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CONFORMAL MAPPINGS OF CIRCULAR DOMAINS ON

FINITELY-CONNECTED NON-SMIRNOV TYPE DOMAINS

F.G. AVKHADIEV, P.L. SHABALIN

Abstract. We consider a canonical factorization and integral representation for the deriva-
tives of the conformal mappings of circular domains on finitely-connected non-Smirnov type
domains. By means of the functions in the Zygmund class, we obtain the conditions for
the global univalence. Earlier similar results were obtained by a series of authors just for
simply-connected domains.
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1. Introduction

We consider conformal mappings 𝑓 : 𝐷 → Ω of the unit circle 𝐷 = {𝑧 ∈ C : |𝑧| < 1}
on Jordan domains Ω with rectifiable boundaries. It is know that [1] that 𝑓 ′ belongs to the
Hardy class 𝐻1(𝐷) by the Riesz theorem and the Smirnov canonical representation holds. This
representation is determined by the formulae 𝑓 ′ = 𝑒𝑖𝛾(𝑓 ′)𝑒𝑥𝑡(𝑓 ′)𝑖𝑛𝑡,

ln(𝑓 ′)𝑒𝑥𝑡(𝑧) =
1

2𝜋

𝜋∫︁
−𝜋

1 + 𝑧𝑒−𝑖𝜃

1 − 𝑧𝑒−𝑖𝜃
ln |𝑓 ′(𝑒𝑖𝜃)|𝑑𝜃, ln(𝑓 ′)𝑖𝑛𝑡(𝑧) =

1

2𝜋

𝜋∫︁
−𝜋

1 + 𝑧𝑒−𝑖𝜃

1 − 𝑧𝑒−𝑖𝜃
𝑑𝜇(𝜃), (1.1)

where 𝛾 = 𝑐𝑜𝑛𝑠𝑡 ∈ R, 𝜇 is a continuous increasing function, whose derivative is zero almost
everywhere. In 1928, V.I. Smirnov [2] considered first the class of the domains Ω characterized
by the absence of the singular factor, that is, by the identity (𝑓 ′)𝑖𝑛𝑡(𝑧) ≡ 1. M.V. Keldysh and
M.A. Lavrentiev [3] constructed geometrically an example of a domain Ω, for which (𝑓 ′)𝑒𝑥𝑡(𝑧) ≡
1 and in this way they proved the existence of non-Smirnov domains. A more general analytic
approach for constructing non-Smirnov domains was proposed by Duren, Shapiro and Shields
in 1966 [4] by applying a series of interesting facts from various fields of the theory of functions.
In particular, they employed the functions obeying the Zygmund conditions [5]

|𝜈(𝜃 + 𝜏) − 2𝜈(𝜃) + 𝜈(𝜃 − 𝜏)| = 𝑂(𝜏)

to characterize the function

𝜈(𝜃) = 𝜇(𝜃) +

∫︁ 𝜃

0

ln |𝑓 ′(𝑒𝑖𝑡)|𝑑𝑡

and Ahlfors-Weill condition [6]

sup
𝑧∈𝐷

(︀
1 − |𝑧|2

)︀2 ⃒⃒⃒
(𝑓 ′′(𝑧)/𝑓 ′(𝑧))

′ − (1/2) (𝑓 ′′(𝑧)/𝑓 ′(𝑧))
2
⃒⃒⃒
< 2 (1.2)
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ensuring the global univalence for the conformal mapping 𝑓 : 𝐷 → C and the quasi-conformal
continuability of the mapping 𝑓 on the entire plane. The developing of the results in [4] with
applications to the theory of general and applied inverse boundary value problems was given
in works [7] and [8] by the authors.
As N.G. Makarov noted in 1989 [9], the question on a complete characterization of Smirnov

domains is still open. There is still no general criterium, while in this direction there is a series
of interesting results. Among them we can distinguish the solution of a complicated problem
obtained by P.W. Jones and S.K. Smirnov in 1999 [10]: the non-Smirnov property of a domain
Ω does not imply the non-Smirnov property for its complement Ω− := C ∖ Ω. We note that
in [10] we employ essentially the results of the works [11] and [12] on local characterization of
the boundary of a domain by means of harmonic measures. The further development of these
results can be found in the paper by V.N. Dubinin [13].
There are well-known natural generalizations of Hardy classes and Smirnov factorization

theorems for finitely-connected domains. The history of the problems, original definitions and
the results of the factorization and integral representations for the multi-connected domains
are described in the papers by G.Ts. Tumarkin and S.Ya. Khavinson [14], [15], G.Ts. Tumarkin
[16] and D. Khavinson [17].
The aim of the present work is to generalize the results by Duren, Shapiro and Shields [4]

for finitely-connected domains and extension of our results from [7] and [8] for two-connected
domains. We also mention that the passage from simpy-connected domains to finitely-connected
domains makes no problems if we discuss the local properties of boundary curves with no explicit
estimates. But we shall be interesting in criterions for global univalence by boundary data
and we have to deal with sophisticated integral representations and related estimates. And
moreover, we need appropriate generalization of the aforementioned Ahlfors-Weill condition
(1.2) for the global univalence. To obtain the conditions for the univalence, we shall employ
essentially the methods and the results of works [18]–[23].

2. Preliminaries

We introduce some notations and definitions. Let 𝐷𝑛 be a circular (that is, each connected
boundary component is a circle) 𝑛-connected domain with non-degenerate boundary compo-
nents 𝛾𝑘 = {𝑧 : |𝑧 − 𝑎𝑘| = 𝑅𝑘}, 𝑘 = 1, 𝑛, and 𝑎𝑛 = 0, 𝑅𝑛 = 1 and the circle 𝛾𝑛 = {𝑧 : |𝑧| = 1}
envelops the others.

Definition 1. (see [14]). The Hardy class 𝐻1(𝐷𝑛) is the set of holomorphic in 𝐷𝑛 functions
𝑔 such that given 𝑔 and 𝛾𝑘, 𝑘 = 1, 𝑛, there exists a sequence of circles 𝛾𝑗

𝑘 ⊂ 𝐷𝑛, 𝑗 = 1, 2, . . .,

satisfying the conditions 𝛾𝑗
𝑘 → 𝛾𝑘 and

sup
𝑗

∫︁
𝛾𝑗
𝑘

|𝑔(𝑧)𝑑𝑧| < ∞. (2.1)

Let 𝑓 make a univalent mapping of 𝐷𝑛 onto some domain Ω𝑛. We assume that the function

𝑓 is holomorphic in 𝐷𝑛 and can be continuously continued to the boundary 𝜕𝐷𝑛 =
𝑛⋃︀

𝑘=1

𝛾𝑘 and

this mapping is continued to a homeomorphism of the boundaries. In the case 𝑛 > 1 there
exist two equivalent definitions of Smirnov class; the equivalence was proved in [14].

Definition 2. [14] A domain Ω𝑛 with a Jordan rectifiable boundary is called a domain of
Smirnov class if one of the following conditions is satisfied:

a) the function ln 𝑓 ′ is represented by the Schwarz operator applied to the limiting values
ln 𝑓 ′(𝜁𝑘), 𝜁𝑘 = 𝑎𝑘 + 𝑅𝑘𝑒

𝑖𝜃, 𝑘 = 1, 𝑛;
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b) domains Ω𝑛𝑘, 𝑘 = 1, 𝑛, belong to Smirnov class, where Ω𝑛𝑘 is a simply connected domain

with the boundary Γ𝑘 = 𝑓(𝛾𝑘) and Ω𝑛𝑘 ⊃ Ω𝑛,
𝑛⋂︀

𝑘=1

Ω𝑛𝑘 = Ω𝑛.

Representation (1.1) just expresses that 𝑓 ′(𝑧) ̸= 0 and 𝑓 ′ ∈ 𝐻1(𝐷1), and this is why the
function 𝑓 can be non univalent in𝐷1 ≡ 𝐷 also in the case 𝜇(𝜃) ≡ 0. There are numerous studies
providing various additional restrictions for ln |𝑓 ′(𝑒𝑖𝜃)| as 𝜇(𝜃) ≡ 0 to ensure the univalence for
𝑓 in 𝐷1. For the case 𝜇(𝜃) ̸≡ 0, in papers [4], [7] and [8] there was established the relation
between global univalence 𝑓 with the belonging of 𝜈 to the Zygmund class Λ(𝐾), that is,
|𝜈(𝜃 + ℎ) − 2𝜈(𝜃) + 𝜈(𝜃 − ℎ)| 6 𝐾ℎ; the relation was expressed in terms of restrictions for the
constant 𝐾 > 0.
Following G.Ts. Tumarkin [16] and D. Khavinson [17], we obtain a convenient for us formula

recovering the values of the function 𝑔 = 𝑓 ′ in the class 𝐻1(𝐷𝑛) by a known up to a zero set
measure absolute value of the boundary values Φ𝑘(𝜃) = |𝑔(𝜁𝑘(𝜃))|, 𝜁𝑘(𝜃) = 𝑎𝑘 +𝑅𝑘𝑒

𝑖𝜃, 𝑘 = 1, 𝑛.
We note that in the simply-connected case 𝑛 = 1 the proof of the structural formula for the
class 𝐻1 was given by V.I. Smirnov and is related with constructing the best possible analytic
majorant for some family of analytic functions. This result on constructing the majorants was
generalized by G.Ts. Tumarkin [16]. We describe briefly the main result. Let 𝐻 be a family of
functions 𝑔 analytic in a finitely-connected domain Ω𝑛, Ω𝑗

𝑛 be a sequence of domains converging
to Ω as 𝑗 → ∞ such that∫︁

Γ𝑗

sup
𝑔∈𝐻

ln+ |𝑔(𝑧)|𝜕𝐺𝑗(𝑧, 𝑧0)

𝜕𝑛
𝑑𝑠 6 𝐶 < ∞, 𝑗 = 1, 2, . . . . (2.2)

Here Γ𝑗 is the boundary of the domain Ω𝑗
𝑛, 𝐺𝑗(𝑧, 𝑧0) is the Green function of the domain Ω𝑗

𝑛 with
the pole at a point 𝑧0 ∈ Ω𝑗

𝑛, 𝑗 = 1, 2, . . . . we denote by 𝑢 the best possible harmonic majorant
of subharmonic function sup

𝑔∈𝐻
ln |𝑔(𝑧)|. Let 𝑣 be the conjugate harmonic function. Then, if

𝑔(𝑧) = exp{𝑢(𝑧) + 𝑖𝑣(𝑧)} is single-valued in Ω𝑛, it is the best possible analytic majorant of the
family 𝐻. If the constructed function 𝑔 is multiple-valued, the best possible analytic majorant
does not exist. Let us consider the class 𝐻1(𝐷𝑛) from this point of view. Condition (2.1)
ensures inequality (2.2). Therefore, there exists the best possible harmonic majorant 𝑢, but at
that, the constructed function 𝑔 can turn out to be multi-valued. We consider non-negative
functions Φ1,Φ2, . . . ,Φ𝑛 satisfying the conditions

Φ𝑘 ∈ 𝐿1[−𝜋, 𝜋], ln Φ𝑘 ∈ 𝐿1[−𝜋, 𝜋],∑︁
𝑗 ̸=𝑘

1

2𝜋

𝜋∫︁
−𝜋

Φ𝑗(𝜃)𝑃𝑗(𝑧𝑘, 𝑧𝑗(𝜃))𝑑𝜃 = 𝐴, 𝑘 = 1, 𝑛, 𝐴 = 𝑐𝑜𝑛𝑠𝑡, (2.3)

where 𝑃𝑗(𝑧, 𝑧𝑗) = Re𝑆𝑗(𝑧, 𝑧𝑗), {𝑆𝑗(𝑧, 𝑧𝑗)}𝑛𝑗=1 is the Schwarz kernel for the circular domain
𝐷𝑛 proposed by V.A. Zmorovich (see, for instance, [17]). By Φ(𝐷𝑛) we denote the subclass
𝐻1(𝐷𝑛) of functions 𝑔 with the single-valued logarithm such that almost everywhere in 𝛾, the
inequality |𝑔𝑘(𝑧𝑘(𝜃))| 6 Φ𝑘(𝜃), 𝑘 = 1, 𝑛, holds true. The best possible harmonic majorant for

sup
𝑔∈Φ(𝐷𝑛)

{ln |𝑔(𝑧)|} is

𝑢(𝑧) =
𝑛∑︁

𝑘=1

1

2𝜋

𝜋∫︁
−𝜋

Φ𝑘(𝜃)𝑃𝑘(𝑧, 𝑧𝑘(𝜃))𝑑𝜃 − 𝐴, 𝑧 ∈ 𝐷𝑛.
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By relation (2.3), the analytic function 𝑔 defined by the identity

𝑔(𝑧) = exp

{︂ 𝑛∑︁
𝑘=1

1

2𝜋

𝜋∫︁
−𝜋

Φ𝑘(𝜃)𝑆𝑘(𝑧, 𝑧𝑘(𝜃))𝑑𝜃 − 𝐴

}︂
. (2.4)

is single-valued in 𝐷𝑛. Its logarithm ln 𝑔(𝜁) is also single-valued.
Assume now that 𝑔 ∈ 𝐻1(𝐷𝑛). It is known that almost everywhere in 𝛾𝑘 there exist the

angular boundary values Φ𝑘(𝜃) = |𝑔𝑘(𝑧𝑘(𝜃))| and Φ𝑘 and ln Φ𝑘 are summable functions. To
transform the analytic function ln 𝑔 to the single-valued form, we consider the function defined
by the identity

Θ(𝑧) =
𝑛∏︁

𝑘=1

[Θ𝑘(𝑧)]−𝛼𝑘 .

Here Θ𝑘 maps conformally but not univalently the domain 𝐷𝑛 on the domain 𝑞𝑘 < |𝑤| < 1 and
the circle |𝑤| = 𝑞𝑘 is in one-to-one correspondence with the circle 𝛾𝑘. As it was proved in work
[15], there exists the unique choice of numbers 𝛿, 𝛼𝑘, such that ln𝐹 , 𝐹 (𝑧) = 𝑧−𝛿𝑔(𝑧)Θ(𝑧), is a
single-valued analytic function. The function 𝐹 possesses angular boundary values |𝐹 (𝑧𝑘(𝜃))| =
|𝑧𝑘(𝜃)|−𝛿Φ𝑘(𝜃)𝑞−𝛼𝑘

𝑘 almost everywhere in 𝛾𝑘 and these values satisfy conditions (2.3). Therefore,
𝐹 can be represented as 𝐹 (𝑧) = 𝑒𝑖𝛽𝑔(𝑧)𝜎(𝑧), where 𝑔 is the function of the maximal absolute
value (2.4), a holomorphic in 𝐷𝑛 function ln𝜎 belongs to the Carathéodory class and hence, it
can be represented by the formula

𝜎(𝑧) = exp

{︂ 𝑛∑︁
𝑘=1

1

2𝜋

𝜋∫︁
−𝜋

𝑆𝑘(𝑧, 𝑧𝑘(𝜃))𝑑𝜈𝑘(𝜃) −𝐵

}︂
, 𝐵 =

∑︁
𝑗 ̸=𝑘

1

2𝜋

𝜋∫︁
−𝜋

𝑃𝑗(𝑧𝑘, 𝑧𝑗(𝜃))𝑑𝜈𝑗(𝜃), (2.5)

𝑘 = 1, 𝑛, 𝜈𝑗(𝜃) is a non-decreasing singular function. Thus, the following statement holds true:
each function 𝑔 = 𝑓 ′ in the class 𝐻1(𝐷𝑛) can be represented as

𝑔(𝑧) = 𝑒𝑖𝛽𝑧𝛿Θ−1(𝑧)𝑔(𝑧)𝜎(𝑧), (2.6)

where 𝜎 is a holomorphic in 𝐷𝑛 function of form (2.5), 𝑔 is a function with representation
(2.4) maximal for the set |𝑧𝑘(𝜃)|−𝛿Φ𝑘(𝜃)𝑞−𝛼𝑘

𝑘 , 𝑘 = 1, 𝑛, 𝑧𝛿Θ−1(𝑧) selects the multi-valued part
of ln 𝑔(𝑧).

3. Conditions of univalence for the mapping of an annulus

Assume that the function 𝑓 is holomorphic in the annulus 𝐷2 ≡ 𝐸(𝑞, 1) = {𝑧 ∈ C : 𝑞 <
|𝑧| < 1} and can be continuously continued to the circumference |𝜁| = 𝑞 ∈ (0, 1). Suppose that
𝑓 ′ ∈ 𝐻1(𝐸(𝑞, 1)), 𝑓 ′(𝑧) ̸= 0 for each point 𝑧 ∈ 𝐸(𝑞, 1). Then for each point 𝑧 ∈ 𝐸(𝑞, 1)

𝑓(𝑧) =

∫︁
exp

⎧⎨⎩ 1

2𝜋

𝜋∫︁
−𝜋

𝑃 (𝜃)𝑆𝑞(𝑞𝑧
−1𝑒𝑖𝜃)𝑑𝜃 +

1

2𝜋

𝜋∫︁
−𝜋

𝑆𝑞(𝑧𝑒
−𝑖𝜃)𝑑𝜇(𝜃) − 𝐴

⎫⎬⎭ 𝑑𝑧. (3.1)

Here 𝑆𝑞 is the Ville kernel, that is,

𝑆𝑞(𝑧) =
1 + 𝑧

1 − 𝑧
+

∞∑︁
𝜈=1

1 + 𝑞2𝜈𝑧

1 − 𝑞2𝜈𝑧
− 1 + 𝑞2𝜈𝑧−1

1 − 𝑞2𝜈𝑧−1
.

We suppose that the relation

1

2𝜋

𝜋∫︁
−𝜋

𝑃 (𝜃)𝑑𝜃 =
1

2𝜋

𝜋∫︁
−𝜋

𝑑𝜇(𝜃) = 𝐴 = 𝑐𝑜𝑛𝑠𝑡
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holds true, where 𝜇 is a non-increasing singular function with a derivative vanishing almost
everywhere, and 𝑃 is a continuous 2𝜋-periodic function. The singular function 𝜇 is continued
to the entire real line by the identity:

𝜇(𝜃 + 2𝜋) = 𝜇(𝜃) − 2𝜋𝛽, 𝜃 ∈ R, where 𝛽 = −(2𝜋)−1

∫︁ 2𝜋

0

𝑑𝜇(𝜃) > 0.

Let 𝛼 ∈ (0, 1), 𝐾 be a positive constant. We consider the following three classes of real-valued
functions:
a) 𝜆(𝐾) is the class of all 2𝜋-periodic functions 𝑃 satisfying the Lipschitz condition |𝑃 (𝜃 +

ℎ) − 𝑃 (𝜃)| 6 𝐾, where 𝜃, ℎ ∈ R;
b) Λ1+𝛼(𝐾) is the class of all 2𝜋-periodic functions 𝑃 satisfying the Zygmund condition of

order 1 + 𝛼 ∈ (1, 2):

|𝑃 (𝜃 + ℎ) − 2𝑃 (𝜃) + 𝑃 (𝜃 − ℎ)| 6 𝐾 ℎ1+𝛼 ∀𝜃, ℎ ∈ R;

c) Λ(𝐾) is the class of all singular functions 𝜇 satisfying the Zygmund condition of order 1:

|𝜇(𝜃 + ℎ) − 2𝜇(𝜃) + 𝜇(𝜃 − ℎ)| 6 𝐾 ℎ 𝜃, ℎ ∈ R.

Let us obtain conditions for positive numbers 𝑞, 𝛽 and 𝐾 ensuring the univalence for mapping
(3.1). We shall need the inequalities

4 𝑞𝛽

(1 − 𝑞)2
+

𝐾

1 − 𝑞2

[︂(︂
𝜋

2

)︂𝛼

2𝑞 + (1 + 2𝑞)𝐵(𝛼)

]︂
< 1, (3.2)

4𝑞𝛽

(1 − 𝑞)2
+ 𝐾

[︂
1 +

(3 − 𝑞2)

(1 − 𝑞)2

(︁(︁𝜋
2

)︁𝛼
𝑞 + 𝐵(𝛼)

)︁
+

(︂
6, 6 +

17, 3𝑞

1 − 𝑞2

)︂
1 + 1, 8𝑞

1 − 𝑞2

]︂
< 1, (3.3)

where

𝐵(𝛼) =
1 + 𝛼

𝜋

𝜋∫︁
0

𝑡𝛼

sin 𝑡
𝑑𝑡.

Theorem 3.1. Let 𝛼, 𝑞 be numbers in the interval (0, 1). Let 𝑓 be the holomorphic function
defined by integral representation (3.1) in the annulus 𝐸(𝑞, 1), in which 𝑃 ∈ Λ1+𝛼(𝐾) and
𝜇 ∈ Λ(𝐾) for some 𝐾 > 0. The function 𝑓 is an univalent conformal mapping of 𝐸(𝑞, 1) if
the numbers 𝐾 > 0 and 𝑞𝛽 > 0 are small enough, namely, if they satisfy inequalities (3.2) and
(3.3).

In order to prove the main result of this section, we shall need a series of auxiliary estimates.
Let

𝑔1(𝑧) =
1

2𝜋

𝜋∫︁
−𝜋

𝑃 (𝜃)𝑆𝑞(𝑞𝑧
−1𝑒𝑖𝜃)𝑑𝜃, 𝑔2(𝑧) =

1

2𝜋

𝜋∫︁
−𝜋

𝑆𝑞(𝑧𝑒
−𝑖𝜃)𝑑𝜇(𝜃), 𝑧 ∈ 𝐸(𝑞, 1).

Lemma 3.1. Let 𝑧 = 𝑟𝑒𝑖𝜙 ∈ 𝐸(𝑞, 1). If 𝑃 ∈ 𝜆(𝐾), then the inequality⃒⃒⃒
Re

𝜕

𝜕𝜙
𝑔1(𝑟𝑒

𝑖𝜙)
⃒⃒⃒
6 𝐾

holds true. If 𝑃 ∈ Λ1+𝛼(𝐾), then⃒⃒⃒
Im

𝜕

𝜕𝜙
𝑔1(𝑟𝑒

𝑖𝜙)
⃒⃒⃒
6

𝐾(3 − 𝑞2)

1 − 𝑞2

[︁(︁𝜋
2

)︁𝛼
𝑞 + 𝐵(𝛼)

]︁
, 𝐵(𝛼) =

1 + 𝛼

𝜋

𝜋∫︁
0

𝑡𝛼

sin 𝑡
𝑑𝑡.
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Proof. Letting

𝑆𝑞(𝑟𝑒
𝑖𝑡) = 𝑃𝑞(𝑟, 𝑡) + 𝑖𝑄𝑞(𝑟, 𝑡), 𝑃𝑞(𝑟, 𝑡) = 𝑃 (𝑟, 𝑡) + 𝑃 0

𝑞 (𝑟, 𝑡),

𝑃 (𝑟, 𝑡) =
1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos 𝑡
, 𝑃 0

𝑞 (𝑟, 𝑡) =
∞∑︁
𝑗=1

[𝑃 (𝑞2𝑗𝑟, 𝑡) − 𝑃 (𝑞2𝑗/𝑟, 𝑡)],

for a harmonic in 𝐸(𝑞, 1) function 𝜕
𝜕𝜙

Re 𝑔1(𝑧), 𝑧 = 𝑟𝑒𝑖𝜙, we obtain the representation

𝜕

𝜕𝜙
Re 𝑔1(𝑧) = − 1

2𝜋

𝜋∫︁
−𝜋

𝑃 (𝜙 + 𝑡)
𝜕

𝜕𝑡
𝑃𝑞(𝑞/𝑟, 𝑡)𝑑𝑡,

in which we denote 𝑡 = 𝜃 − 𝜙. Replacing 𝑡 by −𝑡, in view of the oddness of the function
𝜕
𝜕𝑡
𝑃𝑞(𝑞/𝑟, 𝑡) we obtain

𝜕

𝜕𝜙
Re 𝑔1(𝑧) =

1

2𝜋

𝜋∫︁
−𝜋

𝑃 (𝜙− 𝑡)
𝜕

𝜕𝑡
𝑃𝑞(𝑞/𝑟, 𝑡)𝑑𝑡.

Therefore,

𝜕

𝜕𝜙
Re 𝑔1(𝑧) = − 1

2𝜋

𝜋∫︁
−𝜋

[𝑃 (𝜙 + 𝑡) − 𝑃 (𝜙− 𝑡)]
𝜕

𝜕𝑡
𝑃𝑞(𝑞/𝑟, 𝑡)𝑑𝑡.

Employing the inequality 𝜕
𝜕𝑡
𝑃𝑞(𝑟, 𝑡) < 0 [24], we estimate the absolute value:⃒⃒⃒⃒

𝜕

𝜕𝜙
Re 𝑔1(𝑧)

⃒⃒⃒⃒
6

𝐾

𝜋

𝜋∫︁
0

𝑡

⃒⃒⃒⃒
𝜕

𝜕𝑡
𝑃𝑞(𝑞/𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡 = −𝐾 𝑃𝑞(𝑞/𝑟, 𝜋) +

𝐾

𝜋

𝜋∫︁
0

𝑃𝑞(𝑞/𝑟, 𝑡)𝑑𝑡.

To complete the proof of the first statement of the lemma it remains to observe that

𝜋∫︁
0

𝑃𝑞(𝜌, 𝑡)𝑑𝑡 = 𝜋, 𝑞 < 𝜌 < 1.

Assume that 𝑃 ∈ Λ1+𝛼(𝐾). It is easy to check the identity

𝜕

𝜕𝜙
Im 𝑔1(𝑧) = − 1

2𝜋

𝜋∫︁
−𝜋

𝑃 (𝜃)
𝜕

𝜕𝜃
𝑄𝑞(𝑞/𝑟, 𝜃 − 𝜙)𝑑𝜃,

where

𝑄𝑞(𝜌, 𝑡) = 𝑄(𝜌, 𝑡) + 𝑄0
𝑞(𝜌, 𝑡), 𝑄(𝜌, 𝑡) =

2𝜌 sin 𝑡

1 + 𝜌2 − 2𝜌 cos 𝑡
,

𝑄0
𝑞(𝜌, 𝑡) =

∞∑︁
𝜈=1

𝑄(𝑞2𝜈𝜌, 𝑡) + 𝑄(𝑞2𝜈/𝜌, 𝑡).

Employing the oddness of the function 𝜕
𝜕𝑡
𝑄𝑞(𝑞/𝑟, 𝑡) and the identity

𝜋∫︁
−𝜋

𝜕

𝜕𝑡
𝑄𝑞(𝜌, 𝑡)𝑑𝑡 = 0, 𝑞 < 𝜌 < 1,
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we transform the formula for 𝜕
𝜕𝜙

Im 𝑔1(𝑧) to the form

𝜕

𝜕𝜙
Im 𝑔1(𝑧) = − 1

4𝜋

𝜋∫︁
−𝜋

[𝑃 (𝜙 + 𝑡) − 2𝑃 (𝜙) + 𝑃 (𝜙− 𝑡)]
𝜕

𝜕𝑡
𝑄𝑞(𝑞/𝑟, 𝑡)𝑑𝑡.

This implies the inequality⃒⃒⃒⃒
𝜕

𝜕𝜙
Im 𝑔1(𝑧)

⃒⃒⃒⃒
6

𝐾

2𝜋

𝜋∫︁
0

𝑡1+𝛼
⃒⃒⃒ 𝜕
𝜕𝑡

𝑄𝑞(𝑞/𝑟, 𝑡)
⃒⃒⃒
𝑑𝑡,

which we represent as⃒⃒⃒⃒
𝜕

𝜕𝜙
Im 𝑔1(𝑧)

⃒⃒⃒⃒
6

𝐾

2𝜋
[𝐼1(𝑞/𝑟, 𝛼) + 𝐼2(𝑞/𝑟, 𝛼)], (3.4)

𝐼1(𝜌, 𝛼) =

𝜋∫︁
0

𝑡1+𝛼
⃒⃒⃒ 𝜕
𝜕𝑡

𝑄(𝜌, 𝑡)
⃒⃒⃒
𝑑𝑡, 𝐼2(𝜌, 𝛼) =

𝜋∫︁
0

𝑡1+𝛼
⃒⃒⃒ 𝜕
𝜕𝑡

𝑄0
𝑞(𝜌, 𝑡)

⃒⃒⃒
𝑑𝑡,

𝜕

𝜕𝑡
𝑄(𝜌, 𝑡) =

(1 + 𝜌2)2𝜌 cos 𝑡− 4𝜌2

(1 + 𝜌2 − 2𝜌 cos 𝑡)2
, 𝑞 < 𝜌 < 1,

𝜕

𝜕𝑡
𝑄0

𝑞(𝑞/𝑟, 𝑡) =
∞∑︁
𝜈=1

[︂
𝜕

𝜕𝑡
𝑄(𝑞2𝜈𝑟, 𝑡) +

𝜕

𝜕𝑡
𝑄(𝑞2𝜈/𝑟, 𝑡)

]︂
. (3.5)

We rewrite the formula for 𝐼1(𝜌, 𝛼) as

𝐼1(𝜌, 𝛼) =

𝜏∫︁
0

𝑡1+𝛼 𝜕

𝜕𝑡
𝑄(𝜌, 𝑡)𝑑𝑡−

𝜋∫︁
𝜏

𝑡1+𝛼 𝜕

𝜕𝑡
𝑄(𝜌, 𝑡)𝑑𝑡,

where 𝜏 = arcsin(1 − 𝜌2)/(1 + 𝜌2). By the integration by parts we obtain

𝐼1(𝜌, 𝛼) = 2𝜏 1+𝛼𝑄(𝜌, 𝜏) + (1 + 𝛼)

𝜋∫︁
𝜏

𝑡𝛼𝑄(𝜌, 𝑡)𝑑𝑡− (1 + 𝛼)

𝜏∫︁
0

𝑡𝛼𝑄(𝜌, 𝑡)𝑑𝑡.

By the identity 𝑄(𝜌, 𝜏) = 2𝜌/(1 − 𝜌2) we get

𝐼1(𝜌, 𝛼) 6 2𝜌
𝜋1+𝛼(1 − 𝜌2)𝛼

2𝛼(1 + 𝜌2)1+𝛼
+ (1 + 𝛼)

𝜋∫︁
0

𝑡𝛼𝑄(𝜌, 𝑡)𝑑𝑡. (3.6)

Letting 𝜌 = 𝑞/𝑟 in (3.6) and estimating the right hand side by means with the the inequality
𝑄(𝜌, 𝑡) < 2𝜌/ sin 𝑡, we obtain

𝐼1(𝑞/𝑟, 𝛼) < 2𝜋
[︁(︁𝜋

2

)︁𝛼
𝑞 + 𝐵(𝛼)

]︁
. (3.7)

In order to estimate 𝐼2(𝑞/𝑟, 𝛼), we observe that series (3.5) converges absolutely and uniformly
and hence, we can write the inequality

𝐼2(𝑞/𝑟, 𝛼) <
∞∑︁
𝜈=1

𝜋∫︁
0

𝑡1+𝛼

⃒⃒⃒⃒
𝜕

𝜕𝑡
𝑄(𝑞2𝜈𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡 +

∞∑︁
𝜈=1

𝜋∫︁
0

𝑡1+𝛼

⃒⃒⃒⃒
𝜕

𝜕𝑡
𝑄(𝑞2𝜈/𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡.

By this inequality and (3.6) we obtain the estimate

𝐼2(𝑞/𝑟, 𝛼) <
𝜋1+𝛼

2𝛼

∞∑︁
𝜈=1

𝑞2𝜈
(1 − 𝑞4𝜈+2)𝛼

(1 + 𝑞4𝜈+2)1+𝛼
+

𝜋1+𝛼

2𝛼

∞∑︁
𝜈=1

𝑞2𝜈−1 (1 − 𝑞4𝜈)𝛼

(1 + 𝑞4𝜈)1+𝛼
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+ (1 + 𝛼)
∞∑︁
𝜈=1

𝜋∫︁
0

𝑡𝛼𝑄(𝑞2𝜈𝑟, 𝑡)𝑑𝑡 + (1 + 𝛼)
∞∑︁
𝜈=1

𝜋∫︁
0

𝑡𝛼𝑄(𝑞2𝜈/𝑟, 𝑡)𝑑𝑡.

This implies the relation

𝐼2(𝑞/𝑟, 𝛼) <
4𝜋𝑞

1 − 𝑞2

[︁(︁𝜋
2

)︁𝛼
+ 𝐵(𝛼)

]︁
.

Substituting the latter inequality and inequality (3.7) into (3.4), we arrive at the second state-
ment of the lemma.

Lemma 3.2. Let 𝑧 = 𝑟𝑒𝑖𝜙 ∈ 𝐸(𝑞, 1). If 𝜇 ∈ Λ(𝐾), then the identity⃒⃒⃒⃒
Re

𝜕

𝜕𝜙
𝑔2(𝑟𝑒

𝑖𝜙)

⃒⃒⃒⃒
6 𝐾

0, 4(1 + 𝑟) + 2, 1𝑞/(1 − 𝑞)

1 − 𝑟

holds true.

Proof. We take the derivative w.r.t. 𝜙 of the both sides of the identity

Re 𝑔2(𝑧) = − 1

2𝜋

𝜋∫︁
−𝜋

𝜇(𝜃)
𝜕

𝜕𝜃
𝑃𝑞(𝑟, 𝜃 − 𝜙)𝑑𝜃, 𝑧 = 𝑟𝑒𝑖𝜙.

and obtain

𝜕

𝜕𝜙
Re 𝑔2(𝑧) =

1

2𝜋

𝜋∫︁
−𝜋

𝜇(𝜃)
𝜕2

𝜕𝜃2
𝑃𝑞(𝑟, 𝜃 − 𝜙)𝑑𝜃, 𝑧 = 𝑟𝑒𝑖𝜙.

Employing the evenness of the function 𝜕2

𝜕𝜃2
𝑃𝑞(𝑟, 𝜃 − 𝜙), we represent the latter formula as

𝜕

𝜕𝜙
Re 𝑔2(𝑧) =

1

2𝜋

𝜋∫︁
0

[𝜇(𝜙 + 𝑡) − 2𝜇(𝜙) + 𝜇(𝜙− 𝑡)]
𝜕2

𝜕𝑡2
𝑃𝑞(𝑟, 𝑡)𝑑𝑡, 𝑧 = 𝑟𝑒𝑖𝜙.

Since the function 𝜇 belongs to the class Λ(𝐾), we obtain the inequality⃒⃒⃒⃒
𝜕

𝜕𝜙
Re 𝑔2(𝑧)

⃒⃒⃒⃒
6

𝐾

2𝜋

𝜋∫︁
0

𝑡

⃒⃒⃒⃒
𝜕2

𝜕𝑡2
𝑃𝑞(𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡.

Using the expansion
𝜕2

𝜕𝑡2
𝑃𝑞(𝑟, 𝑡) =

𝜕2

𝜕𝑡2
𝑃 (𝑟, 𝑡) +

𝜕2

𝜕𝑡2
𝑃 0
𝑞 (𝑟, 𝑡),

we write ⃒⃒⃒⃒
𝜕

𝜕𝜙
Re 𝑔2(𝑧)

⃒⃒⃒⃒
6 𝐼1(𝑟) + 𝐼2(𝑟), 𝑧 = 𝑟𝑒𝑖𝜙,

where

𝐼1(𝑟) =
𝐾

2𝜋

𝜋∫︁
0

𝑡

⃒⃒⃒⃒
𝜕2

𝜕𝑡2
𝑃 (𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡, 𝐼2(𝑟) =

𝐾

2𝜋

𝜋∫︁
0

𝑡

⃒⃒⃒⃒
𝜕2

𝜕𝑡2
𝑃 0
𝑞 (𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡.

Following work [7], we obtain the inequalities

𝐼1(𝑟) 6
0, 4𝐾(1 + 𝑟)

1 − 𝑟
, 𝐼1(𝑟) 6 𝑟

2, 1𝐾

1 − 𝑟
. (3.8)

Taking into consideration the formula

𝜕2

𝜕𝑡2
𝑃 0
𝑞 (𝑟, 𝑡) =

∞∑︁
𝑗=1

[︂
𝜕2

𝜕𝑡2
𝑃 (𝑟𝑞2𝑗, 𝑡) − 𝜕2

𝜕𝑡2
𝑃 (𝑞2𝑗/𝑟, 𝑡)

]︂
,
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in which the series are majorized by the geometric progression with the general term
12𝑞2𝑗−1/(1 − 𝑞)3 and they hence converge absolutely and uniformly for 𝑞 6 𝑟 6 1, we obtain
the following inequality for 𝐼2(𝑟):

𝐼2(𝑟) 6
∞∑︁
𝑗=1

⎛⎝𝐾

2𝜋

𝜋∫︁
0

𝑡

⃒⃒⃒⃒
𝜕2

𝜕𝑡2
𝑃 (𝑟𝑞2𝑗, 𝑡)

⃒⃒⃒⃒
𝑑𝑡 +

𝐾

2𝜋

𝜋∫︁
0

𝑡

⃒⃒⃒⃒
𝜕2

𝜕𝑡2
𝑃 (𝑞2𝑗/𝑟, 𝑡)

⃒⃒⃒⃒
𝑑𝑡

⎞⎠ .

Employing the second inequality in (3.8), we write

𝐼2(𝑟) 6 2, 1𝐾
∞∑︁
𝑗=1

(︂
𝑟𝑞2𝑗

1 − 𝑟𝑞2𝑗
+

𝑞2𝑗/𝑟

1 − 𝑞2𝑗/𝑟

)︂
6 2, 1𝐾

∞∑︁
𝑗=1

𝑞𝑗

1 − 𝑞𝑗
<

2, 1𝐾 𝑞

(1 − 𝑞)2
.

By inequality (3.8) this implies the statement of the lemma.

Lemma 3.3. Let a function 𝐹 be holomorphic in the annulus 𝐸(𝑞, 1), be continuously con-
tinuable on the boundary circumference |𝑧| = 𝑞 and have the zero real part on the circumference
|𝑧| = 𝑞. If the inequality |Re𝐹 (𝑟𝑒𝑖𝜙)| 6 𝐶

(1−𝑟)
holds in the annulus 𝐸(𝑞, 1) with some constant

𝐶, then

|𝐹 (𝑧)| 6 8, 2𝐶(1 + 1, 8𝑞)

(1 − 𝑟)(1 − 𝑞2)
+ max

𝜙∈[−𝜋,𝜋]
| Im𝐹 (𝑞𝑒𝑖𝜙)|.

Proof. Let 𝜌 be some number obeying the condition 𝑞 < 𝜌 < 1, 𝑞 = 𝑞/𝜌. The function 𝐹 is
holomorphic in the annulus 𝐸(𝑞, 𝜌) ⊂ 𝐸(𝑞, 1) and is continuously continuable on the boundary
circumference |𝜁| = 𝜌. First we estimate the absolute value of the function 𝐹 , which we write
as

𝐹 ′(𝑧) =
1

2𝜋

𝜋∫︁
−𝜋

Re𝐹 (𝜌𝑒𝑖𝜃)

[︂
𝑑

𝑑𝑧
𝑆(𝜌−1𝑧𝑒−𝑖𝜃) +

𝑑

𝑑𝑧
𝑆0
𝑞 (𝜌−1𝑧𝑒−𝑖𝜃)

]︂
𝑑𝜃.

Since ⃒⃒⃒ 𝑑
𝑑𝑧

𝑆(𝜌−1𝑧𝑒−𝑖𝜃)
⃒⃒⃒

=
2𝜌

𝜌2 − 𝑟2
𝑃 (𝑟/𝜌, 𝜃 − 𝜙),⃒⃒⃒ 𝑑

𝑑𝑧
𝑆0
𝑞 (𝜌−1𝑧𝑒−𝑖𝜃)

⃒⃒⃒
6

∞∑︁
𝑗=1

[︂
2𝜌𝑞2𝑗

𝜌2 − 𝑟2𝑞4𝑗
𝑃 (𝑟𝑞2𝑗/𝜌, 𝜃 − 𝜙) +

2𝜌𝑞2𝑗

𝑟2 − 𝜌2𝑞4𝑗
𝑃 (𝜌𝑞2𝑗/𝑟, 𝜃 − 𝜙)

]︂
,

estimating the absolute values in the representation for 𝐹 ′(𝑧), we obtain

|𝐹 ′(𝑧)| 6 𝐶

1 − 𝜌

[︂
2𝜌

𝜌2 − 𝑟2
+

∞∑︁
𝑗=1

2𝜌𝑞2𝑗

𝜌2 − 𝑟2𝑞4𝑗
+

2𝜌𝑞2𝑗

𝑟2 − 𝜌2𝑞4𝑗

]︂
.

Taking into consideration the inequalities

∞∑︁
𝑗=1

2𝜌𝑞2𝑗

𝜌2 − 𝑟2𝑞4𝑗
6

2𝜌

𝜌2 − 𝑟2

∞∑︁
𝑗=1

𝑞2𝑗 =
2𝜌𝑞2

(𝜌2 − 𝑟2)(𝜌2 − 𝑞2)
,

∞∑︁
𝑗=1

2𝜌𝑞2𝑗

𝑟2 − 𝜌2𝑞4𝑗
6

2𝜌

𝑟2(1 − 𝑞2)

∞∑︁
𝑗=1

𝑞2𝑗 6
2𝜌𝑞2

𝑟2(𝜌2 − 𝑟2)(𝜌2 − 𝑞2)
,

we obtain the following estimate for |𝐹 ′(𝑧)|:

|𝐹 ′(𝑧)| 6 2𝐶𝜌

(1 − 𝜌)(𝜌2 − 𝑟2)

[︂
1 +

𝑞2

𝜌2 − 𝑞2
+

𝑞2

𝑟2(𝜌2 − 𝑞2)

]︂
.
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Choosing 𝜌 = (1 +
√

2𝑟)/(1 +
√

2) in this inequality, we obtain

|𝐹 ′(𝑧)| 6 8, 2𝐶

(1 − 𝑟)2

[︂
1 +

𝑞2

1 − 𝑞2
+

𝑞2

𝑟2(1 − 𝑞2)

]︂
.

Integrating the latter inequality w.r.t. the radius, we obtain the statement of the lemma.

Proof of Theorem 3.1. We consider the mapping of the annulus 𝐸(𝑞, 1) by function (3.1). We
assume that 𝑃 ∈ Λ1+𝛼(𝐾). The necessary and sufficient condition for the convexity of the
curve Γ𝑞, which the image of the circumference 𝛾𝑞 = {𝜁, 𝜁 = 𝑞𝑒𝑖𝜃, −𝜋 6 𝜃 6 𝜋} under the
mapping by the function 𝑓 , is the inequality

lim
𝑧→𝜁

Re 𝑧
𝑓 ′′(𝑧)

𝑓 ′(𝑧)
> −1, 𝜁 ∈ 𝛾𝑞. (3.9)

By formula (3.1) we obtain

𝑖𝑧
𝑓 ′′(𝑧)

𝑓 ′(𝑧)
=

𝜕

𝜕𝜙
𝑔1(𝑧) +

𝜕

𝜕𝜙
𝑔2(𝑧), 𝑧 = 𝑟𝑒𝑖𝜙.

This implies the representation

𝑖𝜁
𝑓 ′′(𝜁)

𝑓 ′(𝜁)
=

𝜕

𝜕𝜙
𝑔1(𝜁) +

𝜕

𝜕𝜙
𝑔2(𝜁), 𝜁 = 𝑞𝑒𝑖𝜙.

To ensure condition (3.9), it is sufficient to satisfy the inequalities⃒⃒⃒⃒
Im

𝜕

𝜕𝜙
𝑔1(𝜁) + Im

𝜕

𝜕𝜙
𝑔2(𝜁)

⃒⃒⃒⃒
< 1. (3.10)

Due to the inequality
𝜕

𝜕𝑡
𝑄𝑞(𝑞𝑒

𝑖𝑡) < 4𝑞/(1 − 𝑞)2,

for the function ⃒⃒⃒⃒
𝜕

𝜕𝜙
𝑔2(𝜁)

⃒⃒⃒⃒
=

1

2𝜋

𝜋∫︁
−𝜋

𝜕

𝜕𝜙
𝑄𝑞(𝑞𝑒

𝑖(𝜙−𝜃))𝑑𝜇(𝜃), 𝜁 = 𝑞𝑒𝑖𝜙

we obtain ⃒⃒⃒⃒
𝜕

𝜕𝜙
𝑔2(𝜁)

⃒⃒⃒⃒
6

4𝑞

(1 − 𝑞)2
𝛽, 𝜁 = 𝑞𝑒𝑖𝜙, 𝛽 =

1

2𝜋

𝜋∫︁
−𝜋

|𝑑𝜇(𝜃)|.

In view of inequality (3.6), by Lemma 1, for the function 𝜕
𝜕𝜙
𝑔1(𝜁) we have⃒⃒⃒⃒

Im
𝜕

𝜕𝜙
𝑔1(𝜁)

⃒⃒⃒⃒
6

𝐾

1 − 𝑞2

[︂(︂
𝜋

2

)︂𝛼

2𝑞 + (1 + 2𝑞)𝐵(𝛼)

]︂
.

Therefore, inequality (3.10) holds by condition (3.2).
By formula (3.1) we obtain the inequality⃒⃒⃒⃒

𝑧
𝑓 ′′(𝑧)

𝑓 ′(𝑧)

⃒⃒⃒⃒
<

⃒⃒⃒⃒
𝜕

𝜕𝜙
𝑔1(𝑧)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜕

𝜕𝜙
𝑔2(𝑧)

⃒⃒⃒⃒
, 𝑧 = 𝑟𝑒𝑖𝜙 ∈ 𝐸(𝑞, 1).

Employing the above obtained estimates, we write the inequality⃒⃒⃒⃒
𝑧
𝑓 ′′(𝑧)

𝑓 ′(𝑧)

⃒⃒⃒⃒
<

4 𝑞 𝛽

(1 − 𝑞)2
+ 𝐾

[︂
1 +

(3 − 𝑞2)

(1 − 𝑞)2

(︁(︁𝜋
2

)︁𝛼
𝑞 + 𝐵(𝛼)

)︁
+

(︂
6, 6 +

17, 3𝑞

1 − 𝑞2

)︂
1 + 1, 8𝑞

1 − 𝑞2

]︂
,

which together with condition (3.3) yields the inequality |𝑧𝑓 ′′(𝑧)/𝑓 ′(𝑧)| < (1 − |𝑧|2)−1 for each
point 𝑧 ∈ 𝐸(𝑞, 1).
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To complete the proof of Theorem 3.1 for a holomorphic in the annulus 𝐸(𝑞, 1) function 𝑓 , we
establish a sufficient condition for the univalence by the continuation method presented in [18],
see the proposition after this proof. This condition completes the prove of the theorem.

Proposition. Let a function 𝑓 be holomorphic in 𝐸(𝑞, 1), the harmonic function
Re[𝑧𝑓 ′′(𝑧)/𝑓 ′(𝑧)] be continuously continuable on the internal boundary |𝑧| = 𝑞. If

|𝑧𝑓 ′′(𝑧)/𝑓 ′(𝑧)| < 1/(1 − |𝑧|2), 𝑧 ∈ 𝐸(𝑞, 1), (3.11)
𝜋∫︁

−𝜋

Re[1 + 𝜁𝑓 ′′(𝜁)/𝑓 ′(𝜁)]𝑑𝜃 = 2𝜋, Re[1 + 𝜁𝑓 ′′(𝜁)/𝑓 ′(𝜁)] > 0, 𝜁 = 𝑞𝑒𝑖𝜃, (3.12)

then the function 𝑓 is univalent in 𝐸(𝑞, 1).

Proof. By condition (3.12), the image of the circumference 𝛾𝑞 := {|𝜁| = 𝑞} under the mapping
by the function 𝑓 is a closed convex curve Γ𝑞 passed once counterclockwise, when 𝜃 ranges
from −𝜋 to 𝜋. We choose a homeomorphism 𝑔 of the circle 𝐸𝑞 := {𝑧 : |𝑧| 6 𝑞} on the closed
bounded domain with the boundary Γ𝑞 satisfying the gluing condition 𝑓(𝑞𝑒𝑖𝜃) = 𝑔(𝑞𝑒𝑖𝜃). Let 𝑑
be some number 𝑞 < 𝑑 < 1. We define the mapping of the entire plane as follows:

𝑓(𝜁) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑔(𝜁), 𝜁 ∈ 𝐸𝑞,

𝑓(𝜁), 𝜁 ∈ 𝐸(𝑞, 𝑑),

𝑓(𝑑2/𝜁) +
(︁
𝜁 − 𝑑2

𝜁

)︁
𝑓 ′
(︁𝑑2
𝜁

)︁
, 𝜁 ∈ 𝐸

(︁
𝑑,

𝑑2

𝑞

)︁
,

𝑓(𝑞𝑒𝑖𝜃) +
(︁

1 − 𝑞

𝑑2

)︁
𝑟𝑒𝑖𝜃𝑓 ′(𝑞𝑒𝑖𝜃), 𝜁 ∈ 𝐸

−
𝑑2/𝑞 := {𝜁 : |𝜁| > 𝑑2/𝑞}.

The function 𝑓 is locally univalent in the entire complex plane. Indeed, in 𝐸𝑞, the function

𝑓(𝜁) ≡ 𝑔(𝜁) is univalent by the construction. As 𝜁 ∈ 𝐸(𝑞, 𝑑), the inequality |𝑓 ′(𝜁)| > 0 is

implied by (3.11). In the annulus 𝐸
(︁
𝑑, 𝑑

2

𝑞

)︁
, the condition for the local univalence for the

function 𝑓 is the inequality 𝐼 = |𝑓𝜁 |2 − |𝑓𝜁 |2 > 0. We write an explicit expression for the

Jacobian of the mapping 𝑓 in the annulus 𝐸
(︁
𝑑, 𝑑

2

𝑞

)︁
𝐼 = |𝑓 ′(𝑑2/𝜁)|2

[︂
1 −

⃒⃒⃒⃒(︂
𝜁 − 𝑑2

𝜁

)︂
𝑑2

𝜁
2

⃒⃒⃒⃒2 ⃒⃒⃒⃒
𝑓 ′′(𝑑2/𝜁)

𝑓 ′(𝑑2/𝜁)

⃒⃒⃒⃒2]︂
.

It clearly yields that the positive orientation of the mapping is implied by condition (3.11). If

𝜁 ∈ 𝐸
−
𝑑2/𝑞, then the condition of the local univalence at this point is equivalent to the inequality

1 + Re 𝑞𝑒𝑖𝜃
𝑓 ′′(𝑞𝑒𝑖𝜃)

𝑓 ′(𝑞𝑒𝑖𝜃)
+

𝑑2

𝑟(𝑑2 − 𝑞2)
> 0, 𝑓 ′(𝑞𝑒𝑖𝜃) ̸= 0, 𝑟 = |𝜁| > 𝑑2

𝑞

implied by condition (3.12).

Since the mapping 𝑓 transforms each sequence of the points converging to infinity into a
similar one, by the Hadamard theorem (see, for instance, [18], [21]), the local univalence of 𝑓
implies the univalence in the entire plane. Thus, 𝑓 is univalent in the annulus 𝐸(𝑞, 1).

4. Conditions of the univalence for mappings of finitely-connected domains

Let 𝑓 be a univalent conformal mapping of 𝐷𝑛 onto some domain Ω𝑛; Ω𝑛𝑘 be the simply-
connected domain introduced in Definition 2b). In the same way we introduce the domains 𝐷𝑛𝑘.
This is clearly a circle or the exterior of the circle with the boundary 𝛾𝑘. We take a concentric
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with 𝛾𝑘 circumference 𝛾′
𝑘, 𝛾

′
𝑘 = {𝜁 : |𝜁 − 𝑎𝑘| = 𝑅′

𝑘} and by 𝐷′
𝑛𝑘 we denote the circular annulus

with the boundary 𝛾𝑘 ∪ 𝛾′
𝑘.

Lemma 4.1. The representation

𝑓(𝜁) = (𝑓𝑘 ∘ 𝑤𝑘)(𝜁), 𝜁 ∈ 𝐷′
𝑛𝑘,

holds true, where 𝑓𝑘 is any of univalent mappings of 𝐷𝑛𝑘 onto Ω𝑛𝑘, and 𝑤𝑘 is a homeomorphism
of 𝐷𝑛𝑘 onto itself conformal in 𝐷′

𝑛𝑘.

Proof. We continue the mapping 𝑓 of the annulus 𝐷′
𝑛𝑘 onto the two-connected domain Ω′

𝑛𝑘 to

the homeomorphism 𝑓 of the domain 𝐷𝑛𝑘 onto Ω𝑛𝑘. For instance, this can be done as follows.
We choose some function 𝜙𝑘, which is a univalent conformal mapping of 𝐷𝑛𝑘 ∖ 𝐷′

𝑛𝑘 onto the

domain Ω𝑛𝑘 ∖ Ω′
𝑛𝑘. Then as 𝑓 , we can take the function defined by the identities

𝑓(𝜁) =

{︃
𝑓(𝜁), 𝜁 ∈ 𝐸 ′

𝑛𝑘,

𝜙(𝑎𝑘 + 𝑟𝑒𝑖𝜏 ), 𝜏 = arg{𝜙−1[𝑓(𝑎𝑘 + 𝑅′
𝑘𝑒

𝑖𝜃)] − 𝑎𝑘}, 𝜁 = 𝑎𝑘 + 𝑟𝑒𝑖𝜃 ∈ 𝐸𝑛𝑘 ∖ 𝐸 ′
𝑛𝑘.

The function 𝑓 is a homeomorphic mapping of 𝐷𝑛𝑘 onto Ω𝑛𝑘, and therefore, it is inner in Stoilov
sense. By the Stoilov theorem, 𝑓(𝜁) = (𝐹 ∘ 𝑤𝑘)(𝜁), where 𝑤𝑘 is the homeomorphism of 𝐷𝑛𝑘

onto itself, the function 𝐹 is analytic in 𝐷𝑛𝑘. Since 𝐹 (𝑤𝑘) = (𝑓 ∘ 𝜁)(𝑤𝑘), then 𝐹 is univalent
in 𝐷′

𝑛𝑘, that is, 𝐹 (𝑧) = 𝑓𝑘(𝑧). The conformity of 𝑤𝑘 in 𝐷′
𝑛𝑘 is implied immediately the identity

𝑤𝑘(𝜁) = (𝑓−1
𝑘 ∘ 𝑓)(𝜁), 𝜁 ∈ 𝐷′

𝑛𝑘. The proof is complete.

For further purposes, it is convenient to select a thin annulus 𝐷′′
𝑛𝑘 located in the annulus

𝐷′
𝑛𝑘. Namely, let 𝛾′′

𝑘 = {𝜁 : |𝜁 − 𝑎𝑘| = 𝑅′′
𝑘} be located in 𝐷′

𝑛𝑘. Then we let that 𝐷′′
𝑛𝑘 is the

annulus with the boundary 𝛾𝑘
⋃︀

𝛾′′
𝑘 . Taking into account the analyticity of 𝑤𝑘 on 𝛾𝑘, by the

Riemann-Schwarz symmetry principle we obtain that 𝑤𝑘 is a univalent analytic function in the

closed domain 𝐷
′′
𝑛𝑘. This is why all derivatives of 𝑤𝑘(𝜁) and continuous and uniformly bounded

in 𝐷
′′
𝑛𝑘. And moreover, there exist positive constants 𝐶𝑗 such that in 𝐷

′′
𝑛𝑘 the estimates

𝐶1 6 | ln𝑤′
𝑘(𝜁)| < 𝐶2, 𝐶3 6 (𝑅𝑘 − |𝜁 − 𝑎𝑘|)/(𝑅𝑘 − |𝑤𝑘 − 𝑎𝑘|) 6 𝐶4 (4.1)

hold true.
By means of the lemma we propose a simple proof of the equivalence of Definitions 2a) and

2b). Indeed, we have

ln 𝑓 ′(𝜁) = ln 𝑓 ′
𝑘 (𝑤𝑘(𝜁)) + ln𝑤′

𝑘(𝜁), 𝜁 ∈ 𝐷′′
𝑛𝑘.

Let 𝛾𝑚
𝑘,𝜁 be closed rectifiable curves in 𝐷′′

𝑛𝑘 converging to 𝛾𝑘 as 𝑚 → ∞. Then the curves

𝛾𝑚
𝑘,𝑧 = {𝑧 : 𝑧 = 𝑤𝑘(𝜁), 𝜁 ∈ 𝛾𝑚

𝑘,𝜁}
possess similar properties. By inequalities (4.1) we obtain:∫︁

𝛾𝑚
𝑘,𝜁

| ln 𝑓 ′(𝜁)𝑑𝜁| 6 𝑀1

∫︁
𝛾𝑚
𝑘,𝑧

| ln 𝑓 ′
𝑘(𝑧)𝑑𝑧| + 𝑀2, 𝑘 = 1, 𝑛, (4.2)

∫︁
𝛾𝑚
𝑘,𝑧

| ln 𝑓 ′
𝑘(𝑧)𝑑𝑧| 6 𝑀3

∫︁
𝛾𝑚
𝑘,𝜁

| ln 𝑓 ′(𝜁)𝑑𝜁| + 𝑀4, 𝑘 = 1, 𝑛, (4.3)

where 𝑀𝑙, 𝑙 = 1, 4 are positive constants.
Assume that Ω𝑛 = 𝑓(𝐸𝑛) belongs to the Smirnov class and we represent ln |𝑓 ′(𝑧)| by the

Green formula. Then in accordance [14] the function ln 𝑓 ′ belongs to the class 𝐻1(𝐷𝑛). On the
base of the definition of the classes 𝐻1 and inequality (4.3) we conclude that ln 𝑓 ′

𝑘 ∈ 𝐻1(𝐷𝑛𝑘).
Therefore, Ω𝑛𝑘 is the domain in the Smirnov class.



CONFORMAL MAPPINGS OF CIRCULAR DOMAINS . . . 15

The inverse statement can be proved in the same way, just instead of inequality (4.3), one
should employ (4.2).
By means of Lemma 4.1, we can easily estimate the growth rate in 𝑟 = |𝜁−𝑎𝑘|, 𝑅𝑘−𝜀 6 𝑟 6

𝑅𝑘 at the boundary 𝛾𝑘 for many functionals on univalent functions in 𝐷𝑛 if we know similar
estimates for the functions, which are univalent in a circle or in the exterior of a circle. Exactly
this is employed in the proof of the following statement.

Lemma 4.2. If 𝑓 is holomorphic and univalent in 𝐷𝑛, then

sup
𝑧∈𝐷𝑛

(︃⃒⃒⃒⃒
𝑓 ′′(𝑧)

𝑓 ′(𝑧)

⃒⃒⃒⃒ 𝑛∏︁
𝑘=1

(𝑅𝑘 − |𝑧 − 𝑎𝑘|)

)︃
= 𝑀(𝑓) < ∞.

Proof. If 𝑓𝑘 is univalent in 𝐷𝑛𝑘, then by the known results (see, for instance, [19], [23]) we can
write

sup
𝑧∈𝐸𝑛𝑘

(︂⃒⃒⃒⃒
𝑓 ′′
𝑘 (𝑧)

𝑓 ′
𝑘(𝑧)

(𝑅𝑘 − |𝑧 − 𝑎𝑘|)
⃒⃒⃒⃒)︂

6 𝑀1 < ∞. (4.4)

It follows from (4.1) that

𝑓 ′′(𝜁)

𝑓 ′(𝜁)
=

𝑓 ′′
𝑘 (𝑤𝑘(𝜁))

𝑓 ′
𝑘(𝑤𝑘(𝜁))

𝑤′
𝑘(𝜁) +

𝑤′′
𝑘(𝜁)

𝑤′
𝑘(𝜁)

, 𝜁 ∈ 𝐷′′
𝑛𝑘.

By (4.1), (4.4) and the inequality 𝐶5 6 |𝑤′′
𝑘(𝜁)/𝑤′

𝑘(𝜁)| < 𝐶6 we obtain the relation

sup
𝜁∈𝐷′′

𝑛𝑘

(︂⃒⃒⃒⃒
𝑓 ′′(𝜁)

𝑓 ′(𝜁)
(𝑅𝑘 − |𝜁 − 𝑎𝑘|)

⃒⃒⃒⃒)︂
6 𝑀2 < ∞,

which implies immediately the statement of the lemma.

Now we consider the domain Ω𝑛 not belonging to Smirnov class and bounded by Jordan
rectifiable curves. By the Riesz theorem we have 𝑓 ′ ∈ 𝐻1(𝐷𝑛) and this is why we can use
parametric representation (2.6). It is obvious that we have the following structural formula for
the function mapping some canonical domain 𝐷𝑛 onto Ω𝑛:

𝑓(𝑧) =

∫︁
𝑧𝛿Θ−1(𝑧) exp

{︂ 𝑛∑︁
𝑘=1

1

2𝜋

𝜋∫︁
−𝜋

𝑆𝑘(𝑧, 𝑧𝑘(𝜃))𝑑𝜈𝑘(𝜃) − 𝛼

}︂
𝑑𝑧, 𝑧𝑘 ∈ 𝛾𝑘, (4.5)

𝛼 =
∑︁
𝑗 ̸=𝑘

1

2𝜋

𝜋∫︁
−𝜋

𝑆𝑗(𝑧𝑘, 𝑧𝑗(𝜃))𝑑𝜈𝑗(𝜃), 𝑘 = 1, 𝑛.

Here 𝜈𝑘 is a function with a bounded variation and its expansion involves a non-trivial singu-
lar component 𝜇𝑘(𝜃), 𝑘 = 1, 𝑛. Let the simply-connected domain Ω𝑛 is bounded by Jordan
rectifiable curves Γ𝑘, 𝑘 = 1, 𝑛. We interested in the question what restrictions are imposed for
mapping function (4.5) by the latter conditions.

Theorem 4.1. If function (4.5) maps 𝐷𝑛 onto Ω𝑛 in the univalent and conformal way, then
there exists a constant 𝐾 > 0 such that 𝜈𝑘 ∈ Λ(𝐾) for some 𝑘 = 1, 2, . . . , 𝑛.

Proof. We represent expression (4.5) in the annulus 𝐷′
𝑛𝑘 as (see [17]):

ln 𝑓 ′(𝑧) = 𝛿 ln 𝑧 − ln Θ(𝑧) +
1

2𝜋

𝜋∫︁
−𝜋

𝑧 + 𝑧𝑘 − 2𝑎𝑘
𝑧 − 𝑧𝑘

𝑑𝜈𝑘(𝜃) + 𝜙𝑘(𝑧), 𝑧 ∈ 𝐷′
𝑛𝑘, (4.6)
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where 𝜙𝑘 is a function holomorphic in the domain 𝐷𝑘 =
⋂︀
𝑗 ̸=𝑘

𝐷𝑛𝑗 and is hence holomorphic in

the annulus 𝐷
′
𝑛𝑘. Let

𝑞𝑘(𝑧) =
1

2𝜋

𝜋∫︁
−𝜋

𝜈𝑘(𝜃)
𝑧 + 𝑧𝑘 − 2𝑎𝑘

𝑧 − 𝑧𝑘
𝑑𝜃

be a function holomorphic in 𝐷𝑛𝑘. Then on the circumference 𝛾𝑘 the identity Re 𝑞𝑘(𝑧𝑘(𝜃)) =
𝜈𝑘(𝜃) holds true. By (4.6) we have

𝑖(𝑧 − 𝑎𝑘)𝑞′𝑘(𝑧) = ln 𝑓 ′(𝑧) − 𝛿 ln 𝑧 + ln Θ(𝑧) − 𝜙𝑘(𝑧), 𝑧 ∈ 𝐷′
𝑛𝑘.

Hence, by Lemma 4.2 we find that

sup
𝑧∈𝐷′

𝑛𝑘

|(𝑅𝑘 − |𝑧 − 𝑎𝑘|)
𝑑

𝑑𝑧
[(𝑧 − 𝑎𝑘)𝑞′𝑘(𝑧)]| 6 𝑀 < ∞.

We map the unit circle 𝐷 = {𝜁 : |𝜁| < 1} onto the domain 𝐷𝑛𝑘 by the function 𝑧𝑘(𝜁) =
𝑎𝑘 + 𝑅𝑘/𝜁. Then we consider a holomorphic in the unit circle function defined by the identity
𝑄𝑘(𝜁) := 𝑞𝑘[𝑧𝑘(𝜁)] and the function 𝑄̃𝑘 defined by the identity 𝑄̃𝑘(𝜃) = 𝑄𝑘(𝑒𝑖𝜃). It is easy to
see that

sup
𝜁∈𝐷

|(1 − |𝜁|2) 𝑑

𝑑𝜁
[𝜁 𝑄′

𝑘(𝜁)]| = sup
𝑧∈𝐷′

𝑛𝑘

|(𝑅𝑘 − |𝑧 − 𝑎𝑘|)
𝑑

𝑑𝑧
[(𝑧 − 𝑎𝑘)𝑞′𝑘(𝑧)]| 6 𝑀 < ∞.

This implies [5] that 𝑄̃𝑘 ∈ Λ(𝐾) with certain constant 𝐾 > 0 depending on 𝑀 only. Estab-
lishing a relation between the boundary values of 𝑄𝑘(𝜁) and 𝑞𝑘(𝑧), we arrive at the statement
of the theorem.

We mention that this theorem extends the known result by Duren, Shapiro and Shields [4]
for multi-connected domains.
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