)︀
− 𝑖𝐸𝑁C

(︀
R− 𝑖𝜔

)︀
, (8)

where 𝜔 + 𝑖R = {𝛼 + 𝑖𝛽 : 𝛼 ∈ 𝜔, 𝛽 ∈ R}, R± 𝑖𝜔 = {𝛼± 𝑖𝛽 : 𝛼 ∈ R, 𝛽 ∈ 𝜔}.
Proof. Let 𝑁C be the complexification of an operator 𝑁R. According Proposition 13 and Corol-
lary 14, we represent the operators 𝑁C and 𝑁R as 𝑁C = 𝐴C + 𝐵C, 𝑁R = 𝐴R +𝐵R, where 𝐴C
and 𝐴R are self-adjoint operators and 𝐵C and 𝐵R are skew-adjoint. It follows from (3) that for
the operator 𝐴C the representation

⟨𝐴C𝜙, 𝜓⟩C =

∫︁
C

Re 𝜉 𝑑𝐸𝑁C
𝜙𝜓 (𝜉), 𝜙 ∈ 𝐷(𝐴C), 𝜓 ∈ HC, (9)

holds true. On the other hand, for the self-adjoint operator 𝐴C there exists the resolution of
the identity 𝐸𝐴C and the representation holds:

⟨𝐴C𝜙, 𝜓⟩C =

∫︁ +∞

−∞
𝛼 𝑑𝐸𝐴C

𝜙𝜓 (𝛼), 𝜙 ∈ 𝐷(𝐴C), 𝜓 ∈ HC. (10)

We observe that formula (10) can be also obtained by applying Corollary 8 with 𝑓(𝜉) = 𝜉
and 𝑔(𝜉) = Re 𝜉 to relation (9). At that for 𝜔 ⊂ R we have 𝑔−1(𝜔) = 𝜔 + 𝑖R ⊂ C and this
is why the operators 𝐸𝐴C(𝜔) satisfy (7). By Corollary 10, the operators 𝐸𝐴C(𝜔) commute
with the operator 𝐽 and therefore, are the complexifications of some operators 𝐸𝐴R(𝜔) and
𝐸𝐴R

(︀
𝜎Re(𝑁R)

)︀
= 1R.

It follows from (4) that the operator 𝐵C satisfies the representation

⟨𝐵C𝜙, 𝜓⟩C =

∫︁
C

𝑖 Im 𝜉 𝑑𝐸𝑁C
𝜙𝜓 (𝜉), 𝜙 ∈ 𝐷(𝐵C), 𝜓 ∈ HC.

We employ Corollary 8 with 𝑓(𝜉) = 𝜉 and 𝑔(𝜉) = Im 𝜉 and as a result, we obtain:

⟨𝐵C𝜙, 𝜓⟩C =

∫︁ +∞

−∞
𝑖𝛽 𝑑𝐸𝐵C

𝜙𝜓 (𝛽),

where 𝐸𝐵C(𝜔) = 𝐸𝑁C
(︀
R+ 𝑖𝜔

)︀
. By the transformations we get

⟨𝐵C𝜙, 𝜓⟩C =

∫︁ +∞

0

𝛽 𝑑 𝑖𝐸𝐵C
𝜙𝜓 (𝛽) +

∫︁ 0

−∞
𝛽 𝑑 𝑖𝐸𝐵C

𝜙𝜓 (𝛽)

=

∫︁ +∞

0

𝛽 𝑑 𝑖𝐸𝐵C
𝜙𝜓 (𝛽) +

∫︁ +∞

0

−𝛽 𝑑 𝑖𝐸𝐵C
𝜙𝜓 (−𝛽)

=

∫︁ +∞

0

𝛽 𝑑
(︀
𝑖𝐸𝐵C

𝜙𝜓 (𝛽) − 𝑖𝐸𝐵C
𝜙𝜓 (−𝛽)

)︀
=

∫︁ +∞

0

𝛽 𝑑𝐺𝐵C
𝜙𝜓(𝛽),

where 𝐺𝐵C(𝜔) = 𝑖𝐸𝐵C(𝜔)−𝑖𝐸𝐵C(−𝜔) = 𝑖𝐸𝑁C
(︀
R+ 𝑖𝜔

)︀
−𝑖𝐸𝑁C

(︀
R− 𝑖𝜔

)︀
. It is easy to check that

the operators𝐺𝐵C(𝜔) commute with the operator 𝐽 and therefore, they are the complexifications
of some operators 𝐺𝐵R(𝜔).
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The operator 𝑃C = 𝐸𝑁C
(︀
𝜎0(𝑁R)

)︀
is a self-adjoint projector, commutes with the operator 𝐽

by Proposition 9 and is the complexification of some self-adjoint projector in 𝑃R. The statement
that the operators 𝐺𝐵C(𝜔), 𝜔 ∈ Σ, is the complex skew resolution of the identity in ℛ(1R−𝑃R)
supported on 𝜎Im+(𝑁R) ⊂ R+ can be checked straightforwardly.

Since all the operators of the family 𝐸𝑁C(𝜔), 𝜔 ∈ Σ, commute, it follows from formulae (7)
and (8) that each two operators 𝐸𝐴C(𝜔) and𝐺𝐵C(𝜔′) commute as well. This is why the operators
𝐸𝐴R(𝜔) and 𝐺𝐵R(𝜔′) commute, too. The proof is complete.

4. Second spectral theorem (on the complex plane)

Spectral representation (5) in Theorem 15 can not be used for constructing a complete
functional calculus. Because of this we provide one more spectral theorem allowing us to
formulate the theorem on functional calculus. In this section we also employ the notion of
the real resolution of the identity and the real skew resolution of the identity in the subspace
ℛ(1R−𝑃R), but as the sets Ω and ∆, we mean Borel sets in the upper complex half-plane C+.

Theorem 16. Let 𝑁R : 𝐷(𝑁R) ⊂ HR → HR be a normal operator. Then there exist a self-
adjoint projector 𝑃R, a real resolution of the identity 𝐸+𝑁R and a real skew resolution of the
identity 𝐺+𝑁R in the subspace ℛ(1R − 𝑃R) supported on 𝜎+(𝑁R), for which the relation

⟨𝑁R𝜙, 𝜓⟩R =

∫︁
C+

Re 𝜉 𝑑𝐸+𝑁R
𝜙𝜓 (𝜉) +

∫︁
C+

Im 𝜉 𝑑𝐺+𝑁R
𝜙𝜓 (𝜉), 𝜙 ∈ 𝐷(𝑁R), 𝜓 ∈ HR. (11)

At that, each two operators 𝐸+𝑁R(𝜔) and 𝐺+𝑁R(𝜔′) commute.
The complexification 𝑃C of the projector 𝑃R and the complexifications 𝐸+𝑁C(𝜔) and 𝐺+𝑁C(𝜔)

of the operators 𝐸+𝑁R(𝜔) and 𝐺+𝑁R(𝜔) are related with the spectral decomposition 𝐸𝑁C of the
complexification 𝑁C of the operator 𝑁R by the formulae

𝑃C = 𝐸𝑁C
(︀
𝜎0(𝑁R)

)︀
, (12)

𝐸+𝑁C(𝜔) = 𝐸𝑁C(𝜔) + 𝐸𝑁C(�̄�) − 𝐸𝑁C(𝜔 ∩ �̄�) = 𝐸𝑁C(𝜔 ∪ �̄�), (13)

𝐺+𝑁C(𝜔) = 𝑖
(︀
𝐸𝑁C(𝜔) − 𝐸𝑁C(�̄�)

)︀
. (14)

Proof. By Proposition 13, we represent the complexification 𝑁C of the operator 𝑁R as
𝑁C = 𝐴C+𝐵C, where 𝐴C is a self-adjoint operator and 𝐵C is skew-adjoint. We consider repre-
sentation (3) of the operator 𝐴C and apply Corollary 8 with 𝑓(𝜉) = Re 𝜉, 𝑔(𝜉) = Re 𝜉+ 𝑖| Im 𝜉|.
As a result we obtain

𝐴C =

∫︁
C

Re 𝜉 𝑑𝐸𝑁C(𝜉) =

∫︁
C+

Re 𝜉 𝑑𝐸+𝑁C(𝜉).

Since 𝑔−1(𝜔) = 𝜔 ∪ 𝜔 for 𝜔 ⊂ C+, the operators 𝐸+𝑁C(𝜔) are determined by formula (13).
After the transformations of representation (4) of the operator 𝐵C we have

𝐵C =

∫︁
C

𝑖 Im 𝜉 𝑑𝐸𝑁C(𝜉) =

∫︁
C+

𝑖 Im 𝜉 𝑑𝐸𝑁C(𝜉) −
∫︁
C+

𝑖 Im 𝜉 𝑑𝐸𝑁C(𝜉) =

∫︁
C+

Im 𝜉 𝑑𝐺+𝑁C(𝜉),

where the operators 𝐺+𝑁C(𝜔) are given by formula (14). Thus,

𝑁C = 𝐴C +𝐵C =

∫︁
C+

Re 𝜉 𝑑𝐸+𝑁C(𝜉) +

∫︁
C+

Im 𝜉 𝑑𝐺+𝑁C(𝜉).

It is easy to check that the operators 𝐸+𝑁C(𝜔) and 𝐺+𝑁C(𝜔) commute with the operator 𝐽 .
As 𝑃R we take the restriction of the self-adjoint projector 𝐸𝑁C

(︀
𝜎0(𝑁R)

)︀
on HR. As 𝐸+𝑁R(𝜔)

and 𝐺+𝑁R(𝜔) we choose the restrictions of 𝐸+𝑁C(𝜔) and 𝐺+𝑁C(𝜔) on HR. The statement that
the families 𝐸+𝑁R(𝜔), 𝜔 ∈ Σ, and 𝐺+𝑁R(𝜔), 𝜔 ∈ Σ, are a real resolution of the identity and
a real skew resolution of the identity in ℛ(1R − 𝑃R) supported on 𝜎+(𝑁R) can be checked by
straightforward calculations. At that, relation (11) is obviously true. Since all operators in
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the family 𝐸𝑁C(𝜔), 𝜔 ∈ Σ, commute, formulae (13) and (14) imply that each two operators
𝐸+𝑁C(𝜔) and 𝐺+𝑁C(𝜔′) commute, too. This is why the operators 𝐸+𝑁R(𝜔) and 𝐺+𝑁R(𝜔′). The
proof is complete.

We shall call the families of the operators 𝐸+𝑁R(𝜔), 𝜔 ∈ Σ, and 𝐺+𝑁R(𝜔), 𝜔 ∈ Σ, the real
spectral decomposition of a normal operator 𝑁R.

5. Theorem on functional calculus

The real spectral decomposition constructed in Section 4 can be employed for determining
the operator ΨR(𝑓) acting in HR. In the next theorem we show that the complexification of
the operator ΨR(𝑓) coincides with the operator ΨC(𝑓) defined in Section 3.

Theorem 17. Let 𝑁R : 𝐷(𝑁R) ⊂ HR → HR be a normal operator and 𝑓 : C → C be a

Borel measurable function possessing the property 𝑓(𝜉) = 𝑓(𝜉), 𝜉 ∈ C. We define the operator
ΨR(𝑓) : 𝐷

(︀
ΨR(𝑓)

)︀
⊂ HR → HR by the formula

ΨR(𝑓) =

∫︁
C+

Re 𝑓 𝑑𝐸+𝑁R +

∫︁
C+

Im 𝑓 𝑑𝐺+𝑁R

with the domain 𝐷
(︀
ΨR(𝑓)

)︀
=

{︁
𝜙 ∈ HR :

∫︀
C+ |𝑓 |2 𝑑𝐸+𝑁R

𝜙𝜙 < ∞
}︁
. Then the complexification of

the operator ΨR(𝑓) coincides with the operator ΨC(𝑓).

Proof. It is easy to check that the relation

ΨC(𝑓) = ΨC(Re 𝑓) + ΨC(𝑖 Im 𝑓)

holds true, where in view of the property 𝑓(𝜉) = 𝑓(𝜉)

ΨC(Re 𝑓) =

∫︁
C

Re 𝑓(𝜉) 𝑑𝐸𝑁C(𝜉) =

∫︁
C+

Re 𝑓(𝜉) 𝑑𝐸+𝑁C(𝜉),

𝐷
(︀
ΨC(Re 𝑓)

)︀
=

{︁
𝜙 ∈ HC :

∫︁
C

(︀
Re 𝑓(𝜉)

)︀2
𝑑𝐸𝑁C

𝜙𝜙 (𝜉) <∞
}︁

=
{︁
𝜙 ∈ HC :

∫︁
C+

(︀
Re 𝑓(𝜉)

)︀2
𝑑𝐸+𝑁C

𝜙𝜙 (𝜉) <∞
}︁
,

ΨC(𝑖 Im 𝑓) =

∫︁
C

𝑖 Im 𝑓(𝜉) 𝑑𝐸𝑁C(𝜉) =

∫︁
C+

Im 𝑓(𝜉) 𝑑𝐺+𝑁C(𝜉),

𝐷
(︀
ΨC(Re 𝑓)

)︀
=

{︁
𝜙 ∈ HC :

∫︁
C

(︀
Im 𝑓(𝜉)

)︀2
𝑑𝐸𝑁C

𝜙𝜙 (𝜉) <∞
}︁

=
{︁
𝜙 ∈ HC :

∫︁
C+

(︀
Im 𝑓(𝜉)

)︀2
𝑑𝐸+𝑁C

𝜙𝜙 (𝜉) <∞
}︁
.

It is obvious that the operators ΨC(Re 𝑓) and ΨC(𝑖 Im 𝑓) are the complexifications of the
operators

∫︀
C+ Re 𝑓 𝑑𝐸+𝑁R and

∫︀
C+ Im 𝑓 𝑑𝐺+𝑁R , respectively. The proof is complete.

We formulate the properties of the obtained real functional calculus.

Theorem 18. Let 𝐸+𝑁R(𝜔), 𝐺+𝑁R(𝜔), 𝜔 ∈ Σ, be the spectral decomposition of a normal
operator 𝑁R : 𝐷(𝑁R) ⊂ HR → HR and 𝑓 : C → C be a Borel measurable function possessing

the property 𝑓(𝜉) = 𝑓(𝜉). Then the operator ΨR(𝑓) possesses the properties:

(a) For each 𝜙 ∈ 𝐷
(︀
ΨR(𝑓)

)︀
the identity

‖ΨR(𝑓)𝜙‖2R =

∫︁
C+

|𝑓 |2 𝑑𝐸+𝑁R
𝜙𝜙

holds.
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(b) The operator ΨR(𝑓) is normal and the relation holds:

ΨR(𝑓)* = ΨR(𝑓) =

∫︁
C+

Re 𝑓 𝑑𝐸+𝑁R −
∫︁
C+

Im 𝑓 𝑑𝐺+𝑁R

(c) The spectral decomposition of the adjoint operator 𝑁*
R is related with the spectral decom-

position of the operator 𝑁R by the relations

𝐸+𝑁*
R(𝜔) = 𝐸+𝑁R(𝜔), 𝐺+𝑁*

R(𝜔) =
(︀
𝐺+𝑁R(𝜔)

)︀*
= −𝐺+𝑁R(𝜔), 𝜔 ∈ Σ.

(d) If the function 𝑓 is bounded, then the operator ΨR(𝑓) is bounded.

(e) For all Borel measurable functions 𝑓, 𝑔 : C → C obeying 𝑓(𝜉) = 𝑓(𝜉), 𝑔(𝜉) = 𝑔(𝜉), the
inclusions

ΨR(𝑓) + ΨR(𝑔) ⊆ ΨR(𝑓 + 𝑔), ΨR(𝑓)ΨR(𝑔) ⊆ ΨR(𝑓𝑔)

hold true. If at that the function 𝑔 is bounded then

ΨR(𝑓) + ΨR(𝑔) = ΨR(𝑓 + 𝑔), ΨR(𝑓)ΨR(𝑔) = ΨR(𝑓𝑔).

Proof. (a) Let 𝜙 ∈ 𝐷
(︀
ΨR(𝑓)

)︀
. We have

‖ΨR(𝑓)𝜙‖2R = ‖ΨC(𝑓)𝜙‖2C =

∫︁
C

|𝑓 |2 𝑑𝐸𝑁C
𝜙𝜙 =

∫︁
C+

|𝑓 |2 𝑑𝐸+𝑁R
𝜙𝜙 .

(b) It is obvious that the operator ΨC(𝑓) is the complexification of the operator ΨR(𝑓). It
follows from Theorem 6(b) that ΨC(𝑓)* = ΨC(𝑓). This is why ΨR(𝑓)* = ΨR(𝑓).

(c) This property is implied by (b).
Properties (d), (e) are obvious. The proof is complete.

Example 1. We consider the Cauchy problem for the homogeneous equation [22]

�̇�(𝑡) = 𝑁R𝑥(𝑡), 𝑥(0) = 𝑏, (15)

where 𝑁R : 𝐷(𝑁R) ⊂ HR → HR is a normal operator, whose spectrum is located in the left
complex half-plane. We introduce the notation exp𝑡(𝜉) = 𝑒𝜉𝑡. One can show that the generalized
solution [22] of problem (15) satisfies the representation

𝑥(𝑡) = ΨR(exp𝑡)𝑏 =

∫︁
C+

Re exp𝑡(𝜉) 𝑑𝐸
+𝑁R(𝜉)𝑏+

∫︁
C+

Im exp𝑡(𝜉) 𝑑𝐺
+𝑁R(𝜉)𝑏

=

∫︁
{𝛼+𝑖𝛽:𝛼∈R, 𝛽>0}

𝑒𝛼𝑡 cos 𝛽𝑡 𝑑𝐸+𝑁R(𝛼 + 𝑖𝛽)𝑏+

∫︁
{𝛼+𝑖𝛽:𝛼∈R, 𝛽>0}

𝑒𝛼𝑡 sin 𝛽𝑡 𝑑𝐺+𝑁R(𝛼 + 𝑖𝛽)𝑏.

We stress that both terms in the right hand side belong to HR.

Example 2. In the Hilbert space HR = 𝐿2[0, 2𝜋] with the scalar product

⟨𝑧1, 𝑧2⟩R =
1

2𝜋

∫︁ 2𝜋

0

𝑧1(𝑠)𝑧2(𝑠) 𝑑𝑠

we consider the operator

𝑁R =
𝑑2

𝑑𝑠2
+ 𝑎1

𝑑

𝑑𝑠
+ 𝑎2,

where 𝑎1, 𝑎2 ∈ R, with the domain formed by the functions 𝑧 ∈ 𝑊 2
2 [0, 2𝜋] satisfying the periodic

boundary conditions
𝑧(0) = 𝑧(2𝜋), 𝑧′(0) = 𝑧′(2𝜋).

By straightforward calculations we check that the eigenfunctions of the complexification 𝑁C
of the operator 𝑁R are of the form: 𝜓𝑘(𝑠) = 𝑒𝑖𝑘𝑠, 𝑘 ∈ Z, and

𝜎
(︀
𝑁R

)︀
= 𝜎

(︀
𝑁C

)︀
= {𝜉𝑘 = −𝑘2 + 𝑖𝑎1𝑘 + 𝑎2 : 𝑘 ∈ Z}.

It is obvious that 𝜉𝑘 = 𝜉−𝑘 and 𝜓𝑘(·) = 𝜓−𝑘(·).
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For a Borel measurable function 𝑓 : C→ C with the property 𝑓(𝜉) = 𝑓(𝜉) we have(︀
ΨC(𝑓)𝑧

)︀
(𝑠) =

+∞∑︁
𝑘=−∞

𝑓(𝜉𝑘)⟨𝑧, 𝜓𝑘⟩C 𝜓𝑘(𝑠) =
+∞∑︁

𝑘=−∞

⟨𝑧(·), 𝑓(𝜉𝑘)𝜓𝑘(·)𝜓𝑘(𝑠)⟩C

= 𝑓(𝑎2)⟨𝑧(·), 𝜓0(·)⟩C +
+∞∑︁
𝑘=1

⟨𝑧(·), 2 Re{𝑓(𝜉𝑘)𝜓𝑘(·)𝜓𝑘(𝑠)}⟩C 𝑑𝜉.

We observe that

Re{𝑓(𝜉𝑘)𝜓𝑘(·)𝜓𝑘(𝑠)} = Re 𝑓(𝜉𝑘) Re{𝜓𝑘(·)}Re{𝜓𝑘(𝑠)} + Re 𝑓(𝜉𝑘) Im{𝜓𝑘(·)} Im{𝜓𝑘(𝑠)}
+ Im 𝑓(𝜉𝑘) Re{𝜓𝑘(·)} Im{𝜓𝑘(𝑠)} − Im 𝑓(𝜉𝑘) Im{𝜓𝑘(·)}Re{𝜓𝑘(𝑠)}.

This is why for 𝑧 ∈ HR we have

ΨR(𝑓)𝑧 =𝑓(𝑎2)𝐸
+𝑁R

(︀
{𝑎2}

)︀
𝑧 +

+∞∑︁
𝑘=1

Re 𝑓(𝜉𝑘)𝐸
+𝑁R

(︀
{𝜉𝑘}

)︀
𝑧 +

+∞∑︁
𝑘=1

Im 𝑓(𝜉𝑘)𝐸
+𝐺R

(︀
{𝜉𝑘}

)︀
𝑧,

where (︁
𝐸+𝑁R

(︀
{𝑎2}

)︀
𝑧
)︁

(𝑠) =
1

2𝜋

∫︁ 2𝜋

0

𝑧(𝑦) 𝑑𝑦,(︁
𝐸+𝑁R

(︀
{𝜉𝑘}

)︀
𝑧
)︁

(𝑠) =
cos 𝑘𝑠

𝜋

∫︁ 2𝜋

0

𝑧(𝑦) cos 𝑘𝑦 𝑑𝑦 +
sin 𝑘𝑠

𝜋

∫︁ 2𝜋

0

𝑧(𝑦) sin 𝑘𝑦 𝑑𝑦,(︁
𝐸+𝐺R

(︀
{𝜉𝑘}

)︀
𝑧
)︁

(𝑠) =
sin 𝑘𝑠

𝜋

∫︁ 2𝜋

0

𝑧(𝑦) cos 𝑘𝑦 𝑑𝑦 − cos 𝑘𝑠

𝜋

∫︁ 2𝜋

0

𝑧(𝑦) sin 𝑘𝑦 𝑑𝑦.

In particular, for the function exp𝑡(𝜉) = 𝑒𝜉𝑡 we have

ΨR(exp𝑡) =𝑒𝑎2𝑡𝐸+𝑁R
(︀
{𝑎2}

)︀
+

+∞∑︁
𝑘=1

𝑒(−𝑘
2+𝑎2)𝑡 cos(𝑎1𝑘𝑡)𝐸

+𝑁R
(︀
{𝜉𝑘}

)︀
+

+∞∑︁
𝑘=1

𝑒(−𝑘
2+𝑎2)𝑡 sin(𝑎1𝑘𝑡)𝐸

+𝐺R
(︀
{𝜉𝑘}

)︀
.

Thus, in order to calculate a function of the operator 𝑁R including the operator exponent with
the parameter 𝑡, there is no need to pass to the complexification.
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