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LOWER BOUNDS FOR THE AREA OF

THE IMAGE OF A CIRCLE

B.A. KLISHCHUK, R.R. SALIMOV

Abstract. In the work we consider 𝑄-homeomorphisms w.r.t 𝑝-modulus on the complex
plane as 𝑝 > 2. We obtain a lower bound for the area of the image of a circle under such
mappings. We solve the extremal problem on minimizing the functional of the area of the
image of a circle.
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1. Introduction

The problem on area deformations under quasi-conformal mappings originates from work by
B. Bojarskii [1]. A series of results in this direction were obtained in works [2]–[4].

First an upper bound for the are of the image of a circle under quasi-conformal mappings
was provided in monograph by M.A. Lavrent’ev, see [5]. In [6, Prop. 3.7], the Lavrentiev’s
inequality was specified in terms of the angular dilatation. Also earlier in works [7]–[8] there
were obtained the upper bounds for the area deformation for annular and lower and 𝑄-homeo-
morphisms. In the present work we obtain lower bounds for the area of the image of a circle
under 𝑄-homeomorphisms w.r.t. 𝑝-modulus as 𝑝 > 2.

To simplify the presentation, we restrict ourselves by the planar case. We recall some def-
initions. Assume that we are given a family Γ of curves 𝛾 in the complex plane C. A Borel
function 𝜚 : C→ [0,∞] is called admissible for Γ, which is written as 𝜚 ∈ adm Γ, if∫︁

𝛾

𝜚(𝑧) |𝑑𝑧| > 1 ∀ 𝛾 ∈ Γ. (1)

Let 𝑝 ∈ (1,∞). Then a 𝑝-modulus of the family Γ is the quantity

ℳ𝑝(Γ) = inf
𝜚∈admΓ

∫︁
C

𝜚𝑝(𝑧) 𝑑𝑚(𝑧) . (2)

Assume that 𝐷 is a domain in the complex plane C, that is, an open connected subset C
and 𝑄 : 𝐷 → [0,∞] is a measurable function. A homeomorphism 𝑓 : 𝐷 → C is called a
𝑄-homeomorphism w.r.t. 𝑝-modulus if

ℳ𝑝(𝑓Γ) 6
∫︁
𝐷

𝑄(𝑧) 𝜚𝑝(𝑧) 𝑑𝑚(𝑧) (3)

for each family Γ of curves in 𝐷 and each admissible function 𝜚 for Γ.
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The study of the inequalities of type (3) as 𝑝 = 2 goes back to L. Ahlfors, see, for instance,
[9, Ch. I, Sect. D, Thm. 3] as well as to O. Lehto and K. Virtanen [10, Ch. V, Sect. 6.3,
Ineq. (6.6)]. In work [11] by C.J. Bishop, V.Ya. Gutlaynskii, O. Martio, M. Vuorinen, a
multi-dimensional analogue of inequality (3) was proved for quasi-conformal mappings.

We also note that if the function 𝑄 in (3) is bounded almost everywhere by some constant 𝐾 ∈
[1,∞) and 𝑝 = 2, then we arrive at classical quasi-conformal mappings introduced originally in
works by Grötzsch, Lavrentiev and Morrey.

Let 𝑄 : 𝐷 → [0,∞] be a measurable function. For each number 𝑟 > 0 we denote by

𝑞𝑧0(𝑟) =
1

2𝜋 𝑟

∫︁
𝑆(𝑧0,𝑟)

𝑄(𝑧) |𝑑𝑧|

the integral mean of the function 𝑄 over the circle 𝑆(𝑧0, 𝑟) = {𝑧 ∈ C : |𝑧 − 𝑧0| = 𝑟}.

Theorem 1. Let 𝐷 and 𝐷′ be bounded domains in C and 𝑓 : 𝐷 → 𝐷′ be a 𝑄-homeo-
morphism w.r.t. 𝑝-modulus, 𝑝 > 2, 𝑄 ∈ 𝐿1

loc(𝐷 ∖ {𝑧0}). Then for all 𝑟 ∈ (0, 𝑑0), 𝑑0 =
dist(𝑧0, 𝜕𝐷) the esimate

|𝑓𝐵(𝑧0, 𝑟)| > 𝜋

(︂
𝑝− 2

𝑝− 1

)︂ 2(𝑝−1)
𝑝−2

⎛⎝ 𝑟∫︁
0

𝑑𝑡

𝑡
1

𝑝−1 𝑞
1

𝑝−1
𝑧0 (𝑡)

⎞⎠
2(𝑝−1)
𝑝−2

(4)

holds true, where 𝐵(𝑧0, 𝑟) = {𝑧 ∈ C : |𝑧 − 𝑧0| 6 𝑟} .

We note that as 𝑝 > 2 and 𝑄(𝑧) 6 𝐾, by Theorem 1 we arrive to the result for a circle in
[12, Lm. 7].

2. Proof of main theorem

We provide some auxiliary information about the capacity of a condenser. Following work
[13], the pair ℰ = (𝐴,𝐶), where 𝐴 ⊂ C is an open set and 𝐶 is a non-empty compact set
contained in 𝐴 is called condenser. A condenser ℰ is called an annular condenser if R = 𝐴 ∖𝐶
is an annulus, that is, if R is a domain whose complement C ∖ R consists exactly of two
components. A condenser ℰ is called a bounded condenser if the set 𝐴 is bounded. We also say
that a condenser ℰ = (𝐴,𝐶) lies in the domain 𝐷 if 𝐴 ⊂ 𝐷. It is obvious that if 𝑓 : 𝐷 → C

is a continuous open mapping and ℰ = (𝐴,𝐶) is a condenser in 𝐷, then (𝑓𝐴, 𝑓𝐶) is also a
condenser in 𝑓𝐷. We also have 𝑓ℰ = (𝑓𝐴, 𝑓𝐶).

Let ℰ = (𝐴,𝐶) be a condenser. By 𝒞0(𝐴) we denote the set of continuous compactly sup-
ported functions 𝑢 : 𝐴 → R1, by 𝒲0(ℰ) = 𝒲0(𝐴,𝐶) we denote the family of non-negative
functions 𝑢 : 𝐴 → R1 such that

1) 𝑢 ∈ 𝒞0(𝐴),
2) 𝑢(𝑥) > 1 for 𝑥 ∈ 𝐶,
3) 𝑢 belongs to the class ACL.
As 𝑝 > 1, the quantity

cap𝑝 ℰ = cap𝑝 (𝐴,𝐶) = inf
𝑢∈𝒲0(ℰ)

∫︁
𝐴

|∇𝑢|𝑝 𝑑𝑚(𝑧) , (5)

where

|∇𝑢| =

√︃(︂
𝜕𝑢

𝜕𝑥

)︂2

+

(︂
𝜕𝑢

𝜕𝑦

)︂2

(6)
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is called a 𝑝-capacity of the condenser ℰ . In what follows we shall make use the identity

cap𝑝 ℰ = ℳ𝑝(∆(𝜕𝐴, 𝜕𝐶;𝐴 ∖ 𝐶)) (7)

established in work [14], where for the sets ℱ1, ℱ2 and ℱ in C, the symbol ∆(ℱ1,ℱ2;ℱ) stands
for the family of all continuous curves connecting ℱ1 and ℱ2 in ℱ .

It is known [15, Prop. 5] that as 𝑝 > 1,

cap𝑝 ℰ >
[inf 𝑙(𝜎)]𝑝

|𝐴 ∖ 𝐶|𝑝−1
. (8)

Here 𝑙(𝜎) is the length of a smooth (infinitely differentiable) curve 𝜎 being the boundary 𝜎 = 𝜕𝑈
of a bounded open set 𝑈 containing 𝐶 and contained together with its closure 𝑈 in 𝐴 and the
infimum is taken over all such 𝜎.

Proof of Theorem 1. Let ℰ = (𝐴,𝐶) be a condenser, where 𝐴 = {𝑧 ∈ 𝐷 : |𝑧 − 𝑧0| < 𝑡 + ∆𝑡},
𝐶 = {𝑧 ∈ 𝐷 : |𝑧 − 𝑧0| 6 𝑡}, 𝑡 + ∆𝑡 < 𝑑0. Then 𝑓ℰ = (𝑓𝐴, 𝑓𝐶) is an annular condenser in 𝐷′

and according to (7) we have the identity

cap𝑝 𝑓ℰ = ℳ𝑝 (∆(𝜕𝑓𝐴, 𝜕𝑓𝐶; 𝑓(𝐴 ∖ 𝐶)) . (9)

By inequality (8) we obtain

cap𝑝 𝑓ℰ >
[inf 𝑙(𝜎)]𝑝

|𝑓𝐴 ∖ 𝑓𝐶|𝑝−1
. (10)

Here 𝑙(𝜎) is the length of a smooth (infinitely differentiable) curve 𝜎 being the boundary 𝜎 = 𝜕𝑈
of a bounded open set 𝑈 containing 𝐶 and contained together with its closure 𝑈 in 𝐴 and the
infimum is taken over all such 𝜎.

On the other hand, by the definition of 𝑄-homemorphism w.r.t. 𝑝-modulus we have

cap𝑝 𝑓ℰ 6
∫︁
𝐷

𝑄(𝑧) 𝜚𝑝(𝑧) 𝑑𝑚(𝑧) (11)

for each 𝜚 ∈ adm ∆(𝜕𝐴, 𝜕𝐶;𝐴 ∖ 𝐶).
It is easy to check that the function

𝜚(𝑧) =

⎧⎨⎩
1

|𝑧 − 𝑧0| ln 𝑡+Δ𝑡
𝑡

, 𝑧 ∈ 𝐴 ∖ 𝐶

0, 𝑧 ̸∈ 𝐴 ∖ 𝐶

is admissible for the family ∆(𝜕𝐴, 𝜕𝐶;𝐴 ∖ 𝐶) and hence,

cap𝑝 𝑓ℰ 6
1

ln𝑝
(︀
𝑡+Δ𝑡

𝑡

)︀ ∫︁
𝑅

𝑄(𝑧)

|𝑧 − 𝑧0|𝑝
𝑑𝑚(𝑧), (12)

where 𝑅 = {𝑧 ∈ 𝐷 : 𝑡 6 |𝑧 − 𝑧0| 6 𝑡 + ∆𝑡}.
Combining inequalities (10) and (12), we get

[inf 𝑙(𝜎)]𝑝

|𝑓𝐴 ∖ 𝑓𝐶|𝑝−1
6

1

ln𝑝
(︀
𝑡+Δ𝑡

𝑡

)︀ ∫︁
𝑅

𝑄(𝑧)

|𝑧 − 𝑧0|𝑝
𝑑𝑚(𝑧). (13)

By the Fubini theorem we have∫︁
𝑅

𝑄(𝑧)

|𝑧 − 𝑧0|𝑝
𝑑𝑚(𝑧) =

𝑡+Δ𝑡∫︁
𝑡

𝑑𝜏

𝜏 𝑝

∫︁
𝑆(𝑧0,𝜏)

𝑄(𝑧) |𝑑𝑧| = 2𝜋

𝑡+Δ𝑡∫︁
𝑡

𝜏 1−𝑝 𝑞𝑧0(𝜏) 𝑑𝜏, (14)
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where 𝑞𝑧0(𝜏) = 1
2𝜋𝜏

∫︀
𝑆(𝑧0,𝜏)

𝑄(𝑧) |𝑑𝑧| and 𝑆(𝑧0, 𝜏) = {𝑧 ∈ C : |𝑧 − 𝑧0| = 𝜏}. Thus,

inf 𝑙(𝜎) 6 (2𝜋)
1
𝑝
|𝑓𝐴 ∖ 𝑓𝐶|

𝑝−1
𝑝

ln
(︀
𝑡+Δ𝑡

𝑡

)︀
⎡⎣ 𝑡+Δ𝑡∫︁

𝑡

𝜏 1−𝑝 𝑞𝑧0(𝜏) 𝑑𝜏

⎤⎦
1
𝑝

. (15)

Employing the isoperimetric inequality

inf 𝑙(𝜎) > 2
√︀

𝜋|𝑓𝐶|, (16)

we obtain

2
√︀

𝜋 |𝑓𝐶| 6 (2𝜋)
1
𝑝
|𝑓𝐴 ∖ 𝑓𝐶|

𝑝−1
𝑝

ln
(︀
𝑡+Δ𝑡

𝑡

)︀
⎡⎣ 𝑡+Δ𝑡∫︁

𝑡

𝜏 1−𝑝 𝑞𝑧0(𝜏) 𝑑𝜏

⎤⎦
1
𝑝

. (17)

We introduce a function Φ(𝑡) for this homeomorphism 𝑓 as follows:

Φ(𝑡) = |𝑓𝐵(𝑧0, 𝑡)|, (18)

where 𝐵(𝑧0, 𝑡) = {𝑧 ∈ C : |𝑧 − 𝑧0| 6 𝑡}. Then it follows from (17) that

2
√︀
𝜋 Φ(𝑡) 6 (2𝜋)

1
𝑝

[Φ(𝑡+Δ𝑡)−Φ(𝑡)
Δ𝑡

]
𝑝−1
𝑝

ln(𝑡+Δ𝑡)−ln 𝑡
Δ𝑡

⎡⎣ 1

∆𝑡

𝑡+Δ𝑡∫︁
𝑡

𝜏 1−𝑝 𝑞𝑧0(𝜏) 𝑑𝜏

⎤⎦
1
𝑝

. (19)

Letting ∆𝑡 → 0 in inequality (19) and taking into consideration a monotonous increasing of
the function Φ in 𝑡 ∈ (0, 𝑑0), for almost all 𝑡 we have:

2𝜋
𝑝−2

2(𝑝−1)

𝑡
1

𝑝−1 𝑞
1

𝑝−1
𝑧0 (𝑡)

6
Φ′(𝑡)

Φ
𝑝

2(𝑝−1) (𝑡)
. (20)

This implies easily the following inequality:

2𝜋
𝑝−2

2(𝑝−1)

𝑡
1

𝑝−1 𝑞
1

𝑝−1
𝑧0 (𝑡)

6

(︃
Φ

𝑝−2
2(𝑝−1) (𝑡)
𝑝−2

2(𝑝−1)

)︃′

. (21)

Since 𝑝 > 2, the function

𝑔(𝑡) =
Φ

𝑝−2
2(𝑝−1) (𝑡)
𝑝−2

2(𝑝−1)

is non-decreasing on (0, 𝑑0), where 𝑑0 = dist(𝑧0, 𝜕𝐷). Integrating both sides of the inequality
in 𝑡 ∈ [𝜀, 𝑟] and taking into consideration that

𝑟∫︁
𝜀

(︃
Φ

𝑝−2
2(𝑝−1) (𝑡)
𝑝−2

2(𝑝−1)

)︃′

𝑑𝑡 =

𝑟∫︁
𝜀

𝑔′(𝑡) 𝑑𝑡 6 𝑔(𝑟) − 𝑔(𝜀) 6
Φ

𝑝−2
2(𝑝−1) (𝑟) − Φ

𝑝−2
2(𝑝−1) (𝜀)

𝑝−2
2(𝑝−1)

, (22)

see, for instance, [16, Thm. IV.7.4], we obtain

2𝜋
𝑝−2

2(𝑝−1)

𝑟∫︁
𝜀

𝑑𝑡

𝑡
1

𝑝−1 𝑞
1

𝑝−1
𝑧0 (𝑡)

6
Φ

𝑝−2
2(𝑝−1) (𝑟) − Φ

𝑝−2
2(𝑝−1) (𝜀)

𝑝−2
2(𝑝−1)

. (23)

Letting 𝜀 → 0 in inequality (23), we arrive at the estimate

Φ(𝑟) > 𝜋

(︂
𝑝− 2

𝑝− 1

)︂ 2(𝑝−1)
𝑝−2

⎛⎝ 𝑟∫︁
0

𝑑𝑡

𝑡
1

𝑝−1 𝑞
1

𝑝−1
𝑧0 (𝑡)

⎞⎠
2(𝑝−1)
𝑝−2

. (24)
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Finally, denoting Φ(𝑟) = |𝑓𝐵(𝑧0, 𝑟)| in the latter inequality, we get

|𝑓𝐵(𝑧0, 𝑟)| > 𝜋

(︂
𝑝− 2

𝑝− 1

)︂ 2(𝑝−1)
𝑝−2

⎛⎝ 𝑟∫︁
0

𝑑𝑡

𝑡
1

𝑝−1 𝑞
1

𝑝−1
𝑧0 (𝑡)

⎞⎠
2(𝑝−1)
𝑝−2

(25)

and this completes the proof of Theorem 1.

3. Corollaries of Theorem 1

Theorem 1 implies the following statements.
Employing the condition 𝑞𝑧0(𝑡) 6 𝑞0 𝑡

−𝛼, we estimate the right hand side of inequality (4)
and after elementary transformations we arrive at the following result.

Corollary 1. Let 𝐷 and 𝐷′ be bounded domains in C and 𝑓 : 𝐷 → 𝐷′ be a 𝑄-homeo-
morphism w.r.t. 𝑝-modulus as 𝑝 > 2. Assume that the function 𝑄 satisfies the condition

𝑞𝑧0(𝑡) 6 𝑞0 𝑡
−𝛼, 𝑞0 ∈ (0,∞) , 𝛼 ∈ [0,∞) (26)

for 𝑧0 ∈ 𝐷 and almost all 𝑡 ∈ (0, 𝑑0), 𝑑0 = dist(𝑧0, 𝜕𝐷). Then for each 𝑟 ∈ (0, 𝑑0) the estimate

|𝑓𝐵(𝑧0, 𝑟)| > 𝜋− 𝛼
𝑝−2

(︂
𝑝− 2

𝛼 + 𝑝− 2

)︂ 2(𝑝−1)
𝑝−2

𝑞
2

2−𝑝

0 |𝐵(𝑧0, 𝑟)|1+
𝛼

𝑝−2 (27)

holds true.

In particular, letting here 𝛼 = 0, we obtain the following conclusion.

Corollary 2. Let 𝐷 and 𝐷′ be bounded domains in C and 𝑓 : 𝐷 → 𝐷′ be a 𝑄-homeo-
morphism w.r.t. 𝑝-modulus as 𝑝 > 2 and 𝑞𝑧0(𝑡) 6 𝑞0 < ∞ for almost each 𝑡 ∈ (0, 𝑑0),
𝑑0 = dist(𝑧0, 𝜕𝐷). Then the estimate

|𝑓𝐵(𝑧0, 𝑟)| > 𝑞
2

2−𝑝

0 |𝐵(𝑧0, 𝑟)| (28)

holds true for each 𝑟 ∈ (0, 𝑑0) .

Corollary 3. Suppose that the assumptions of Theorem 1 are satisfied and 𝑄(𝑧) 6 𝐾 < ∞
for almost each 𝑧 ∈ 𝐷. Then the estimate

|𝑓𝐵(𝑧0, 𝑟)| > 𝐾
2

2−𝑝 |𝐵(𝑧0, 𝑟)| (29)

holds true for each 𝑟 ∈ (0, 𝑑0).

Remark 1. Corollary 3 is a particular result by Gehring for 𝐸 = 𝐵(𝑧0, 𝑟), see [12, Lm. 7].

Corollary 4. Let 𝑓 : B → B be a 𝑄-homeomorphism w.r.t. 𝑝-modulus as 𝑝 > 2. Assume
that the function 𝑄(𝑧) satisfies the condition

𝑞(𝑡) 6
𝑞0

𝑡 ln𝑝−1 1
𝑡

, 𝑞0 ∈ (0,∞) , (30)

for almost each 𝑡 ∈ (0, 1), where 𝑞(𝑡) = 1
2𝜋𝑡

∫︀
𝑆𝑡

𝑄(𝑧) |𝑑𝑧| is the integral mean over the circumfer-

ence 𝑆𝑡 = {𝑧 ∈ C : |𝑧| = 𝑡}. Then for each 𝑟 ∈ (0, 1) the estimate

|𝑓𝐵𝑟| > 𝜋

(︂
𝑝− 2

𝑝− 1

)︂ 2(𝑝−1)
𝑝−2

𝑞
2

2−𝑝

0

(︁
𝑟 ln

𝑒

𝑟

)︁ 2(𝑝−1)
𝑝−2

(31)

holds true, where 𝐵𝑟 = {𝑧 ∈ C : |𝑧| 6 𝑟}.
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4. Extremal problems for area functional

Let 𝑄 : B → [0,∞] be a measurable function satisfying the condition

𝑞(𝑡) 6 𝑞0 , 𝑞0 ∈ (0,∞) (32)

for almost each 𝑡 ∈ (0, 1), where 𝑞(𝑡) = 1
2𝜋𝑡

∫︀
𝑆𝑡

𝑄(𝑧) |𝑑𝑧| is the integral mean over the circumfer-

ence 𝑆𝑡 = {𝑧 ∈ C : |𝑧| = 𝑡}.
Let ℋ = ℋ(𝑞0, 𝑝,B) be the set of all 𝑄-homeomorphisms 𝑓 : B → C w.r.t. 𝑝-modulus as

𝑝 > 2 obeying condition (32). On the class ℋ we consider the area functional

S𝑟(𝑓) = |𝑓𝐵𝑟| . (33)

Theorem 2. For each 𝑟 ∈ [0, 1] the identity

min
𝑓∈ℋ

S𝑟(𝑓) = 𝜋 𝑞
2

2−𝑝

0 𝑟2 (34)

holds true.

Proof. Corollary 2 implies immediately the estimate

S𝑟(𝑓) > 𝜋 𝑞
2

2−𝑝

0 𝑟2 . (35)

Let us specify a homeomorphism 𝑓 ∈ ℋ, at which the minimum of the functional S𝑟(𝑓) is
attained. Let 𝑓0 : B → C, where

𝑓0(𝑧) = 𝑞
1

2−𝑝

0 𝑧. (36)

It is obvious that (35) becomes the identity at the mapping 𝑓0. It remains to show that the
mapping defined in such way is a 𝑄-homemorphism w.r.t. 𝑝-modulus with 𝑄(𝑧) = 𝑞0. Indeed,

𝑙(𝑧, 𝑓0) = 𝐿(𝑧, 𝑓0) = 𝑞
1

2−𝑝

0 , 𝐽(𝑧, 𝑓0) = 𝑞
2

2−𝑝

0 (37)

and

𝐾𝐼, 𝑝(𝑧, 𝑓0) =
𝐽(𝑧, 𝑓0)

𝑙𝑝(𝑧, 𝑓0)
= 𝑞0 . (38)

By Theorem 1.1 in work [17], the mapping 𝑓0 is a 𝑄-homeomorphism w.r.t. 𝑝-modulus with
𝑄(𝑧) = 𝐾𝐼, 𝑝(𝑧, 𝑓0) = 𝑞0.
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