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ASYMPTOTICS IN PARAMETER OF SOLUTION TO

ELLIPTIC BOUNDARY VALUE PROBLEM IN

VICINITY OF OUTER TOUCHING OF

CHARACTERISTICS TO LIMIT EQUATION

Yu.Z. SHAYGARDANOV

Abstract. In a bounded domain 𝑄 ⊂ R3 with a smooth boundary Γ we consider the
boundary value problem

𝜀𝐴𝑢− 𝜕𝑢

𝜕𝑥3
= 𝑓(𝑥), 𝑢|Γ = 0.

Here 𝐴 is a second order elliptic operator, 𝜀 is a small parameter. The limiting equation,
as 𝜀 = 0, is the first order equation. Its characteristics are the straight lines parallel to the
axis 𝑂𝑥3. For the domain 𝑄 we assume that the characteristic either intersects Γ at two
points or touches Γ from outside. The set of touching point forms a closed smooth curve.
In the paper we construct the asymptotics as 𝜀 → 0 for the solutions to the studied problem
in the vicinity of this curve. For constructing the asymptotics we employ the method of
matching asymptotic expansions.
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Formulation of problem

In a bounded simply-connected domain 𝑄 ⊂ R3 with piecewise smooth boundary Γ we
consider the boundary valu problem

𝜀𝐴(𝑥,𝐷)𝑢(𝑥, 𝜀) −𝐷3𝑢(𝑥, 𝜀) = 𝑓(𝑥), 𝑥 ∈ 𝑄, (0.1)

𝑢 = 0, 𝑥 ∈ Γ. (0.2)

Here 𝜀 > 0 is a small parameter, 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝐷 = (𝐷1, 𝐷2, 𝐷3), 𝐷𝑗 = 𝜕
𝜕𝑥𝑗

,

𝐴(𝑥,𝐷) =
∑︁
|𝛼|62

𝑎𝛼(𝑥)𝐷𝛼

is an elliptic differentiation operator with a positive definite quadratic form

𝑎2(𝑥, 𝜉) =
∑︁
|𝛼|=2

𝑎𝛼(𝑥)𝜉𝛼 > 𝑎0|𝜉|2, 𝑎0 > 0,

𝑎0 is a constant, 𝛼 is a multi-index.
Assume that the data of problem (0.1)—(0.2) are smooth (belong to 𝐶∞), then for each

𝜀 > 0 there exists the unique solution 𝑢(𝑥, 𝜀) ∈ 𝐶∞(𝑄).
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The limiting equation for (0.1) is that as 𝜀 = 0, i.e., the first order equation

−𝐷3𝑢0(𝑥) = 𝑓(𝑥). (0.3)

Its characteristics are straight lines parallel the axis 𝑂𝑥3. Regarding the domain 𝑄 = 𝑄∪Γ we
assume that the characteristics of equation (0.3) either intersect Γ at two points or they have
first order touching with Γ from outside and the set of touching points is a smooth closed curve
𝑆0. In what follows we assume that the curve 𝑆0 lies in the plane 𝑥3 = 0. This can be achieved
by a smooth change of variables, which keeps the form of equation (0.1).

The curve 𝑆0 partitions Γ into two parts Γ± as 𝑥3 ≷ 0, respectively. The limiting problem
for (0.1)–(0.2) is the problem

−𝐷3𝑢0(𝑥) = 𝑓(𝑥), 𝑢0|Γ− = 0. (0.4)

Everywhere in the domain 𝑄 except the vicinity of the curve 𝑆0, an asymptotic solution of
problem (0.1)–(0.2) as 𝜀 → 0 is found by the Vishik-Lyusternik method [1]. In the present
work we construct an asymptotic solution to problem (0.1)–(0.2) in the vicinity of 𝑆0. In order
to construct asymptotic solution, we employ the method of matching asymptotic solutions by
A.M. Il’in [2]. The two-dimensional case for equations with constant coefficients was considered
in [3] (see also [2]).

1. Estimate of solution in a subdomain

Let 𝑑(𝑥1, 𝑥2) be the distance along the interior normal to 𝑆0. By 𝑆𝑑0 we denote the curve in
the plane 𝑥3 = 0 separated from 𝑆0 by the distance 𝑑(𝑥, 𝑦) = 𝑑0, where 𝑑0 is chosen so that the
normals do not intersect. The characteristics of equation (0.3) passing 𝑆𝑑0 separate the domain
𝑄0 bordered by these characteristics 𝑋𝑑0 by Γ𝑑0 , which is a part Γ containing 𝑆0. Let 𝑄𝛿 be
the subdomain

𝑄0 : 𝑄𝛿 = {𝑥 ∈ 𝑄0 : 0 < 𝑑(𝑥, 𝑦) < 𝑑0 − 𝛿},
where 0 < 𝛿 < 𝑑0. Given a domain 𝐺 in R3 and an integer 𝑝 > 0, by 𝐻𝑝(𝐺) we denote the
Sobolev space with the norm

‖𝑢‖2𝑝,𝐺 =
∑︁
|𝛼|6𝑝

∫︁
|𝐷𝛼𝑢|2 𝑑𝑥.

Theorem 1. Let 𝑄0 and 𝑄𝛿 be the domain defined above. Then for sufficiently small 𝜀 > 0
and 𝛿 > 𝐶𝜀𝛾, where 𝐶 > 0 is a constant independent of 𝜀, 0 < 𝛾 < 1

2
, the solution of problem

(0.1)—(0.2) satisfies the estimate

𝜀‖𝑢‖21,𝑄𝛿
+ ‖𝑢‖20,𝑄𝛿

6 𝐶1

[︁
‖𝑓‖20,𝑄0

+ 𝜀
1
2
−𝛾(𝜀‖𝑢‖21,𝑄0

+ ‖𝑢‖20,𝑄0
)
]︁

(1.1)

with a constant 𝐶1 independent of 𝜀.

Proof. Let 𝜓𝛿(𝑥1, 𝑥2) be a smooth cut-off function

𝜓𝛿(𝑥1, 𝑥2) =

{︃
1, 0 6 𝑑(𝑥1, 𝑥2) 6 𝛿0 − 𝛿,

0, 𝑑(𝑥1, 𝑥2) > 𝛿0,

for which the estimates

‖𝐷𝑘
1𝐷

𝑚
2 𝜓𝛿‖ 6 𝐶𝑘,𝑚𝛿

−(𝑘+𝑚), 𝑘,𝑚 = 0, 1, 2,

hold with constants 𝐶𝑘,𝑚 independent of 𝛿.
We consider the expression 𝑢𝛿(𝑥) = 𝑒−𝜆𝑥3𝑣𝛿(𝑥), where

𝑢𝛿(𝑥) = 𝑢(𝑥)𝜓𝛿(𝑥1, 𝑥2), 𝑣𝛿(𝑥) = 𝑣(𝑥)𝜓𝛿(𝑥1, 𝑥2).
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By equation (0.1)

𝜀𝐴𝑣𝛿 −𝐷3𝑣𝛿 − 𝜆𝑣𝛿 = 𝑒𝜆𝑥3𝑓𝜓𝛿 − 𝜀𝐴′𝑣, (1.2)

where 𝐴′𝑣 = 𝑒𝜆𝑥3 [𝐴, 𝑒−𝜆𝑥3𝜓𝛿]𝑣(𝑥), [ · , · ] is the commutator.
Multiplying (1.2) by −(𝑣𝛿(𝑥)) and integrating over the domain 𝑄0, we obtain

−𝜀⟨𝐴𝑣𝛿, 𝑣𝛿⟩ + ⟨𝐷3𝑣𝛿, 𝑣𝛿⟩ + 𝜆‖𝑣𝛿‖20,𝑄0
6 |⟨𝑒𝜆𝑥3𝑓𝜓𝛿, 𝑣𝛿⟩| + 𝜀|⟨𝐴′𝑣, 𝑣𝛿⟩|, ⟨𝑢, 𝑣⟩ =

∫︁
𝑄0

𝑢𝑣 𝑑𝑥. (1.3)

Integrating by parts in the left hand side of inequality (1.3) and taking into consideration that
𝑣𝛿 = 0 on 𝜕𝑄0 = 𝑋𝑑0 ∪ Γ𝑑0 as well as the ellipticity of the operator 𝐴, we get

−𝜀⟨𝐴𝑣𝛿, 𝑣𝛿⟩ + ⟨𝐷3𝑣𝛿, 𝑣𝛿⟩ + 𝜆‖𝑣𝛿‖2 > 𝜀𝛼0‖𝑣𝛿‖21,𝑄0
+

(︂
𝜆− 1

2
− 𝐶2𝜀

)︂
‖𝑣𝛿‖20,𝑄0

.

Hereinafter, 𝐶𝑗, 𝑗 = 1, 2, 3, . . . are positive constants independent of 𝜀.
Estimating the right hand side in (1.3), we get

|⟨𝑒𝜆𝑥3𝑓𝜓𝛿, 𝑣𝛿⟩| + 𝜀|⟨𝐴′𝑣, 𝑣𝛿⟩| 6𝐶3

(︂
1

2
‖𝑓‖20,𝑄0

+
1

2
‖𝑣𝛿‖20,𝑄0

)︂
+ 𝐶4𝜀

[︃
𝜀

1
2

𝛿
‖𝑣‖21,𝑄0

+
1

𝜀
1
2 𝛿

‖𝑣‖20,𝑄0

]︃

6
𝐶3

2
‖𝑓‖20,𝑄0

+
𝐶3

2
‖𝑣𝛿‖20,𝑄0

+ 𝐶5𝜀
1
2
−𝛾
[︀
𝜀‖𝑣‖21,𝑄0

+ ‖𝑣‖20,𝑄0

]︀
.

The obtained estimates for the right and left hand sides in inequality (1.3) imply:

𝜀𝛼0‖𝑣𝛿‖21,𝑄0
+

(︂
𝜆− 1

2
− 𝐶2𝜀−

𝐶3

2

)︂
‖𝑣𝛿‖20,𝑄0

6
𝐶3

2
‖𝑓‖20,𝑄0

+ 𝐶5𝜀
1
2
−𝛾
(︀
𝜀‖𝑣‖21,𝑄0

+ ‖𝑣‖20,𝑄0

)︀
.

Choosing

𝜆 > 𝛼0 +
1

2
+ 𝐶1𝜀+

𝐶3

2

and taking into consideration that

‖𝑣𝛿‖20,𝑄0
> ‖𝑣‖20,𝑄𝛿

, ‖𝑣𝛿‖21,𝑄0
> ‖𝑣‖20,𝑄𝛿

and that the norm ‖𝑣‖21,𝑄𝛿
is equivalent to ‖𝑢‖20,𝑄𝛿

, we arrive at inequality (1.1). The proof is
complete.

Corollary. If

‖𝑓‖20,𝑄0
= 𝑂(𝜀𝑘) and 𝜀‖𝑢‖21,𝑄0

+ ‖𝑢‖20,𝑄0
= 𝑂(𝜀𝑚),

where 𝑚 < 𝑘, then under the assumptions of Theorem 1 we have

𝜀‖𝑢‖21,𝑄𝛿
+ ‖𝑢‖20,𝑄𝛿

= 𝑂(𝜀𝑘).

Proof. Indeed, applying inequality (1.1) to the domains 𝑄 𝛿
2𝑛

, 𝑛 = 1, 2, . . ., in finitely many

steps we obtain the required estimate. The proof is complete.

Theorem 1 shows that the construction of asymptotic solution can be localized.
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2. External expansion

It follows from the assumption on the order of touching of characteristics and the curve 𝑆0

that the equation of Γ𝑑0 can be transformed to the form

𝑑(𝑥1, 𝑥2) = 𝑥23.

Assuming this in the domain 𝑄0, we introduced the variables straightening Γ𝑑0 :

𝑧1 = 𝑑(𝑥1, 𝑥2) − 𝑥23, 𝑧2 = 𝑥3, 𝑧3 = 𝑠(𝑥1, 𝑥2), (2.1)

where 𝑠(𝑥1, 𝑥2) is a coordinate on 𝑆0, 0 6 𝑠 6 𝑠1.
The mapping κ : 𝑥→ 𝑧 is a diffeomorphism and at that,

𝑄0 → 𝜔(0, 𝑑0) = {𝑧 : 0 < 𝑧1 + 𝑧22 < 𝑑0, |𝑧2| <
√︀
𝑑0, 0 6 𝑧3 6 𝑠1},

Γ𝑑0 → 𝛾0 = {𝑧 : 𝑧1 = 0, |𝑧2| 6
√︀
𝑑0, 0 6 𝑧3 6 𝑠1},

𝛾±0 = {𝑧 ∈ 𝛾0, 𝑧2 ≷ 0}.

If we let 𝑢 ∘ κ−1 = 𝑣(𝑧, 𝜀), (𝐴𝜀𝑢) ∘ κ−1 = 𝐵𝜀𝑣, then problem (0.1)–(0.2) is rewritten as

𝐵𝜀𝑣 = 𝜀𝐵(𝑧,𝐷)𝑣(𝑧, 𝜀) +𝐵0(𝑧,𝐷)𝑣(𝑧, 𝜀) = 𝑔(𝑧), 𝑧 ∈ 𝜔(0, 𝑑0), (2.2)

𝑣|𝛾0 = 𝑣(0, 𝑧2, 𝑧3) = 0, (2.3)

where 𝑧 = (𝑧1, 𝑧2, 𝑧3), 𝐷 = (𝐷1, 𝐷2, 𝐷3), 𝐷𝑗 = 𝜕
𝜕𝑧𝑗

,

𝐵(𝑧,𝐷) =
∑︁
|𝛼|62

𝑏𝛼(𝑧)𝐷𝛼

is an elliptic differential operator, 𝐵0(𝑧,𝐷) = 2𝑧2𝐷1 −𝐷2.
A formal asymptotic solutions (FAS) to problem (2.2)–(2.3) is sought as

𝑉 =
∞∑︁
𝑘=0

𝜀𝑘𝑣𝑘(𝑧). (2.4)

For 𝑣𝑘(𝑧) we get the recurrent system of equations{︃
𝐵0𝑣0 = (2𝑧2𝐷1 −𝐷2)𝑣0(𝑧) = 𝑔(𝑧), 𝑣0|𝛾0 = 0,

𝐵0𝑣𝑘 = −𝐵𝑣𝑘−1, 𝑣𝑘|𝛾−
0

= 0.
(2.5)

The solutions of this system are written explicitly⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣0(𝑧) =

𝑧2∫︁
−
√

𝑧1+𝑧22

𝑔0(𝑧1 + 𝑧22 − 𝑡2, 𝑡, 𝑧3) 𝑑𝑡,

𝑣𝑘(𝑧) = −
𝑧2∫︁

√
𝑧1+𝑧22

𝐵𝑣𝑘−1 𝑑𝑡, 𝑘 = 1, 2, . . .

(2.6)

By (2.6) we see that 𝑣0(𝑧) is continuous as 𝑧 ∈ 𝜔(0, 𝑑0), by its derivatives has in 𝑧1, 𝑧2 have

singularities as 𝑟 =
√︀
𝑧1 + 𝑧22 → 0. Let us study the asymptotics of 𝑣𝑘(𝑧) as 𝑟 =

√︀
𝑧1 + 𝑧22 → 0.

Lemma 2.1. The functions 𝑣𝑘(𝑧), 𝑘 = 0, 1, 2, . . ., can be represented as

𝑣𝑘(𝑧) = 𝑟1−3𝑘𝜙𝑘(𝑟, 𝜃, 𝑧3), (2.7)

where

𝑟 =
√︁
𝑧1 + 𝑧22 , 𝜃 =

𝑧2
𝑟
, Π𝑑0 = [0,

√︀
𝑑0] × [−1, 0) × (0, 1) × [0, 𝑠1], 𝜙𝑘(𝑟, 𝜃, 𝑧3) ∈ 𝐶∞(Π𝑑0),



ASYMPTOTICS IN PARAMETER . . . 141

and as 𝑟 → 0, they have the asymptotics

𝑣𝑘(𝑧) ∼ 𝑟1−3𝑘

∞∑︁
𝑚=0

𝜙𝑘,𝑚(𝜃, 𝑧3)𝑟
𝑚, (2.8)

where 𝜙𝑘,𝑚(𝜃, 𝑧3) ∈ 𝐶∞(𝐼0 × [0, 𝑠1]), 𝐼0 = [−1, 1] ∖ {0}.

Proof. By induction, as 𝑘 = 0,

𝑣0(𝑧) = −
𝑧2∫︁

−𝑟

𝑔(𝑟2 − 𝑡2, 𝑡, 𝑧3) 𝑑𝑡 = −𝑟
𝜃∫︁

−1

𝑔(𝑟2(1 − 𝜉2), 𝑟𝜉, 𝑧3) 𝑑𝜉 = 𝑟𝜙0(𝑟, 𝜃, 𝑧3),

where

𝜙0 = −
𝜃∫︁

−1

𝑔(𝑟2(1 − 𝜉2), 𝑟𝜉, 𝑧3) 𝑑𝜉 ∈ 𝐶∞(Π𝑑0).

For integer 𝑝 < 0, by 𝑉𝑝 we denote the class of functions 𝑣𝑝(𝑧), which can be represented as
𝑣𝑝(𝑧) = 𝑟𝑝𝜙𝑝(𝑟, 𝜃, 𝑧3), where 𝜙𝑝(𝑟, 𝜃, 𝑧3) ∈ 𝐶∞(Π𝑑0). The functions in 𝑉𝑝 possess the following
properties:

1∘ 𝑣𝑝(𝑧) ∈ 𝑉𝑝 → 𝐷1𝑣𝑝 ∈ 𝑉𝑝−2, 𝐷2𝑣𝑝 ∈ 𝑉𝑝−2, 𝐷3𝑣𝑝 ∈ 𝑉𝑝;
2∘ 𝑉𝑝′ ⊂ 𝑉𝑝 as 𝑝′ > 𝑝.
Let 𝑣𝑚(𝑧) ∈ 𝑉1−3𝑚 as 1 6 𝑚 6 𝑘 − 1. We are going to prove that 𝑣𝑘(𝑧) ∈ 𝑉1−3𝑘:

𝑣𝑘(𝑧) =

𝑧2∫︁
𝑟

𝐵𝑣𝑘−1 𝑑𝑡 =
∑︁
|𝛼|62

𝑧2∫︁
−𝑟

𝑏𝛼(𝑟2 − 𝑡2, 𝑡, 𝑧3)𝐷
𝛼𝑣𝑘−1 𝑑𝑡

=
∑︁
|𝛼|62

𝑧3∫︁
−𝑟

𝑏𝛼(𝑟2 − 𝑡2, 𝑡, 𝑧3)𝑟
−3𝑘𝜙𝑘−1

(︂
𝑟,
𝑡

𝑟
, 𝑧3

)︂
𝑑𝑡 = 𝑟1−3𝑘𝜙𝑘(𝑟, 𝜃, 𝑧3),

𝜙𝑘 =
∑︁
|𝛼|62

𝜃∫︁
−1

𝑏𝛼(𝑟2(1 − 𝜉2), 𝑟𝜉, 𝑧3)𝜙𝑘−1(𝑟, 𝑡, 𝑧3) 𝑑𝜉 ∈ 𝐶∞(Π𝑑0).

Asymptotics (2.8) follows (2.7) by expanding 𝜙𝑘(𝑟, 𝜃, 𝑧1) into the Taylor series as 𝑟 = 0. The
proof is complete.

Corollary. On 𝛾+0 , the functions 𝑣𝑘(𝑧) take the values

𝑣𝑘(𝑧)|𝛾+
0

= 𝑣𝑘(0, 𝑧2, 𝑧3) = 𝑧1−3𝑘
2 𝜙+

𝑘 (𝑧2, 𝑧3), 𝑧2 > 0, (2.9)

where 𝜙+
𝑘 (𝑧2, 𝑧3) are smooth functions and as 𝑧2 → +0, for 𝑣𝑘(𝑧)|𝛾+

0
we have the asymptotic

expansions

𝑣𝑘(𝑧)|𝛾+
0
∼ 𝑧1−3𝑘

2

∞∑︁
𝑚=0

𝜙+
𝑘,𝑚(𝑧3)𝑧

𝑚
2 . (2.10)

The errors on 𝛾+ can be removed by a regular boundary layer:

𝑌 (𝑡, 𝑧2, 𝑧3, 𝜀) =
∞∑︁
𝑘=0

𝜀𝑘𝑦𝑘(𝑡, 𝑧2, 𝑧3), (2.11)

where 𝑡 = 𝜀−1𝑧1, 𝑦𝑘(𝑡, 𝑧2, 𝑧3) → 0 as 𝑡→ ∞.
In order to write out equations for determining 𝑦𝑘(𝑡, 𝑧2, 𝑧3), we need to split the operator 𝐵𝜀

in powers of 𝜀. We represent 𝐵𝜀 as

𝐵𝜀 = 𝜀−1[𝑏2,0,0(𝜀𝑡, 𝑧
′)𝐷2

𝑡 + 2𝑧3𝐷2] + (𝑞1(𝜀𝑡, 𝑧
′, 𝐷′) −𝐷2) + 𝜀𝑞2(𝜀𝑡, 𝑧

′, 𝐷′),
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where 𝑧′ = (𝑧2, 𝑧3), 𝐷
′ = (𝐷2, 𝐷3), 𝑞1(𝜀𝑡, 𝑧

′, 𝐷′) is a first order differential operator, 𝑞2(𝜀𝑡, 𝑧
′, 𝐷′)

is a second order differential operator. Then we expand the coefficients of 𝐵𝜀 into the Taylor
series at 𝜀 = 0 and we obtain

𝐵𝜀 = 𝜀−1𝑀0 +
∞∑︁
𝑘=0

𝜀𝑘𝑀𝑘+1, (2.12)

where

𝑀0 = 𝑏2,0,0(0, 𝑧
′)𝐷2

𝑡 + 2𝑧2𝐷𝑡, 𝑀1 = 𝑞1(0, 𝑧
′, 𝐷′)𝐷𝑡 −𝐷2,

𝑀𝑘 = 𝑡𝑘𝑏2,0,0(0, 𝑧
′)𝐷2

𝑡 + 𝑡𝑘−1𝑞
(𝑘−1)
1 (0, 𝑧′, 𝐷′)𝐷𝑡 + 𝑡𝑘−2𝑞2(0, 𝑧

′, 𝐷′).

Employing (2.11), (2.12) for 𝑦𝑘(𝑡, 𝑧′), we obtain the system of ordinary differential equations in
the variable 𝑡: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀0𝑦0 =

(︂
1

𝜆
𝐷2

𝑡 + 2𝑧2𝐷𝑡

)︂
𝑦0 = 0,

𝑦0(0, 𝑧
′) = −𝑣0(0, 𝑧′), 𝑧3 > 0, 𝑦0 → 0, 𝑡→ +∞,

𝑀0𝑦𝑘 =
𝑘∑︁

𝑗=1

𝑀𝑗𝑦𝑘−𝑗,

𝑦𝑘(0, 𝑧′) = −𝑣0(0, 𝑧′), 𝑧2 > 0, 𝑦𝑘 → 0, 𝑡→ +∞,

(2.13)

where 1
𝜆

= 𝑏2,0,0(0, 𝑧
′) > 0.

The solutions to this system are written explicitly{︃
𝑦0(𝑡, 𝑧

′) = −𝑣0(0, 𝑧′)𝑒−2𝜆𝑧2𝑡,

𝑦𝑘(𝑡, 𝑧′) = 𝑒−2𝜆𝑧2𝑡𝑃2𝑘(𝑡, 𝑧′),
(2.14)

where 𝑃2𝑘(𝑡, 𝑧′) are polynomials in 𝑡 of degree 2𝑘.
Let us find out the behavior of 𝑦𝑘(𝑡, 𝑧2, 𝑧3) as 𝑧2 → 0.

Lemma 2.2. The functions 𝑦𝑘(𝑡, 𝑧2, 𝑧3) are represented as

𝑦𝑘(𝑡, 𝑧2, 𝑧3) = 𝑧1−3𝑘
2 𝑒−𝜆𝜎𝑃2𝑘(𝜎, 𝑧2, 𝑧3), (2.15)

where 𝜎 = 2𝑧2𝑡, 𝑃2𝑘(𝜎, 𝑧2, 𝑧3) are polynomials in 𝜎 of order 2𝑘, whose coefficients are smooth
functions of (𝑧2, 𝑧3). As 𝑧2 → +0, the functions 𝑦𝑘(𝑡, 𝑧2, 𝑧3) are expanded into the asymptotic
series

𝑦𝑘(𝑡, 𝑧2, 𝑧3) ∼ 𝑧1−3𝑘
2 𝑒−𝜆0𝜎

∞∑︁
𝑚=0

𝑃2𝑘+𝑚(𝜎, 𝑧3)𝑧
𝑚
2 , (2.16)

where 𝜆0 = 1
𝑏2,0,0(0,0,𝑧3)

, 𝑃2𝑘+𝑚(𝜎, 𝑧3) are polynomials in 𝜎 of order 2𝑘+𝑚 with smooth coefficients

in 𝑧3 ∈ [0, 𝑠1].

Proof. By induction, as 𝑘 = 0,

𝑦0(𝑡, 𝑧
′) = −𝑒−2𝜆𝑧3𝑡𝑣0(0, 𝑧2, 𝑧3) = 𝑧3𝑒

−𝜆𝜎𝑄0(𝑧2, 𝑧3), 𝑧3 > 0,

where 𝑄0(𝑧2, 𝑧3) = −𝜙+
0 (𝑧2, 𝑧3) by Corollary of Lemma 2.1. By 𝑌𝑝,𝑚 we denote the class of

functions of form

𝑦𝑝,𝑚(𝑡, 𝑧2, 𝑧3) = 𝑧1−𝑝
3 𝑒−𝜆𝜎𝑃𝑚(𝜎, 𝑧2, 𝑧3),

where 𝑝 > 1 is integer, 𝑃𝑚(𝜎, 𝑧2, 𝑧3) are polynomials of order 𝑚, whose coefficients are smooth
functions of (𝑧2, 𝑧3). The following properties of 𝑌𝑝,𝑚 hold:

1∘ 𝑌𝑝′,𝑚′ ⊂ 𝑌𝑝,𝑚 as 𝑝′ > 𝑝, 𝑚′ 6 𝑚,
2∘ if 𝑦𝑝,𝑚(𝑡, 𝑧2, 𝑧3) ∈ 𝑌𝑝,𝑚, then 𝐷𝑡𝑦𝑝,𝑚 ∈ 𝑌𝑝+1,𝑚, 𝐷2𝑦𝑝,𝑚 ∈ 𝑌𝑝,𝑚+1, 𝐷3𝑦𝑝,𝑚 ∈ 𝑌𝑝−1,𝑚+1,

𝑡𝑗𝑦𝑝,𝑚 ∈ 𝑌𝑝−𝑗,𝑚+𝑗.
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Assuming that 𝑦𝑗(𝑡, 𝑧
′) ∈ 𝑌1−3𝑗,2𝑗 as 1 6 𝑗 6 𝑘 − 1, let us show that 𝑦𝑘(𝑡, 𝑧′) ∈ 𝑌1−3𝑘,2𝑘. We

let 𝑦𝑗(𝑡, 𝑧
′) = 𝑦𝑗(𝜎, 𝑧

′), 0 6 𝑗 6 𝑘, then the equation for 𝑦𝑘(𝜎, 𝑧′) becomes(︂
1

𝜆
𝐷2

𝜎 +𝐷𝜎

)︂
𝑦𝑘 = −𝑧−2

2

𝑘∑︁
𝑗=1

𝑀𝑗𝑦𝑘−𝑗, 𝑦𝑘(0, 𝑧′) = −𝑧1−3𝑘
2 𝜙𝑘(𝑧′),

𝑦𝑘(𝜎, 𝑧′) → 0, 𝜎 → +∞.

Employing the assumption of the induction, the properties of 𝑌1−3𝑗,2𝑗, 0 6 𝑗 6 𝑘 − 1, and

the form of the operator 𝑀𝑗, see (2.12), one can show easily that 𝑧−2
2

𝑘∑︀
𝑗=1

𝑀𝑗𝑦𝑘−𝑗 ∈ 𝑌1−3𝑘,2𝑘−1,

which implies that the problem for 𝑦𝑘 has a solution of the form:

𝑦𝑘 = 𝑧1−3𝑘
2 𝑃2𝑘(𝜎, 𝑧′)𝑒−𝜆𝜎

and thus, we have proved (2.15).
Representing 𝑦𝑘 as

𝑦𝑘 = 𝑧1−3𝑘
2 𝑒−𝜆0𝜎[𝑒(𝜆0−𝜆)𝜎𝑃𝑘(𝜎, 𝑧2, 𝑧3)]

and expanding the expression in the square brackets into the Taylor series as 𝑧2 = 0, we arrive
at (2.16). The proof is complete.

We consider 𝑛-th partial sums of series (2.4) and (2.11):

𝑉𝑛(𝑧, 𝜀) =
𝑛∑︁

𝑘=0

𝑣𝑘(𝑧)𝜀𝑘, 𝑌𝑛(𝑡, 𝑧2, 𝑧3, 𝜀) =
𝑛∑︁

𝑘=0

𝑦𝑘(𝑡, 𝑧2, 𝑧3)𝜀
𝑘

and we let

𝑈𝑛(𝑧, 𝜀) = 𝑉𝑛(𝑧, 𝜀) + 𝑌𝑛(𝑡, 𝑧2, 𝑧3, 𝜀)𝜒

(︂
𝑧2

𝜀
1
3

)︂
, (2.17)

where

𝜒(𝑡) =

{︃
1, 𝑡 > 2

0, 𝑡 6 1

is a smooth cut-off function.

Lemma 2.3. The function 𝑈𝑛(𝑧, 𝜀) is formal asymptotic solution to problem (2.2), (2.3) in
the domain

𝜔(𝜀𝛽, 𝑑0) = {𝑧 : 𝜀𝛽 6 𝑟 6 𝑑0, 0 6 𝑧3 6 𝑠1}
up to 𝑂(𝜀(1−3𝛽)𝑛), where 0 < 𝛽 < 1

3
.

Proof. By (2.5) and (2.13), in the domain 𝜔(𝜀𝛽, 𝑑0) we have

𝐵𝜀𝑈𝑛 = 𝑔(𝑧) +𝑅𝛽
𝑛(𝑧, 𝜀), 𝑈𝑛(0, 𝑧2, 𝑧3, 𝜀) = 0, |𝑧2| > 𝜀𝛽,

where

𝑅𝑛(𝑧, 𝜀) = 𝜀𝑛+1𝐵𝑣𝑛 + 𝜀𝑛
𝑛∑︁

𝑘=1

𝜀𝑘

(︃
𝑛∑︁

𝑗=𝑘

𝑀𝑗𝑦𝑛+𝑘−𝑗

)︃
+

(︃
𝐵𝜀 −

𝑛∑︁
𝑗=0

𝜀𝑗−1𝑀𝑗

)︃
𝑌𝑛.

It follows from Lemmata 2.1 and 2.2 that as 𝑟 > 𝜀𝛽, 𝑧2 > 𝜀𝛽, 0 < 𝛽 < 1
3
, we have

|𝑅𝛽
𝑛(𝑧, 𝜀)| 6 𝐶𝑛

[︂(︁ 𝜀
𝑟3

)︁𝑛
+

(︂
𝜀

𝑧32

)︂𝑛]︂
6 2𝐶𝑛𝜀

(1−3𝛽)𝑛,

where 𝐶𝑛 is a constant independent of 𝜀. The proof is complete.
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3. External expansion

In order to construct the formal asymptotic solution in the vicinity of the curve 𝑆0, we
introduce the rescaled variables:

𝑧1 = 𝜀
2
3 𝜉, 𝑧2 = 𝜀

1
3 𝜏, 𝑧3 = 𝑧3. (3.1)

Let κ𝜀 : 𝑧 → (𝜉, 𝜏, 𝑧3) and

𝑣 ∘ κ𝜀 = 𝑤(𝜉, 𝜏, 𝑧3, 𝜀), (𝐵𝜀𝑣) ∘ κ𝜀 = ℒ𝜀𝑤, 𝑔 ∘ κ𝜀 = ℎ(𝜉, 𝜏, 𝑧3, 𝜀). (3.2)

We rewrite problem (2.3),(2.4) in the variables (𝜉, 𝜏, 𝑧3):

ℒ𝜀𝑤 = ℎ, 𝑤(0, 𝜏, 𝑧3, 𝜀) = 0. (3.3)

Here the splitting of the operator ℒ𝜀 into the powers of 𝜀 reads as

ℒ𝜀 =
∞∑︁
𝑘=0

𝜀
𝑘−1
3 𝐿𝑘, (3.4)

where

𝐿0 =𝜆−1
0 𝐷2

𝜉 + 2𝜏𝐷𝜉 −𝐷𝜏 ,

𝐿𝑘 =
1

𝑘!
𝐷𝑘

𝜇𝑏2,0,0(𝜇
2𝜉, 𝜇𝜏, 𝑧3)|𝜇=0𝐷

2
𝜉 +

1

(𝑘 + 1)!
𝐷𝑘−1

𝜇 𝑏1,1,0(𝜇
2𝜉, 𝜇𝜏, 𝑧3)|𝜇=0𝐷𝜉𝐷𝜏 + . . .

are second order differential operators, whose coefficients are quasi-homogeneous polynomials
in 𝜉, 𝜏 , and the coefficients as the powers of 𝜉, 𝜏 are smooth functions of 𝑧2.

We seek the formal asymptotic solution to problem (3.3) as

𝑊 =
∞∑︁
𝑘=0

𝜀
𝑘+1
3 𝑤𝑘(𝜉, 𝜏, 𝑧3). (3.5)

Expanding ℎ(𝜉, 𝜏, 𝑧3, 𝜀) into the powers of 𝜀, we find that

ℎ =
∞∑︁
𝑘=0

ℎ𝑘(𝜉, 𝜏, 𝑧3)𝜀
𝑘
3 ,

where

ℎ𝑘(𝜉, 𝜏, 𝑧3) =
1

𝑘!
𝐷𝑘

𝜇𝑔(𝜇2𝜉, 𝜇𝜏, 𝑧3)|𝜇=0.

Then in the standard way we obtain a system of parabolic equations for finding 𝑤𝑘(𝜉, 𝜏, 𝑧3) in
the domain

R2
+ × [0, 𝑠1] = {0 < 𝜉 <∞, |𝜏 | <∞, 0 6 𝑧3 6 𝑠1}.

This system is ⎧⎪⎪⎨⎪⎪⎩
𝐿0𝑤0 = (𝜆−1

0 𝐷2
𝜉 + 2𝜏𝐷𝜉 −𝐷𝜏 )𝑤0 = ℎ0,

𝐿0𝑤𝑘 +
𝑘∑︁

𝑗=1

𝐿𝑗𝑤𝑘−𝑗 = ℎ𝑘, 𝑘 = 1, 2, . . .
(3.6)

subject to the boundary conditions

𝑤𝑘(0, 𝜏, 𝑧3) = 0, 𝑘 = 0, 1, . . . (3.7)

To find out additional conditions for solutions to (3.6)—(3.7), we employ the matching con-
ditions [2].

We denote

𝑉 (3𝑛)
𝑛 =

𝑛∑︁
𝑘=0

𝑣
(3𝑛)
𝑘 (𝑧)𝜀𝑘, 𝑌 (3𝑛)

𝑛 =
𝑛∑︁

𝑘=0

𝑦
(3𝑛)
𝑘 (𝑡, 𝑧2, 𝑧3), (3.8)
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where 𝑣
(3𝑛)
𝑘 , 𝑦

(3𝑛)
𝑘 are 3𝑛-th partial sums of asymptotic series (2.4), (2.16) for the functions

𝑣𝑘(𝑧), 𝑦𝑘(𝑡, 𝑧2, 𝑧3), respectively. Let

𝑈 (3𝑛)
𝑛 (𝑧, 𝜀) = 𝑉 (3𝑛)

𝑛 (𝑧, 𝜀) + 𝑌 (3𝑛)
𝑛 (𝑡, 𝑧2, 𝑧3)𝜒

(︂
𝑧2

𝜀
1
3

)︂
, (3.9)

where 𝜒(𝜏) is a smooth cut-off function:

𝜒(𝜏) =

{︃
1, 𝜏 > 2

0, 𝜏 6 1

and 𝐺𝑛(𝑧, 𝜀) = 𝑈𝑛(𝑧, 𝜀) − 𝑈
(3𝑛)
𝑛 (𝑧, 𝜀).

In view of expansions (2.4), (2.16), Lemmata 2.1 and 2.2 imply that the estimates

𝐺𝑛(𝑧, 𝜀) = 𝑂(𝜀𝜇(𝑛+1)), 𝐵𝜀𝐺𝑛(𝑧, 𝜀) = 𝑂(𝜀𝜇𝑛)

in the domain
𝜔(𝜀𝛽, 𝜀𝜇) = {𝑧| 𝜀𝛽 6 𝑟 6 𝜀𝜇},

where 0 < 𝜇 < 𝛽 < 1
3
. These estimates and Lemma 2.3 imply the estimate

𝐵𝜀𝑈
(3𝑛)
𝑛 − 𝑔(𝑧) = 𝑂(𝜀𝜇0𝑛), (3.10)

in the domain 𝜔(𝜀𝛽, 𝜀𝜇), where 𝜇0 = min(𝜇, 1 − 3𝛽).
We rewrite (3.9) in the variables (𝜉, 𝜏, 𝑧3):

𝑈 (3𝑛)
𝑛 ∘ κ𝜀 = 𝑊 (3𝑛)

𝑛 (𝜉, 𝜏, 𝑧3, 𝜀). (3.11)

Here

𝑊 (3𝑛)
𝑛 =

∞∑︁
𝑘=0

𝑤
(𝑛)
𝑘 (𝜉, 𝜏, 𝑧3)𝜀

𝑘+1
3 ,

𝑤
(𝑛)
𝑘 =

𝑛∑︁
𝑚=0

𝜌𝑘+1−3𝑚𝜙𝑘,𝑚(𝜃1, 𝑧3) + 𝑒−𝜆0𝜎1

(︃
𝑛∑︁

𝑚=0

𝜏 𝑘+1−3𝑚𝑃2𝑘+𝑚(𝜎1, 𝑧3)

)︃
𝜒(𝜏),

where 𝜌 =
√︀
𝜉 + 𝜏 2, 𝜃1 = 𝜏

𝜌
, 𝜎1 = 2𝜉𝜏 . At that, 𝑤

(𝑛)
𝑘 |𝜉=0 = 0 as 𝜏 ̸= 0, which is implied by the

explicit formulae and Lemma 2.3.
Formula (3.11) is exactly the matching condition of external and internal expansions. This

means that the solutions to system of equations (3.6), (3.7) should be sought in the class
of functions growing as 𝜌 → +∞ not faster than a power of 𝜌 and having the asymptotics

𝑤𝑘 ∼ 𝑤
(𝑛)
𝑘 as 𝜌→ ∞.

We rewrite (3.10) in the variables (𝜉, 𝜏, 𝑧3):

𝐵𝜀𝑈
(3𝑛)
𝑛 ∘ κ𝜀 − 𝑔(𝑧) ∘ κ𝜀 =ℒ𝜀𝑊

(𝑛)
3𝑛 − ℎ(𝜉, 𝜏, 𝜀)

=
(︁
𝐿0𝑤

(𝑛)
0 − ℎ0

)︁
+ 𝜀

1
3

(︁
𝐿0𝑤

(𝑛)
1 + 𝐿1𝑤

(𝑛)
0 − ℎ1

)︁
+ · · ·

+ 𝜀
𝑘
3

(︃
𝐿0𝑤

(𝑛)
𝑘 +

𝑘∑︁
𝑗=1

𝐿𝑗𝑤
(𝑛)
𝑘−𝑗 − ℎ𝑘

)︃
+ · · · = 𝑂(𝜀𝜇0𝑛).

(3.12)

It follows from (3.12) that under the mapping

κ𝜀 : 𝜔(𝜀𝛽, 𝜀𝜇) → 𝜔′(𝜀𝛽−
1
3 , 𝜀𝜇−

1
3 ) = {(𝜀, 𝜏, 𝑧3)| 𝜀𝛽−

1
3 < 𝜌 < 𝜀𝜇−

1
3 , 𝑧3 ∈ [0, 𝑠1]}

we have

𝐿0𝑤
(𝑛)
0 − ℎ0 = 𝑂(𝜀𝜇0𝑛), 𝐿0𝑤

(𝑛)
𝑘 +

𝑘∑︁
𝑗=1

𝐿𝑗𝑤
(𝑛)
𝑘−𝑗 − ℎ𝑘 = 𝑂(𝜀𝜇0𝑛− 𝑘

3 ), 𝑘 = 1, 2, . . . , 𝑘1. (3.13)
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in the domain 𝜔′. As 𝜌→ ∞, these relations are equivalent to

𝐿0𝑤
(𝑛)
0 − ℎ0 = 𝑂(𝜌−𝜇1𝑛), 𝐿0𝑤

(𝑛)
𝑘 +

𝑘∑︁
𝑗=1

𝐿𝑗𝑤
(𝑛)
𝑘−𝑗 − ℎ𝑘 = 𝑂(𝜌−𝜇1𝑛+𝜇2𝑘), 𝑘 = 1, 2, . . . , 𝑘1. (3.14)

Letting 𝑛→ ∞ in (3.14), we obtain

𝐿0 ̂︀𝑤0 − ℎ0 = 𝑂(𝜌−∞), 𝐿0 ̂︀𝑤𝑘 +
𝑘∑︁

𝑗=1

𝐿𝑗 ̂︀𝑤𝑘−𝑗 − ℎ𝑘 = 𝑂(𝜌−∞), 𝑘 = 1, 2, . . . , (3.15)

where

̂︀𝑤𝑘 =
∞∑︁
𝑗=0

𝜌𝑘+1−3𝑗𝜙𝑘,𝑗(𝜃1, 𝑧3) + 𝜒(𝜀)𝑒−𝜆0𝜎1

∞∑︁
𝑗=0

𝜏 𝑘+1−3𝑗𝑃2𝑘+𝑗(𝜎1, 𝑧3) (3.16)

are formal asymptotic series.

Lemma 3.1. There exist the unique solutions 𝑤𝑘(𝜉, 𝜏, 𝑧3) ∈ 𝐶∞(R2
+ × [0, 𝑠1]) to system of

equations (3.6) subject to boundary conditions (3.7). As 𝜌 → ∞, these solutions are expanded
into asymptotic series (3.16): 𝑤𝑘(𝜉, 𝜏, 𝑧3) ∼ ̂︀𝑤𝑘(𝜉, 𝜏, 𝑧3).

Proof. We denote by 𝑤𝑎,𝑘(𝜉, 𝜏, 𝑧3) smooth functions, which are expanded into asymptotic series
(3.16) as 𝜌 → ∞ and which vanish as 𝜉 = 0: 𝑤𝑎,𝑘 ∼ ̂︀𝑤𝑘, 𝑤𝑎,𝑘(0, 𝜏, 𝑧3) = 0. Such functions are
known to exist. We let

𝑤𝑘(𝜉, 𝜏, 𝑧3) = 𝑤𝑎,𝑘(𝜉, 𝜏, 𝑧3) + 𝑟𝑘(𝜉, 𝜏, 𝑧3), 𝑘 = 0, 1, . . .

By (3.6) and (3.7) we get

𝐿0𝑟0 = 𝜓0, 𝐿0𝑟𝑘 +
𝑘∑︁

𝑗=1

𝐿𝑗𝑟𝑘−𝑗 = 𝜓𝑘, 𝑟0(0, 𝜏, 𝑧3) = 𝑟𝑘(0, 𝜏, 𝑧3) = 0, 𝑘 = 1, 2, . . . ,

where 𝜓0 = ℎ0 − 𝐿0𝑤𝑎,0, 𝜓𝑘 =
𝑘∑︀

𝑗=0

𝐿𝑗𝑟𝑘−𝑗 are smooth functions decaying faster each power of

𝜌−1 with all their derivatives. We denote the class of such functions by 𝑆(R2
+ × [0, 𝑠1]).

We consider the problem

𝐿0𝑅0 = 𝜓(𝜉, 𝜏, 𝑧3), 𝑅0(0, 𝜏, 𝑧3) = 0,

where 𝜓 ∈ 𝑆(R2
+ × [0, 𝑠1]). In [2] there was proved the unique solvability of this problem in the

class 𝑆 in the case, when 𝐿0 and 𝜓 are independent of 𝑧3. It is obvious that this result is true
also in the case of a smooth dependence of 𝐿0 and 𝜓 of 𝑧3. This implies the statement of the
lemma as 𝑘 = 0. After that, the proof is completed by the induction in 𝑘.

We consider 3𝑛-th partial sum of the just determined formal asymptotic solutions (3.5):

𝑊3𝑛 =
3𝑛∑︁
𝑘=0

𝜀
𝑘+1
3 𝑤𝑘(𝜉, 𝜏, 𝑧3). (3.17)

Lemma 3.2. Series (3.17) is a formal asymptotic solution to problem (2.2),(2.3) in the
domain

𝜔(0, 𝜀𝜇) = {𝑧| 0 6 𝑟 6 𝜀𝜇, 𝑧3 ∈ [0, 𝑠1]}
up to 𝑂(𝜀𝜇𝑛), where 0 < 𝜇 < 1

3
.
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Proof. By (3.6) we have

𝐵𝜀𝑊3𝑛 = ℒ𝜀𝑊3𝑛 = ℎ+ [𝑅1,𝑛(𝑧, 𝜀) +𝑅2,𝑛(𝑧, 𝜀) +𝑅3,𝑛(𝑧, 𝜀)] ,

where

𝑅1,𝑛(𝑧, 𝜀) =

(︃
3𝑛∑︁
𝑘=0

𝜀
𝑘
3ℎ𝑘 − ℎ

)︃
,

𝑅2,𝑛(𝑧, 𝜀) = 𝜀𝑛
3𝑛∑︁
𝑘=1

𝜀
𝑘
3

(︃
3𝑛∑︁
𝑗=𝑘

𝐿𝑗𝑤3𝑛+𝑘−𝑗

)︃
,

𝑅3,𝑛(𝑧, 𝜀) =

(︃
ℒ𝜀 −

3𝑛∑︁
𝑘=0

𝜀
𝑘−1
3 𝐿𝑘

)︃
𝑊3𝑛.

By employing the asymptotic expansions for 𝑤𝑘(𝜉, 𝜏, 𝑧3) and the form of the operators 𝐿𝑘, it
is easy to see that each term in the square brackets does not exceed 𝐶𝑛𝜀

𝑛𝜌3𝑛 = 𝐶𝑛𝑟
𝑛 6 𝐶𝑛𝜀

𝜇𝑛,
where the constant 𝐶𝑛 is independent of 𝜀. This implies that

𝐵𝜀𝑊3𝑛 = 𝑔(𝑧) +𝑅𝜇
𝑛(𝑧, 𝜀), 𝑧 ∈ 𝜔(0, 𝜀𝜇), (3.18)

in the domain 𝜔(0, 𝜀𝜇), where 𝑅𝜇
𝑛(𝑧, 𝜀) = 𝑂(𝜀𝜇𝑛).

We introduce the composed expansion [2]:

𝑉𝑎,𝑛 = 𝑈𝑛(𝑧, 𝜀) +𝑊3𝑛(𝜉, 𝜏, 𝑧3, 𝜀) − 𝑈 (3𝑛)
𝑛 (𝑧, 𝜀). (3.19)

Theorem 2. Composed asymptotic expansion (3.19) is the uniform asymptotic expansion to
problem (2.2)–(2.3) up to 𝑂(𝜀𝜇0𝑛) in the domain 𝜔(0, 𝑑0).

Proof. By Lemmata 2.3, 3.2 and formula (3.10) we have

𝐵𝜀(𝑣 − 𝑉𝑎,𝑛) = 𝑅𝑛(𝑧, 𝜀) =

⎧⎪⎨⎪⎩
𝑅𝛽

𝑛(𝑧, 𝜀), 𝑧 ∈ 𝜔(𝜀𝛽, 𝑑0)

𝑅𝜇
𝑛(𝑧, 𝜀), 𝑧 ∈ 𝜔(𝜀𝜇, 𝑑0)

−𝑅𝛽
𝑛(𝑧, 𝜀) +𝑅0

𝑛(𝑧, 𝜀), 𝑧 ∈ 𝜔(𝜀𝛽, 𝜀𝜇)

where 𝑅𝑛(𝑧, 𝜀) = 𝑂(𝜀𝜇0𝑛). It follows from Theorem 1 that

𝜀‖𝑣 − 𝑉𝑎,𝑛‖21,𝜔(0,𝑑0) + ‖𝑣 − 𝑉𝑎,𝑛‖20,𝜔(0,𝑑0) 6 𝐶𝜀𝜇0𝑛.
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