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Leont’ev

Abstract. In the paper we obtain two results on the behavior of Dirichlet series on a
real axis.

The first of them concerns the lower bound for the sum of the Dirichlet series on the
system of segments [𝛼, 𝛼 + 𝛿]. Here the parameters 𝛼 > 0, 𝛿 > 0 are such that 𝛼 ↑ +∞,
𝛿 ↓ 0. The needed asymptotic estimates is established by means of a method based on
some inequalities for extremal functions in the appropriate non-quasi-analytic Carleman
class. This approach turns out to be more effective than the known traditional ways for
obtaining similar estimates.

The second result specifies essentially the known theorem by M.A. Evgrafov on existence
of a bounded on R Dirichlet series. According to Macintyre, the sum of this series tends to
zero on R. We prove a spectific estimate for the decay rate of the function in an Macintyre-
Evgrafov type example.
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1. Introduction

We recall first the history of the issue. Let

𝑓(𝑧) =
∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 (𝑧 = 𝑥+ 𝑖𝑦) (1)

be an entire transcendental function with real coefficients and {𝑝𝑛} (𝑛 > 1) be the sequence of
sign changes of the coefficients; by the definition

𝑝𝑛 = min
𝑘>𝑝𝑛−1

{𝑘 : 𝑎𝑝𝑛−1𝑎𝑘 < 0}, 𝑝0 = min{𝑘 : 𝑎𝑘 ̸= 0}.

For a long time the following problem coming back to work [1] by Pólya was topical: under
which conditions for the sequence {𝑝𝑛} the identity

𝑑(𝑓 ; R+) = 1 (2)

holds, where R+ is the positive ray [0, ∞),

𝑑(𝑓 ; R+) = lim
𝑥→+∞

ln |𝑓(𝑥)|
ln𝑀𝑓 (𝑥)

, 𝑀𝑓 (𝑥) = max
|𝑧|=𝑥

|𝑓(𝑧)|?

It should be noted that a more general analogue 𝑑(𝑓 ; 𝛾) = 1 of identity (2), where 𝛾 is an
arbitrary curve going to infinity, was considered and established first by Pólya in work [1] for
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entire functions 𝑓 of finite order represented by lacunary power series having, generally speaking,
complex Taylor coefficients. Exactly this result initiated numerous studies, in which its various
generalizations were obtained. But in the most general formulation, both this problem and the
problem on identity (2) for entire functions with real Taylor coefficients turned out to be rather
complicated.

Till the end of 90s–beginning of 2000s the following question remained open: what are the
minimal restrictions for the sequence {𝑝𝑛}, under which each entire function 𝑓 given by series
(1) with real Taylor coefficients satisfies identity (2)?

Already in work [2], M.N. Sheremeta formulated the conjecture on validity of identity (2) for
any sequence {𝑝𝑛} obeying the only condition

∞∑︁
𝑛=1

1

𝑝𝑛
<∞. (3)

In [2] there had been even given the proof of this strong statement. However, later a gap was
found in this proof. M.N. Sheremeta had not succeeded to cover this gap and he formulated
it as an independent problem, which was given in various formulations in a series of issues of
“Matematychni studïı” (Lviv) and in other publications by Lviv mathematical society, see, for
instance, [3], [4].

In [5] there was constructed a counterexample disproving the conjecture by M.N. Sheremeta.
The main result of the paper gave an answer for the so-called Pólya problem.

The dual Pólya problem on behavior of entire transcendental functions of the form

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛 (0 < 𝑝𝑛 ↑ ∞, 𝑎𝑛 ∈ C) (4)

on arbitrary curves 𝛾 going to infinity ∞ was completely solved in [6].
Let us provide this result. Let 𝐿 be the class of all continuous on R+ functions 𝑤 = 𝑤(𝑥),

0 < 𝑤(𝑥) ↑ ∞ as 𝑥→ ∞. By 𝑊 we denote the set of all functions 𝑤 in 𝐿 such that 𝑤(𝑥)𝑥−2 is
integrable on [1,∞). In [6] the following statement was proved; here we provide an equivalent
formulation: For each function 𝑓 of form (4), for each curve 𝛾 going to infinity ∞ the identity
𝑑(𝑓 ; 𝛾) = 1 holds true if and only if the sequence 𝑃 = {𝑝𝑛} satisfies the conditions:

1)
∞∑︁
𝑛=1

1

𝑝𝑛
<∞; 2) 𝐼𝑃 (𝑝𝑛) =

𝑝𝑛∫︁
0

𝜇𝑃 (𝑝𝑛; 𝑡)

𝑡
𝑑𝑡 6 𝑤(𝑝𝑛) (𝑛 > 1),

where 𝜇𝑃 (𝑝𝑛; 𝑡) is the amount of the points 𝑝𝑘 ̸= 𝑝𝑛 in the segment {ℎ : |ℎ − 𝑝𝑛| 6 𝑡}, 𝑤 is
some function in 𝑊 .

If 𝛾 = R+, Conditions 1) and 2) are the criterion for the validity of the identity

ln𝑀𝑓 (𝑥) = (1 + 𝑜(1)) ln |𝑓(𝑥)|, 𝑀𝑓 (𝑥) = max
|𝑧|=𝑥

|𝑓(𝑧)|. (5)

as 𝑥→ ∞ outside some set 𝑒 ⊂ R+ of zero logarithmic density [7]1 for each function (4).
Finally, we note that in [8] there was solved a more general problem related with the Pólya

conjecture on the minimum of the absolute value: conditions 1) and 2) are the criterion for the
validity of the identity

ln𝑀𝑓 (𝑥) = (1 + 𝑜(1)) ln𝑚𝑓 (𝑥)

as 𝑥 → +∞ outside some set 𝑒 ⊂ R+ of a finite logarithmic measure for each function 𝑓 of
form (4); here

𝑚𝑓 (𝑥) = min
𝑧∈𝐶𝑥

|𝑓(𝑧)|,

1That is, outside 𝑒,
∫︀

𝑒∩[1, 𝑟)

𝑑𝑡
𝑡 = 𝑜(ln 𝑟) as 𝑟 → ∞. If

∫︀
𝑒

𝑑𝑡
𝑡 < ∞, one says that the set 𝑒 has a finite logarithmic

measure.
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and 𝐶𝑥 is some closed contour obtained from the circumference {𝑧 : |𝑧| = 𝑥} by a “small
deformation” [8].

Here we provide the formulations of the main results of works [5]–[8] but applied for lacunary
power series (4). In these works, in fact, the corresponding problems are considered for more
general series, Dirichlet series:

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 (0 < 𝜆𝑛 ↑ ∞ , 𝑠 = 𝜎 + 𝑖𝑡), (6)

converging absolutely in the entire plane; here we assume that not all the coefficients of the
series vanish and the sequences of the exponents has a finite upper density.

As it is known, under the condition
∞∑︁
𝑛=1

1

𝜆𝑛
<∞ (7)

the sum 𝐹 of each series (6) is unbounded on R+ [9].
For natural 𝜆𝑛 the opposite statement is true; this follows the results by Macintyre [10]. For

sequences Λ = {𝜆𝑛} having a finite condensation index

𝛿 = lim
𝑛→∞

1

𝜆𝑛
ln

1

|𝑄′(𝜆𝑛)|
, 𝑄(𝜆) =

∞∏︁
𝑛=1

(︂
1 − 𝜆2

𝜆2𝑛

)︂
a similar statement was proven by N.N. Yusupova [11].

If 𝑛(𝑟) ∼ 𝑐𝑟𝜌(𝑟) as 𝑟 → ∞, where 𝑐 ̸= 0,∞, 𝜌(𝑟) is the specified order, 𝑛(𝑟) is the counting
function of the sequence Λ, and − ln |𝑄′

(𝜆𝑛)| = 𝑂(𝑛) as 𝑛 → ∞, the corresponding example
was constructed in [9].

If only condition (7) holds, nothing is known about the asymptotics of the sum of series (6)
even on R+. We can just state that 0 6 𝑑(𝐹 ; R+) 6 1 [6], where

𝑑(𝐹 ; R+) = lim
𝜎→+∞

|𝐹 (𝜎)|
𝑀𝐹 (𝜎)

, 𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)|.

As it was shown in [6], the estimates 0 6 𝑑(𝐹 ; R+) 6 1 are sharp; 𝑑(𝐹 ; R+) = 1 if 𝐼Λ obeys
the condition of type 2); otherwise there exists series (6), for which 𝑑(𝐹 ; R+) = 0.

In connection with this, a question naturally arises: the logarithm of which unboundedly
increasing “good” function preferably defined in terms of the coefficients and exponents of
series (6) is the optimal minorant for the logarithm of the absolute value of the sum of this
series at least on some dense sequence of points 𝜎𝑛 ∈ R+, 𝜎𝑛 → +∞?

A similar problem for the curves 𝛾 = {𝑧 = 𝑡 + 𝑖𝑔(𝑡), 0 6 𝑡 < ∞} of a bounded slope was
studied in [12]. In the case 𝛾 = R+ we can obtain a corresponding result but much simpler if
we apply the properties of the extremal functions in a non-quasi-analytic Carleman class. As in
[12], we assume that the sequence Λ = {𝜆𝑛} obeys the condition: there exist numbers 𝜇𝑛 > 0
such that

𝜆𝑛 > 𝜇𝑛 (𝑛 > 1),
𝑛

𝜇𝑛
↓,

∞∑︁
𝑛=1

1

𝜇𝑛
<∞. (8)

As it is known (see [13]), the group of conditions (8) is stronger than condition (7).

2. Lower bound on R+ for the growth rate of the Dirichlet series

The following theorem holds.

Theorem 1. Assume that conditions (8) hold. Then there exists a sequence {𝜎𝑛}, 0 < 𝜎𝑛 ↑
∞, 𝜎𝑛+1 − 𝜎𝑛 → 0 such that

ln 𝜇*(𝜎𝑛) 6 (1 + 𝑜(1)) ln |𝐹 (𝜎𝑛)|. (9)
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as 𝑛→ ∞. Here 𝐹 is the sum of Dirichlet series (6), 𝜇*(𝜎) = max
𝑛>1

{|𝑎𝑛||𝑄′(𝜆𝑛)|𝑒𝜆𝑛𝜎}.

It is well-known that ln 𝜇*(𝜎) is a convex function and ln 𝜇*(𝜎) ↑ ∞ as 𝜎 → +∞ [14]; 𝜇*(𝜎)
is the maximal term of the changed Dirichlet series.

The meaning of estimate (9) is that its left hand side is a convex function depending only
the coefficients and the sequence Λ of the exponents of series (6) and it can be explicitly
calculated. It was shown in [12] that under the assumptions of Theorem 1, estimate (9) can
not be improved.

We note that Theorem 1 was proven in another way in [12], while the dual theorem on
the Dirichlet series with real coefficients was established in [15]. The method of proving the
corresponding theorem in [15] turns out to be applicable also in the case we consider here.

Proof of Theorem 1. Assume that condition (7) holds. Then Ω(𝑀 ′
𝑛) ̸= {0}, where

Ω(𝑀 ′
𝑛) = {𝜓 : 𝜓 ∈ 𝐶∞[0, 1], 𝜓(𝑥) > 0, 𝜓(𝑛)(0) = 0, sup

06𝑡61
|𝜓(𝑛)(𝑡)| 6𝑀 ′

𝑛 (𝑛 > 0)},

𝑀 ′
𝑛 = 𝑀 𝑐

𝑛−2, (𝑛 > 3), 𝑀 ′
𝑖 = 1, (𝑖 = 0, 1, 2). As in [15], we show that for each 𝛿, 0 < 𝛿 6 1,

each function 𝜓 ∈ Ω(𝑀 ′
𝑛) there exists an entire function of the form

𝑄𝛿(𝜆) =

𝛿∫︁
0

𝜙𝛿(𝑡)𝑒
𝜆𝑡 𝑑𝑡,

such that 𝑄𝛿(𝜆𝑛) = 0, 𝑄′
𝛿(𝜆𝑛) ̸= 0, sup

0<𝛿61
max
06𝑡61

|𝜙𝛿(𝑡)| 6 𝑐0 <∞, and

|𝑄𝛿(𝜆)| > |𝑄(𝜆)|
𝛿/12∫︁
0

𝜓(𝑥) 𝑑𝑥. (10)

Now we introduce the Leont’ev interpolating function. Since the adjoint diagram of the
function 𝑄𝛿 is the segment [0, 𝛿], we denote, for convenience, 𝜔𝑄𝛿

(𝜇, 𝛼, 𝐹 ) = 𝜔(𝜇, 𝛼, 𝐹 ),
𝜙𝛿(𝑡) 𝑑𝑡 = 𝑑𝜎(𝑡), where 𝛼 is a complex parameter, 𝐹 is the sum of series (6), and we have
[14]:

𝜔(𝜇, 𝛼, 𝐹 ) = 𝑒−𝛼𝜇
∫︁
𝐶

𝛾(𝑡)

⎛⎝ 𝑡∫︁
0

𝐹 (𝑡+ 𝛼− 𝜂)𝑒𝜇𝜂 𝑑𝜂

⎞⎠ 𝑑𝑡, (11)

where 𝐶 is a closed rectifiable contour enveloping the segment [0, 𝛿], 𝛾 is the function associated
with 𝑄𝛿 in the Borel sense, which in the considered case is of the form:

𝛾(𝑡) =

𝛿∫︁
0

𝑑𝜎(𝜉)

𝑡− 𝜉
.

Letting

𝑓(𝑡) =

𝑡∫︁
0

𝐹 (𝑡+ 𝛼− 𝜂)𝑒𝜇𝜂 𝑑𝜂,

we obtain

𝜔(𝜇, 𝛼, 𝐹 ) = 𝑒−𝛼𝜇
1

2𝜋𝑖

∫︁
𝐶

⎛⎝ 𝛿∫︁
0

𝑑𝜎(𝜉)

𝑡− 𝜉

⎞⎠ 𝑓(𝑡) 𝑑𝑡 = 𝑒−𝛼𝜇
𝛿∫︁

0

𝑑𝜎(𝜉)

⎛⎝ 1

2𝜋𝑖

∫︁
𝐶

𝑓(𝑡) 𝑑𝑡

𝑡− 𝜉

⎞⎠ .
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The function 𝑓 is regular on 𝐶 and inside 𝐶 since 𝐹 is an entire function. This is why the inner
integral is equal to 𝑓(𝜉) and hence

𝜔(𝜇, 𝛼, 𝐹 ) = 𝑒−𝛼𝜇
𝛿∫︁

0

𝑑𝜎(𝜉)

⎛⎝ 𝜉∫︁
0

𝐹 (𝜉 + 𝛼− 𝜂)𝑒𝜇𝜂 𝑑𝜂

⎞⎠ . (12)

We employ the well-known formulae for coefficients [14]:

𝑎𝑛 =
𝜔(𝜆𝑛, 𝛼, 𝐹 )

𝑄′
𝛿(𝜆𝑛)

(𝑛 > 1). (13)

Dividing both sides of inequality (10) by 𝜆− 𝜆𝑛 and passing to the limit as 𝜆 tends to 𝜆𝑛, we
clearly obtain that

|𝑄′
𝛿(𝜆𝑛)| > |𝑄′(𝜆𝑛)|

𝛿/12∫︁
0

𝜓(𝑥) 𝑑𝑥 (𝑛 > 1). (14)

Letting 𝛼 = 𝜎 + 𝛿 in formula (12), let us estimate |𝜔(𝜆𝑛, 𝛼, 𝐹 )|. At that, we take into consid-
eration that the variable 𝜉 + 𝛼− 𝜂 belongs to the segment 𝐼𝜎 = [𝜎 + 𝛿, 𝜎 + 2𝛿]. We have

|𝜔(𝜆𝑛, 𝛼, 𝐹 )| 6 𝑐0𝛿
2𝑒−𝜎𝜆𝑛 max

𝑢∈𝐼𝜎
|𝐹 (𝑢)| (𝑢 > 1). (15)

Therefore, taking into consideration (14), (15), by (13) we obtain

|𝑎𝑛||𝑄′(𝜆𝑛)|𝑒𝜆𝑛𝜎
𝛿/12∫︁
0

𝜓(𝑥) 𝑑𝑥 6 𝑐0𝛿
2 max
𝑢∈𝐼𝜎

|𝐹 (𝑢)| (𝑛 > 1).

Taking the maximum in 𝑛 in the right hand side, we get

𝜇*(𝜎)

𝛿/12∫︁
0

𝜓(𝑥) 𝑑𝑥 6 𝑐0𝛿
2|𝐹 (𝜎′)|, (16)

where 𝜎′ is some point in the segment 𝐼𝜎, 0 < 𝜎 6 1.
Now we are going to estimate the functional

𝐽𝛿(𝜓) =

𝛿/12∫︁
0

𝜓(𝑥) 𝑑𝑥

from below. In order to do it, we apply a mean theorem:

𝐽𝛿(𝜓) >

𝛿/12∫︁
𝛿/24

𝜓(𝑥) 𝑑𝑥 =
𝛿

24
𝜓(𝛽),

where 𝛽 is a point in the segment [ 𝛿
24
, 𝛿
12

]. Therefore, by (16) we obtain

𝜓(𝛽)𝜇*(𝜎) 6 24𝑐0|𝐹 (𝜎′)|.

The right hand side of this inequality is independent of 𝜓. Hence, passing to the extremal
function 𝐼 in the left hand side, we finally obtain

𝐼(𝛽)𝜇*(𝜎) 6 24𝑐0|𝐹 (𝜎′)|, 𝜎′ ∈ 𝐼𝜎. (17)
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Let us employ a lemma similar to Lemma 9 in [15] (it can be proved exactly in the same
way): If conditions (8) hold, there exists a constant 𝑁 depending on the sequence {𝑀 ′

𝑛} such
that

𝐼(𝛽) >
1

𝑁𝐻2(𝛽
4
)
, 𝛽 ∈

[︂
𝛿

24
,
𝛿

12

]︂
(0 < 𝛿 6 1),

where 𝐻 is a function defined by the formula

𝐻(𝑦) =
∞∑︁
𝑛=0

𝑛!

𝑀 ′
𝑛𝑦

𝑛+1
(0 < 𝑦 <∞).

As it is known, and we have used this above, conditions (8) are equivalent to (see [13])
𝑐∫︁

0

ln ln𝐻(𝛿) 𝑑𝛿 <∞, (18)

where 𝑐 > 0 is a sufficiently small constant such that 𝐻(𝑐) > 𝑒.
Thus, by (17) we obtain

𝜇*(𝜎) 6 𝑚(𝛿)|𝐹 (𝜎′)|, (19)

where 𝜎′ is some point in the segment [𝜎 + 𝛿, 𝜎 + 2𝛿] and

𝑚(𝛿) = 24𝑐0𝑁𝐻
2

(︂
𝛿

96

)︂
.

The function 𝑚(𝛿) obviously satisfies bi-logarithmic Levinson condition (18). We choose 𝛿
as the unique solution to the equation

𝑚(𝛿) = 𝑒𝑉 (𝜎), (20)

where 𝑉 (𝜎) = [ln𝜇*(𝜎)]/[ln ln𝜇*(𝜎)]. It is clear that the function 𝑉 (𝜎) is continuous as 𝜎 > 𝜎0
and 𝑉 (𝜎) ↑ ∞ as 𝜎 → ∞. We rewrite equation (20) as

ln ln𝑚(𝛿) = ln𝑉 (𝜎)
𝑑𝑒𝑓
= 𝑈(𝜎)

and by 𝐾 = 𝐾(𝑡) we denote the inverse function for 𝑡 = ln ln𝑚(𝛿). Then 𝐾(𝑈(𝜎)) = 𝛿. It is
clear that the function 𝐾(𝑡) is continuous, 𝐾(𝑡) ↓ 0 as 𝑡 → ∞. Since 𝑚(𝛿) satisfies condition
(18), then

∞∫︁
𝑢(𝜎0)

𝐾(𝑢) 𝑑𝑢 <∞

that can checked straightforwardly. Therefore, applying Borel-Nevalinna lemma (see [16]), we
obtain that for each 𝜀 > 0, for each 𝜎 > 𝜎0 but outside some set

𝐹 ⊂
∞⋃︁
𝑖=1

[𝑎𝑖, 𝑎
′
𝑖], 𝑚𝐹 6

∞∑︁
𝑖=1

(𝑎′𝑖 − 𝑎𝑖) <∞,

the estimate
𝑈 [𝜎 + 2𝐾(𝑈(𝜎))] < 𝑢(𝜎) + 𝜀.

holds true [17]. This estimate can be improved, see, for instance, [16, Sect. 1], [18, Lm. 6]:
there exists an exceptional set 𝐸 ⊂ [𝜎0,∞) covered by a system of segments of a finite total
length [16] such that outside this set

𝑢[𝜎 + 2𝐾(𝑢(𝜎))] < 𝑢(𝜎) + 𝑜(1)

as 𝜎 → ∞. Hence, taking into consideration the increasing of the function 𝑉 (𝜎), as 𝜎 → ∞
outside the set 𝐸 we have

ln𝜇*(𝜎 + 2𝛿) < ln𝜇*(𝜎) + 𝑜(1). (21)
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Therefore, taking into consideration (20), (21), by (19) we finally obtain that as 𝛿 → ∞,
outside 𝐸,

(1 + 𝑜(1)) ln𝜇*(𝜎′) 6 ln |𝐹 (𝜎′)|, (22)

where 𝜎+ 𝛿 6 𝜎′ 6 𝜎+ 2𝛿, 𝛿 = 𝐾(𝑢(𝜎)). Since the set 𝐸 is covered by a system of segments of
a finite total length, estimate (22) holds on some sequence {𝜎𝑛}, 0 < 𝜎𝑛 ↑ ∞, 𝜎𝑛+1 − 𝜎𝑛 → 0.
The proof is complete.

3. Existence of Dirichlet series fast decaying on R+
1

Let 0 < 𝜆𝑘 ↑ ∞,
∞∑︀
𝑘=1

𝜆−2
𝑘 <∞. Then the entire function

𝐸(𝜆) = 𝑒𝑏𝜆
∞∏︁
𝑘=1

(︂
1 − 𝜆

𝜆𝑘

)︂
𝑒

𝜆
𝜆𝑘 (𝑏 ∈ R) (23)

possesses the properties [19, Ch. I, Sect. 8; Ch. III, Sect. 6; Ch. V, Sect. 3]:
1) as Re𝜆 < 𝜆1

1

𝐸(𝜆)
=

∞∫︁
−∞

𝐺(𝑡)𝑒−𝜆𝑡𝑑𝑡,

where

𝐺(𝑡) =
1

2𝜋𝑖

𝑖∞∫︁
−𝑖∞

1

𝐸(𝜆)
𝑒𝜆𝑡𝑑𝑡;

2) 𝐺 ∈ 𝐶∞(R) and 𝐺(𝑡) > 0,
∞∫︀

−∞
𝐺(𝑡)𝑑𝑡 = 1;

3) 𝐺(𝑛)(𝑡) (𝑛 > 1) changes the sign 𝑛 times on R, while 𝐺(𝑡) is sign-definite;
4) − ln𝐺(𝑡) is a convex function on R;

5) if
∞∑︀
𝑘=1

𝜆−1
𝑘 <∞, 𝑏 = −

∞∑︀
𝑘=1

𝜆−1
𝑘 , then 𝐺(𝑡) > 0 as 𝑡 < 0; 𝐺(𝑡) ≡ 0 as 𝑡 > 0;

6) if
∞∑︀
𝑘=1

𝜆−1
𝑘 = ∞, then the function 𝐺(𝑡) is the restriction of the entire function 𝐺(𝑧),

𝑧 = 𝑡+ 𝑖𝑦 on R [19, Ch. I, Sect. 4].

It was shown in [19] that if
∞∑︀
𝑘=1

𝜆−2
𝑘 <∞, but

∞∑︀
𝑘=1

𝜆−1
𝑘 = ∞, then

𝐺(𝑛)[𝜆(𝑟)] ∼ 1√
2𝜋

(−𝑟)𝑛Λ(𝑟) (𝑛 = 0, 1, . . .), (24)

as 𝑟 → +∞, where

Λ(𝑟) =
𝑒−𝑟𝜆(𝑟)

𝜎(𝑟)𝐸(−𝑟)
,

and

𝜆(𝑟) =
∞∑︁
𝑘=1

𝑟

𝜆𝑘(𝜆𝑘 + 𝑟)
, 𝜎(𝑟) =

[︃
∞∑︁
𝑘=1

1

(𝜆𝑘 + 𝑟)2

]︃ 1
2

.

We proceed to constructing the example. Let 𝐸 be the function (23), 𝑏 = 0,

𝐿(𝜆) =
∞∏︁
𝑘=1

(︂
1 − 𝜆2

𝜆2𝑘

)︂
.

1The results of this section belong to G.A. Gaisina.
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Assume that the sequence {𝜆𝑛} has a finite upper density 𝜏 and a finite condensation index 𝛿,
see [14]. We consider the Dirichlet series

𝐹 (𝑧) =
∞∑︁
𝑘=1

𝑒𝜆𝑘𝑧

𝐸 ′(𝜆𝑘)
, 𝑧 = 𝑡+ 𝑖𝑦. (25)

We have

𝐸 ′(𝜆𝑛) = − 1

𝜆𝑛

∏︁
𝑘 ̸=𝑛

(︂
1 − 𝜆𝑛

𝜆𝑘

)︂
𝑒

𝜆𝑛
𝜆𝑘 .

Hence,

1

𝐸 ′(𝜆𝑛)
= 2

∏︀
𝑘 ̸=𝑛

(︁
1 + 𝜆𝑛

𝜆𝑘

)︁
𝑒
−𝜆𝑛

𝜆𝑘

𝐿′(𝜆𝑛)
.

Since 𝛿 <∞, then for some 𝐶 > 0⃒⃒⃒⃒
1

𝐸 ′(𝜆𝑛)

⃒⃒⃒⃒
6 2𝑒𝐶𝜆𝑛𝐸(−𝜆𝑛) (𝑛 > 1).

And since
∞∑︀
𝑘=1

𝜆−1
𝑘 = ∞, then, in addition,

lim
𝑛→∞

ln |𝐸(−𝜆𝑛)|
𝜆𝑛

= −∞ (26)

that can be checked in a usual way. This implies that series (25) converges absolutely in the
entire plane and defines as entire function 𝐹 .

Let us confirm that 𝐹 (𝑡) ≡ 𝐺(𝑡), 𝑡 ∈ R. We first observe that as 𝜋
4
6 | arg 𝜆| 6 𝜋

2
and 𝑎 > 0

𝐼 =

⃒⃒⃒⃒(︂
1 − 𝜆

𝑎

)︂
𝑒

𝜆
𝑎

⃒⃒⃒⃒
> 1. (27)

Indeed, if 𝜆 = |𝜆|𝑒𝑖𝜓, then by letting 𝑟 = |𝜆|
𝑎

we have

ln 𝐼 =
1

2
[ln

(︀
1 − 2𝑟 cos𝜓 + 𝑟2

)︀
+ 2𝑟 cos𝜓] (𝑟 > 0).

The quantity 𝛼 = 2 cos𝜓,
(︀
𝜋
4
6 𝜓 6 𝜋

2

)︀
ranges in the segment [0,

√
2]. The function 𝑔(𝛼) = ln 𝐼

at the end-points of this segment is non-negative, and 𝑔′(𝛼) = 0 at the point 𝛼 = 𝑟, where it
attains a local maximum. Hence, 𝐼 > 1.

In view of (27), in the angles

∆± = {𝜆 = |𝜆|𝑒𝑖𝜓 : |𝜆| > 0,
𝜋

4
6 |𝜓| 6 𝜋

2
},

∆+ is the upper angle, ∆− is the lower one, we have

𝑃 =

⃒⃒⃒⃒
⃒
∞∏︁
𝑘=1

(︂
1 − 𝜆

𝜆𝑘

)︂
𝑒

𝜆
𝜆𝑘

⃒⃒⃒⃒
⃒ >

⃒⃒⃒⃒
⃒
𝑛∏︁
𝑘=1

(︂
1 − 𝜆

𝜆𝑘

)︂
𝑒

𝜆
𝜆𝑘

⃒⃒⃒⃒
⃒ (𝑛 = 1, 2, . . .).

By this we see that for each 𝑛 > 1

𝑃 > 𝐵𝜆𝑛, 𝜆 ∈ ∆±.

Therefore, by the Cauchy theorem,

𝐺(𝑡) =
1

2𝜋𝑖

∫︁
𝐶

𝑒𝜆𝑡

𝐸(𝜆)
𝑑𝜆 (𝑡 > 0), (28)

where 𝐶 is the boundary of the angle

{𝜆 : |𝜆| > 0, arg 𝜆 = ±𝜋
4
}.
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Since 𝐸(𝜆) is an entire function of exponential type (𝜏 < ∞), we can make use of the
following statement [14, Ch. I, Sect. 1, Thm. 1.19]:

Given 𝑞 > 1, there exists a number ℎ > 0 and circumferences 𝐶𝑛 = {𝑧 : |𝑧| = 𝑟𝑛}, 𝑟𝑛 ↑ ∞,
𝑟𝑛+1 < 𝑞𝑟𝑛, (𝑛 = 1, 2, . . .), on which

ln |𝐸(𝜆)| > −ℎ|𝜆|, |𝜆| = 𝑟𝑛 (𝑛 > 1). (29)

By (28), for 𝜆 ∈ 𝐶, 𝑡 6 −
√

2(1 + ℎ) we have⃒⃒⃒⃒
𝑟𝜆𝑡

𝐸(𝜆)

⃒⃒⃒⃒
6 𝑒ℎ|𝜆|+

√
2

2
|𝜆|𝑡 6 𝑒−|𝜆||𝑡|.

Hence, for such 𝑡 integral (28) over the circumference 𝐶𝑛 tends to zero 𝑛 → ∞. Therefore, as
𝑡 6 −

√
2(1 + ℎ),

𝐺(𝑡) = lim
𝑘→∞

⎛⎝ 1

2𝜋𝑖

∫︁
Γ𝑘

𝑒𝜆𝑡

𝐸(𝜆)
𝑑𝜆

⎞⎠ = lim
𝑘→∞

∑︁
𝜆𝑛<𝑟𝑘

𝑒𝜆𝑛𝑡

𝐸 ′(𝜆𝑛)
,

where Γ𝑘 is the boundary of the sector {𝜆 : 0 6 |𝜆| 6 𝑟𝑘, | arg 𝜆| 6 𝜋
4
} passed counterclockwise.

But series (25) converges absolutely on the entire plane and its sum 𝐹 is an entire function.
As it has been said, 𝐺(𝑡) is the restriction of the entire function 𝐺(𝑧), (𝑧 = 𝑡+ 𝑖𝑦) on R. Thus,
𝐺(𝑡) is represented by series (25) as 𝑡 < −

√
2(1 + ℎ). This implies that 𝐹 (𝑧) ≡ 𝐺(𝑧) in the

entire plane and

𝐺(𝑧) =
∞∑︁
𝑘=1

𝑒𝜆𝑘𝑧

𝐸 ′(𝜆𝑘)
.

Let us find out a sharp asymptotics for 𝐺(𝑡) as 𝑡 → +∞. In order to do it, we employ
relation (24).

We obviously have:

𝐸(𝜆) =
𝐿(𝜆)

𝐸(−𝜆)
.

This implies that

𝐸 ′(𝜆𝑛) =
𝐿′(𝜆𝑛)

𝐸(−𝜆𝑛)
.

Thus, we can write

𝐺(𝑡) =
∞∑︁
𝑛=1

𝐸(−𝜆𝑛)

𝐿′(−𝜆𝑛)
𝑒𝜆𝑛𝑡, 𝑡 ∈ R.

We consider the maximal term of the changed series
∞∑︀
𝑛=1

𝐸(−𝜆𝑛)𝑒𝜆𝑛𝑡, that is,

𝜇*(𝑡) = max
𝑛>1

[𝐸(−𝜆𝑛)𝑒𝜆𝑛𝑡].

This function is well-defined since the changed series, by (26), also converges absolutely in the
entire plane.

We have

ln𝜇*(𝑡) = max
𝑛>1

{︃
∞∑︁
𝑘=1

[︂
ln

(︂
1 +

𝜆𝑛
𝜆𝑘

)︂
− 𝜆𝑛
𝜆𝑘

]︂
+ 𝜆𝑛𝑡

}︃
6 max

𝑟>0
𝜙(𝑟),

where

𝜙(𝑟) =
∞∑︁
𝑘=1

[︂
ln

(︂
1 +

𝑟

𝜆𝑘

)︂
− 𝑟

𝜆𝑘

]︂
+ 𝑟𝑡.
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Since 𝜙(0) = 0, 𝜙(+∞) = −∞, then the maximum of this function is attained at the point,
where

𝜙′(𝑟) = −
∞∑︁
𝑘=1

𝑟

𝜆𝑘(𝜆𝑘 + 𝑟)
+ 𝑡 = 0,

that is, at the point 𝑟, 𝜆(𝑟) = 𝑡; the function 𝜆 = 𝜆(𝑟) was introduced above. In view of this
relation and (24), we obtain that as 𝑡 = 𝜆(𝑟) → +∞

𝑎(𝑟) =
ln𝐺(𝜆(𝑟))

ln𝜇*(𝑡)
∼ ln Λ(𝑟)

ln𝜇*(𝑡)
, (30)

where

ln Λ(𝑟) = −𝑟𝜆(𝑟) − ln𝜎(𝑟) − ln𝐸(−𝑟).
Taking into consideration that 𝑡 = 𝜆(𝑟),

ln𝜇*(𝑡) 6
∞∑︁
𝑘=1

[︂
ln

(︂
1 +

𝑟

𝜆𝑘

)︂
− 𝑟

𝜆𝑘

]︂
+ 𝑟𝜆(𝑟),

by (30) we obtain the estimate 𝑎(𝑟) 6 𝑏(𝑟), and as 𝑟 → +∞,

𝑏(𝑟) ∼ −
𝑟𝜆′(𝑟) + 𝜎′(𝑟)

𝜎(𝑟)

𝑟𝜆′(𝑟)
= −[1 + 𝜀(𝑟)],

where

𝜀(𝑟) =
𝜎′(𝑟)

𝑟𝜆′(𝑟)𝜎(𝑟)
.

As one can check easily, 𝜆′(𝑟) = 𝜎2(𝑟). This yields that

2𝜎′(𝑟)𝜎(𝑟) = −
∞∑︁
𝑘=1

2

(𝜆𝑘 + 𝑟)3
,

that is,

𝜎′(𝑟) = − 1

𝜎(𝑟)

∞∑︁
𝑘=1

1

(𝜆𝑘 + 𝑟)3
.

Therefore,

|𝜀(𝑟)| 6 𝑟−2

[︃
∞∑︁
𝑘=1

1

(𝜆𝑘 + 𝑟)2

]︃−1

6 𝑟−2

[︃ ∑︁
𝜆𝑘62𝑟

1

(𝜆𝑘 + 𝑟)2

]︃−1

.

This yields that

|𝜀(𝑟)| 6 9

𝑛(2𝑟)
→ 0

as 𝑟 → ∞. Thus,

lim
𝑡→+∞

ln𝐺(𝑡)

ln𝜇*(𝑡)
6 −1, (31)

and hence, we have proved the following theorem.

Theorem 2. Let {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞) be an arbitrary sequence possessing a finite upper

density 𝜏 and a finite condensation index 𝛿. If
∞∑︀
𝑘=1

𝜆−1
𝑘 = ∞, then Dirichlet series (25) converges

absolutely in the entire plane, 𝐺(𝑡) → 0 as 𝑡→ +∞ and estimate (31) holds true.
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