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ANALOGUE OF BOHL THEOREM FOR A CLASS OF

LINEAR PARTIAL DIFFERENTIAL EQUATIONS

E. MUHAMADIEV, A.N. NAIMOV, A.Kh. SATTOROV

Abstract. We study the existence and uniqueness of a solution bounded in the entire
space for a class of higher order linear partial differential equations. We prove the theorem
on the necessary and sufficient condition for the existence and uniqueness of a bounded
solution for a studied class of equations. This theorem is an analogue of the Bohl theorem
known in the theory of ordinary differential equations. In a partial case the unique solv-
ability conditions are expressed in terms of the coefficients of the equation and we provide
the integral representation for the bounded solution.
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1. Introduction

In the theory of ordinary differential equations, the Bohl theorem is known [1] on the unique
solvability on the entire real axis R = (−∞,+∞) of the linear ordinary differential equation

𝑦(𝑚) + 𝑐1𝑦
(𝑚−1) + . . .+ 𝑐𝑚−1𝑦

′ + 𝑐𝑚𝑦 = 𝑓(𝑥), 𝑥 ∈ R, (1.1)

with constant coefficients 𝑐1, . . . , 𝑐𝑚 and the right hand side 𝑓(𝑥) continuous and bounded on
R. In accordance with Bohl theorem, for each continuous and bounded on R function 𝑓(𝑥),
equation (1.1) has the unique bounded solution only in the case, when the symbol (characteristic
polynomial) of the equation

𝑠𝑚 + 𝑐1𝑠
𝑚−1 + . . .+ 𝑐𝑚−1𝑠+ 𝑐𝑚,

where 𝑠 = 𝜎 + 𝑖𝜏 is a complex variable, has no pure imaginary roots 𝑖𝜏 , 𝜏 ∈ R.
In the present work we formulate and prove an analogue of Bohl theorem for linear partial

differential equations of the following form:

𝑃1

(︂
𝜕

𝜕𝑥1

)︂
. . . 𝑃𝑛

(︂
𝜕

𝜕𝑥𝑛

)︂
𝑢+

𝑚1−1∑︁
𝑘1=0

. . .

𝑚𝑛−1∑︁
𝑘𝑛=0

𝑏𝑘1...𝑘𝑛
𝜕𝑘1+...+𝑘𝑛𝑢

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛

= 𝑓(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

(1.2)

Here we assume that we are given the natural numbers 𝑛 > 2, 𝑚1, . . ., 𝑚𝑛, the complex numbers
𝑏𝑘1...𝑘𝑛 , 𝑘𝑗 = 0,𝑚𝑗 − 1, 𝑗 = 1, 𝑛 and the polynomials

𝑃𝑗(𝑠) = 𝑠𝑚𝑗 + 𝑎𝑗1𝑠
𝑚𝑗−1 + . . .+ 𝑎𝑗𝑚𝑗

, 𝑗 = 1, 𝑛,
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with constant complex coefficients 𝑎𝑗𝑘, 𝑘 = 1,𝑚𝑗, 𝑗 = 1, 𝑛. The function 𝑓(𝑥1, . . . , 𝑥𝑛) is
assumed to be complex-valued, continuous and bounded in R𝑛.

The issue on existence of bounded solutions to linear partial differential equations with
constant coefficients was studied in work [2]. It was proved in this work that an arbitrary
differential work of the form

𝑚1∑︁
𝑘1=0

. . .
𝑚𝑛∑︁
𝑘𝑛=0

𝑐𝑘1...𝑘𝑛
𝜕𝑘1+...+𝑘𝑛𝑢

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛
= 𝑓(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛,

with constant coefficients 𝑐𝑘1...𝑘𝑛 is uniquely solvable in the space of bounded generalized func-
tions if and only if the symbol of the equation

𝑚1∑︁
𝑘1=0

. . .

𝑚𝑛∑︁
𝑘𝑛=0

𝑐𝑘1...𝑘𝑛𝑠
𝑘1
1 . . . 𝑠𝑘𝑛𝑛 ,

where 𝑠1, . . . , 𝑠𝑛 are complex variables, has no pure imaginary roots (𝑖𝜏1, . . . , 𝑖𝜏𝑛), 𝜏𝑗 ∈ R,
𝑗 = 1, 𝑛. At that, if 𝑓 is a continuous and bounded in R𝑛 function, then the solution 𝑢 is not
necessarily continuous and bounded together with all its derivatives involved in the equation.
As the theorems on hypoellipticity show [3], the smoothness of the solution depends on the
behavior of the symbol of the equation at infinity. This is why it is an interesting issue on
finding additional conditions for the symbol, apart from the absence of pure imaginary root,
ensuring the smoothness of the solutions in the classical sense.

2. Main results

For equations (1.2) we can formulate and prove the conditions for the unique solvability in
the classical sense.

A bounded solution to equation (1.2) is a complex-valued function 𝑢(𝑥1, . . . , 𝑥𝑛) continuous
and bounded in R𝑛 together with all partial derivatives

𝜕𝑘1+...+𝑘𝑛𝑢

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛
, where 𝑘𝑗 = 0,𝑚𝑗, 𝑗 = 1, 𝑛,

which solves equation (1.2).
In the present work we prove the following theorem.

Theorem 2.1. For each continuous and bounded in R𝑛 function 𝑓(𝑥1, . . . , 𝑥𝑛), equation
(1.2) has the unique bounded solution if and only if the polynomials 𝑃1, . . ., 𝑃𝑛 and the symbol
of the equation

𝑃 (𝑠1, . . . , 𝑠𝑛) ≡ 𝑃1(𝑠1) · . . . · 𝑃𝑛(𝑠𝑛) + 𝑃0(𝑠1, . . . , 𝑠𝑛),

where

𝑃0(𝑠1, . . . , 𝑠𝑛) =

𝑚1−1∑︁
𝑘1=0

. . .
𝑚𝑛−1∑︁
𝑘𝑛=0

𝑏𝑘1...𝑘𝑛𝑠
𝑘1
1 . . . 𝑠𝑘𝑛𝑛 ,

have no pure imaginary roots, that is, for all 𝜏1, . . . , 𝜏𝑛 ∈ R, the conditions

𝑃 (𝑖𝜏1, . . . , 𝑖𝜏𝑛) ̸= 0, (2.1)

𝑃1(𝑖𝜏1) ̸= 0, . . . , 𝑃𝑛(𝑖𝜏𝑛) ̸= 0, (2.2)

hold true.
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We note that in the case, when in equation (1.2) all coefficients 𝑏𝑘1...𝑘𝑛 are zero and conditions
(2.2) are satisfied, the existence and the uniqueness of a bounded solution is implied by the
Bohl theorem. One can confirm this by inverting one by one the differential operators

𝑃1

(︂
𝜕

𝜕𝑥1

)︂
, . . . , 𝑃𝑛

(︂
𝜕

𝜕𝑥𝑛

)︂
.

Theorem 2.1 implies

Corollary 1. For each continuous and bounded in R2 function 𝑓(𝑥1, 𝑥2) the equation

𝜕𝑚1+𝑚2𝑢

𝜕𝑥𝑚1
1 𝜕𝑥𝑚2

2

+

𝑚1∑︁
𝑘1=1

𝑎1𝑘1
𝜕𝑚1−𝑘1+𝑚2𝑢

𝜕𝑥𝑚1−𝑘1
1 𝜕𝑥𝑚2

2

+

𝑚2∑︁
𝑘2=1

𝑎2𝑘2
𝜕𝑚1+𝑚2−𝑘2𝑢

𝜕𝑥𝑚1
1 𝜕𝑥𝑚2−𝑘2

2

+

𝑚1−1∑︁
𝑘1=0

𝑚2−1∑︁
𝑘2=0

𝑏𝑘1𝑘2
𝜕𝑘1+𝑘2𝑢

𝜕𝑥𝑘11 𝜕𝑥
𝑘2
2

= 𝑓(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ R2,

(2.3)

with constant coefficients 𝑎1𝑘1, 𝑎2𝑘2, 𝑏𝑘1𝑘2 has the unique bounded solution if and only if the
symbol of the equation and the following two polynomials

𝑄1(𝑠) = 𝑠𝑚1 +

𝑚1∑︁
𝑘1=1

𝑎1𝑘1𝑠
𝑚1−𝑘1 , (2.4)

𝑄2(𝑠) = 𝑠𝑚2 +

𝑚2∑︁
𝑘2=1

𝑎2𝑘2𝑠
𝑚2−𝑘2 (2.5)

have no pure imaginary roots.

We consider a particular case of equation (1.2), namely, the equation of the form(︂
𝜕

𝜕𝑥1
+ 𝑎1

)︂𝑚1

. . .

(︂
𝜕

𝜕𝑥𝑛
+ 𝑎𝑛

)︂𝑚𝑛

𝑢− 𝑏𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, (2.6)

where the coefficients 𝑎1 = 𝛼1 + 𝑖𝛽1, . . . , 𝑎𝑛 = 𝛼𝑛 + 𝑖𝛽𝑛 and 𝑏 are complex numbers. The
following theorems are true.

Theorem 2.2. For each continuous and bounded in R𝑛 function 𝑓(𝑥1, . . . , 𝑥𝑛) equation (2.6)
has the unique bounded solution if and only if the numbers 𝑎1 = 𝛼1 + 𝑖𝛽1, . . . , 𝑎𝑛 = 𝛼𝑛 + 𝑖𝛽𝑛
and 𝑏 satisfy the conditions

𝛼1 ̸= 0, . . . , 𝛼𝑛 ̸= 0, (2.7)

𝑅|𝑚|
(︀
𝑏𝛼−𝑚1

1 . . . 𝛼−𝑚𝑛
𝑛

)︀
< 1, (2.8)

where |𝑚| = 𝑚1 + . . .+𝑚𝑛,

𝑅|𝑚| (𝑐) = max
𝑘=0,...,|𝑚|−1

Re
(︀

|𝑚|
√
𝑐
)︀
𝑘

= |𝑐|1/|𝑚| max
𝑘=0,...,|𝑚|−1

cos

(︂
arg (𝑐) + 2𝜋𝑘

|𝑚|

)︂
. (2.9)

Theorem 2.3. Assume that the numbers 𝛼1, . . . , 𝛼𝑛 are positive and condition (2.8) is
satisfied. Then the unique bounded solution of equation (2.6) can be represented as

𝑢(𝑥1, . . . , 𝑥𝑛) =

∫︁ 𝑥1

−∞
. . .

∫︁ 𝑥𝑛

−∞
𝐺(𝑥1 − 𝜉1, . . . , 𝑥𝑛 − 𝜉𝑛)𝑓(𝜉1, . . . , 𝜉𝑛)𝑑𝜉1 . . . 𝑑𝜉𝑛, (2.10)

where the function 𝐺(𝑥1, . . . , 𝑥𝑛) is defined by the formula

𝐺(𝑥1, . . . , 𝑥𝑛) = 𝑒−𝑎1𝑥1−...−𝑎𝑛𝑥𝑛

∞∑︁
𝑘=0

𝑥𝑚1−1
1 . . . 𝑥𝑚𝑛−1

𝑛 (𝑏𝑥𝑚1
1 . . . 𝑥𝑚𝑛

𝑛 )𝑘

(𝑚1(𝑘 + 1) − 1)! . . . (𝑚𝑛(𝑘 + 1) − 1)!
(2.11)



78 E. MUHAMADIEV, A.N. NAIMOV, A.Kh. SATTOROV

and is absolutely integrable in the domain 𝑥1 > 0, . . ., 𝑥𝑛 > 0:∫︁ +∞

0

. . .

∫︁ +∞

0

|𝐺(𝑥1, . . . , 𝑥𝑛)| 𝑑𝑥1 . . . 𝑑𝑥𝑛 <∞. (2.12)

Remark 1. Under the change of 𝑥𝑗 by 𝑦𝑗 = −𝑥𝑗, the bracket (𝜕/𝜕𝑥𝑗 + 𝑎𝑗)
𝑚𝑗 is transformed

into the bracket (−1)𝑚𝑗 (𝜕/𝜕𝑦𝑗 − 𝑎𝑗)
𝑚𝑗 . Therefore, equation (2.6) with nonzero 𝛼1, . . . , 𝛼𝑛 can

be always reduced to the case when 𝛼1, . . . , 𝛼𝑛 are positive.

Theorems 2.2 and 2.3 for 𝑛 = 2 and 𝑚1 = 𝑚2 = 1 were proved in works [4], [5]. The
monograph [6] provides results on exponential representation of generalized solutions to linear
differential equations with constant coefficients. The results of this monograph do not imply
Theorems 2.1–2.3.

In our opinion, the obtained results can be extended for partial differential equations with
variable coefficients by proving and applying Carleman type inequalities ([7]).

3. Existence and uniqueness of bounded solution

In this section we prove Theorem 2.1. First we introduce the notations: 𝑚 = (𝑚1, . . . ,𝑚𝑛) is
the vector formed by the degrees 𝑚1, . . . ,𝑚𝑛 of the polynomials 𝑃1, . . . , 𝑃𝑛, |𝑚| = 𝑚1+. . .+𝑚𝑛,
𝐶0 is the Banach space of continuous and bounded in R𝑛 functions 𝑣(𝑥1, . . . , 𝑥𝑛) with the norm

‖𝑣‖ = sup
(𝑥1,...,𝑥𝑛)∈R𝑛

|𝑣(𝑥1, . . . , 𝑥𝑛)|,

𝐶𝑚 is the Banach space of functions 𝑣(𝑥1, . . . , 𝑥𝑛), belonging to 𝐶0 together with all its deriva-
tives

𝜕𝑘1+...+𝑘𝑛𝑣

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛
, 𝑘𝑗 = 0,𝑚𝑗, 𝑗 = 1, 𝑛,

where the norm is defined by the formula

‖𝑣‖𝑚 =
∑︁

𝑘𝑗=0,𝑚𝑗 ,𝑗=1,𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝑘1+...+𝑘𝑛𝑣

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
,

𝑆 is the space of functions 𝑣(𝑥1, . . . , 𝑥𝑛) infinitely differentiable in R𝑛 and fast decaying at
infinity [8], 𝑆 ′ is the space of tempered distributions [8]. The embeddings 𝑆 ⊂ 𝐶𝑚 ⊂ 𝐶0 ⊂ 𝑆 ′

hold true [8].
Before proving Theorem 2.1, let us check three lemmata.

Lemma 3.1. If condition (2.1) is satisfied, then a solution of equation (1.2) is unique in the
space 𝑆 ′.

Proof. Let 𝑓 = 0 and 𝑢 ∈ 𝑆 ′ in equation (1.2). We apply the Fourier transform of the generalized
functions [8] to the both sides of (1.2) and obtain the identity

(̂︀𝑢, 𝑃 ′𝜓) = 0 for each 𝜓 ∈ 𝑆. (3.1)

Here ̂︀𝑢 is the Fourier image of 𝑢, ̂︀𝑢 ∈ 𝑆 ′, 𝑃 ′ = 𝑃 (−𝑖𝜏1, . . . ,−𝑖𝜏𝑛). It follows from condition
(2.1) that 𝜙/𝑃 ′ ∈ 𝑆 for each compactly supported function 𝜙 ∈ 𝑆. Letting 𝜓 = 𝜙/𝑃 ′ in the
identity (3.1), we obtain (̂︀𝑢, 𝜙) = 0 for each compactly supported function 𝜙 ∈ 𝑆. The set of
compactly supported functions is dense in 𝑆 [8] and therefore, ̂︀𝑢 = 0 and 𝑢 = 0. The proof is
complete.

Lemma 3.2. Assume that conditions (2.1), (2.2) are satisfied and for some 𝑓 ∈ 𝐶0 there
exists a solution 𝑢 to equation (1.2) in 𝑆 ′ such that 𝑃0(𝜕/𝜕𝑥1, . . . , 𝜕/𝜕𝑥𝑛)𝑢 ∈ 𝐶0. Then 𝑢 ∈ 𝐶𝑚.
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Proof. Given 𝑓 and 𝑢, we consider the equation

𝑃1

(︂
𝜕

𝜕𝑥1

)︂
. . . 𝑃𝑛

(︂
𝜕

𝜕𝑥𝑛

)︂
𝑣 = 𝑔, (3.2)

where

𝑔 = 𝑓 − 𝑃0

(︂
𝜕

𝜕𝑥1
, . . . ,

𝜕

𝜕𝑥𝑛

)︂
𝑢 ∈ 𝐶0.

On one hand, 𝑢 is a generalized solution to equation (3.2). On the other hand, we can apply 𝑛
times Bohl theorem [1] to equation (3.2) and invert the differential operators

𝑃1

(︂
𝜕

𝜕𝑥1

)︂
, . . . , 𝑃𝑛

(︂
𝜕

𝜕𝑥𝑛

)︂
.

While inverting each differential operator 𝑃𝑗(𝜕/𝜕𝑥𝑗), we keep the property of being bounded
and continuous for partial derivatives w.r.t. other variables. As a result we obtain a solution
𝑣 ∈ 𝐶𝑚 of equation (3.2). Equation (3.2) is a particular case of equation (1.2) and by Lemma
3.1 it can have only the unique solution in 𝑆 ′. Therefore, 𝑢 = 𝑣. The proof is complete.

Lemma 3.3. If conditions (2.1) and (2.2) are satisfied, there exists a positive number 𝛾 such
that for all 𝜏1, . . . , 𝜏𝑛 ∈ R the estimate

|𝑃 (𝑖𝜏1, . . . , 𝑖𝜏𝑛)| > 𝛾 (1 + |𝜏1|)𝑚1 . . . (1 + |𝜏𝑛|)𝑚𝑛 (3.3)

holds true.

Proof. For each 𝑗 = 1, 𝑛 we expand the polynomial 𝑃𝑗(𝑠) over its roots

𝑃𝑗(𝑠) = (𝑠− 𝜆𝑗1) . . . (𝑠− 𝜆𝑗𝑚𝑗
).

We have
|𝑃𝑗(𝑖𝜏𝑗)|

(1 + |𝜏𝑗|)𝑚𝑗
=

𝑚𝑗∏︁
𝑘=1

⃒⃒⃒⃒
𝑖𝜏𝑗 − 𝜆𝑗𝑘
1 + |𝜏𝑗|

⃒⃒⃒⃒
→ 1 as 𝜏𝑗 → ∞,

and by conditions (2.2) we obtain:

inf
𝜏𝑗∈R

|𝑃𝑗(𝑖𝜏𝑗)|
(1 + |𝜏𝑗|)𝑚𝑗

= 𝛾𝑗 > 0.

Therefore, for all 𝜏1, . . . , 𝜏𝑛 ∈ R we have the estimate

|𝑃1(𝑖𝜏1) . . . 𝑃𝑛(𝑖𝜏𝑛)|
(1 + |𝜏1|)𝑚1 . . . (1 + |𝜏𝑛|)𝑚𝑛

> 𝛾1 . . . 𝛾𝑛 = 2̃︀𝛾1.
For the polynomial 𝑃0 we get

|𝑃0(𝑖𝜏1, . . . , 𝑖𝜏𝑛)| 6 𝑐0 (1 + |𝜏1|)𝑚1−1 . . . (1 + |𝜏𝑛|)𝑚𝑛−1 ,

where 𝑐0 is independent of 𝜏1, . . . , 𝜏𝑛. This yields

|𝑃 (𝑖𝜏1, . . . , 𝑖𝜏𝑛)|
(1 + |𝜏1|)𝑚1 . . . (1 + |𝜏𝑛|)𝑚𝑛

> 2̃︀𝛾1 − 𝑐0
(1 + |𝜏1|) . . . (1 + |𝜏𝑛|)

> ̃︀𝛾1
as |𝜏1| + . . .+ |𝜏𝑛| > 𝑐0/̃︀𝛾1. By condition (2.1) we obtain:

min
|𝜏1|+...+|𝜏𝑛|6𝑐0/̃︀𝛾1

|𝑃 (𝑖𝜏1, . . . , 𝑖𝜏𝑛)|
(1 + |𝜏1|)𝑚1 . . . (1 + |𝜏𝑛|)𝑚𝑛

= ̃︀𝛾2 > 0.

Hence, for all 𝜏1, . . . , 𝜏𝑛 ∈ R estimate (3.3) holds true, where 𝛾 is the smallest of the numbers̃︀𝛾1 and ̃︀𝛾2. The proof is complete.

We proceed to the proof of Theorem 2.1.
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Proof of Theorem 2.1. Necessity. Assume that for each 𝑓 ∈ 𝐶0 equation (1.2) has the unique
solution 𝑢 ∈ 𝐶𝑚. Then condition (2.1) should be satisfied. Indeed, if 𝑃 (𝑖𝜏 01 , . . . , 𝑖𝜏

0
𝑛) = 0 for

some 𝜏 01 , . . . , 𝜏
0
𝑛 ∈ R, then the function 𝑢+exp(𝑖𝜏 01𝑥1 + . . .+ 𝑖𝜏 0𝑛𝑥𝑛) also is a solution of equation

(1.2) in 𝐶𝑚.
Assume that one of conditions (2.2) fails, for instance, 𝑃1(𝑖𝜏

0
1 ) = 0 for some 𝜏 01 ∈ R.

We take some function𝑣0(𝑥2, . . . , 𝑥𝑛) ∈ 𝐶𝑚′′∖𝐶𝑚′ , where 𝑚′ = (𝑚2,𝑚3, . . . ,𝑚𝑛), 𝑚′′ =
(𝑚2 − 1,𝑚3, . . . ,𝑚𝑛), and consider the function 𝑢0(𝑥1, . . . , 𝑥𝑛) = exp(𝑖𝜏 01𝑥1)𝑣

0(𝑥2, . . . , 𝑥𝑛). It
is obvious that 𝑢0 ∈ 𝑆 ′∖𝐶𝑚 and

𝑃

(︂
𝜕

𝜕𝑥1
, . . . ,

𝜕

𝜕𝑥𝑛

)︂
𝑢0 = 𝑃0

(︂
𝜕

𝜕𝑥1
, . . . ,

𝜕

𝜕𝑥𝑛

)︂
𝑢0 ≡ 𝑓 0 ∈ 𝐶0.

Therefore, the function 𝑢0 is a generalized solution to equation (1.2) in 𝑆 ′ as 𝑓 = 𝑓 0. Since
condition (2.1) is satisfied, by Lemma 3.1, equation (1.2) can have only the unique solution in
the space 𝑆 ′. Thus, as 𝑓 = 𝑓 0, equation (1.2) has no solutions in 𝐶𝑚, which is a contradiction.
Hence, conditions (2.2) are necessary.

Sufficiency. Assume that conditions (2.1) and (2.2) hold true. We first prove the solvability of
equation (1.2) for periodic functions 𝑓 in 𝐶0. We shall call function 𝑓 periodic with a period 𝜔,
where 𝜔 is a fixed positive number, if for each 𝑗 = 1, 𝑛 the identity 𝑓(𝑥1, . . . , 𝑥𝑗 + 𝜔, . . . , 𝑥𝑛) ≡
𝑓(𝑥1, . . . , 𝑥𝑗, . . . , 𝑥𝑛) holds true.

Lemma 3.4. For each 𝜔-periodic function 𝑓 in 𝐶0 there exists the unique solution 𝑢 of
equation (1.2) in 𝐶𝑚, which 𝜔-periodic together with all its derivatives of order up to 𝑚. At
that, the estimate

‖𝑢‖𝑚 6𝑀0‖𝑓‖ (3.4)

holds true, where 𝑀0 is a positive number independent of 𝑓 and 𝜔 for all 𝜔 > 1.

Proof. We shall seek a periodic solution as the Fourier series of the exponentials [9]. In order
to do it, we expand 𝜔-periodic function 𝑓 into the Fourier series

𝑓 =
∑︁

(𝑙1,...,𝑙𝑛)

𝑐𝑙1...𝑙𝑛(𝑓)𝑒𝑖
2𝜋
𝜔
(𝑙1𝑥1+...+𝑙𝑛𝑥𝑛).

The series converges in the norm of the space 𝐿2(𝐷𝜔) ([9])

‖𝑔‖2𝐿2(𝐷𝜔) =
1

𝜔𝑛

∫︁ 𝜔

0

. . .

∫︁ 𝜔

0

|𝑔(𝜉1, . . . , 𝜉𝑛)|2𝑑𝜉1 . . . 𝑑𝜉𝑛,

where 𝐷𝜔 = {(𝜉1, . . . , 𝜉𝑛) : 0 < 𝜉𝑗 < 𝜔, 𝑗 = 1, 𝑛}, and the Parseval identity∑︁
(𝑙1,...,𝑙𝑛)

|𝑐𝑙1...𝑙𝑛(𝑓)|2 = ‖𝑓‖2𝐿2(𝐷𝜔)

holds true. A periodic solution to equation (1.2) can be defined by the formulae

𝑢 =
∑︁

(𝑙1,...,𝑙𝑛)

𝑐𝑙1...𝑙𝑛(𝑢)𝑒𝑖
2𝜋
𝜔
(𝑙1𝑥1+...+𝑙𝑛𝑥𝑛), (3.5)

𝑐𝑙1...𝑙𝑛(𝑢) =
𝑐𝑙1...𝑙𝑛(𝑓)

𝑃
(︀
𝑖2𝜋
𝜔
𝑙1, . . . , 𝑖

2𝜋
𝜔
𝑙𝑛
)︀ . (3.6)

Taking into consideration Lemma 3.3, we get the following estimates as 0 6 𝑘𝑗 < 𝑚𝑗, 𝑗 = 1, 𝑛:⃒⃒⃒⃒
⃒
(︂
𝑖
2𝜋

𝜔
𝑙1

)︂𝑘1

. . .

(︂
𝑖
2𝜋

𝜔
𝑙𝑛

)︂𝑘𝑛

𝑐𝑙1...𝑙𝑛(𝑢)

⃒⃒⃒⃒
⃒ 6

⃒⃒
2𝜋
𝜔
𝑙1
⃒⃒𝑘1 . . . ⃒⃒2𝜋

𝜔
𝑙𝑛
⃒⃒𝑘𝑛 |𝑐𝑙1...𝑙𝑛(𝑓)|

𝛾
(︀
1 +

⃒⃒
2𝜋
𝜔
𝑙1
⃒⃒)︀𝑚1 . . .

(︀
1 +

⃒⃒
2𝜋
𝜔
𝑙𝑛
⃒⃒)︀𝑚𝑛
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6
1

𝛾

(︂
1 +

⃒⃒⃒⃒
2𝜋

𝜔
𝑙1

⃒⃒⃒⃒)︂−1

. . .

(︂
1 +

⃒⃒⃒⃒
2𝜋

𝜔
𝑙𝑛

⃒⃒⃒⃒)︂−1

|𝑐𝑙1...𝑙𝑛(𝑓)|

and by Cauchy-Schwarz inequality [10]∑︁
(𝑙1,...,𝑙𝑛)

⃒⃒⃒⃒
⃒
(︂
𝑖
2𝜋

𝜔
𝑙1

)︂𝑘1

. . .

(︂
𝑖
2𝜋

𝜔
𝑙𝑛

)︂𝑘𝑛

𝑐𝑙1...𝑙𝑛(𝑢)

⃒⃒⃒⃒
⃒

6
1

𝛾

⎛⎝ ∑︁
(𝑙1,...,𝑙𝑛)

(︂
1 +

⃒⃒⃒⃒
2𝜋

𝜔
𝑙1

⃒⃒⃒⃒)︂−2

. . .

(︂
1 +

⃒⃒⃒⃒
2𝜋

𝜔
𝑙𝑛

⃒⃒⃒⃒)︂−2
⎞⎠1/2⎛⎝ ∑︁

(𝑙1,...,𝑙𝑛)

|𝑐𝑙1...𝑙𝑛(𝑓)|2
⎞⎠1/2

.

This implies, first, that 𝑢 ∈ 𝐶𝑚′ , where 𝑚′ = (𝑚1−1, . . . ,𝑚𝑛−1), and second, that the function
𝑢 and all its partial derivatives 𝜕𝑘1+...+𝑘𝑛𝑢/𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛 , where 𝑘𝑗 = 0,𝑚𝑗 − 1, 𝑗 = 1, 𝑛, are
𝜔-periodic, and third, the estimate

‖𝑢‖𝑚′ 6𝑀1‖𝑓‖𝐿2(𝐷𝜔) 6𝑀1‖𝑓‖ (3.7)

holds true. Here 𝑀1 > 0 and 𝑀1 is independent of 𝑓 and 𝜔 for all 𝜔 > 1. It follows from
estimate (3.7) and formulae (3.5), (3.6) that 𝑢 ∈ 𝑆 ′ and 𝑢 is a generalized solution of equation
(1.2) and 𝑃0(𝜕/𝜕𝑥1, . . . , 𝜕/𝜕𝑥𝑛)𝑢 ∈ 𝐶0. Applying Lemma 3.2, we get that 𝑢 ∈ 𝐶𝑚 and the
estimate

‖𝑢‖𝑚 6𝑀2‖ ̃︀𝑓‖ (3.8)

is valid, where ̃︀𝑓 = 𝑓 − 𝑃0(𝜕/𝜕𝑥1, . . . , 𝜕/𝜕𝑥𝑛)𝑢. By (3.7) and (3.8) we obtain estimate (3.4).
The proof is complete.

Let 𝑓 be an arbitrary function in 𝐶0. We construct the following sequence of periodic
functions:

𝑓𝑞(𝑥1, . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛) as max (|𝑥1|, . . . , |𝑥𝑛|) 6 𝑞,

𝑓𝑞(𝑥1, . . . , 𝑥𝑛) = 𝜂𝑞 (max (|𝑥1|, . . . , |𝑥𝑛|)) 𝑓(𝑥1, . . . , 𝑥𝑛) as 𝑞 < max (|𝑥1|, . . . , |𝑥𝑛|) 6 𝑞 + 1,

where 𝑞 = 1, 2, . . ., (𝑥1, . . . , 𝑥𝑛) ∈ 𝐷𝑞, 𝐷𝑞 =
{︀

(𝜉1, . . . , 𝜉𝑛) : |𝜉𝑗| 6 𝑞 + 1, 𝑗 = 1, 𝑛
}︀
, the function

𝜂𝑞(𝑡) is continuous on R, 0 6 𝜂𝑞(𝑡) 6 1 for all 𝑡, 𝜂𝑞(𝑡) = 1 as |𝑡| 6 𝑞 and 𝜂𝑞(𝑡) = 0 as |𝑡| > 𝑞+ 1.
We continue each function 𝑓𝑞 outside 𝐷𝑞 periodically with the period 2(𝑞+1). It is obvious that
‖𝑓𝑞‖ 6 ‖𝑓‖ for all 𝑞 = 1, 2, . . . and 𝑓𝑞 → 𝑓 as 𝑞 → ∞ uniformly in each bounded set 𝐷 ∈ R𝑛.
In accordance with Lemma 3.4, for each 𝑞 there exists the unique solution 𝑢𝑞 in 𝐶𝑚 of equation
(1.2) and the estimate ‖𝑢𝑞‖𝑚 6 𝑀0‖𝑓‖ holds true. This estimate, by Arzelà-Ascoli theorem
[10], there exists a subsequence 𝑢𝑞1 , 𝑢𝑞2 , . . . converging uniformly in each bounded set 𝐷 ∈ R𝑛

to some function ̃︀𝑢 ∈ 𝐶𝑚′ (𝑚′ = (𝑚1 − 1, . . . ,𝑚𝑛 − 1)) together with all partial derivatives
𝜕𝑘1+...+𝑘𝑛/𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛 , where 𝑘𝑗 = 0,𝑚𝑗 − 1, 𝑗 = 1, 𝑛.

In equation (1.2) we let 𝑓 = 𝑓𝑞𝑗 , 𝑢 = 𝑢𝑞𝑗 and pass to the limit as 𝑗 → ∞ in the space of
generalized functions. Then we obtain that ̃︀𝑢 is a generalized solution to equation (1.2) and
satisfy assumptions of Lemma 3.2. According to Lemma 3.2, we have ̃︀𝑢 ∈ 𝐶𝑚. The proof of
Theorem 2.1 is complete.

Proof Corollary 1. Let us show that Theorem 2.1 implies Corollary 1. In order to prove this,
it is sufficient to confirm that equation (2.3) can be represented as (1.2). As 𝑃1(𝑠1) and 𝑃2(𝑠2),
we consider the following polynomials

𝑃1(𝑠1) = (𝑠1 + 𝑧11) · . . . · (𝑠1 + 𝑧1𝑚1) ≡ (−1)𝑚1𝑄1(𝑠1),

𝑃2(𝑠2) = (𝑠2 + 𝑧21) · . . . · (𝑠2 + 𝑧2𝑚2) ≡ (−1)𝑚2𝑄2(𝑠2),
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where −𝑧11, . . ., −𝑧1𝑚1 are the roots of the polynomial 𝑄1(𝑠), −𝑧21, . . ., −𝑧2𝑚2 are the roots of
the polynomial 𝑄2(𝑠). Multiplying the polynomials 𝑃1(𝑠1) and 𝑃2(𝑠2) and employing Vieta’s
formulae expressing the coefficients of a polynomial in terms of its roots [11], we get

𝑃1(𝑠1)𝑃2(𝑠2) = 𝑠𝑚1
1 𝑠𝑚2

2 +

𝑚1−1∑︁
𝑘1=0

𝑚2−1∑︁
𝑘2=0

̃︀𝑏𝑘1𝑘2𝑠𝑘11 𝑠𝑘22
+ 𝑠𝑚2

2

(︀
(𝑧11 + . . .+ 𝑧1𝑚1)𝑠

𝑚1−1
1 + (𝑧11𝑧12 + . . .+ 𝑧1𝑚1−1𝑧1𝑚1)𝑠

𝑚1−2
1 . . .+ 𝑧11 . . . 𝑧1𝑚1

)︀
+ 𝑠𝑚1

1

(︀
(𝑧21 + . . .+ 𝑧2𝑚2)𝑠

𝑚2−1
2 + (𝑧21𝑧22 + . . .+ 𝑧2𝑚2−1𝑧2𝑚2)𝑠

𝑚2−2
2 + . . .+ 𝑧21 . . . 𝑧2𝑚2

)︀
=𝑠𝑚1

1 𝑠𝑚2
2 + 𝑠𝑚2

2

𝑚1∑︁
𝑘1=1

𝑎1𝑘1𝑠
𝑚1−𝑘1
1 + 𝑠𝑚1

1

𝑚2∑︁
𝑘2=1

𝑎2𝑘2𝑠
𝑚2−𝑘2
2 +

𝑚1−1∑︁
𝑘1=0

𝑚2−1∑︁
𝑘2=0

̃︀𝑏𝑘1𝑘2𝑠𝑘11 𝑠𝑘22 .
Therefore, the symbol 𝑃 (𝑠1, 𝑠2) of equation (2.3) can be represented as

𝑃 (𝑠1, 𝑠2) = 𝑃1(𝑠1)𝑃2(𝑠2) +

𝑚1−1∑︁
𝑘1=0

𝑚2−1∑︁
𝑘2=0

(︁
𝑏𝑘1𝑘2 −̃︀𝑏𝑘1𝑘2)︁ 𝑠𝑘11 𝑠𝑘22 .

The polynomials 𝑃1 and 𝑃2 have no pure imaginary roots simultaneously with the polynomials
𝑄1 and 𝑄2. Hence, equation (2.3) can be represented as (1.2) and the assumptions of Theo-
rem 2.1 are satisfied only in the case, when the symbol of equation (2.3) and the polynomials
𝑄1, 𝑄2 have no pure imaginary roots. The proof is complete.

4. Proof of Theorem 2.2

Theorem 2.2 is implied by Theorem 2.1 and the following lemma.

Lemma 4.1. If conditions (2.7) are satisfied, then the symbol of equation (2.6) has no pure
imaginary roots only in the case, when condition (2.8) holds true.

Proof. It is easy to check that the condition on the absence of pure imaginary roots for the
symbol of equation (2.6) is equivalent to the condition

(𝑖𝜏1 + 1)𝑚1 . . . (𝑖𝜏𝑛 + 1)𝑚𝑛 ̸= ̃︀𝑏 for all 𝜏1, . . . , 𝜏𝑛 ∈ R, (4.1)

where ̃︀𝑏 = 𝑏𝛼−𝑚1
1 . . . 𝛼−𝑚𝑛

𝑛 . Let us show that condition (4.1) is equivalent to the condition

𝑅|𝑚|(̃︀𝑏) < 1, (4.2)

where |𝑚| = 𝑚1 + . . . + 𝑚𝑛, and 𝑅|𝑚|(̃︀𝑏) is determined by the formula (2.9). This will prove
Lemma 4.1.

We let 𝜏𝑗 = 𝑡𝑔𝜙𝑗, where 𝜙𝑗 ∈ (−𝜋/2, 𝜋/2) for all 𝑗 = 1, 𝑛. Then condition (4.1) becomes

𝑒𝑖(𝑚1𝜙1+...+𝑚𝑛𝜙𝑛) ̸= ̃︀𝑏 cos𝑚1 𝜙1 . . . cos𝑚𝑛 𝜙𝑛 for all 𝜙1, . . . , 𝜙𝑛 ∈
(︁
−𝜋

2
,
𝜋

2

)︁
.

In its turn, this is equivalent to the condition:

|̃︀𝑏| cos𝑚1 𝜙1 . . . cos𝑚𝑛 𝜙𝑛 ̸= 1 (4.3)

for all 𝜙1, . . . , 𝜙𝑛 ∈ (−𝜋/2, 𝜋/2) satisfying the condition 𝑚1𝜙1 + . . .+𝑚𝑛𝜙𝑛 = 𝜃+ 2𝜋𝑙 for some

integer 𝑙 and 𝜃 = arg̃︀𝑏, which is the argument of ̃︀𝑏, |𝜃| 6 𝜋. It is obvious that the integer
number 𝑙 should satisfy the inequality |𝜃 + 2𝜋𝑙| < |𝑚|𝜋/2.

Let (𝜙0
1, . . . , 𝜙

0
𝑛) be a set satisfying the aforementioned conditions for some integer 𝑙0, on

which the extremum of the function is attained 𝐹 (𝜙1, . . . , 𝜙𝑛) = cos𝑚1 𝜙1 . . . cos𝑚𝑛 . Let us
check that the inequalities

|̃︀𝑏| cos𝑚1 𝜙0
1 . . . cos𝑚𝑛 𝜙0

𝑛 < 1 (4.4)
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and the identities

𝜙0
1 = . . . = 𝜙0

𝑛 =
𝜃 + 2𝜋𝑙0

|𝑚|
(4.5)

hold true. If so, then condition (4.3) would be equivalent the inequality

|̃︀𝑏|1/|𝑚| cos
𝜃 + 2𝜋𝑙0

|𝑚|
< 1,

which in notations (2.9) become (4.2) and this would complete the proof of the lemma.
Before we check inequality (4.4), we construct the set (̃︀𝜙1, . . . , ̃︀𝜙𝑛) satisfying the conditions

(̃︀𝜙1, . . . , ̃︀𝜙𝑛) ∈
(︁
−𝜋

2
,
𝜋

2

)︁
, 𝑚1̃︀𝜙1 + . . .+𝑚𝑛̃︀𝜙𝑛 = 𝜃 + 2𝜋𝑙0, |̃︀𝑏|𝐹 (̃︀𝜙1, . . . , ̃︀𝜙𝑛) < 1.

At that, without loss of generality, we can assume that 𝜃 + 2𝜋𝑙0 > 0 𝑚1 6 |𝑚|/2. We choose
𝛿 ∈ (0, 𝜋/2) so that the inequalities

|̃︀𝑏| cos𝑚1

(︁𝜋
2
− 𝛿

)︁
< 1, 0 < 𝜃 + 2𝜋𝑙0 +𝑚1𝛿 <

|𝑚|𝜋
2

are satisfied. We let ̃︀𝜙1 = 𝜋/2 − 𝛿. For ̃︀𝜙1 we have the belonging

𝜃 + 2𝜋𝑙0 −𝑚1̃︀𝜙1 ∈
(︁
−(|𝑚| −𝑚1)

𝜋

2
, (|𝑚| −𝑚1)

𝜋

2

)︁
. (4.6)

Indeed, by the assumptions 𝜃 + 2𝜋𝑙0 > 0, 𝑚1 6 |𝑚|/2 and the choice of 𝛿, we have

𝜃 + 2𝜋𝑙0 −𝑚1̃︀𝜙1 > −𝑚1
𝜋

2
+𝑚1𝛿 > −(|𝑚| −𝑚1)

𝜋

2
,

𝜃 + 2𝜋𝑙0 −𝑚1̃︀𝜙1 = 𝜃 + 2𝜋𝑙0 +𝑚1𝛿 −𝑚1
𝜋

2
< (|𝑚| −𝑚1)

𝜋

2
.

By (4.6) we obtain the existence of ̃︀𝜙2, . . . , ̃︀𝜙𝑛 ∈ (−𝜋/2, 𝜋/2) such that

𝑚2̃︀𝜙2 + . . .+𝑚𝑛̃︀𝜙𝑛 = 𝜃 + 2𝜋𝑙0 −𝑚1̃︀𝜙1.

For the set (̃︀𝜙1, . . . , ̃︀𝜙𝑛) we have

|̃︀𝑏|𝐹 (̃︀𝜙1, . . . , ̃︀𝜙𝑛) 6 |̃︀𝑏| cos𝑚1

(︁𝜋
2
− 𝛿

)︁
< 1.

By two sets (𝜙0
1, . . . , 𝜙

0
𝑛) and (̃︀𝜙1, . . . , ̃︀𝜙𝑛) we introduce the function

𝑔(𝑡) = |̃︀𝑏|𝐹 ((1 − 𝑡)̃︀𝜙1 + 𝑡𝜙0
1, . . . , (1 − 𝑡)̃︀𝜙𝑛 + 𝑡𝜙0

𝑛), 𝑡 ∈ [0, 1].

The function 𝑔(𝑡) is continuous on the segment [0, 1] and 𝑔(0) < 1. If (4.4) fails, then 𝑔(1) > 1
and therefore, for some 𝑡0 ∈ (0, 1) we should have 𝑔(𝑡0) = 1. For this value 𝑡0 we get

(1 − 𝑡0)̃︀𝜙1 + 𝑡0𝜙
0
1, . . . , (1 − 𝑡0)̃︀𝜙𝑛 + 𝑡0𝜙

0
𝑛 ∈

(︁
−𝜋

2
,
𝜋

2

)︁
,

𝑚1

[︀
(1 − 𝑡0)̃︀𝜙1 + 𝑡0𝜙

0
1

]︀
+ . . .+𝑚𝑛

[︀
(1 − 𝑡0)̃︀𝜙𝑛 + 𝑡0𝜙

0
𝑛

]︀
= 𝜃 + 2𝜋𝑙0,

|̃︀𝑏|𝐹 ((1 − 𝑡0)̃︀𝜙1 + 𝑡0𝜙
0
1, . . . , (1 − 𝑡0)̃︀𝜙𝑛 + 𝑡0𝜙

0
𝑛) = 1.

This contradicts condition (4.3). Therefore, (4.4) indeed holds true.
The set (𝜙0

1, . . . , 𝜙
0
𝑛−1) is the point of the maximum of the function

𝐹1(𝜙1, . . . , 𝜙𝑛−1) ≡ 𝐹

(︂
𝜙1, . . . , 𝜙𝑛−1,

1

𝑚𝑛

(𝜃 + 2𝜋𝑙0 −𝑚1𝜙1 − . . .𝑚𝑛−1𝜙𝑛−1)

)︂
and it lies inside the domain, in which the function 𝐹1 is considered. This is why by the
extremum necessary condition we obtain:

𝜕𝐹1

𝜕𝜙𝑗

(𝜙0
1, . . . , 𝜙

0
𝑛−1) = 0, 𝑗 = 1, 𝑛− 1,
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sin

(︂
1

𝑚𝑛

(︀
𝜃 + 2𝜋𝑙0 −𝑚1𝜙

0
1 − . . .𝑚𝑛−1𝜙

0
𝑛−1

)︀
− 𝜙0

𝑗

)︂
= 0, 𝑗 = 1, 𝑛− 1,

where
1

𝑚𝑛

(︀
𝜃 + 2𝜋𝑙0 −𝑚1𝜙

0
1 − . . .𝑚𝑛−1𝜙

0
𝑛−1

)︀
∈
(︁
−𝜋

2
,
𝜋

2

)︁
,

𝜙0
𝑗 ∈

(︁
−𝜋

2
,
𝜋

2

)︁
for all 𝑗 = 1, 𝑛− 1.

Hence,
1

𝑚𝑛

(︀
𝜃 + 2𝜋𝑙0 −𝑚1𝜙

0
1 − . . .𝑚𝑛−1𝜙

0
𝑛−1

)︀
− 𝜙0

𝑗 = 0, 𝑗 = 1, 𝑛− 1.

We have obtained a system of linear algebraic equations for 𝜙0
1, . . . , 𝜙

0
𝑛−1. This system has the

unique solution

𝜙0
1 = . . . = 𝜙0

𝑛−1 =
𝜃 + 2𝜋𝑙0

|𝑚|
.

Now we find 𝜙0
𝑛:

𝜙0
𝑛 =

1

𝑚𝑛

(︂
𝜃 + 2𝜋𝑙0 − (|𝑚| −𝑚𝑛)

𝜃 + 2𝜋𝑙0
|𝑚|

)︂
=
𝜃 + 2𝜋𝑙0

|𝑚|
.

Hence, identities (4.5) hold true. The proof is complete.

5. Representation of bounded solution

Here prove Theorem 2.3 on representing a bounded solution to equation (2.6) by formula
(2.10). Let 𝑓 ∈ 𝐶0, the numbers 𝛼1, . . . , 𝛼𝑛 be positive and condition (2.8) is satisfied. Let us
check that if the function 𝐺 defined by formula (2.11) is absolutely integrable in the domain
𝑥1 > 0, . . . , 𝑥𝑛 > 0, then the function 𝑢 defined by formula (2.10) is a bounded solution to
equation (2.6).

It is obvious that the absolute integrability of 𝐺 implies that 𝑢 ∈ 𝐶0. If, in addition, 𝑢
is a generalized solution of equation (2.6), then by Lemma 3.2 we obtain that 𝑢 ∈ 𝐶𝑚 and
𝑢 is a bounded solution of equation (2.6). In the case, when 𝑓 has a compact support, we
can straightforwardly check that 𝑢 is indeed a generalized solution. In the case, when 𝑓 is an
arbitrary function in 𝐶0, the same is checked as follows:

1) As in the proof of Theorem 2.1, we construct a sequence of functions 𝑓𝑞 ∈ 𝐶0, 𝑞 = 1, 2, . . .
with compact supports converging uniformly to 𝑓 in each bounded set 𝐷 ∈ R𝑛;

2) Letting 𝑓 = 𝑓𝑞 in formula (2.10), we get a generalized solution 𝑢𝑞 ∈ 𝐶0 of equation (2.6);
3) It follows from representation (2.10) that the sequence 𝑢𝑞, 𝑞 = 1, 2, . . . converges to 𝑢

uniformly in each bounded set 𝐷 ∈ R𝑛;
4) Letting 𝑓 = 𝑓𝑞, 𝑢 = 𝑢𝑞 in equation (2.6) and passing to the limit as 𝑞 → ∞, we obtain

that 𝑢 is a generalized solution of equation (2.6). Thus, the proof of Theorem 2.3 is reduced to
checking the absolute integrability of the function 𝐺 in the domain 𝑥1 > 0, . . . , 𝑥𝑛 > 0.

We write the function 𝐺 as

𝐺(𝑥1, . . . , 𝑥𝑛) = 𝑒−𝑎1𝑥1−...−𝑎𝑛𝑥𝑛𝑥𝑚1−1
1 . . . 𝑥𝑚𝑛−1

𝑛 𝑧 (𝑥𝑚1
1 . . . 𝑥𝑚𝑛

𝑛 ) , (5.1)

where

𝑧(𝑡) =
∞∑︁
𝑘=0

(𝑏 · 𝑡)𝑘

(𝑚1(𝑘 + 1) − 1)! . . . (𝑚𝑛(𝑘 + 1) − 1)!
. (5.2)

It is obvious that the function 𝑧(𝑡) is well-defined and infinitely differentiable on the interval
(−∞,+∞). Let us estimate the growth rate of |𝑧(𝑡)| for large positive 𝑡. The following lemma
is true.
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Lemma 5.1. There exist positive numbers 𝑀 and 𝛽 depending only on 𝑛 and 𝑚1, . . . ,𝑚𝑛

such that for all 𝑡 > 1 and 𝑙 = 0, 1, . . . , |𝑚| − 1 the estimate

|𝑧(𝑙)(𝑡)| 6𝑀𝑡(𝛽−𝑙(|𝑚|−1))/|𝑚|𝑒𝜆𝑚
|𝑚|√𝑡 (5.3)

holds true, where

𝜆𝑚 =
|𝑚|𝑅|𝑚|(𝑏)

|𝑚|
√︀
𝑚𝑚1

1 . . .𝑚𝑚𝑛
𝑛

. (5.4)

We employ Lemma 5.1 to estimate |𝐺(𝑥1, . . . , 𝑥𝑛)| from above for 𝑥1 > 0, . . . , 𝑥𝑛 > 0. It
follows from Lemma 5.1 that

𝑒−𝜆𝑚
|𝑚|√𝑡|𝑧(𝑡)| 6𝑀3

(︀
1 + 𝑡𝛽/|𝑚|)︀ for all 𝑡 > 0, (5.5)

where 𝑀3 > 0 and 𝑀3 is independent of 𝑡.
Taking into consideration condition (2.8), we choose 𝜀 > 0 so that the inequality

𝑅|𝑚|(𝑏) < ((𝛼1 − 𝜀)𝑚1 . . . (𝛼𝑛 − 𝜀)𝑚𝑛)1/|𝑚|

holds true. Then for all 𝑥1 > 0, . . . , 𝑥𝑛 > 0 we have

(𝛼1 − 𝜀)𝑥1 + . . .+ (𝛼𝑛 − 𝜀)𝑥𝑛 = 𝑚1

(︂
𝛼1 − 𝜀

𝑚1

𝑥1

)︂
+ . . .+𝑚𝑛

(︂
𝛼𝑛 − 𝜀

𝑚𝑛

𝑥𝑛

)︂
>|𝑚|

(︂(︂
𝛼1 − 𝜀

𝑚1

𝑥1

)︂𝑚1

· . . . ·
(︂
𝛼𝑛 − 𝜀

𝑚𝑛

𝑥𝑛

)︂𝑚𝑛
)︂1/|𝑚|

>
|𝑚|𝑅|𝑚|(𝑏)

|𝑚|
√︀
𝑚𝑚1

1 . . .𝑚𝑚𝑛
𝑛

(𝑥𝑚1
1 · . . . · 𝑥𝑚𝑛

𝑛 )1/|𝑚| = 𝜆𝑚 (𝑥𝑚1
1 · . . . · 𝑥𝑚𝑛

𝑛 )1/|𝑚| .

We estimate |𝐺(𝑥1, . . . , 𝑥𝑛)| by employing inequality (5.5):

|𝐺(𝑥1, . . . , 𝑥𝑛)| =𝑒−𝜀(𝑥1+...+𝑥𝑛)𝑒−(𝛼1−𝜀)𝑥1−...−(𝛼𝑛−𝜀)𝑥𝑛𝑥𝑚1−1
1 . . . 𝑥𝑚𝑛−1

𝑛 |𝑧 (𝑥𝑚1
1 . . . 𝑥𝑚𝑛

𝑛 )|

<𝑒−𝜀𝑥1𝑥𝑚1−1
1 . . . 𝑒−𝜀𝑥𝑛𝑥𝑚𝑛−1

𝑛 𝑒−𝜆𝑚
|𝑚|
√

𝑥
𝑚1
1 ...𝑥𝑚𝑛

𝑛 |𝑧 (𝑥𝑚1
1 . . . 𝑥𝑚𝑛

𝑛 )|

6𝑀3𝑒
−𝜀𝑥1𝑥𝑚1−1

1 . . . 𝑒−𝜀𝑥𝑛𝑥𝑚𝑛−1
𝑛

(︁
1 + (𝑥𝑚1

1 . . . 𝑥𝑚𝑛
𝑛 )𝛽/|𝑚|

)︁
.

This implies the absolute integrability of the function 𝐺 in the domain 𝑥1 > 0, . . . , 𝑥𝑛 > 0.
The proof of Lemma 5.1 will follow the next lemma.

Lemma 5.2. The function 𝑧(𝑡) defined by formula (5.2) satisfies the identity

|𝑚|∑︁
𝑙=1

𝑝𝑙𝑡
𝑙−1𝑧(𝑙)(𝑡) ≡ 𝑏𝑧(𝑡), (5.6)

where 𝑝0 = 0, 𝑝1, . . . , 𝑝|𝑚| are the coefficients of the expansion of the polynomial

𝑄(𝑧) =
𝑛∏︁

𝑗=1

(𝑚𝑗𝑧 +𝑚𝑗)(𝑚𝑗𝑧 +𝑚𝑗 + 1) . . . (𝑚𝑗𝑧 + 2𝑚𝑗 − 1)

into the interpolation Newton polynomial [12] by the nodes −1, 0, 1, . . . , |𝑚| − 1 :

𝑄(𝑧) =

|𝑚|∑︁
𝑙=1

𝑝𝑙(𝑧 + 1)𝑧 . . . (𝑧 − 𝑙 + 2). (5.7)
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Proof. Expansion (5.7) implies the following identities:

𝑘+1∑︁
𝑙=1

𝑝𝑙(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2) = 𝑄(𝑘), 𝑘 = 0, 1, . . . , |𝑚| − 1,

|𝑚|∑︁
𝑙=1

𝑝𝑙(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2) = 𝑄(𝑘), 𝑘 = |𝑚|, |𝑚| + 1, . . . .

This implies

|𝑚|∑︁
𝑙=1

𝑝𝑙𝑡
𝑙−1𝑧(𝑙)(𝑡) = 𝑏

|𝑚|∑︁
𝑙=1

𝑝𝑙

∞∑︁
𝑘=𝑙−1

(𝑏𝑡)𝑘(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2)

(𝑚1(𝑘 + 2) − 1)! . . . (𝑚𝑛(𝑘 + 2) − 1)!

=𝑏

|𝑚|∑︁
𝑙=1

𝑝𝑙

⎛⎝ |𝑚|−1∑︁
𝑘=𝑙−1

+
∞∑︁

𝑘=|𝑚|

⎞⎠ (𝑏𝑡)𝑘(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2)

(𝑚1(𝑘 + 1) − 1)! . . . (𝑚𝑛(𝑘 + 1) − 1)! ·𝑄(𝑘)

=𝑏

|𝑚|−1∑︁
𝑘=0

(𝑏𝑡)𝑘(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2)

(𝑚1(𝑘 + 1) − 1)! . . . (𝑚𝑛(𝑘 + 1) − 1)! ·𝑄(𝑘)

𝑘+1∑︁
𝑙=1

𝑝𝑙(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2)

+ 𝑏
∞∑︁

𝑘=|𝑚|

(𝑏𝑡)𝑘(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2)

(𝑚1(𝑘 + 1) − 1)! . . . (𝑚𝑛(𝑘 + 1) − 1)! ·𝑄(𝑘)

|𝑚|∑︁
𝑙=1

𝑝𝑙(𝑘 + 1)𝑘 . . . (𝑘 − 𝑙 + 2)

=𝑏𝑧(𝑡).

The proof is complete.

Proof of Lemma 5.1. It follows from identity (5.6) that the vector function 𝑦(𝑡) =
(𝑧(𝑡), 𝑧′(𝑡), . . . , 𝑧(|𝑚|−1)(𝑡))⊤ is a solution to the system of differential equations

𝑦′(𝑡) = 𝐵(𝑡)𝑦(𝑡), 𝑡 > 0, (5.8)

where

𝐵(𝑡) =

⎛⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . .
0 0 0 . . . 0 1
𝑏

𝑝|𝑚|𝑡
|𝑚|−1

−𝑝1
𝑝|𝑚|𝑡

|𝑚|−1
−𝑝2

𝑝|𝑚|𝑡
|𝑚|−2 . . .

−𝑝|𝑚|−2

𝑝|𝑚|𝑡2
−𝑝|𝑚|−1

𝑝|𝑚|𝑡

⎞⎟⎟⎟⎟⎠ , 𝑝|𝑚| = 𝑚𝑚1
1 . . .𝑚𝑚𝑛

𝑛 .

In system (5.8) we make the change

𝑦(𝑡) = 𝐶(𝜏)𝑢(𝜏)|𝜏=𝑡1/|𝑚| , (5.9)

where

𝐶(𝜏) = diag (1, 𝑐1(𝜏), . . . , 𝑐|𝑚|−1(𝜏)), 𝑐𝑙(𝜏) =
(︀
|𝑚|𝜏 |𝑚|−1

)︀−𝑙
, 𝑙 = 1, . . . , |𝑚| − 1. (5.10)

As a result, we obtain the system of differential equations

𝑢′(𝜏) = 𝐷(𝜏)𝑢(𝜏), 𝜏 > 0, (5.11)

where

𝐷(𝜏) = |𝑚|𝜏 |𝑚|−1𝐶−1(𝜏)𝐵(𝜏 |𝑚|)𝐶(𝜏) − 𝐶−1(𝜏)𝐶 ′(𝜏).

We calculate 𝐷(𝜏):

𝐷(𝜏) = 𝐷0 +𝐷1(𝜏),
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where the matrix 𝐷1(𝜏) satisfies the condition |𝐷1(𝜏)| 6 𝑀4𝜏
−1 as 𝜏 > 1, and the matrix 𝐷0

is determined by the formula

𝐷0 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . .
0 0 0 . . . 0 1

𝑏|𝑚||𝑚|

𝑝|𝑚|
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ .

The eigenvalues of the matrix 𝐷0 are |𝑚|-th roots of the number 𝑏|𝑚||𝑚|/𝑝|𝑚|:

𝑤𝑘 = |𝑚|
(︂

𝑏

𝑝|𝑚|

)︂1/|𝑚|

𝑒𝑖(𝜃+2𝜋(𝑘−1))/|𝑚|, 𝑘 = 1, . . . , |𝑚|,

where 𝜃 is the argument of the complex number 𝑏. To each eigenvalue 𝑤𝑘, the eigenvector

(1, 𝑤𝑘, . . . , 𝑤
|𝑚|−1
𝑘 )⊤ is associated. By these eigenvectors we form the matrix

𝑊 =

⎛⎜⎜⎝
1 . . . 1
𝑤1 . . . 𝑤|𝑚|
. . . . .

𝑤
|𝑚|−1
1 . . . 𝑤

|𝑚|−1
|𝑚|

⎞⎟⎟⎠ .

It is easy to check the identity 𝑊−1𝐷0𝑊 = Λ, where Λ = 𝑑𝑖𝑎𝑔(𝑤1, . . . , 𝑤|𝑚|). Making the
change

𝑢(𝜏) = 𝑊𝑣(𝜏) (5.12)

in system (5.11), we obtain the system

𝑣′(𝜏) =
(︀
Λ +𝑊−1𝐷1(𝜏)𝑊

)︀
𝑣(𝜏), 𝜏 > 0. (5.13)

For the coordinates 𝑣𝑗(𝜏), 𝑗 = 1, . . . , |𝑚|, of the vector function 𝑣(𝜏) we have

𝑣′𝑗(𝜏) − 𝑤𝑗𝑣𝑗(𝜏) = 𝑒𝑗1(𝜏)𝑣1(𝜏) + . . .+ 𝑒𝑗|𝑚|(𝜏)𝑣|𝑚|(𝜏),

where |𝑒𝑗𝑙(𝜏)| 6 𝛽0𝜏
−1 for all 𝜏 > 1, 𝑗, 𝑙 = 1, . . . , |𝑚|. We multiply each differential equation

by exp(−𝑤𝑗𝜏) and then we integrate from 1 to 𝜏 :

𝑣𝑗(𝜏)𝑒−𝑤𝑗𝜏 = 𝑣𝑗(1)𝑒−𝑤𝑗 +

∫︁ 𝜏

1

(︀
𝑒𝑗1(𝜉)𝑣1(𝜉) + . . .+ 𝑒𝑗|𝑚|(𝜉)𝑣|𝑚|(𝜉)

)︀
𝑒−𝑤𝑗𝜉𝑑𝜉.

We estimate |𝑣𝑗(𝜏)| as 𝜏 > 1:

|𝑣𝑗(𝜏)| 6𝑀5𝑒
𝜆𝑚𝜏 + 𝛽0

∫︁ 𝜏

1

(︀
|𝑣1(𝜉)| + . . .+ |𝑣|𝑚|(𝜉)|

)︀
𝑒𝜆𝑚(𝜏−𝜉)𝜉−1𝑑𝜉,

where 𝜆𝑚 = max
(︀
Re (𝑤1), . . . ,Re (𝑤|𝑚|)

)︀
. This implies:

𝑒−𝜆𝑚𝜏

|𝑚|∑︁
𝑗=1

|𝑣𝑗(𝜏)| 6𝑀5|𝑚| + 𝛽0|𝑚|
∫︁ 𝜏

1

𝜉−1𝑒−𝜆𝑚𝜉

|𝑚|∑︁
𝑗=1

|𝑣𝑗(𝜉)|𝑑𝜉 as 𝜏 > 1.

By Grönwall lemma [1] this inequality yields the estimate

𝑒−𝜆𝑚𝜏

|𝑚|∑︁
𝑗=1

|𝑣𝑗(𝜏)| 6𝑀5|𝑚|𝜏𝛽0|𝑚| as 𝜏 > 1.

In view of the obtained estimate, changes (5.12), (5.9) and formula (5.10), it is easy to get
estimates (5.3). The proof is complete.
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