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ASYMPTOTICS IN PARAMETER OF SOLUTION TO
ELLIPTIC BOUNDARY VALUE PROBLEM IN
VICINITY OF OUTER TOUCHING OF
CHARACTERISTICS TO LIMIT EQUATION

Yu.Z. SHAYGARDANOV

Abstract. In a bounded domain @ C R? with a smooth boundary I" we consider the
boundary value problem

cAu — ;)Zs = f(z), wulp=0.

Here A is a second order elliptic operator, € is a small parameter. The limiting equation,
as € = 0, is the first order equation. Its characteristics are the straight lines parallel to the
axis Ox3. For the domain Q we assume that the characteristic either intersects I' at two
points or touches I' from outside. The set of touching point forms a closed smooth curve.
In the paper we construct the asymptotics as € — 0 for the solutions to the studied problem
in the vicinity of this curve. For constructing the asymptotics we employ the method of
matching asymptotic expansions.
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FORMULATION OF PROBLEM

In a bounded simply-connected domain @ C R? with piecewise smooth boundary I' we
consider the boundary valu problem

eA(z, D)u(z,e) — Dyu(z,e) = f(z), z€Q,
u=0, zel.

Here € > 0 is a small parameter, = (21, 29, 23), D = (D1, Dy, D3), D; = -2

J Oz,
Az, D) = Z ao(x) D

laf<2

is an elliptic differentiation operator with a positive definite quadratic form

as(2,6) = Y aa(®)€* = aolé]’, ag >0,

|af=2

ap is a constant, « is a multi-index.
Assume that the data of problem (0.1)—(0.2) are smooth (belong to C*°), then for each

e > 0 there exists the unique solution u(x,e) € C*(Q).
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The limiting equation for (0.1) is that as € = 0, i.e., the first order equation

—Dsug(z) = f(x). (0.3)

Its characteristics are straight lines parallel the axis Ox3. Regarding the domain Q = QUT we
assume that the characteristics of equation (0.3) either intersect I' at two points or they have
first order touching with I' from outside and the set of touching points is a smooth closed curve
So. In what follows we assume that the curve Sy lies in the plane x3 = 0. This can be achieved
by a smooth change of variables, which keeps the form of equation (0.1).

The curve Sy partitions I' into two parts ['* as z3 = 0, respectively. The limiting problem
for (0.1)—(0.2) is the problem

—D3U0(ZE) = f(ZL‘), U0|p7 = 0. (04)

Everywhere in the domain ) except the vicinity of the curve Sy, an asymptotic solution of
problem (0.1)-(0.2) as ¢ — 0 is found by the Vishik-Lyusternik method [1]. In the present
work we construct an asymptotic solution to problem (0.1)—(0.2) in the vicinity of Sy. In order
to construct asymptotic solution, we employ the method of matching asymptotic solutions by
A.M. I'in [2]. The two-dimensional case for equations with constant coeflicients was considered
in [3] (see also [2]).

1. ESTIMATE OF SOLUTION IN A SUBDOMAIN

Let d(z1, z2) be the distance along the interior normal to Sy. By Sy, we denote the curve in
the plane z3 = 0 separated from Sy by the distance d(z,y) = dy, where dj is chosen so that the
normals do not intersect. The characteristics of equation (0.3) passing Sy, separate the domain
(o bordered by these characteristics Xy, by I'g,, which is a part I" containing Sy. Let Q)5 be
the subdomain

Qo : Q(;:{ZL’GQOI 0<d(;1:,y)<d0—(5},
where 0 < § < dy. Given a domain G in R? and an integer p > 0, by HP(G) we denote the
Sobolev space with the norm

lulle =Y [ 1Dl da.
|l <p

Theorem 1. Let Qg and Qs be the domain defined above. Then for sufficiently small € > 0
and 6 = CeY, where C' > 0 is a constant independent of €, 0 < v < %, the solution of problem
(0.1)—(0.2) satisfies the estimate

1_
200 < Ct |11, + ¥ (elulld g, + uli3 0,)] (1.1)

with a constant Cy independent of €.

ellullf g, + [l

Proof. Let 1s(x1,x2) be a smooth cut-off function

1, 0<d(z1,22) < do—0,
¢5(x1,a:2) = ( ! 2) 0
07 d(xlv'rQ) > 507
for which the estimates
| DE Dy s || < Cromnd™*™ kym = 0,1,2,

hold with constants C},, independent of ¢.
We consider the expression us(z) = e~ vs(z), where

us(r) = u(w)Ys(zy, 22),  vs(w) = v(2)Ys(21, 22).
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By equation (0.1)
cAvs — D3vs — Mg = 8 fahs — e A'v, (1.2)
where A'v = e3[A, e *33)5]v(z), [+, -] is the commutator.
Multiplying (1.2) by —(vs(z)) and integrating over the domain )y, we obtain
—&(Avs, vs) + (Dsvs, vs) + Allvs|lf o, < (€ fbs, vs)| + e[(A'v, vs)],  (u,v) = /uv dr. (1.3)
Qo
Integrating by parts in the left hand side of inequality (1.3) and taking into consideration that

vs =0 on 0Qy = X4, U Ty, as well as the ellipticity of the operator A, we get

1
e(dva,v5) + (Dats, ) + Musl? > eaulsli, + (A= 5 = Coe ) Il g

Hereinafter, Cj, j = 1,2,3,... are positive constants independent of .
Estimating the right hand side in (1.3), we get

1
N 1 1 ez 1
(e fus, )]+ (', 0] <Ca (51 R + 3lluslia, ) +Ci | SulR g, + EuvnaQol

Cs Cs 1
<G 11600 + 5 0sll6.00 + Cse ™ [ellvllr gy + l10116.00] -

The obtained estimates for the right and left hand sides in inequality (1.3) imply:

1 03 Cg 1_
coollslia + (=5~ Coe = ) Wty < FUMa, + Coet™ Elllia, + ol )
Choosing
1 C!
A>ap+ = +Cre+ =
2 2
and taking into consideration that
lvsllE.qe = IWll5.qsr  Nusliq, = M50,

and that the norm [[v]|7,, is equivalent to ||ul|§ ,,, we arrive at inequality (1.1). The proof is
complete. [

Corollary. If

710, = OE") and <lullig, + v

S,Qo = O(Em)a
where m < k, then under the assumptions of Theorem 1 we have
ellulli g, + llulls.q, = O").

Proof. Indeed, applying inequality (1.1) to the domains @ S = 1,2,..., in finitely many
steps we obtain the required estimate. The proof is complete. O

Theorem 1 shows that the construction of asymptotic solution can be localized.
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2. EXTERNAL EXPANSION

It follows from the assumption on the order of touching of characteristics and the curve S
that the equation of I'y, can be transformed to the form

d(ry,19) = 3.
Assuming this in the domain @)y, we introduced the variables straightening I'y,:
21 =d(x1,79) — 73, 20 =3, 23=5(T1,T0), (2.1)

where s(x1,x2) is a coordinate on Sy, 0 < s < s3.
The mapping » : © — z is a diffeomorphism and at that,

Qo = w(0,do) ={z: 0<z+23<dy, |2|<Vd, 0<z5<s1},
Loy »0=1{2: 21=0, |n<\Vd, 0<z<s),
& ={z €, 2 =0}
If we let wo »' = v(z,¢), (Acu) o 7' = B.v, then problem (0.1)—(0.2) is rewritten as
B.v =eB(z,D)v(z,e) + Bo(z, D)v(z,¢) = g(2), =z € w(0,dp),

Ul~o = 0(0, 22, 23) = 0,

where z = (21, 29, 23), D = (D1, Dy, D3), D; = a%j,
B(z,D) =) ba(2)D"
|| <2

is an elliptic differential operator, By(z, D) = 229D1 — Ds.
A formal asymptotic solutions (FAS) to problem (2.2)—(2.3) is sought as

V=> cu2) (2.4)

For vi(2) we get the recurrent system of equations

BOUO = (222D1 — DQ)U()(Z) = g(Z), UOl’Yo = 0, (2 5)
B()Uk = —B’Uk,b Uk"yo_ =0.
The solutions of this system are written explicitly
( z2
v(2) = / go(z1 + 25 — 2.t 23) dt,
f\/zlJrz%
(2.6)

vp(z) = — / Bup_idt, k=12, ...

By (2.6) we see that vy(z) is continuous as z € w(0,dy), by its derivatives has in z;, zo have
singularities as r = /21 + 22 — 0. Let us study the asymptotics of vy(z) asr = /21 + 22 — 0.

Lemma 2.1. The functions vx(z), k =0,1,2,..., can be represented as
vp(2) = 1Py (r, 6, 23), (2.7)

where

r= \/ 21+ Z%? 0= %’ Hdo = [07 \/%] X [_LO) X (07 1) X [07 51]7 @k(r79723) S COO(Hdo)a
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and as r — 0, they have the asymptotics

ve(2) ~ Y " o (6, 25)r™, (2.8)

m=0

where @m0, z3) € C°(Iy x [0,s1]), In = [—1,1] \ {0}.
Proof. By induction, as k = 0,

22

0
UO(’Z) = - /g(TQ - t27t7 Z3> dt = —T/g(?“Q(l - 62)7T€723) d£ = TQO()('I“,H, ZB)7
21

-

where
0

po = — /g(r2(1 €)1, 2g) dE € C(TTy ).

“1

For integer p < 0, by V,, we denote the class of functions 9,(z), which can be represented as
Up(2) = 1P,(1,0, 23), where @,(r, 0, z3) € C>(Ily,). The functions in V), possess the following
properties:

1° ﬁp(Z) € ‘/p — Dlﬁp € ‘/;3_2, DQ'ZNJP € ‘/p_g, Dgﬁp S ‘/;9,

2°Vy CcVyasp' >p.

Let v,,(2) € Vi_gm as 1 <m < k — 1. We are going to prove that vg(z) € Vi_g:

vp(2) = /ka L dt = Z/ — 12,1, 23) D%y dt

la|<2 ~

t
= Z / — ¢, Z3)r_3k<ﬁk_1 (r, -, 23> dt = r1_3k90k(7’, 0, 23),
r

la|<2 ~

Pr = Z ba(r (1 - 52)7 7"67 23)()5]671(747257 23) df € COO<Hd0)-

lal<2 24

Asymptotics (2.8) follows (2.7) by expanding (7,0, z1) into the Taylor series as » = 0. The
proof is complete. O

Corollary. On v, the functions vi,(z) take the values
vk(z)|%+ = 0k(0, 22, 23) = 25 Fip (22, 23), 22 >0, (2.9)

where o (22, 23) are smooth functions and as zo — +0, for vk(z)%r we have the asymptotic
exrpansions

vg(z |+~Z2 3k2g0kmz3 : (2.10)
The errors on v can be removed by a regular boundary layer:
Y t,z9, 23, € Zs yr(t, 22, 23), (2.11)

where t = 712y, y(t, 22,23) — 0 as t — oo.
In order to write out equations for determining yy(, 22, 23), we need to split the operator B.
in powers of €. We represent B, as

Ba = 8_1[1)2,070(625, Z,)Dt2 + 223D2] + (Ch (€t, Z,, D/> — Dg) + 8(]2(8t, Z/, D,),



142 Yu.Z. SHAYGARDANOV

where 2’ = (29, 23), D' = (D2, D3), q1(et, 2/, D') is a first order differential operator, gs(ct, 2/, D')
is a second order differential operator. Then we expand the coefficients of B, into the Taylor
series at ¢ = 0 and we obtain

B.=c"'"My+ ) "My, (2.12)
k=0
where

My = by0(0,2")D? + 22,D;, M, = q(0,2',D")D, — D,,
My, = t"by00(0, 2/) D} + 717 2(0, 2/, D') Dy + #25(0, 2/, D).

Employing (2.11), (2.12) for y,(t, '), we obtain the system of ordinary differential equations in
the variable t:

Moyo (D3+2z2Dt> Yo = 0,

—00(0,2"), 23>0, yo—0, t— +o0,

(2.13)
Moy, = Zijk i
j=1
\yk(ov Z/) = _UO(Oa Zl)? z9 >0, Yk — 0, t— +o0,
where 1 $ = b2,0,0(0,2) > 0.
The solutions to this system are written explicitly
yo(t,2") = —vo(0, 2')e ™, (2.14)
yk(t,zl) _ 672/\zgtp2k(t’ Z/), .
where Py (t,2') are polynomials in ¢ of degree 2k.
Let us find out the behavior of yi (¢, 22, 23) as zo — 0.
Lemma 2.2. The functions yx(t, 29, z3) are represented as
yk(t, 22, 23) = Z% 3k _)\UPQk(U 22, 23) (215)

where 0 = 2z9t, Poy(0, 22, 23) are polynomials in o of order 2k, whose coefficients are smooth
functions of (zq,23). As zo — 40, the functions yx(t, 29, z3) are expanded into the asymptotic
series

Yi(t, 2, 23) ~ za koo Z Poyy(0, 23) 25", (2.16)
m=0

where Ao Popym(0, z3) are polynomials in o of order 2k+m with smooth coefficients

_ 1
"~ b2,0,0(0,0,23)”
in z3 € [0, 51].

Proof. By induction, as k = 0,

Yo(t, 2) = —e 23(0, 29, 23) = 236 7 Qo(22, 23), 23 > 0,

where Qo(z22,23) = —¢§ (22, 23) by Corollary of Lemma 2.1. By Y,,,, we denote the class of
functions of form
Ypm (L, 20, 23) = 23 Pe P, (0, 22, 23),
where p > 1 is integer, P,,(0, 22, 23) are polynomials of order m, whose coefficients are smooth
functions of (22, 23). The following properties of Y}, ,, hold:
1° Yy C Yy asp' >p, m' <m,

'20 if ypm(t,22,23) € Ypm, then Dy € Yorim, Dovpm € Yom+1s Dslpm € Yp_imi1,

tYpm € YVp—jme;-
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Assuming that y;(t,2') € Yi_g;2; as 1 < j < k — 1, let us show that y(¢,2") € Yi_s50,. We
let y;(t,2") = g;(0,2), 0 < j < k, then the equation for g;(c, 2’) becomes

k
1 . _ N . gk ~
<XD§ + Da> Yk = —2 2 Z M;ir—j,  Jx(0, Z') = —Z% SkSOk(Z/)a
j=1
Uk(0,2') =0, o — +oo.
Employing the assumption of the induction, the properties of Y;_3;9;, 0 < j < k —1, and
k
the form of the operator M;, see (2.12), one can show easily that 22 Z M;i—; € Yi_3k26-1,

7j=1
which implies that the problem for g has a solution of the form:

k= 25 " P[0, 2 )e

and thus, we have proved (2.15).
Representing vy as

Yp = z%_%e_’\og[e(’\o_)‘)‘rpk(a, 29,23)]

and expanding the expression in the square brackets into the Taylor series as zo, = 0, we arrive
at (2.16). The proof is complete. ]

We consider n-th partial sums of series (2.4) and (2.11):

Vn(za 5) = Z ’Uk(Z)Ek’ Yn(ta 22, 23, 6) = Z yk(ta 22, 23)€k
k=0

and we let
Un(z,6) = Vo(z,€) + Yal(t, 22, 23,€) x (—) : (2.17)

where

is a smooth cut-off function.

Lemma 2.3. The function U,(z,¢) is formal asymptotic solution to problem (2.2), (2.3) in
the domain

G dy)={z: e <r<dy, 0<2<5s1}
up to O(e1=39m) where 0 < f < 1.
Proof. By (2.5) and (2.13), in the domain w(e”, dy) we have
B.U, = g(2) + R%(z,¢), Upn(0,29,23,6) =0, |2]>£",
where
R.(z,6) ="' Bu, + "> & (Z ijn+k_j> + (BE -y gf—le> Y.
k=1 j=k Jj=0
It follows from Lemmata 2.1 and 2.2 that as r > €%, 2, > %, 0 < B < %, we have

|Ro(2,)| < Ca {(%)n + (;) } < 20,7,

2
where (), is a constant independent of €. The proof is complete. O
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3. EXTERNAL EXPANSION

In order to construct the formal asymptotic solution in the vicinity of the curve Sy, we
introduce the rescaled variables:

2 =e3l, zm=eiT, 23 =73 (3.1)
Let ».: z — (€, 7,23) and
vos. =w(, T 23,6), (Bw)osx.=Lw, gosx =h(T,z3¢). (3.2)
We rewrite problem (2.3),(2.4) in the variables (£, 7, z3):
Low=nh, w(0,T7,z23¢)=0. (3.3)

Here the splitting of the operator L. into the powers of € reads as
L. _Za 5 Ly, (3.4)

where

Lo :A—ng +27D¢ — D,

Ly, _ED bzoo(u2§aﬂ7'7 Z3)‘#=OD§ + m
are second order differential operators, whose coefficients are quasi-homogeneous polynomials

in &, 7, and the coefficients as the powers of £, 7 are smooth functions of z,.
We seek the formal asymptotic solution to problem (3.3) as

W = Zg% (&,7, 23). (3.5)

Dﬁ71b171’0(ﬂ2£, M7, 23)|H:0D§DT + ...

Expanding h(&, 7, 23, €) into the powers of g, we find that

h = Z hk<§7 T, Z3)6§7
k=0

where

1
h’k’(€77—7 ZS) = kaQOL g M, Z3)‘M =0-

Then in the standard way we obtain a system of parabolic equations for finding wy(§, 7, 23) in
the domain
RZ x [0,81] ={0 <& < o0, |7] <00, 0< 23 <51}

This system is

L()UJO = ()\ang + 27'D§ — DT)U}Q = ho,
k
3.6
Lowk+Zijk,j :hk, k= 1,2,... ( )
j=1
subject to the boundary conditions

wg(0,7,23) =0, k=0,1,... (3.7)

To find out additional conditions for solutions to (3.6)—(3.7), we employ the matching con-
ditions [2].
We denote

n

ASOR va’")(z) Zyk (t, 22, 23), (3.8)

k=0
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where 0" y®" are 3n-th partial sums of asymptotic series (2.4), (2.16) for the functions

vk(2), yr(t, 2o, 23), respectively. Let
Ur(zSn)(Z, 5) = Vn(3n)(27 5) + Yé?m)(t: 22; 23)X (Z_?) ’ (39)
€3
where x(7) is a smooth cut-off function:

and Gp(z,€) = Un(z,€) — UL (2, ).
In view of expansions (2.4), (2.16), Lemmata 2.1 and 2.2 imply that the estimates
Gn(z,6) = O("™)) B.G,(z,€) = O(e")
in the domain
w(e? e") = {2 < r < e},
where 0 < pu < 8 < % These estimates and Lemma 2.3 imply the estimate
B.UBMY — g(z) = O(gHm), (3.10)

in the domain w(e”, "), where pg = min(u, 1 — 33).
We rewrite (3.9) in the variables (£, T, 23):

USBY 6 3¢, = WEV (€, 7, 23, €). (3.11)
Here
s k+1
Wrg?m) - Z wl(cn) &, 23>5%7
k=0
wl(cn) - Z PP o (01, 23) + €707 (Z TR Py (01, z3)> x(7),
m=0 m=0

where p = /£ + 72, 0, = %, 01 = 2¢7. At that, w,(fn)|5:0 =0 as 7 # 0, which is implied by the
explicit formulae and Lemma 2.3.

Formula (3.11) is exactly the matching condition of external and internal expansions. This
means that the solutions to system of equations (3.6), (3.7) should be sought in the class

of functions growing as p — +oo not faster than a power of p and having the asymptotics
Wy ~ w,(ﬂn) as p — Q.
We rewrite (3.10) in the variables (&, 7, 23):
BUS™ 0 5. — g(2) 0 56. =L — h(€,7,¢)

— (Low(()”) _ ho) + 8% (Lowgn) 4 Llw(()n) . h1> 4. (3 12)

k
4ot (Low,gm LS Ll hk> b= Ot
=1
It follows from (3.12) that under the mapping

st w(el o) > WP E, e E) = {(e,7,23)] PTF < p<etTE z €0, ]}
we have

k
Low(” = ho = O(""),  Low(” + > Lyw{”, — hy = O(e™""%), k=12, k. (3.13)

Jj=1
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in the domain w’. As p — oo, these relations are equivalent to
k
Low” — ho = O(p™™), Low” + 3 Lyjw(", — by, = O(p~"#2k) | | =12, k. (3.14)
j=1

Letting n — oo in (3.14), we obtain

k
Loio — hg = O(p™>), Loy + » _ Lilp—j — hy = O(p™>), k=1,2,..., (3.15)
j=1
where
Wy = ZPkJrl_gj@k,j(@h 23) + x(e)e 7 Z Tk+1_3jP2k+j(Ul7 23) (3.16)
j=0 j=0

are formal asymptotic series.

Lemma 3.1. There exist the unique solutions wy(§, 7, 23) € C(R2 x [0, s1]) to system of
equations (3.6) subject to boundary conditions (3.7). As p — oo, these solutions are expanded
into asymptotic series (3.16): wg(&, T, 23) ~ W(&, T, 23).

Proof. We denote by w, (&, T, 23) smooth functions, which are expanded into asymptotic series
(3.16) as p — oo and which vanish as £ = 0: w,x ~ Wk, Wa (0,7, 23) = 0. Such functions are
known to exist. We let

wi(&, 7, 23) = War (6,7, 23) +11(€, 7, 23), k=0,1,...
By (3.6) and (3.7) we get

k
LOTO = quJ L(]Tk + Z Ljrk—j - 1/)147 T0(07 T, Z3) = Tk(o, T, Z3) = 07 k= 17 27 ceey
j=1
k
where g = hg — Lowap, ¥x = > Ljr,_; are smooth functions decaying faster each power of
7=0

p~! with all their derivatives. We denote the class of such functions by S(RZ x [0, s1]).
We consider the problem

LORO = w(g; T, 23)7 RO(Oa T, 23) = 07

where ¢ € S(RZ x [0, s1]). In [2] there was proved the unique solvability of this problem in the
class S in the case, when Ly and v are independent of z3. It is obvious that this result is true
also in the case of a smooth dependence of Ly and v of z3. This implies the statement of the
lemma as k = 0. After that, the proof is completed by the induction in k. O

We consider 3n-th partial sum of the just determined formal asymptotic solutions (3.5):

3n
Wi = &5 wi(€, 7, 23). (3.17)
k=0
Lemma 3.2. Series (3.17) is a formal asymptotic solution to problem (2.2),(2.3) in the

domain

(0,e")y={z| 0<r<e”, 2z3€(0,%]}
1

3

w
up to O(e"™), where 0 < p <
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Proof. By (3.6) we have
BsWSn - 'CEWBn - h + [Rl,n(za 5) + RQ,n(27€> + R3,n(z7€)] )

where

3n
Ry, (2,¢) = <Z eghk — h> ,

k=0

3n 3n

RQ,n(Zu 5) =" Z 5% <Z ij?m-‘rk—j) )

k=1 =k

3n

R3 . (z,¢) = (LE — ZekglLk> W,

k=0
By employing the asymptotic expansions for w (€, 7, 23) and the form of the operators Ly, it
is easy to see that each term in the square brackets does not exceed C,e"p’" = C,,r"™ < Cpeh™,
where the constant C,, is independent of . This implies that

B.Ws, = g(z) + Rb(z,¢), z€w(0,e"), (3.18)
in the domain @(0, "), where R!(z,e) = O(e"™). O
We introduce the composed expansion [2]:
Vo = Un(z,8) + Wan (&, 7, 23,6) — UP™(2,€). (3.19)
Theorem 2. Composed asymptotic expansion (3.19) is the uniform asymptotic expansion to
problem (2.2)—(2.3) up to O(£"°") in the domain w(0,dp).
Proof. By Lemmata 2.3, 3.2 and formula (3.10) we have
RP(z,¢e), z € w(e, dy)
B.(v —Va,) = Ru(z,6) = ¢ Ri(z,¢), z € w(er, dp)
—R%(2,6) + R%(z,¢), zcw(eP e
where R,,(z,¢€) = O(e#™). It follows from Theorem 1 that

ellv - %,n"%,w(o,do) + [Jv — Va,nH(Q),w(O,do) < Cehon.
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