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ON DEFICIENCY INDEX FOR SOME SECOND ORDER

VECTOR DIFFERENTIAL OPERATORS

I.N. BRAEUTIGAM, K.A. MIRZOEV, T.A. SAFONOVA

Abstract. In this paper we consider the operators generated by the second order matrix
linear symmetric quasi-differential expression

𝑙[𝑦] = −(𝑃 (𝑦′ −𝑅𝑦))′ −𝑅*𝑃 (𝑦′ −𝑅𝑦) +𝑄𝑦

on the set [1,+∞), where 𝑃−1(𝑥), 𝑄(𝑥) are Hermitian matrix functions and 𝑅(𝑥) is a
complex matrix function of order 𝑛 with entries 𝑝𝑖𝑗(𝑥), 𝑞𝑖𝑗(𝑥), 𝑟𝑖𝑗(𝑥) ∈ 𝐿1

𝑙𝑜𝑐[1,+∞) (𝑖, 𝑗 =
1, 2, . . . , 𝑛). We describe the minimal closed symmetric operator 𝐿0 generated by this
expression in the Hilbert space 𝐿2

𝑛[1,+∞). For this operator we prove an analogue of the
Orlov’s theorem on the deficiency index of linear scalar differential operators.

Keywords: Quasi-derivative, quasi-differential expression, minimal closed symmetric dif-
ferential operator, deficiency numbers, asymptotic of the fundamental system of solutions.
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1. Introduction

In [1] S.A. Orlov found a class of linear symmetric differential operators with real analytic
coefficients, whose deficiency numbers are determined as the number of roots in the left half-
plane of some explicitly written polynomial. Namely, the following theorem was given.

Theorem 1. Let functions 𝑝0, 𝑝1, . . . , 𝑝𝑚 be defined on the set [1,+∞) and satisfy the con-
ditions:

(I) 𝑝0, 𝑝1, . . . , 𝑝𝑚 are measurable, real-valued and for each 𝑏 ∈ (1,+∞)

𝑏∫︁
1

|𝑝𝑚|−1 < +∞,

𝑏∫︁
1

|𝑝𝑘| < +∞ (𝑘 = 0, 1, . . . ,𝑚− 1),

(II) 𝑝0(𝑧), 𝑝1(𝑧), . . . , 𝑝𝑚(𝑧) are analytic functions as |𝑧| > 𝑥0 > 1 and

𝑝𝑘(𝑧) = 𝑧2𝑘+𝜈

[︃
𝑎𝑘 +

+∞∑︁
𝑗=1

𝑎
(𝑘)
𝑗 𝑧−𝑗

]︃
(𝑘 = 0, 1, . . . ,𝑚; |𝑧| > 𝑥0 > 1),

where 𝑎𝑚 ̸= 0, and 𝜈 > 0 is an integer number. Then the maximal number of linear independent
solutions to the equation

𝑙2𝑚[𝑦](𝑥) := 𝑝0(𝑥)𝑦 +
𝑑

𝑑𝑥

{︂
𝑝1(𝑥)𝑦′ +

𝑑

𝑑𝑥
[𝑝2(𝑥)𝑦′′ + . . .
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. . . +
𝑑

𝑑𝑥

(︂
𝑝𝑚−1(𝑥)𝑦(𝑚−1) +

𝑑

𝑑𝑥
(𝑝𝑚(𝑥)𝑦(𝑚))

)︂
...

]︂}︂
= 𝜆𝑦,

belonging to 𝐿2[1,+∞) is equal
1) as 𝜈 > 0, to the number of the roots of the polynomial

𝐹2𝑚(𝑧, 𝜈) =
𝑚∑︁
𝑘=1

𝑎𝑘

𝑘−1∏︁
𝑗=0

[︃(︁
𝑧 +

𝜈

2

)︁2

−
(︂
𝜈 + 1

2
+ 𝑗

)︂2
]︃

+ 𝑎0

lying in the domain Re 𝑧 < 0 and this number is independent of 𝜆. At that, the spectrum of
each self-adjoint extension of the corresponding operator is discrete.
2) as 𝜈 = 0, to the number of the roots of the polynomial 𝐹2𝑚(𝑧, 0) − 𝜆 lying in the domain
Re 𝑧 < 0 and for non-real 𝜆, it is equal to 𝑚.

Assume that the functions 𝑝0(𝑥), 𝑝1(𝑥), . . . , 𝑝𝑚(𝑥) are represented as

𝑝𝑘(𝑥) = 𝑥2𝑘+𝜈(𝑎𝑘 + 𝑟𝑘(𝑥)) (𝑘 = 0, 1, . . . ,𝑚− 1), 𝑝𝑚(𝑥) =
𝑥2𝑚+𝜈

1
𝑎𝑚

+ 𝑟𝑚(𝑥)
,

where 𝜈 is a non-negative (not necessarily integer) number; 𝑎0, 𝑎1, . . . , 𝑎𝑚 are real number,
𝑎𝑚 ̸= 0; and 𝑟0, 𝑟1, . . . , 𝑟𝑚 are real functions on [1,+∞) such that

i) for some 𝑥0(> 1)
+∞∫︁
𝑥0

|𝑟𝑘(𝑥)|𝑑𝑥
𝑥

< +∞ (𝑘 = 0, 1, . . . ,𝑚);

ii) all the roots of the polynomial 𝐹2𝑚(𝑧, 𝜈) as 𝜈 > 0 and of the polynomial 𝐹2𝑚(𝑧, 0)−𝜆 are
different.

In work [2], F.A. Neimark established in particular that Statements 1) and 2) of Theorem 1
are still true if we keep Condition (I) and replace Condition (II) by Conditions i) and ii). Later
in the joint work [3] by R.B. Paris and A.D. Wood, Theorem 1 was discovered once again for the
particular case 𝑝𝑘(𝑥) = 𝑎𝑘𝑥

2𝑘+𝜈 (𝑘 = 0, 1, . . . ,𝑚), where 𝜈 is a non-negative integer number and
the polynomial 𝐹2𝑚(𝑧, 𝜈) was studied in details. In particular, by this method they established
that there exist positive numbers 𝐾 and 𝜈 such that the deficiency index of the minimal closed
symmetric operator generated by the expression

𝑙6[𝑦] = −(𝑥6+𝜈𝑦(3))(3) + 𝐾𝑥𝜈𝑦,

is equal to (5, 5) and they specified in this way the results by R.M. Kauffman [4] stating that
the deficiency index of this operator is not (3, 3).

Later the results of work [3] were involved in book [5], in which there were also considered
some differential operators generated by particular expressions of odd order and the associated
polynomials were studied. It seems that works [1] and [2] remained unknown to the authors of
work [3] and book [5].

In [6], K.A. Mirzoev studied the deficiency index and the character of the spectrum of the
minimal closed symmetric operator generated by the quasi-differential expression 𝑙𝑛 of arbitrary
(even or odd) order 𝑛 with complex-valued coefficients on the set [1; +∞). The obtained results
are similar to the statements in the Orlov theorem. At that, the conditions for the coefficients
of the expression 𝑙𝑛 are of the same nature as Condition (I) in Theorem 1, while Condition i)
is changed so that Condition ii) is no longer needed.

In joint work [7], I.N. Dolgikh (I.N. Braeutigam) and K.A. Mirzoev considered a similar
problem both on the half-line and the interval (0, 1], that is, they widened essentially the class
of the operators, for which Orlov theorem is still true.
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Our aim is to construct the spectral theory of differential operators generated by formally
self-adjoint expressions

𝑙[𝑦] = −(𝑃 (𝑦′ −𝑅𝑦))′ −𝑅*𝑃 (𝑦′ −𝑅𝑦) + 𝑄𝑦

in the space 𝐿2
𝑛[1,+∞), where 𝑃 , 𝑄, 𝑅 are complex-valued matrix functions of order 𝑛 (𝑛 ∈ N)

defined on the ray [1,+∞) such that 𝑃 is non-degenerate, 𝑃 and 𝑄 are Hermitian matrices and
the entries of the matrix functions 𝑃−1, 𝑄 and 𝑅 are measurable on [1,+∞) and summable
on each its closed finite subinterval. Our aim is also to establish an analogue of Orlov theorem
and to construct examples realizing the limit-point case and limit-circle case for such operators

𝑙[𝑦] = −(𝒫0𝑦
′)′ + 𝑖((𝒬0𝑦)′ + 𝒬0𝑦

′) + 𝒫 ′
1𝑦.

Here the derivatives are treated in the sense of distributions theory, 𝒫0, 𝒬0 and 𝒫1 are Her-
mitian matrix functions of order 𝑛 with Lebesgue measurable entries such that 𝒫−1

0 exists and
‖𝒫0‖, ‖𝒫−1

0 ‖, ‖𝒫−1
0 ‖‖𝒫1‖2, ‖𝒫−1

0 ‖‖𝒬0‖2 ∈ 𝐿1
𝑙𝑜𝑐[1,+∞).

The rigorous definition of the expression 𝑙 as well as of the minimal closed symmetric operator
generated by this expression are given in Section 2.

A part of the results of this work was published without proofs in [8].

2. Quasi-derivatives and quasi-differential operators. Deficiency indices

2.1. Let 𝐼 := [1,+∞) and 𝑃 (𝑥), 𝑄(𝑥) and 𝑅(𝑥) be square matrix functions of order 𝑛 (𝑛 ∈ N)
defined on the set 𝐼 and 𝑃 (𝑥) is non-degenerate, 𝑃 (𝑥) and 𝑄(𝑥) are Hermitian matrices as
𝑥 ∈ 𝐼 such that the following condition holds.

Condition A.The complex-valued functions 𝑝𝑖𝑗, 𝑞𝑖𝑗 and 𝑟𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛), the entries of
the matrices 𝑃−1, 𝑄 and 𝑅, respectively, are defined and measurable on the set 𝐼 and summable
on each its closed subinterval, that is, 𝑝𝑖𝑗, 𝑞𝑖𝑗, 𝑟𝑖𝑗 ∈ 𝐿1

𝑙𝑜𝑐(𝐼).
By the symbol 𝐴𝐶𝑙𝑜𝑐(𝐼) we denote the set of all vector functions 𝑦(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥), . . . , 𝑦𝑛(𝑥))𝑡,

where 𝑡 stands for the transposition, with locally absolutely continuous entries on 𝐼 and we
introduce the first quasi-derivative of a given vector function 𝑦 ∈ 𝐴𝐶𝑙𝑜𝑐(𝐼) as

𝑦[1] := 𝑃 (𝑦′ −𝑅𝑦).

Assuming that the vector function 𝑦[1] is defined and 𝑦[1] ∈ 𝐴𝐶𝑙𝑜𝑐(𝐼), we introduce the second
quasi-derivative of the vector function 𝑦 as

𝑦[2] := (𝑦[1])′ + 𝑅*𝑦[1] −𝑄𝑦,

where * stands for the adjoint symbol, and we introduce the quasi-differential expression

𝑙[𝑦](𝑥) := −𝑦[2](𝑥), 𝑥 ∈ 𝐼.

Thus,

𝑙[𝑦] = −(𝑃 (𝑦′ −𝑅𝑦))′ −𝑅*𝑃 (𝑦′ −𝑅𝑦) + 𝑄𝑦, (1)

and the set of vector functions 𝒟 := {𝑦(𝑥)| 𝑦(𝑥), 𝑦[1](𝑥) ∈ 𝐴𝐶𝑙𝑜𝑐(𝐼)} is obviously the domain
of this expression. It follows from Condition (A) that for each vector function 𝑦(𝑥) ∈ 𝒟 the
expression 𝑙[𝑦](𝑥) exists almost everywhere on 𝐼 and the entries of 𝑙[𝑦] are locally integrable.
Moreover, for each two vector functions 𝑓, 𝑔 ∈ 𝒟 we have the following lemma, which is a vector
analogue of the Green identity.

Lemma 1. Let 𝑃 , 𝑄 and 𝑅 be square matrix functions of order 𝑛 satisfying all aforemen-
tioned conditions on 𝐼. Then for each two vector functions 𝑢, 𝑣 ∈ 𝒟 and each two numbers 𝛼
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and 𝛽 such that 0 6 𝛼 6 𝛽 < ∞ the formula

𝛽∫︁
𝛼

{(𝑙[𝑢](𝑥), 𝑣(𝑥)) − (𝑢(𝑥), 𝑙[𝑣](𝑥))}𝑑𝑥 = [𝑢(𝑥), 𝑣(𝑥)](𝛽) − [𝑢(𝑥), 𝑣(𝑥)](𝛼) (2)

holds, where (𝑔, ℎ) =
𝑛∑︀

𝑠=1

𝑔𝑠ℎ𝑠 is the scalar product of the vectors 𝑔 and ℎ, while the form [𝑢, 𝑣]

is defined by the identity

[𝑢, 𝑣](𝑥) := (𝑢[1](𝑥), 𝑣(𝑥)) − (𝑢(𝑥), 𝑣[1](𝑥)).

In [9], Lemma 1 was proved for a particular case of the expression 𝑙, when 𝑃 (𝑥) = 𝐼𝑛 (𝐼𝑛 is
the unit matrix of order 𝑛), 𝑅(𝑥) = 𝜎(𝑥), 𝑄(𝑥) = −𝜎2(𝑥), where 𝜎(𝑥) is a given symmetric
matrix function of order 𝑛 with real entries such that the entries of the matrix 𝜎2(𝑥) are locally
integrable in 𝐼. The proof given in this work can be extended to the expression 𝑙 of form (1)
with no major changes.

Let 𝐿2
𝑛(𝐼) be the space of the equivalence classes of all complex-valued measurable vector

functions 𝑦 such that the sum of the squares of their entries are Lebesgue measurable in 𝐼. In
the literature devoted to the spectral theory of ordinary differential operators, the procedure of
determining the minimal operator 𝐿0 generated by the expression 𝑙[𝑦] in the Hilbert space 𝐿2

𝑛(𝐼)
is well-known. Namely, denoting by 𝐷′

0 the set of all complex-valued compactly supported on
𝐼 vector functions in 𝒟 such that 𝑙[𝑦] ∈ 𝐿2

𝑛(𝐼), arguing as in the scalar case (see, for instance,
[10]) and using Green formula (2), we establish that the set 𝐷′

0 is everywhere dense in 𝐿2
𝑛(𝐼)

and by the formula 𝐿′
0𝑦 = 𝑙[𝑦], the expression 𝑙 defines a symmetric (unclosed) operator in

𝐿2
𝑛(𝐼) with the domain 𝐷′

0. By the symbols 𝐿0 and 𝐷0 we denote the closure of this operator
and its domains, respectively. Thanks to this, similar to the concept of scalar symmetric quasi-
differential expression, in what follows the expression 𝑙 is referred to as (formally self-adjoint)
the quasi-differential expression generated by means of the matrices 𝑃 , 𝑄 and 𝑅.

Let 𝜆 be a complex number and Im𝜆 ̸= 0. By 𝑅𝜆 and 𝑅𝜆 we denote the domains of
the operators 𝐿0 − 𝜆ℐ and 𝐿0 − 𝜆ℐ, respectively, while 𝒩𝜆 and 𝒩𝜆 stand for the orthogonal
complements of the spaces 𝑅𝜆 and 𝑅𝜆 in 𝐿2

𝑛(𝐼). The spaces 𝒩𝜆 and 𝒩𝜆 are called defect spaces,
the numbers 𝑛+ and 𝑛− equal to their dimensions, 𝑛+ = dim 𝒩𝜆, 𝑛− = dim 𝒩𝜆, are called
deficiency numbers of the operator 𝐿0 in the upper and lower half-planes, respectively, while
the pair (𝑛+, 𝑛−) is called the deficiency index of the operator 𝐿0.

Arguing similar to [11] and [12], one can establish that the numbers 𝑛+ and 𝑛− coincide with
the maximal number of linearly independent solutions to the equation

𝑙[𝑦] = 𝜆𝑦 (3)

belonging to the space 𝐿2
𝑛(𝐼) as the parameter 𝜆 ranges in the upper (Im𝜆 > 0) or in the

lower (Im𝜆 < 0) half-plane, respectively. These numbers satisfy the double inequality 𝑛 6 𝑛+,
𝑛− 6 2𝑛, and 𝑛+ = 2𝑛 if and only if 𝑛− = 2𝑛. Moreover, the case 𝑛+ = 𝑛− = 2𝑛 is realized
if and only if all solutions to equation (3) belong to the space 𝐿2

𝑛(𝐼) for all 𝜆 ∈ C. Using
the analogy with the spectral theory of scalar Sturm-Liouville operators on the half-line, one
sometimes says that the expression 𝑙[𝑦] (for the operator 𝐿0) is in the limit-point case occurs if
𝑛+ = 𝑛− = 𝑛, while as 𝑛+ = 𝑛− = 2𝑛, one says that the expression 𝑙[𝑦] (for the operator 𝐿0)
in the limit-circle case (see, for instance, [11]).

Equation (3) is equivalent to the system of first order ordinary differential equations

y′ = (𝐹 − Λ)y, (4)
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where y =

(︂
𝑦
𝑦[1]

)︂
, the matrices 𝐹 and Λ are of order 2𝑛 and have the form

𝐹 =

(︂
𝑅 𝑃−1

𝑄 −𝑅*

)︂
, Λ =

(︂
𝑂 𝑂
𝜆𝐼𝑛 𝑂

)︂
,

while, as usually, 𝑂 and 𝐼𝑛 are the zero and unit matrix of order 𝑛, respectively.
Equations (3) and (4) are equivalent in the sense that if 𝑦(𝑥) is a vector solution of system (3),

then the vector column y solves equation (4) and vice versa, if 2𝑛-dimensional vector column
y is a solution of system (4), then the vector 𝑦 formed by first 𝑛 entries of the vector y solves
equation (3).

Remark 1. The conditions on the entries of the matrices 𝑃 , 𝑄 and 𝑅 ensure the unique
solvability of the Cauchy problem for system (4) posed at arbitrary point of the set 𝐼 and are the
most general conditions ensuring such solvability, see [13, Ch. 1, Th. 1.2.3]. The equivalence
of systems (3) and (4) imply the unique solvability for system (3).

Employing the terminology from the theory of operators generated by linear differential
expressions with non-smooth coefficients, one sometimes says that the quasi-derivatives 𝑦[0](:=
𝑦), 𝑦[1], 𝑦[2] and the quasi-differential expression 𝑙[𝑦] are generated by the matrix 𝐹 .

2.2. Let 𝒫0, 𝒬0 and 𝒫1 are Hermitian matrix functions of order 𝑛 with measurable entries
such that 𝒫−1

0 exists and ‖𝒫−1
0 ‖, ‖𝒫−1

0 ‖‖𝒫1‖2, ‖𝒫−1
0 ‖‖𝒬0‖2 are locally Lebesgue integrable.

Let 𝜙 := 𝒫1 + 𝑖𝒬0 and 𝜙* := 𝒫1 − 𝑖𝒬0. We consider the block matrix

ℱ =

(︂
𝒫−1

0 𝜙 𝒫−1
0

−𝜙*𝒫−1
0 𝜙 −𝜙*𝒫−1

0

)︂
.

Employing the properties of the matrix norms and the hermiticity of the matrix function 𝒫0,
𝒬0 and 𝒫1, it is easy to confirm that all the entries of the matrix ℱ belong to the space 𝐿1

𝑙𝑜𝑐(𝐼).
By means of the matrix ℱ we introduce the quasi-derivatives 𝑦[0], 𝑦[1], 𝑦[2] letting as before

𝑦[0] = 𝑦, 𝑦[1] = 𝒫0𝑦
′ − 𝜙𝑦, 𝑦[2] = (𝑦[1])′ + 𝜙*𝒫−1

0 𝑦[1] + 𝜙*𝒫−1
0 𝜙𝑦.

Applying Remark 1, we conclude that the theorem on the unique solvability of the Cauchy
problem posed at an arbitrary point in 𝐼 holds true for the equation

−𝑦[2] = 𝜆𝑦.

If we assume that the entries of the matrix 𝒫0 also belong to 𝐿1
𝑙𝑜𝑐(𝐼) (‖𝒫0‖ ∈ 𝐿1

𝑙𝑜𝑐(𝐼)), then it is
easy to see that the entries of the matrix 𝜙 are locally integrable in 𝐼. Under these assumptions,
one can prove that if we treat ′ as the differentiation in the sense of the distribution theory,
then in the expression 𝑦[2] we can open the brackets and we obtain the formula

𝑦[2] = (𝒫0𝑦
′)′ − 𝑖((𝒬0𝑦)′ + 𝒬0𝑦

′) − 𝒫 ′
1𝑦.

Thus, in terms of the distributions, the expression 𝑙[𝑦] (see (1)) is written as

𝑙[𝑦] = −(𝒫0𝑦
′)′ + 𝑖((𝒬0𝑦)′ + 𝒬0𝑦

′) + 𝒫 ′
1𝑦, (5)

and the operator 𝐿0 introduced above can be treated as the operator generated by this ex-
pression in the Hilbert space 𝐿2

𝑛(𝐼). Such interpretation of the operator with the distribution
coefficients allows us to include it into the class of the operators generated by quasi-differential
expressions with locally summable coefficients in the space 𝐿2

𝑛(𝐼) and to construct the spectral
theory of this operator.

We observe that a correct definition of the Sturm-Liouville operator with a first order scalar
distribution potential, that is, of the operator generated by the expression of the form

𝑙[𝑦] = −𝑦′′ + 𝜎′(𝑥)𝑦
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in the space 𝐿2(𝑎, 𝑏), where 𝜎 is a complex-valued function such that 𝜎2 ∈ 𝐿1
𝑙𝑜𝑐(𝑎, 𝑏), seems to

be given first in some works by A.M. Savchuk and A.A. Shkalikov (see [14], [15]), while for the
vector analogue of this expression, when 𝜎(𝑥) is a square symmetric matrix function of order 𝑛
with real entries such that the entries of 𝜎2 are locally integrable in the half-line, such definition
was given in [9].

In particular, if 𝒬0(𝑥) = 𝑂, then vector quasi-differential expression (5) casts into the form

𝑙[𝑦] = −(𝒫0𝑦
′)′ + 𝒫 ′

1𝑦.

3. Analogue of Orlov theorem

3.1. In what follows we shall need the following lemma, see [16], [17, Ch. III, Problem 35].

Lemma 2. Consider the system of ordinary differential equations

𝑈 ′ = (𝐴 + 𝐺(𝑡))𝑈, (6)

where 𝐴 is a constant matrix, whose canonical form has Jordan blocks 𝐽𝑘, 𝑘 > 1, and the
maximal number of the rows for all the blocks 𝐽𝑘 is equal to 𝑟 + 1. Assume that

∞∫︁
1

𝑡𝑟‖𝐺(𝑡)‖𝑑𝑡 < ∞. (7)

Let 𝑧𝑗 be a characteristic root of the matrix 𝐴 and let the equation 𝑦′ = 𝐴𝑦 has a solution of
the form

𝑒𝑧𝑗𝑡𝑡𝑘𝑐 + 𝑂(𝑒𝑧𝑗𝑡𝑡𝑘−1),

where 𝑐 is a constant vector. Then equation (6) has the solution 𝜑 such that

𝜑(𝑡) = 𝑒𝑧𝑗𝑡𝑡𝑘(𝑐 + 𝑜(1)) as 𝑡 → +∞.

3.2. In what follows we suppose that the matrix functions 𝑃−1, 𝑄 and 𝑅 are the coefficients
of the expression 𝑙[𝑦], see (1), satisfy the following condition:

Condition B. For all 𝑥 > 1 and some real 𝜈 > 0

𝑃−1(𝑥) = 𝑥−𝜈−2(𝑃0 + 𝑃1(𝑥)), 𝑄(𝑥) = 𝑥𝜈(𝑄0 + 𝑄1(𝑥)), 𝑅(𝑥) = 𝑥−1(𝑅0 + 𝑅1(𝑥)),

where 𝑃0, 𝑄0, 𝑅0 and 𝑃1(𝑥), 𝑄1(𝑥), 𝑅1(𝑥) are Hermitian constant matrices and matrix func-
tions of order 𝑛, respectively. Let det𝑃0 ̸= 0 and moreover,

+∞∫︁
1

ln𝑟𝑥

𝑥
(‖𝑃1(𝑥)‖ + ‖𝑄1(𝑥)‖ + ‖𝑅1(𝑥)‖)𝑑𝑥 < +∞,

where 𝑟+ 1 is the maximal number of the rows for all Jordan blocks 𝐽𝑘, 𝑘 > 1, in the canonical
form of the matrix

𝐴𝜈 :=

(︂
𝑅0 + 1

2
𝐼𝑛 𝑃0

𝑄0 − 𝜆𝜒(𝜈)𝐼𝑛 −𝑅*
0 − (𝜈 + 1

2
)𝐼𝑛

)︂
,

where 𝜒(𝜈) = 0 as 𝜈 > 0 and 𝜒(0) = 1.
The following theorem holds true.

Theorem 2. Let the elements 𝑃−1, 𝑄 and 𝑅 of the matrix 𝐹 satisfy Condition (B) and
let 𝑙 be the quasi-differential expression generated by this matrix (see (1)). Then the maximal
number of linearly independent solutions of equation (3) belonging to the space 𝐿2

𝑛(𝐼) is equal
1) as 𝜈 > 0, to the number of the roots of the polynomial ℱ(𝑧, 𝜈) := det(𝐴𝜈 − 𝑧𝐼2𝑛) (counting
the multiplicities) lying in the domain Re 𝑧 < 0 and is independent of 𝜆;
2) as 𝜈 = 0, to the number of the roots of the polynomial ℱ(𝑧, 0) := det(𝐴0 − 𝑧𝐼2𝑛) (counting
the multiplicities) lying in the domain Re 𝑧 < 0 and for non-real 𝜆 it is equal to 𝑛.
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Moreover, in the case 𝜈 > 0, the spectrum of each self-adjoint extension of the operator 𝐿0 is
discrete.

Proof. It follows from Condition (B) that the entries of the matrix 𝐹 satisfy Condition (A)
of Subsection 2.1. This is why due to formula (1), the quasi-differential expression 𝑙[𝑦] gener-
ated by this matrix is well-defined as well as the minimal closed symmetric operator 𝐿0, and
Statements 1 and 2 of Theorem 2 describe the deficiency numbers of this operator.

Let 𝜈 > 0. We denote by 𝐷 the block-diagonal matrix

𝐷 =

(︂
𝑥−1/2𝐼𝑛 𝑂

𝑂 𝑥𝜈+1/2𝐼𝑛

)︂
.

In system (4) we make the change y = 𝐷𝑌 , where 𝑌 is a new unknown 2𝑛-dimensional vector
function. As the result, system (4) becomes

𝑌 ′ = (𝐷−1𝐹𝐷 −𝐷−1Λ𝐷 −𝐷−1𝐷′)𝑌.

Simple calculations show that the matrix functions 𝐷−1𝐹𝐷, 𝐷−1Λ𝐷 and 𝐷−1𝐷′ in the block
representation have the form

𝐷−1𝐷′ = 𝑥−1

(︂
−1/2𝐼𝑛 𝑂

𝑂 (𝜈 + 1/2)𝐼𝑛

)︂
, 𝐷−1Λ𝐷 = 𝑥−1

(︂
𝑂 𝑂

𝜆𝑥−𝜈𝐼𝑛 𝑂

)︂
,

𝐷−1𝐹𝐷 = 𝑥−1

(︂
𝑥𝑅 𝑥𝜈+2𝑃−1

𝑥−𝜈𝑄 −𝑥𝑅*

)︂
.

Thus, the unknown function 𝑌 satisfies the system of differential equations

𝑥𝑌 ′ = (𝐴𝜈 + 𝐵(𝑥))𝑌, (8)

where 𝐴𝜈 is the scalar matrix defined above and 𝐵(𝑥) is the matrix function

𝐵(𝑥) =

(︂
𝑅1(𝑥) 𝑃1(𝑥)

𝑄1(𝑥) − 𝜆
𝑥𝜈 𝐼𝑛 −𝑅*

1(𝑥)

)︂
.

Letting 𝑥 = 𝑒𝑡, we observe that system (8) becomes (6), where 𝑈(𝑡) = 𝑌 (𝑒𝑡), 𝐴 = 𝐴𝜈 and
𝐺(𝑡) = 𝐵(𝑒𝑡).

We consider the system of differential equations with constant coefficients

𝑈 ′ = 𝐴𝜈𝑈(𝑡).

The fundamental matrix of the solutions of this system is Φ = 𝑒𝐴𝜈𝑡.
Let 𝑧 be a characteristic root of the matrix 𝐴𝜈 of algebraic multiplicity 𝑟0 and geometric

multiplicity 𝑙. We denote by 𝑘𝑖 (𝑖 = 1, 2 . . . 𝑙) the dimension of Jordan blocks corresponding
to the number 𝑧. We note that 2𝑛-dimensional vector columns of the fundamental matrix Φ
corresponding to 𝑖th Jordan block are

𝑒𝑧𝑡𝑐𝑘𝑖 , 𝑡𝑗𝑒𝑧𝑡𝑐𝑘𝑖 + 𝑂(𝑡𝑗−1𝑒𝑧𝑡), 𝑗 = 1, . . . , 𝑘𝑖 − 1, (9)

where 𝑐𝑘𝑖 is the eigenvector of the matrix 𝐴 corresponding to this Jordan block (for more details
see [17, Ch. III, Sect. 4]).

Let

(︂
𝑋1

𝑋2

)︂
, where 𝑋𝑖 (𝑖 = 1, 2) are 𝑛-dimensional vector columns, be the eigenvector associ-

ated with the eigenvalue 𝑧 of the matrix 𝐴𝜈 , that is,

(𝐴𝜈 − 𝑧𝐼2𝑛)

(︂
𝑋1

𝑋2

)︂
= 𝑂.
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Hence, the vectors 𝑋1 and 𝑋2 satisfy the system of equations{︃
(𝑅0 + (1

2
− 𝑧)𝐼𝑛)𝑋1 + 𝑃0𝑋2 = 𝑂

(−𝑅*
0 − (𝜈 + 1

2
+ 𝑧)𝐼𝑛)𝑋1 + 𝑄0𝑋2 = 𝑂.

Taking into consideration that det𝑃0 ̸= 0 and excluding the unknown vector 𝑋2 from this
system, we obtain that the vector 𝑋1 satisfies the equation

(−𝑅*
0 − (𝜈 +

1

2
+ 𝑧)𝐼𝑛 −𝑄0𝑃

−1
0 (𝑅0 + (

1

2
− 𝑧)𝐼𝑛)𝑋1 = 𝑂. (10)

The vector 𝑋1 is obviously non-zero and moreover, the geometric multiplicity of the root 𝑧
is equal to 𝑙. Hence, the rank of the matrix coefficient in system (10) is equal to 𝑛 − 𝑙 (𝑙 ∈
{1, 2 . . . , 𝑛− 1}). Thus, this system has 𝑙 linearly independent solutions, that is, 𝑙 eigenvectors

of the form

(︂
𝑋1

𝑋2

)︂
are associated with the characteristic root 𝑧 and first 𝑛 coordinates of these

vectors do not vanish simultaneously.
Taking into consideration Condition (B), we observe that system (8) is reduced to system

(6) and at that, (7) holds true, that is, all the conditions of Lemma 2 are satisfied. Applying
this lemma to each function in list (9), we obtain that system (6) has a fundamental matrix of
solutions formed by vector columns, which can be represented for 𝑡 → ∞ as

𝑡𝑘𝑒𝑧𝑡(𝑐𝑘𝑖 + 𝑜(1)) (𝑘 = 0, 1, . . . 𝑘𝑖 − 1).

Making the inverse change 𝑥 = 𝑒𝑡 and taking into consideration that y = 𝐷𝑌 , we obtain that
the vector columns of the fundamental matrix of equation (3) associated with the characteristic
root 𝑧 of the matrix 𝐴 are of the form

𝑥𝑧− 1
2 ln𝑘 𝑥(̃︀𝑐𝑘𝑖 + 𝑜(1)), (11)

where ̃︀𝑐𝑘𝑖 are non-zero vectors consisting of first 𝑛 entries of the vectors 𝑐𝑘𝑖 .
The functions, which can be represented as (11), belong to the space 𝐿2

𝑛(𝐼) if and only if

+∞∫︁
1

| 𝑥2𝑧−1| (ln𝑥)2𝑘 𝑑𝑥 < ∞,

and this is true if and only if Re 𝑧 < 0. Moreover, as 𝜈 > 0, the polynomial ℱ(𝑧, 𝜈) is
independent of 𝜆. Thus, the deficiency numbers of the operator 𝐿0 coincide and are equal to
the number of the roots of the equation ℱ(𝑧, 𝜈) = 0 satisfying the condition Re 𝑧 < 0.

Then one can show that the Green function of each self-adjoint extension of the operator
𝐿0 is the Hilbert-Schmidt kernel and is a meromorphic function of 𝜆. This implies that the
spectrum of each self-adjoint extension of the operator 𝐿0 is discrete.

Assume that 𝜈 = 0 and let us show that

det (𝐴0(𝜆) − (−𝑧)𝐼2𝑛) = det
(︀
𝐴0(𝜆) − 𝑧𝐼2𝑛

)︀
. (12)

Indeed, the identity

det
(︀
𝐴0(𝜆) − 𝑧𝐼2𝑛

)︀
= det(−𝑅*

0 − (1/2 + 𝑧)𝐼𝑛)

· det(𝑅0 + (1/2 − 𝑧)𝐼𝑛 − 𝑃0(−𝑅*
0 − (1/2 + 𝑧)𝐼𝑛)−1(𝑄0 − 𝜆𝐼𝑛))

holds. On the other hand, employing the properties of 𝑃0, 𝑄0, 𝑅0, of the transposed matrices
and determinants, it is easy to see that

det (𝐴0(𝜆) − (−𝑧)𝐼2𝑛)

also satisfies the above formula. Thus, identity (12) holds true.
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Let 𝜆 be a non-real number and the number of the roots of the equation

det
(︀
𝐴0(𝜆) − 𝑧𝐼2𝑛

)︀
= 0 (13)

obeying the condition Re 𝑧 < 0 is equal to 𝑘 counting the multiplicities. It follows from identity
(12) that the number of the roots of the equation

det (𝐴0(𝜆) − (−𝑧)𝐼2𝑛) = 0 (14)

such that Re 𝑧 6 0 is equal to 2𝑛− 𝑘 counting the multiplicities, that is, the deficiency number
𝑛+ and 𝑛− satisfy the inequality 𝑛++𝑛− 6 2𝑛. Taking into consideration that 𝑛+ > 𝑛, 𝑛− > 𝑛,
we obtain 𝑛+ = 𝑛− = 𝑛. The proof is complete.

3.3. Assume that the expression 𝑙[𝑦] is defined by the formula

𝑙[𝑦] = −(𝒫0𝑦
′)′ + 𝑖((𝒬0𝑦)′ + 𝒬0𝑦

′) + 𝒫 ′
1𝑦,

see (5), and assume that the coefficients 𝒫0(𝑥), 𝒫1(𝑥), 𝒬0(𝑥) of this expression satisfy the
following condition.

Condition B′. For each 𝑥 > 1 and some real 𝜈 > 0

𝒫−1
0 (𝑥) = 𝑥−𝜈−2(𝑃 0

0 + 𝑃 1
0 (𝑥)), 𝒫1(𝑥) = 𝑥𝜈+1(𝑃 0

1 + 𝑃 1
1 (𝑥)), 𝒬0(𝑥) = 𝑥𝜈+1(𝑄0

0 + 𝑄1
0(𝑥)),

where 𝑃 0
0 , 𝑃

0
1 , 𝑄

0
0 and 𝑃 1

0 (𝑥), 𝑃 1
1 (𝑥), 𝑄1

0(𝑥) are constant Hermitian matrices and Hermitian
matrix functions of order 𝑛, respectively. Let det𝑃 0

0 ̸= 0 and moreover,

+∞∫︁
1

ln𝑟𝑥

𝑥
(‖𝑃 1

𝑖 (𝑥)‖ + ‖𝑃 1
𝑖 (𝑥)‖2)𝑑𝑥 < +∞, 𝑖 = 0, 1,

+∞∫︁
1

ln𝑟𝑥

𝑥
(‖𝑄1

0(𝑥)‖ + ‖𝑄1
0(𝑥)‖2)𝑑𝑥 < +∞,

where 𝑟+ 1 is the maximal number of the rows for all Jordan blocks 𝐽𝑘, 𝑘 > 1, in the canonical
form of the matrix

𝐴𝜈 :=

(︂
𝑃 0
0 𝜑0 + 1

2
𝐼𝑛 𝑃 0

0

−𝜑*
0𝑃

0
0 𝜑0 − 𝜆𝜒(𝜈)𝐼𝑛 −𝜑*

0𝑃
0
0 − (𝜈 + 1

2
)𝐼𝑛

)︂
,

where 𝜒(𝜈) = 0 as 𝜈 > 0 and 𝜒(0) = 1, while 𝜑0 = 𝑃 0
1 + 𝑖𝑄0

0, 𝜑
*
0 = 𝑃 0

1 − 𝑖𝑄0
0.

It follows from Condition (B′) that the coefficients 𝑃 = 𝒫0, 𝑄 = −𝜙*𝒫−1
0 𝜙 and 𝑅 = 𝒫−1

0 𝜙 in
expression (1) in the present case satisfy Condition (B) of Subsection 3.2 and, hence, Theorem 2
remains true. Applying this theorem, we obtain the following theorem.

Theorem 3. Assume that the matrix coefficients 𝒫−1
0 , 𝒫1 and 𝒬0 of the expression 𝑙[𝑦] (see

(5)) satisfy Condition (𝐵′). Then Statements 1 and 2 of Theorem 2 are true for the equation
𝑙[𝑦] = 𝜆𝑦.

4. Examples

4.1. In the proof of Theorem 2 we have obtained the asymptotic formulae for some fundamental
system of solutions of equation (3) as 𝑥 → ∞ and these asymptotic formulae are true without
assumption that the coefficients of the expression 𝑙[𝑦] are Hermitian. They are surely of an
independent interest.

Below we give the formulation of the corresponding result for a particular simplest case of
expression (5), namely, the following theorem holds true.
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Theorem 4. Let𝜈 > 0, 𝑃0 be a constant matrix such that det𝑃0 ̸= 0, the matrix function
𝑃1(𝑥) satisfies the condition 𝑥−1(‖𝑃1(𝑥)‖ + ‖𝑃1(𝑥)‖2) ∈ 𝐿1(𝐼) and 𝜆 is a non-zero complex
number. Then the vector equation

(𝑥𝜈+2𝑃0𝑦
′)′ + (𝑥𝜈+1𝑃1(𝑥))′𝑦 = 𝜆𝑦

has a fundamental system of solutions 𝑦𝑗 (𝑗 = 1, 2, . . . , 2𝑛), which as 𝑥 → ∞ can be represented
as

𝑦𝑗 = 𝑐𝑗 + 𝑜(1), 𝑦𝑛+𝑗 = 𝑥−(𝜈+1)(𝑐𝑛+𝑗 + 𝑜(1)),

where 𝑐𝑗 and 𝑐𝑛+𝑗 (𝑗 = 1, 2, . . . , 𝑛) are linearly independent systems of 𝑛-dimensional vectors.

We point out that Theorem 4 ensures the above given asymptotic formulae for the vector
equation 𝑙[𝑦] = 𝜆𝑦, where

𝑙[𝑦](𝑥) = −(𝑃𝑦′)′ + 𝑄𝑦, 𝑥 ∈ 𝐼, (15)

𝑃 (𝑥) = 𝑥𝜈+2𝑃0 and 𝑄(𝑥) = (𝑥𝜈+1𝑃1(𝑥))′. Thus, the coefficient 𝑄 in expression (15) can be
highly oscillating.

4.2. We provide some particular examples of realization of various deficiency numbers for the
operator 𝐿0. In expression (1) we let 𝑛 = 2 and 𝑅(𝑥) = 𝑂. Then it is written as (15) and the
matrix functions 𝑃 (𝑥) and 𝑄(𝑥) satisfy Condition (B) of Subsection 3.2. Simple calculations
show that

ℱ(𝑧, 𝜈) =

[︃(︁
𝑧 +

𝜈

2

)︁2

−
(︂
𝜈 + 1

2

)︂2
]︃2

−

[︃(︁
𝑧 +

𝜈

2

)︁2

−
(︂
𝜈 + 1

2

)︂2
]︃

sp (𝑃0𝑄0) + det (𝑃0𝑄0).

The polynomial ℱ(𝑧, 𝜈) is obviously an arbitrary quadratic trinomial w.r.t.
[︁(︀
𝑧 + 𝜈

2

)︀2 − (︀
𝜈+1
2

)︀2]︁
and this is why by choosing the entries of the constant matrices 𝑃0 and 𝑄0, the number of the
roots of this polynomial can be any of the numbers 2, 3 and 4. Thus, it is easy to construct
examples with minimal, not maximal and maximal deficiency index for the operator 𝐿0. For
instance, letting sp (𝑃0𝑄0) = 0 and det𝑄0 = 0, we obtain the limit-point case for the operator
𝐿0. Assume now that sp (𝑃0𝑄0) = −2 and det (𝑃0𝑄0) = 1, then the deficiency index of the
operator 𝐿0 is equal to (4, 4) as 0 < 𝜈 < 1 and to (3, 3) as 𝜈 > 1.
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