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SYMMETRIES AND EXACT SOLUTIONS OF

A NONLINEAR PRICING OPTIONS EQUATION

M.M. DYSHAEV, V.E. FEDOROV

Abstract. We study the group structure of the Schönbucher–Wilmott equation with a free
parameter, which models the pricing options. We find a five-dimensional group of equiva-
lence transformations for this equation. By means of this group we find four-dimensional
Lie algebras of the admitted operators of the equation in the cases of two cases of the free
term and we find a three-dimensional Lie algebra for other nonequivalent specifications.
For each algebra we find optimal systems of subalgebras and the corresponding invariant
solutions or invariant submodels.
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1. Introduction

A traditional model in the theory of financial markets is the Black-Scholes model [1, 2]
described by the inverse heat equation with variable coefficients. However, practical studies
show that due to made assumptions, this model is far from being adequate for real processes
going on the financial markets (see [3]–[6]). This is why during last decades, the researchers
proceeded to more complicated models of the dynamics of the financial markets, for instance,
they study the models with a stochastic volatility [7], the models taking into consideration
the transaction costs [8] as well as other models [3, 4]. Nonlinear models become more and
more popular among the researchers, in particular, nonlinear models of Black-Sholes type. For
instance, the transaction-cost model in [9] is of the form

𝑤𝑡 +
1

2
𝜎2𝑥2𝑤𝑥𝑥(1 + 2𝜌𝑥𝑤𝑥𝑥) = 0,

where 𝑡 is the time, 𝑥 is the price of a share, 𝑤 is the option price, 𝜎 is the volatility of the
share, 𝜌 are transaction costs.

Another type of the models are ones with a reduced form of the stochastic differential equation
(reduced-form SDE models) having the form

𝑤𝑡 +
𝜎2𝑥2𝑤𝑥𝑥

2 (1 − 𝑏𝑥𝑤𝑥𝑥)2
= 0,

where 𝑏 is the liquidity parameter [10]–[13].
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As it was shown in works [11, 14, 15], the model of the cost of the hedge stategy on a
illiquid market with taking into consideration the influence of the large trader operations can
be represented as

𝑤𝑡 +
𝜎2𝑥2𝑤𝑥𝑥

2 (1 − 𝜌𝑥𝜆(𝑥)𝑤𝑥𝑥)2
= 0. (1)

In this case 𝜌 is a parameter determining the influence of the the large trader operations, while
𝜆(𝑥) is chosen so that to obtain the required form of payment. The values 𝜌 and 𝜆(𝑥) can be
determined by the present option prices on the market.

One more model of the formation of the options price is the so-called equilibrium model with
the reaction-function model. The examples of using this model are given in [15, 16]. Let us
consider the equation

𝑤𝑡 +
𝜎2𝑥2𝑤𝑥𝑥

2
(︁

1 − 𝜌𝑔′(𝜌𝑤𝑥)
𝑔(𝜌𝑤𝑥)

𝑥𝑤𝑥𝑥

)︁2 = 0 (2)

corresponding to the equilibrium model called also Schönbucher–Wilmott model [17]. This
equation describes the formation of the option prices on a illiquid market with taking into
consideration the sizes of the open trader positions. In this case 𝑥 is the price of a base asset,
𝜎 is the volatility, 𝜌 > 0 is a parameter characterizing the size of the trader position w.r.t. the
total volume of the traded base asset. The models taking into consideration the influence of
the transaction costs and of hedge deals of the large traders on the base asset can be applied
to some assets sold on the exchanges of the developing countries.

In works [14], [17], [18], [19], in the considered model (2), the reaction function 𝜓 = 𝜓(𝐹𝑡, 𝜌Φ𝑡)
depended on the fundamental price of a share 𝐹𝑡 and of the the demand normalized volume of
the large traders 𝜌Φ𝑡. In fact, the function 𝜓 is the equilibrium price. It ensures the equilibrium
between the price of the base asset, the quantity of the position of the large traders on this asset
and the fundamental price of the base asset 𝐹𝑡. In work [19] it is of the form 𝜓(𝑓, 𝛼) = 𝑓𝑒𝛼, in
works [14], [17] it is taken as 𝜓(𝑓, 𝛼) = 𝑓/(1−𝛼). While deriving equation (2), it was assumed
in [18] that 𝜓(𝑓, 𝛼) = 𝑓𝑔(𝛼) for some increasing function 𝑔 = 𝑔(𝛼). The assumption on the
increasing of the function 𝑔(𝛼) involved in the function 𝜓 was first made in work [16] and it is
in a good agreement with practical observations, when the prices grows under the increasing of
the large traders positions.

The methods for studying the mentioned models are quite various; these are numerical meth-
ods, the methods of the theory of time series, the theory of the neural networks, etc. [20]–[23].
As usually, once we deal with the processes modeled by differential equations, it is important
to have exact solutions of such equations. In the case of nonlinear differential equations one of
the most effective methods allowing to find such solutions are ones of the group analysis [24],
[25]. The first studies of the group properties of the linear Black-Scholes equation were made
in work [26] by N.Kh. Ibragimov and R.K. Gazizov. Apart from the linear equation, various
nonlinear modifications of Black-Scholes equation are studied by the methods of the symmetry
analysis. For instance, equation (1) was studied in this way in details in works by L.A. Bordag
with co-authors [18], [27], [28]. Moreover, in works by L.A. Bordag and A. Mikaelyan [29], [30]
there were obtained interesting results on symmetre and invariant solutions to equation (2).

This work is devoted to the group classification [24], [31] of equation (2) and to finding its
exact solutions by the methods of the group analysis. In order to do it, in the second section we
find equivalence transformations groups for this equation. By their means, in the third section
we succeed to show that for the functions 𝑣(𝛼) = 𝑔′(𝛼)/𝑔(𝛼) = 𝛽/𝛼 corresponding to the power
function 𝑔(𝛼) = 𝐶𝛼𝛽 and 𝑣 ≡ 1 (𝑔 = 𝐶𝑒𝛼), the equation has a four-dimensional principal Lie
algebra, while in the case not reduced to the mentioned by the equivalence transformations, the
principal Lie algebra is three-dimensional. This result corrects the result of work [29], [30], in
which three specific functions 𝑣 were found with additional symmetries; employing the obtained
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here equivalence transformations, it is easy to show the equivalence of two of them. The fourth,
fifth and sixth section are devoted to finding invariant solutions and submodels of equations
(2) with various Lie algebras (under different choices of the function 𝑔). In the seventh section
we summarize the results of the study.

2. Equivalence transformations of Schönbucher–Wilmott equation

We multiply equation (2) by the constant 𝜌, make the change 𝜌𝑤 = 𝑢 and redenote
𝑔′(𝜌𝑤𝑥)/𝑔(𝜌𝑤𝑥) = 𝑣(𝑢𝑥). We obtain the equation

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2 (1 − 𝑥𝑣(𝑢𝑥)𝑢𝑥𝑥)2
= 0. (3)

To find the functions 𝑣 = 𝑣(𝑢𝑥), for which there arise symmetries additional to those defined
by the core of the principal Lie algebra of equation (3), we need to find a continuous equivalence
group of transformations for this equation. In order to do it, we write equation (3) as

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
= 0, (4)

meaning that 𝑣 is an additional variable depending of the variables 𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥. We seek the
generators of the continuous equivalent transformations group as 𝑌 = 𝜏𝜕𝑡 + 𝜉𝜕𝑥 + 𝜂𝜕𝑢 + 𝜇𝜕𝑣,
where the functions 𝜏 , 𝜉, 𝜂 depend on 𝑡, 𝑥, 𝑢, and 𝜇 depends on 𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑣. Hereinafter
for the sake of shortness we use the notation 𝜕

𝜕𝑡
≡ 𝜕𝑡, etc. We complete equation (4) by the

equations
𝑣𝑡 = 0, 𝑣𝑥 = 0, 𝑣𝑢 = 0, 𝑣𝑢𝑡 = 0, (5)

meaning that in the original formulation of the problem, the function 𝑣 depends only on 𝑢𝑥.
We consider system (4), (5) as the manifold N in the extended space of the corresponding

variables. We apply by the extended operator̃︀𝑌 = 𝑌 + 𝜙𝑡𝜕𝑢𝑡 + 𝜙𝑥𝑥𝜕𝑢𝑥𝑥 + 𝜇𝑡𝜕𝑣𝑡 + 𝜇𝑥𝜕𝑣𝑥 + 𝜇𝑢𝜕𝑣𝑢 + 𝜇𝑢𝑡𝜕𝑣𝑢𝑡

on the left hand side of system (4), (5), restrict the result of the action on the manifold N and
obtain the equation

𝜙𝑡 +
𝜎2𝑥𝑢𝑥𝑥𝜉

(1 − 𝑥𝑣𝑢𝑥𝑥)3
+
𝜎2𝑥2(1 + 𝑥𝑣𝑢𝑥𝑥)𝜙𝑥𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)3
+

𝜎2𝑥3𝑢2𝑥𝑥𝜇

(1 − 𝑥𝑣𝑢𝑥𝑥)3

⃒⃒⃒⃒
N

= 0, (6)

𝜇𝑡|N = 0, 𝜇𝑥|N = 0, 𝜇𝑢|N = 0, 𝜇𝑢𝑡 |N = 0. (7)

The coefficients of the operator ̃︀𝑌 can be calculated by the continuation formulae, for in-
stance,

𝜇𝑡 = ̃︀𝐷𝑡(𝜇) − 𝑣𝑡 ̃︀𝐷𝑡(𝜏) − 𝑣𝑥 ̃︀𝐷𝑡(𝜉) − 𝑣𝑢 ̃︀𝐷𝑡(𝜂) − 𝑣𝑢𝑡
̃︀𝐷𝑡(𝜙

𝑡) − 𝑣𝑢𝑥
̃︀𝐷𝑡(𝜙

𝑥),

employing the differentiation operators̃︀𝐷𝑡 = 𝜕𝑡 + 𝑣𝑡𝜕𝑣 + 𝑣𝑡𝑡𝜕𝑣𝑡 + 𝑣𝑡𝑥𝜕𝑣𝑥 + 𝑣𝑡𝑢𝜕𝑣𝑢 + 𝑣𝑡𝑢𝑡𝜕𝑣𝑢𝑡 + 𝑣𝑡𝑢𝑥𝜕𝑣𝑢𝑥

and so forth. Then equations (7) become

𝜇𝑡 − 𝑣′(𝑢𝑥)𝜙𝑥
𝑡 = 0, 𝜇𝑥 − 𝑣′(𝑢𝑥)𝜙𝑥

𝑥 = 0, 𝜇𝑢 − 𝑣′(𝑢𝑥)𝜙𝑥
𝑢 = 0, 𝜇𝑢𝑡 − 𝑣′(𝑢𝑥)𝜙𝑥

𝑢𝑡
= 0.

Since
𝜙𝑥 = 𝜂𝑥 + 𝑢𝑥𝜂𝑢 − 𝑢𝑡𝜏𝑥 − 𝑢𝑡𝑢𝑥𝜏𝑢 − 𝑢𝑥𝜉𝑥 − 𝑢2𝑥𝜉𝑢, (8)

we can write these equations as

𝜇𝑡−𝑣′(𝑢𝑥)
(︀
𝜂𝑡𝑥 + 𝑢𝑥𝜂𝑡𝑢 − 𝑢𝑡𝜏𝑡𝑥 − 𝑢𝑡𝑢𝑥𝜏𝑡𝑢 − 𝑢𝑥𝜉𝑡𝑥 − 𝑢2𝑥𝜉𝑡𝑢

)︀
|N

=𝜇𝑡 − 𝑣′(𝑢𝑥)

(︂
𝜂𝑡𝑥 + 𝑢𝑥𝜂𝑡𝑢 − 𝑢𝑥𝜉𝑡𝑥 − 𝑢2𝑥𝜉𝑡𝑢 +

𝜎2𝑥2𝑢𝑥𝑥𝜏𝑡𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
+

𝜎2𝑥2𝑢𝑥𝑥𝑢𝑥𝜏𝑡𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2

)︂
= 0,

(9)
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𝜇𝑥−𝑣′(𝑢𝑥)
(︀
𝜂𝑥𝑥 + 𝑢𝑥𝜂𝑥𝑢 − 𝑢𝑡𝜏𝑥𝑥 − 𝑢𝑡𝑢𝑥𝜏𝑥𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 𝑢2𝑥𝜉𝑥𝑢

)︀
|N

=𝜇𝑥 − 𝑣′(𝑢𝑥)

(︂
𝜂𝑥𝑥 + 𝑢𝑥𝜂𝑥𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 𝑢2𝑥𝜉𝑥𝑢 +

𝜎2𝑥2𝑢𝑥𝑥𝜏𝑥𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
+

𝜎2𝑥2𝑢𝑥𝑥𝑢𝑥𝜏𝑥𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2

)︂
= 0,

(10)

𝜇𝑢 − 𝑣′(𝑢𝑥)
(︀
𝜂𝑥𝑢 + 𝑢𝑥𝜂𝑢𝑢 − 𝑢𝑡𝜏𝑥𝑢 − 𝑢𝑡𝑢𝑥𝜏𝑢𝑢 − 𝑢𝑥𝜉𝑥𝑢 − 𝑢2𝑥𝜉𝑢𝑢

)︀
|N

= 𝜇𝑢 − 𝑣′(𝑢𝑥)

(︂
𝜂𝑥𝑢 + 𝑢𝑥𝜂𝑢𝑢 − 𝑢𝑥𝜉𝑥𝑢 − 𝑢2𝑥𝜉𝑢𝑢 +

𝜎2𝑥2𝑢𝑥𝑥𝜏𝑥𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
+
𝜎2𝑥2𝑢𝑥𝑥𝑢𝑥𝜏𝑢𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2

)︂
= 0,

(11)

𝜇𝑢𝑡 + 𝑣′(𝑢𝑥) (𝜏𝑥 + 𝑢𝑥𝜏𝑢) = 0. (12)

Due to the identity

𝜙𝑥𝑥 =𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢 + 𝑢𝑥𝑥𝜂𝑢 − 𝑢𝑡𝜏𝑥𝑥 − 2𝑢𝑡𝑢𝑥𝜏𝑥𝑢 − 2𝑢𝑡𝑥𝜏𝑥 − 𝑢𝑡𝑢
2
𝑥𝜏𝑢𝑢

− 2𝑢𝑥𝑢𝑡𝑥𝜏𝑢 − 𝑢𝑡𝑢𝑥𝑥𝜏𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥
3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢,

equation (6) casts into the form

𝜂𝑡 + 𝑢𝑡𝜂𝑢 − 𝑢𝑡𝜏𝑡 − 𝑢2𝑡 𝜏𝑢 − 𝑢𝑥𝜉𝑡 − 𝑢𝑡𝑢𝑥𝜉𝑢 +
𝜎2𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)3
(︀
2𝑢𝑥𝑥𝜉 + 2𝑥2𝑢2𝑥𝑥𝜇

+ 𝑥(1 + 𝑥𝑣𝑢𝑥𝑥)(𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢 + 𝑢𝑥𝑥𝜂𝑢 − 𝑢𝑡𝜏𝑥𝑥 − 2𝑢𝑡𝑢𝑥𝜏𝑥𝑢 − 2𝑢𝑡𝑥𝜏𝑥

−𝑢𝑡𝑢2𝑥𝜏𝑢𝑢 − 2𝑢𝑥𝑢𝑡𝑥𝜏𝑢 − 𝑢𝑡𝑢𝑥𝑥𝜏𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥
3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢)

)︀
|N

= 𝜂𝑡 −
𝜎2𝑥2𝑢𝑥𝑥𝜂𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
+

𝜎2𝑥2𝑢𝑥𝑥𝜏𝑡

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
− 𝜎4𝑥4𝑢2𝑥𝑥𝜏𝑢

4 (1 − 𝑥𝑣𝑢𝑥𝑥)4
− 𝑢𝑥𝜉𝑡 +

𝜎2𝑥2𝑢𝑥𝑢𝑥𝑥𝜉𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2

+
𝜎2𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)3

(︃
2𝑢𝑥𝑥𝜉 + 2𝑥2𝑢2𝑥𝑥𝜇+ 𝑥(1 + 𝑥𝑣𝑢𝑥𝑥)

(︂
𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢 + 𝑢𝑥𝑥𝜂𝑢

+
𝜎2𝑥2𝑢𝑥𝑥𝜏𝑥𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
+
𝜎2𝑥2𝑢𝑥𝑢𝑥𝑥𝜏𝑥𝑢

(1 − 𝑥𝑣𝑢𝑥𝑥)2
− 2𝑢𝑡𝑥𝜏𝑥 +

𝜎2𝑥2𝑢2𝑥𝑢𝑥𝑥𝜏𝑢𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
− 2𝑢𝑥𝑢𝑡𝑥𝜏𝑢

+
𝜎2𝑥2𝑢2𝑥𝑥𝜏𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
− 𝑢𝑥𝜉𝑥𝑥 − 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥

3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢

)︂)︃
= 0.

(13)

Differentiating the latter equation w.r.t. 𝑢𝑡𝑥, we obtain

(1 + 𝑥𝑣𝑢𝑥𝑥)(𝜏𝑥 + 𝑢𝑥𝜏𝑢) = 0,

which implies 𝜏 = 𝜏(𝑡). Therefore, equations (9)–(13) cast into the form

𝜇𝑡 − 𝑣′(𝑢𝑥)
(︀
𝜂𝑡𝑥 + 𝑢𝑥𝜂𝑡𝑢 − 𝑢𝑥𝜉𝑡𝑥 − 𝑢2𝑥𝜉𝑡𝑢

)︀
= 0, (14)

𝜇𝑥 − 𝑣′(𝑢𝑥)
(︀
𝜂𝑥𝑥 + 𝑢𝑥𝜂𝑥𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 𝑢2𝑥𝜉𝑥𝑢

)︀
= 0, (15)

𝜇𝑢 − 𝑣′(𝑢𝑥)
(︀
𝜂𝑥𝑢 + 𝑢𝑥𝜂𝑢𝑢 − 𝑢𝑥𝜉𝑥𝑢 − 𝑢2𝑥𝜉𝑢𝑢

)︀
= 0, (16)

𝜇𝑢𝑡 = 0, (17)

𝜂𝑡 −
𝜎2𝑥2𝑢𝑥𝑥𝜂𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
+

𝜎2𝑥2𝑢𝑥𝑥𝜏
′(𝑡)

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2
− 𝑢𝑥𝜉𝑡 +

𝜎2𝑥2𝑢𝑥𝑢𝑥𝑥𝜉𝑢

2 (1 − 𝑥𝑣𝑢𝑥𝑥)2

+
𝜎2𝑥

2 (1 − 𝑥𝑣𝑢𝑥𝑥)3
(︀
2𝑢𝑥𝑥𝜉 + 2𝑥2𝑢2𝑥𝑥𝜇+ 𝑥(1 + 𝑥𝑣𝑢𝑥𝑥)(𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢

+ 𝑢𝑥𝑥𝜂𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥
3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢)

)︀
= 0.

(18)



SYMMETRIES AND EXACT SOLUTIONS OF A NONLINEAR PRICING OPTIONS EQUATION 33

We multiply equation (18) by 2(1 − 𝑥𝑣𝑢𝑥𝑥)3 to obtain

2(1 − 𝑥𝑣𝑢𝑥𝑥)3𝜂𝑡 + (1 − 𝑥𝑣𝑢𝑥𝑥)𝜎2𝑥2𝑢𝑥𝑥(𝜏 ′(𝑡) − 𝜂𝑢) − 2(1 − 𝑥𝑣𝑢𝑥𝑥)3𝑢𝑥𝜉𝑡

+ (1 − 𝑥𝑣𝑢𝑥𝑥)𝜎2𝑥2𝑢𝑥𝑢𝑥𝑥𝜉𝑢 + 𝜎2𝑥
(︁

2𝑢𝑥𝑥𝜉 + 2𝑥2𝑢2𝑥𝑥𝜇+ 𝑥(1 + 𝑥𝑣𝑢𝑥𝑥)(𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢

+ 𝑢2𝑥𝜂𝑢𝑢 + 𝑢𝑥𝑥𝜂𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥
3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢)

)︁
= 0.

(19)

Splitting equation (19) w.r.t. the variable 𝑢𝑥𝑥, we get the coefficient 𝜂𝑡 − 𝑢𝑥𝜉𝑡 at 𝑢3𝑥𝑥 under the
conditition 𝑣 ̸= 0 and this is why 𝜉 = 𝜉(𝑥, 𝑢), 𝜂 = 𝜂(𝑥, 𝑢). Then by (14) we obtain that 𝜇𝑡 = 0
and equation (19) becomes

(1 − 𝑥𝑣𝑢𝑥𝑥)𝑥𝑢𝑥𝑥(𝜏 ′(𝑡) − 𝜂𝑢) + (1 − 𝑥𝑣𝑢𝑥𝑥)𝑥𝑢𝑥𝑢𝑥𝑥𝜉𝑢 + 2𝑢𝑥𝑥𝜉 + 2𝑥2𝑢2𝑥𝑥𝜇

+ 𝑥(1 + 𝑥𝑣𝑢𝑥𝑥)
(︀
𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢 + 𝑢𝑥𝑥𝜂𝑢 − 𝑢𝑥𝜉𝑥𝑥

− 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥
3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢

)︀
= 0.

We differentiate this equation w.r.t. 𝑡 and get

𝜏 ′′(𝑡) = 0, 𝜏(𝑡) = 𝐴𝑡+𝐵,

and the equation casts into the form

(1 − 𝑥𝑣𝑢𝑥𝑥)𝑥𝑢𝑥𝑥(𝐴− 𝜂𝑢) + (1 − 𝑥𝑣𝑢𝑥𝑥)𝑥𝑢𝑥𝑢𝑥𝑥𝜉𝑢 + 2𝑢𝑥𝑥𝜉 + 2𝑥2𝑢2𝑥𝑥𝜇

+ 𝑥(1 + 𝑥𝑣𝑢𝑥𝑥)
(︀
𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢 + 𝑢𝑥𝑥𝜂𝑢 − 𝑢𝑥𝜉𝑥𝑥

− 2𝑢2𝑥𝜉𝑥𝑢 − 2𝑢𝑥𝑥𝜉𝑥 − 𝑢𝑥
3𝜉𝑢𝑢 − 3𝑢𝑥𝑢𝑥𝑥𝜉𝑢

)︀
= 0.

(20)

Splitting (20) w.r.t. 𝑢𝑥𝑥, we find the coefficient at 𝑢0𝑥𝑥:

𝑥(𝜂𝑥𝑥 + 2𝑢𝑥𝜂𝑥𝑢 + 𝑢2𝑥𝜂𝑢𝑢 − 𝑢𝑥𝜉𝑥𝑥 − 2𝑢2𝑥𝜉𝑥𝑢 − 𝑢3𝑥𝜉𝑢𝑢) = 0.

By splitting this equation w.r.t. 𝑢𝑥 we obtain the system

𝜉𝑢𝑢 = 𝜂𝑥𝑥 = 0, 2𝜂𝑥𝑢 = 𝜉𝑥𝑥, 𝜂𝑢𝑢 = 2𝜉𝑥𝑢.

It follows from (21) that 𝜉 = 𝐶(𝑥)𝑢+𝐷(𝑥), 𝜂 = 𝐸(𝑢)𝑥+ 𝐹 (𝑢). Substituting these expression
into (22), we obtain 2𝐸 ′(𝑢) = 𝐶 ′′(𝑥)𝑢+𝐷′′(𝑥). Then

𝐶 ′′′(𝑥) = 𝐷′′′(𝑥) = 0, 𝐶(𝑥) = 𝐺𝑥2 +𝐻𝑥+ 𝐼, 𝐷(𝑥) = 𝐽𝑥2 +𝐾𝑥+ 𝐿,

𝐸 ′(𝑢) = 𝐺𝑢+ 𝐽, 𝐸(𝑢) =
1

2
𝐺𝑢2 + 𝐽𝑢+𝑀.

Thus,

𝜉 = 𝐺𝑥2𝑢+𝐻𝑥𝑢+ 𝐼𝑢+ 𝐽𝑥2 +𝐾𝑥+ 𝐿, 𝜂 =
1

2
𝐺𝑥𝑢2 + 𝐽𝑥𝑢+𝑀𝑥+ 𝐹 (𝑢).

Substituting these expression into (23), we obtain the equation 𝐹 ′′(𝑢) = 3𝐺𝑥 + 2𝐻, which
implies

𝐺 = 0, 𝐹 (𝑢) = 𝐻𝑢2+𝑁𝑢+𝑃, 𝜉 = 𝐻𝑥𝑢+𝐼𝑢+𝐽𝑥2+𝐾𝑥+𝐿, 𝜂 = 𝐽𝑥𝑢+𝑀𝑥+𝐻𝑢2+𝑁𝑢+𝑃.

Equating to zero the coefficients at 𝑢𝑥𝑥 and 𝑢2𝑥𝑥 in the left hand side of equation (20), we
obtain the equations

𝜇 =

[︂
𝐴

2
− 𝜂𝑢 + 2𝑢𝑥𝜉𝑢 + 𝜉𝑥

]︂
𝑣,

𝐴𝑥+ 2𝜉 − 2𝑥𝜉𝑥 − 2𝑥𝑢𝑥𝜉𝑢 − 𝑥2𝑢𝑥𝜉𝑥𝑥𝑣 − 2𝑥2𝑢2𝑥𝜉𝑥𝑢𝑣 + 2𝑥2𝑢𝑥𝜂𝑥𝑢𝑣 + 𝑥2𝑢2𝑥𝜂𝑢𝑢𝑣

= 𝐴𝑥+ 2𝐼𝑢+ 2𝐿− 2𝐽𝑥2 − 2𝐻𝑥2𝑢𝑥 − 2𝐼𝑥𝑢𝑥 = 0.

The latter identity implies that 𝐴 = 𝐻 = 𝐼 = 𝐽 = 𝐿 = 0. Then

𝜏 = 𝐵, 𝜉 = 𝐾𝑥, 𝜂 = 𝑀𝑥+𝑁𝑢+ 𝑃, 𝜇 = (𝐾 −𝑁)𝑣. (24)
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At that, identities (14)–(17) hold true as well.
Thus, the solutions to the system of equations determining the generators of the continuous

equivalence transformations groups are given by (24). This leads us to the following statement.

Theorem 1. The basis of the Lie algebra of the infinitesimal operators of the equivalence
transformations groups for equation (3) with a function 𝑣 not being identically zero is formed
by the operators

𝑌1 = 𝜕𝑡, 𝑌2 = 𝜕𝑢, 𝑌3 = 𝑥𝜕𝑢, 𝑌4 = 𝑥𝜕𝑥 + 𝑢𝜕𝑢, 𝑌5 = 𝑢𝜕𝑢 − 𝑣𝜕𝑣.

Here the element of the basis corresponding to the solution at 𝐾 = 1, 𝐵 = 𝑀 = 𝑁 = 𝑃 = 0 is
replaced by its sum with its element corresponding to the solution 𝑁 = 1, 𝐵 = 𝐾 = 𝑀 = 𝑃 = 0
in order to minimizes the amount of basis operators involving the additional variable 𝑣.

In view of formula (8) we obtain the extensions of the basis operators̃︀𝑌1 = 𝜕𝑡, ̃︀𝑌2 = 𝜕𝑢, ̃︀𝑌3 = 𝑥𝜕𝑢 + 𝜕𝑢𝑥 , ̃︀𝑌4 = 𝑥𝜕𝑥 + 𝑢𝜕𝑢, ̃︀𝑌5 = 𝑢𝜕𝑢 − 𝑣𝜕𝑣 + 𝑢𝑥𝜕𝑢𝑥 . (25)

This implies that the basis of the core of principal Lie algebra for equation (3) is formed by the
operators 𝑌1, 𝑌2, 𝑌4, whose extensions do not involve the additional variables 𝑣, 𝑢𝑥.

Corollary 1. The basis of the cores of principal Lie algebras of equation (3) with a function
𝑣 not being identically zero is formed by the operators 𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 = 𝑥𝜕𝑥 + 𝑢𝜕𝑢.

3. Group classification of equation

We consider the Lie algebra obtained by the projections of operators (25) on the subspace
of the variables 𝑣, 𝑢𝑥, that is, the algebra with the basis

𝑍1 = 𝜕𝑢𝑥 , 𝑍2 = 𝑣𝜕𝑣 − 𝑢𝑥𝜕𝑢𝑥 . (26)

First of all we observe that the operator 𝑌3 corresponds to the operator 𝑍1 and the operator
−𝑌5 corresponds to the operator 𝑌3.

Non-zero structural constants for this Lie algebra are 𝑐112 = −1, 𝑐121 = 1. By the formula 𝐸𝛼 =
𝑐𝛾𝛼𝛽𝑒

𝛽𝜕𝑒𝛾 we find the generators of the inner automorphisms of the Lie algebra 𝐸1 = −𝑒2𝜕𝑒1 ,
𝐸2 = 𝑒1𝜕𝑒1 and the associated transformations groups:

𝐸1 : 𝑒1 = 𝑒1 − 𝑒2𝑎1, 𝐸2 : 𝑒1 = 𝑒1𝑒𝑎2 .

Here 𝑒𝑖 is the coefficient at the operator 𝑍𝑖 in the expansions of an element of the considered
Lie algebra in its basis.

Let 𝑒2 ̸= 0, then 𝑒1 = 0 by 𝐸1. We obtain the subalgebra with the basis 𝑍2. Otherwise we
have a one-dimensional algebra with the basis 𝑍1. Thus, the optimal system of one-dimensional
subalgebras of the algebra 𝐿2 with basis (26) is of the form Θ1 = {⟨𝑍1⟩, ⟨𝑍2⟩}.

We calculate the expressions 𝑍(𝑉 (𝑢𝑥)−𝑣)|𝑣=𝑉 = 0 for the operators 𝑍 in the optimal system:

𝑍1(𝑉 (𝑢𝑥) − 𝑣)|𝑣=𝑉 = 𝑉 ′ = 0, 𝑉 ≡ 𝛽;

𝑍2(𝑉 (𝑢𝑥) − 𝑣)|𝑣=𝑉 = −𝑉 − 𝑢𝑥𝑉
′ = 0, 𝑉 =

𝛽

𝑢𝑥
.

The first case by the equivalence transformation 𝑌5 is reduced to the case 𝑉 ≡ 1. In the second
case the equivalence transformations found in the previous section can not change the constant
𝛽.

For each basis operator in the optimal system we calculate the projection of the corresponding
generator of the equivalence transformations group (𝑌3 or −𝑌5) on the subspace of the variables
𝑡, 𝑥, 𝑢. Up to a multiplicative constant, we obtain the correspondence 𝑍1 : 𝑥𝜕𝑢, 𝑍2 : 𝑢𝜕𝑢. This
is why in the case 𝑣 ≡ 1 we have the additional symmetry 𝑥𝜕𝑢, while in the cases

𝑣 = 𝛽𝑢−1
𝑥 , 𝛽 ∈ R, (27)

the additional symmetry is 𝑢𝜕𝑢.
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Theorem 2. 1. The basis of the principal Lie algebra of the equation

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2 (1 − 𝑥𝑢𝑥𝑥)2
= 0

is of the form 𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 = 𝑥𝜕𝑥 + 𝑢𝜕𝑢, 𝑋4 = 𝑥𝜕𝑢.
2. The basis of the principal Lie algebra of the equations

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2
(︁

1 − 𝛽𝑥𝑢𝑥𝑥

𝑢𝑥

)︁2 = 0, 𝛽 ∈ R,

is of the form 𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 = 𝑥𝜕𝑥, 𝑋4 = 𝑢𝜕𝑢.
3. If the function 𝑣 is not reduced to the above cases by the equivalence transformation, the

principal Lie algebra of the equation

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2 (1 − 𝑥𝑣(𝑢𝑥)𝑢𝑥𝑥)2
= 0

coincide with the core of the principal Lie algebra and is the form 𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 =
𝑥𝜕𝑥 + 𝑢𝜕𝑢.

In the second statement of the theorem we have employed a linear transformation of the
basis to simplify its elements.

Remark 1. In work [29], apart from the choices of the function 𝑣 in Statement 2 and 3 in
Theorem 2, extra two cases were indicated:

𝑣 = 𝛽(1 − 𝑢𝑥)−1, 𝛽 ∈ R, (28)

see [29, Sect. 4, Thm. 4.2.1, Stm. 4], having additional fourth symmetry. However, by means
of the transformation 𝑣 → −𝑣, which is obviously the inner automorphism of the correspond-
ing equivalence transformations group of the algebra 𝐿5 in Theorem 1, and also employing the
equivalence transformation generated by the operator 𝑌3, which shifts the argument of the func-
tion 𝑣, we can transform these cases to form (27) in Statement 2 of Theorem 2. The described
transformations correspond to the change of variables 𝑡 = 𝑡, 𝑥 = 𝑥, 𝑢 = 𝑥 − 𝑢, where the line
over a symbol denotes a new variable. It is easy to check that under such transformations the
Lie algebra corresponding to the case (28) is reduced to that of the equation in case (27). This
is why from the point of view of the group analysis, cases (27) and (28) are equivalent.

4. Invariant submodels in the general case

We consider the equation

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2 (1 − 𝑥𝑣(𝑢𝑥)𝑢𝑥𝑥)2
= 0, (29)

whose Lie algebra 𝐿3 has the basis

𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 = 𝑥𝜕𝑥 + 𝑢𝜕𝑢. (30)

Its nonzero structural constants are 𝑐223 = 1, 𝑐232 = −1, and hence, the groups of the inner
automorphisms are of the form 𝐸2 : 𝑒2 = 𝑒2 + 𝑎1𝑒

3, 𝐸3 : 𝑒2 = 𝑒2𝑒−𝑎2 . Employing them,
let us seek an optimal system of one-dimensional subalgebras of this Lie algebra 𝐿3. The
infinitesimal generators of the required basis operators for these subalgebras are of the form

𝑋 =
3∑︀

𝑘=1

𝑒𝑘𝑋𝑘 = (𝑒1, 𝑒2, 𝑒3).

1. Let 𝑒3 ̸= 0, then by means of 𝐸2 we obtain 𝑒2 = 0, and hence, the basis vector of the
subalgebra is of the form 𝑋 = (𝑎, 0, 1), 𝑎 ∈ R.
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2.1. As 𝑒3 = 0, 𝑒1 ̸= 0, 𝑒2 ̸= 0, we obtain 𝑋 = (1, 1, 0). At that, we used the inner
automorphisms 𝐸3 and 𝑒2 = −𝑒2.
2.2. The cases 𝑋 = (1, 0, 0) and 𝑋 = (0, 1, 0) remain.

Lemma 1. The optimal system of one-dimensional subalgebras of Lie algebra 𝐿3 with basis
(30) is of the form

Θ1 = {⟨𝑋1⟩, ⟨𝑋2⟩, ⟨𝑋1 +𝑋2⟩, ⟨𝑎𝑋1 +𝑋3⟩, 𝑎 ∈ R}.

Employing the operators in the optimal system, let us find invariant submodels of equation
(29) and, if it is possible, its invariant solutions. The results of the study is presented in Table
1, where in the second column we write an one-dimensional subalgebra in the optimal system,
third column contains its invariants, while in the fourth column we provide the corresponding
invariant submodel of the original equations or its solution under the assumption that the
restrictions implied by the equation or the domain of the function 𝑣 are satisfied. The symbols
𝐴, 𝐵 stand for arbitrary integration constants.

Table 1.

Subalgebra Invariants Submodel or solution
1 ⟨𝑋1⟩ 𝑥, 𝑢 𝑢 = 𝐴𝑥+𝐵
2 ⟨𝑋2⟩ 𝑡, 𝑥 no
3 ⟨𝑋1 +𝑋2⟩ 𝑢− 𝑡, 𝑥 𝜎2𝑥2𝜓′ = −2(1 − 𝑥𝑣(𝜓)𝜓′)2 ̸= 0,

𝑢 = 𝑡+ 𝜙(𝑥), 𝜙′ = 𝜓
4 ⟨𝑋3⟩ 𝑡, 𝑥−1𝑢 𝑢 = 𝐴𝑥
5 ⟨𝑎𝑋1 + 𝑋3⟩,

𝑎 ̸= 0
𝑎 ln |𝑥|− 𝑡,
𝑥−1𝑢

𝑢 = 𝐴𝑥 or 2(1 − (𝑎𝜙′ + 𝑎2𝜙′′)𝑣(𝜙 + 𝑎𝜙′))2 =
𝜎2(𝑎𝜙′ + 𝑎2𝜙′′)/𝜙′ ̸= 0, 𝑢 = 𝑥𝜙(𝑎 ln |𝑥| − 𝑡)

5. Invariant solutions and submodels in the case 𝑣 ≡ 𝛽

The equation

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2 (1 − 𝛽𝑥𝑢𝑥𝑥)2
= 0, 𝛽 ̸= 0 (31)

has the Lie algebra 𝐿4 with the basis

𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 = 𝑥𝜕𝑥 + 𝑢𝜕𝑢, 𝑋4 = 𝑥𝜕𝑢. (32)

The nonzero structural constants of this algebra are 𝑐223 = 1, 𝑐232 = −1, and hence, its groups of
inner automorphisms are 𝐸2 : 𝑒2 = 𝑒2 + 𝑎1𝑒

3, 𝐸3 : 𝑒2 = 𝑒2𝑒−𝑎2 . Let us find the optimal system
of one-dimensional subalgebras of this Lie algebra 𝐿4.
1. Let 𝑒3 ̸= 0, then by 𝐸2 we obtain 𝑒2 = 0 and hene, the basis vector of the subalgebra is

of the form 𝑋 = (𝑎, 0, 1, 𝑏), 𝑎, 𝑏 ∈ R.
2.1. As 𝑒3 = 0, 𝑒2 ̸= 0, we obtain the following.
2.1.1. If 𝑒1 ̸= 0, then 𝑋 = (1, 1, 0, 𝑎), 𝑎 ∈ R. At that, we employed the inner automorphisms

𝐸3 and 𝑒2 = −𝑒2.
2.1.2. Let 𝑒1 = 0, then 𝑋 = (0, 1, 0, 1) or 𝑋 = (0, 1, 0, 0). In the first case we have also

employed 𝐸3 and 𝑒2 = −𝑒2.
2.2. If 𝑒2 = 𝑒3 = 0, then 𝑋 = (1, 0, 0, 𝑎), 𝑎 ∈ R, or 𝑋 = (0, 0, 0, 1).

Lemma 2. The optimal system of one-dimensional subalgebra of the algebra 𝐿4 with basis
(32) is of the form

Θ1 = {⟨𝑋2⟩, ⟨𝑋4⟩, ⟨𝑋2 +𝑋4⟩, ⟨𝑋1 + 𝑎𝑋4⟩, ⟨𝑋1 +𝑋2 + 𝑎𝑋4⟩, ⟨𝑎𝑋1 +𝑋3 + 𝑏𝑋4⟩, 𝑎, 𝑏 ∈ R}.

For the one-dimensional subalgebras in the optimal system we obtain Table 2.
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Table 2.
Subalgebra Invariants Submodel, solution, restrictions

1 ⟨𝑋2⟩ 𝑡, 𝑥 no
2 ⟨𝑋4⟩ 𝑡, 𝑥 no
3 ⟨𝑋2 +𝑋4⟩ 𝑡, 𝑥 no
4 ⟨𝑋1⟩ 𝑥, 𝑢 𝑢 = 𝐴𝑥+𝐵
5 ⟨𝑋1+𝑎𝑋4⟩,

𝑎 ̸= 0
𝑥, 𝑢− 𝑎𝑡𝑥 𝑢 = 𝑎𝑡𝑥 + 𝐴𝑎𝛽𝜎𝑥 ln |𝑥| + 𝐴𝑥 + 𝐵,

𝐴𝑎𝛽𝜎 =
2𝛽−𝜎2

2𝑎
±
√︁

𝜎4

4𝑎2
− 2𝛽𝜎2

𝑎

2𝛽2 , 𝜎 ̸= 0,
𝜎4

4𝑎2
− 2𝛽𝜎2

𝑎
> 0

6 ⟨𝑋1+𝑋2+𝑎𝑋4⟩ 𝑥,
𝑢− (1 + 𝑎𝑥)𝑡

𝜙′′ =
2𝛽− 𝜎2𝑥

2(1+𝑎𝑥)
±
√︂

𝜎4𝑥2

4(1+𝑎𝑥)2
− 2𝛽𝜎2𝑥

1+𝑎𝑥

2𝛽2𝑥
,

𝜎 ̸= 0, 𝑢 = (1 + 𝑎𝑥)𝑡+ 𝜙(𝑥)

7 ⟨𝑋3 + 𝑏𝑋4⟩,
𝑏 ̸= 1/𝛽

𝑡, 𝑢
𝑥
− 𝑏 ln |𝑥| 𝑢 = 𝑏𝑥 ln |𝑥| + 𝐴𝑥− 𝑏𝜎2𝑡𝑥

2(1−𝛽𝑏)2

8 ⟨𝑎𝑋1 + 𝑋3 +
𝑏𝑋4⟩, 𝑎 ̸= 0

𝑎 ln |𝑥| − 𝑡,
𝑢
𝑥
− 𝑏 ln |𝑥|

𝑢 = 𝐴𝑥 as 𝑏 = 0 or
𝜎2(𝑏+ 𝑎𝜙′ + 𝑎2𝜙′′)/𝜙′ = 2(1 − 𝛽(𝑏+
𝑎𝜙′ + 𝑎2𝜙′′))2 ̸= 0,
𝑢 = 𝑏𝑥 ln |𝑥| + 𝑥𝜙(𝑎 ln |𝑥| − 𝑡)

6. Invariant solutions and submodels in the case 𝑣 = 𝛽𝑢−1
𝑥

For the equation

𝑢𝑡 +
𝜎2𝑥2𝑢𝑥𝑥

2
(︁

1 − 𝛽𝑥𝑢𝑥𝑥

𝑢𝑥

)︁2 = 0, 𝛽 ̸= 0, (33)

the basis of the Lie algebra 𝐿4 is of the form

𝑋1 = 𝜕𝑡, 𝑋2 = 𝜕𝑢, 𝑋3 = 𝑥𝜕𝑥, 𝑋4 = 𝑢𝜕𝑢. (34)

The nonzero structural constants are 𝑐224 = 1, 𝑐242 = −1, and this is why the structure of this
Lie algebra does not differ from the algebra in the previous section up to a renumeration of yhe
operators 𝑋3, 𝑋4. This observation and Lemma 2 yield immediately the following statement.

Lemma 3. The optimal system of one-dimensional algebras of the algebra 𝐿4 with basis (34)
is of the form

Θ1 =
{︀
⟨𝑋2⟩, ⟨𝑋3⟩, ⟨𝑋2 +𝑋3⟩, ⟨𝑋1 + 𝑎𝑋3⟩, ⟨𝑋1 +𝑋2 + 𝑎𝑋3⟩, ⟨𝑎𝑋1 + 𝑏𝑋3 +𝑋4⟩, 𝑎, 𝑏 ∈ R

}︀
.

Employing the operators in the optimal system, we find the invariant submodels of equation
(33) and, if it is possible, its invariant solutions (Table 3).

As 𝛽 = −1, the operator 𝑋2 +𝑋3 has no invariant solutions.
As 𝑎 ̸= 0, the invariant submodel for the operators 𝑋1 + 𝑎𝑋3 is of the form

𝜎2𝜙′(𝜙′′ − 𝜙′) = 2𝑎(𝜙′ − 𝛽(𝜙′′ − 𝜙′))2 ̸= 0.

We denote the argument of the function 𝜙 by 𝑧. By the substitution 𝜁 = 𝑒𝑧 and by decreasing
the order of the equation we obtain 𝜎2𝜁𝜓𝜓′ = 2𝑎(𝜓 − 𝛽𝜁𝜓′)2, where 𝜓(𝜁) = 𝑑

𝑑𝜁
𝜙(ln 𝜁). Making

the inverse change 𝜉(𝑧) = 𝜓(𝑒𝑧), we obtain the quadratic equation for the derivative

𝜎2𝜉𝜉′ = 2𝑎(𝜉 − 𝛽𝜉′)2.

As 𝑎 > −𝜎2

8𝛽
, in the case of positive 𝛽, and as 𝑎 6 −𝜎2

8𝛽
for negative 𝛽, by the integration we

obtain 𝜉(𝑧) = 𝐴𝑒𝐶1𝑧, where

𝐶1 =
4𝑎𝛽 + 𝜎2 ± 𝜎

√︀
𝜎2 + 8𝑎𝛽

4𝑎𝛽2
.
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Therefore, the invariant solution is of the form shown in the fifth row of the table.
The invariant solution of the subalgebra ⟨𝑏𝑋3 + 𝑋4⟩, 𝑏 ̸= 0, (row 9 in the table) is in fact

the solution with an arbitrary nonzero power of |𝑥| (to avoid 𝑢𝑥 = 0) and the corresponding to
this power coefficient at 𝑡 in the argument of the exponential function in the same term of the
solution. Its particular case is the invariant solution for ⟨𝑋1 + 𝑎𝑋3⟩, 𝑎 ̸= 0 (row 5).

Table 3.
Subalgebra Invariants Submodel, solution, restrictions

1 ⟨𝑋2⟩ 𝑡, 𝑥 no
2 ⟨𝑋3⟩ 𝑡, 𝑢 no

3 ⟨𝑋2 +𝑋3⟩ 𝑡, 𝑢− ln |𝑥| 𝑢 = ln |𝑥| + 𝜎2𝑡
2(1+𝛽)2

+ 𝐴, 𝛽 ̸= −1

4 ⟨𝑋1⟩ 𝑥, 𝑢 𝑢 = 𝐴𝑥+𝐵, 𝐴 ̸= 0
5 ⟨𝑋1 + 𝑎𝑋3⟩,

𝑎 ̸= 0
ln |𝑥| − 𝑎𝑡, 𝑢 𝑢 = 𝐴𝑒−𝑎𝐶𝑡|𝑥|𝐶+𝐵, 𝐴 ̸= 0,

𝐶 =
4𝑎𝛽(𝛽+1)+𝜎2±𝜎

√
𝜎2+8𝑎𝛽

4𝑎𝛽2 ̸= 0,

𝜎 ̸= 0, 𝜎2 + 8𝑎𝛽 > 0
6 ⟨𝑋1 +𝑋2 + 𝑎𝑋3⟩ ln |𝑥| − 𝑎𝑡,

𝑢− 𝑡
2(𝑎𝜙′ − 1)(𝜙′ − 𝛽(𝜙′′ − 𝜙′))2 =
𝜎2𝜙′2(𝜙′′ − 𝜙′), 𝜙(𝑧) ̸= 𝐴𝑒(1+1/𝛽)𝑧 +𝐵,
𝑢 = 𝑡+ 𝜙(ln |𝑥| − 𝑎𝑡)

7 ⟨𝑋4⟩ 𝑡, 𝑥 no
8 ⟨𝑎𝑋1 + 𝑋4⟩,

𝑎 ̸= 0
𝑥, 𝑒−𝑡/𝑎𝑢 𝑎𝜎2𝑥2𝜙′2𝜙′′ = 2𝜙(𝜙′−𝛽𝑥𝜙′′)2 ̸= 0,

𝑢 = 𝑒𝑡/𝑎𝜙(𝑥)

9 ⟨𝑏𝑋3 + 𝑋4⟩,
𝑏 ̸= 0

𝑡, |𝑥|−1/𝑏𝑢 𝑢 = 𝐴𝑒
𝜎2(𝑏−1)𝑡

2(𝑏(𝛽+1)−𝛽)2 |𝑥|1/𝑏 + 𝐵,
𝐴 ̸= 0, 𝑏 ̸= 𝛽

𝛽+1
𝛽 ̸= −1

10 ⟨𝑎𝑋1+𝑏𝑋3+𝑋4⟩,
𝑎 ̸= 0, 𝑏 ̸= 0

𝑎 ln |𝑥| − 𝑏𝑡,
𝑒−𝑡/𝑎𝑢

𝑎2𝜎2𝜙′2(𝑎𝜙′′ − 𝜙′) =
2(𝑎𝑏𝜙′ − 𝜙)(𝜙′ − 𝛽(𝑎𝜙′′ − 𝜙′))2,

𝜙(𝑧) ̸= 𝐴𝑒
1
𝑎
(1+1/𝛽)𝑧 + 𝐵,

𝑢 = 𝑒𝑡/𝑎𝜙(𝑎 ln |𝑥| − 𝑏𝑡)

7. Exact solutions to Schönbucher–Wilmott equation equation

Let us analyse the obtained results in terms of the original problem. The functions 𝑣 ≡ 𝛽
correspond to the model

𝑤𝑡 +
𝜎2𝑥2𝑤𝑥𝑥

2 (1 − 𝛽𝜌𝑥𝑤𝑥𝑥)2
= 0

with the function 𝑔(𝛼) = 𝐺𝑒𝛽𝛼 at the integration constant 𝐺. We restrict ourselves by con-
sidering the found exact solutions. Returning back from 𝑢 to the function 𝑤, in view of the
arbitrary choice of some constants, we obtain the solutions

𝑤(𝑡, 𝑥) = 𝐴𝑥+𝐵;

𝑤(𝑡, 𝑥) =
𝑎𝑡𝑥

𝜌
+

2𝛽 − 𝜎2

2𝑎
±
√︁

𝜎4

4𝑎2
− 2𝛽𝜎2

𝑎

2𝛽2𝜌
𝑥 ln |𝑥| +𝐵𝑥+ 𝐶, 𝑎 ̸= 0, 𝜎 ̸= 0,

𝜎4

4𝑎2
− 2𝛽𝜎2

𝑎
> 0;

𝑤(𝑡, 𝑥) =
𝑏

𝜌
𝑥 ln |𝑥| − 𝑏𝜎2𝑡𝑥

2𝜌(1 − 𝛽𝑏)2
+ 𝐴𝑥+𝐵, 𝑏 ̸= 1

𝛽
.

In the latter case the family of invariant solutions of the operators 𝑋3 + 𝑏𝑋4, 𝑏 ̸= 1
𝛽

is extended

by the admitted groups of the shifts in the variable 𝑢 corresponding to the operator 𝑋2.
By the equivalence transformations corresponding to the operator 𝑌3, the functions 𝑣 = 𝛽

𝑢𝑥

can be reduced to the equivalent form 𝑣 = 𝛽
𝑢𝑥+𝛾

, 𝛾 ∈ R. These functions correspond to the
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function 𝑔(𝛼) = 𝐺(𝛼 + 𝛾)𝛽 and the model

𝑤𝑡 +
𝜎2𝑥2𝑤𝑥𝑥

2
(︁

1 − 𝛽𝑥𝑤𝑥𝑥

𝑤𝑥+
𝛾
𝜌

)︁2 = 0. (35)

It is easy to see that solutions (35) are related with the solutions of equation (33) by the identity
𝑤(𝑡, 𝑥) = (𝑢(𝑡, 𝑥) − 𝛾𝑥)𝜌−1. This is why in accordance with the table in the previous section,
equation (35) has exact solutions

𝑤(𝑡, 𝑥) = 𝐴𝑥+𝐵, 𝐴 ̸= −𝛾
𝜌

;

𝑤(𝑡, 𝑥) = 𝐴 ln |𝑥| +
𝐴𝜎2𝑡

2(1 + 𝛽)2
+𝐵 − 𝛾

𝜌
𝑥, 𝐴 ̸= 0, 𝛽 ̸= −1;

𝑤(𝑡, 𝑥) = 𝐴𝑒
− 𝜎2𝐶(𝐶−1)𝑡

2(1−𝛽(𝐶−1))2 𝑥𝐶 +𝐵 − 𝛾

𝜌
𝑥, 𝐴𝐶 ̸= 0.

At that, the class of solutions 𝑢(𝑡, 𝑥) to equation (33) invariant w.r.t. the operator 𝑋2 + 𝑋3,
is extended by means of the action of the admitted operator 𝑋4 and this is the reason of the
presence of the factor 𝐴 in the first two terms.

We mention that in work [29] the symmetries of model (35) in the cases 𝛾 = 0 and 𝛾 ̸= 0 are
studied independently. We can omit such study if we establish a passage from one symmetry
to the other by means of the equivalence transformations group of the studied class of the
equations, see Remark 1.

It is clear that we keep the condition on monotonous increasing of the function 𝑔(𝛼), then in
the considered cases of the function 𝑔 we need to impose the condition 𝛽 > 0.
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29. A. Mikaelyan. Analytical study of the Schönbucher–Wilmott model of the feedback effect in illiquid
markets // Master’s thesis in financial mathematics, Halmstad University, Halmstad (2009).

30. L.A. Bordag, A. Mikaelyan. Models of self-financing hedging strategies in illiquid markets: sym-
metry reductions and exact solutions // J. Lett. Math. Phys. 96:1-3, 191–207 (2011).

31. Yu.A. Chirkunov, S.V. Khabirov. Elements of symmetry analysis of differential equations in con-
tinuous media. Novosibirsk State Technical Univ., Novosibirsk (2012). (in Russian).

Mikhail Mikhailovich Dyshaev,
Chelyabinsk State University,
Br. Kashirinykh st. 129,
454001, Chelyabinsk, Russia
E-mail: Mikhail.Dyshaev@gmail.com

Vladimir Evegn’evich Fedorov,
Chelyabinsk State University,
Laboratory of quantum topology,
Br. Kashirinykh str. 129,
454001, Chelyabinks, Russia
South Ural State University
(National Research University),
Lenin av., 76,
454080, Chelyabinsk, Russia
E-mail: kar@csu.ru


	to1. Introduction
	to2. Equivalence transformations of Schönbucher–Wilmott equation
	to3. Group classification of equation
	to4. Invariant submodels in the general case
	to5. Invariant solutions and submodels in the case v
	to6. Invariant solutions and submodels in the case v=ux-1
	to7. Exact solutions to Schönbucher–Wilmott equation equation
	 References

