ON SOLUTIONS OF SECOND ORDER ELLIPTIC EQUATIONS IN CYLINDRICAL DOMAINS

A.V. NEKLUDOV

Abstract

In a semi-infinite cylinder, we consider a second order elliptic equation with a lower order term. On the lateral boundary of the cylinder we impose the homogeneous Neumann condition. We show that each bounded solution tends to a constant at infinity and once the lower order term does not decay too fast, this constant vanishes. We establish that for a sufficiently fast decay of the lower order term, we have a trichotomy of the solutions as for the equation without the lower order term: the solution tends to a general non-zero constant or grows linearly or grows exponentially. The decay conditions for the lower order term are formulated in an integral form.

Keywords: Elliptic equation, Neumann boundary value condition, unbounded domain, low order term, asymptotic behavior of solutions, trichotomy of solutions.

Mathematics Subject Classification: 35J15, 35J25

1. Introduction

The behavior of solutions to elliptic equations in cylindrical or close domains with the Dirichlet, Neumann or periodic w.r.t. all variables except one boundary conditions on the lateral surface was studied rather well for the divergent type equations with no lower order terms [1]-4]. For the equations with lower order terms, the most studied case is for the coefficients periodic w.r.t. the variable directed along the axis of the cylinder [5], 6].

In the present work we study the behavior of the generalized solutions to the elliptic second order equations with a lower order term subject to the Neumann condition on the lateral surface by means of energy estimates of Saint-Venant's principle kind [2]-4]. The main attention is paid to the dependence of the properties of the solution on the behavior of the coefficient $q(x)$ at the lower order term of the equation. We show that under rather fast decay of the lower coefficient, the behavior of the solutions is similar to the behavior of the solutions to the divergent type equations with no lower terms and subject to Neumann condition: the tending of bounded solution to a constant, trichotomy of solutions. In the case of a slowly decaying lower order term, the behavior of bounded solutions is similar to the behavior of solutions to equations with no lower terms and subject to Dirichlet condition (each bounded solution tends to zero).

2. Main notations and definitions

In the n-dimensional cylinder $\Omega=(0,+\infty) \times \widehat{\Omega}$ we consider the elliptic equation

$$
\begin{equation*}
L u \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)-q(x) u=0, \tag{1}
\end{equation*}
$$

[^0]Submitted October 28, 2015.
where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, \widehat{x}\right) \in \mathbb{R}_{x}^{n}, \widehat{\Omega} \subset \mathbb{R}_{\widehat{x}}^{n-1}$ be a bounded domain with a Lipschitz boundary, $a_{i j}(x)$ are measurable functions in Ω, $a_{i j}=a_{j i}, \lambda_{1}|\xi|^{2} \leqslant \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leqslant \lambda_{2}|\xi|^{2}$, $\xi \in \mathbb{R}^{n}, \lambda_{1}, \lambda_{2}=$ const $>0, q(x) \geqslant 0$ is a locally bounded measurable function.

On the lateral boundary of the cylinder $\Gamma=(0, \infty) \times \partial \widehat{\Omega}$ we impose Neumann boundary condition

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \nu}\right|_{\Gamma}=0, \tag{2}
\end{equation*}
$$

where $\partial u / \partial \nu \equiv \sum_{i, j=1}^{n} a_{i j}(x) \partial u / \partial x_{i} \cos \left(\vec{n}, x_{j}\right), \vec{n}$ is the unit normal to Γ.
We introduce the following notations: $\Omega(a, b)=\Omega \cap\left\{x: a<x_{1}<b\right\}, \Omega_{t}=\Omega(t, t+1)$, $\Gamma(a, b)=\Gamma \cap\left\{x: a<x_{1}<b\right\}, \Gamma_{t}=\Gamma(t, t+1), S_{t}=\left\{x: x_{1}=t, \widehat{x} \in \widehat{\Omega}\right\}, \nabla u=\operatorname{grad} u$, $m_{0}=\operatorname{mes}_{n-1} \widehat{\Omega}, \bar{u}(t)=m_{0}^{-1} \int_{\Omega_{t}} u d x$.

By solutions to (1)-(2) in Ω we mean generalized solutions, that is, the functions belonging to Sobolev space $W_{2}^{1}(\Omega(0, t))$ for each $t>0$ and satisfying the integral identity

$$
\begin{equation*}
\int_{\Omega(0, t)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x+\int_{\Omega(0, t)} q u v d x=0 \tag{3}
\end{equation*}
$$

for all functions $v \in W_{2}^{1}(\Omega(0, t))$ such that $\left.v\right|_{S_{0} \cup S_{t}}=0$.

3. Auxiliary statements

Lemma 1. Let $u(x)$ be a solution to equation (1) in Ω_{t} satisfying condition (2) on Γ_{t}. Then the estimates

$$
\sup _{S_{t+1 / 2}}|u| \leqslant c_{0}\left(\int_{\Omega_{t}} u^{2} d x\right)^{1 / 2}, \quad \sup _{S_{t+1 / 2}}(u-C) \leqslant c_{1}\left(\int_{\Omega_{t}}(u-C)^{2} d x\right)^{1 / 2}
$$

hold true, where c_{0} is independent of $u, t ; c_{1}$ is independent of $u, t, C>0$.
Proof. It is known, see, for instance, [7, that the solution to a second order elliptic equation satisfying the homogeneous Neumann condition on Γ_{t}, for each point Γ_{t}, by means of local flattening and symmetry principle, can be continued to a domain ω containing a neighbourhood of this boundary point and the structure of the equation is preserved.

Let $C \geqslant 0, k>0, x^{0} \in \omega, \rho, \sigma \in(0,1), \varphi(x) \in C^{1}\left(\mathbb{R}^{n}\right), 0 \leqslant \varphi \leqslant 1, \varphi(x)=1$ as $\left|x-x^{0}\right| \leqslant \rho(1-\sigma), \varphi(x)=0$ as $\left|x-x^{0}\right| \geqslant \rho,|\nabla \varphi| \leqslant$ const $/(\rho \sigma)$. We choose ρ such that $\operatorname{supp} \varphi \subset \omega$. Letting $v=\max \{u-C-k, 0\} \varphi$ in integral identity (3) and taking into consideration that $\int_{\{x: u-C-k>0\}} q u(u-C-k) \varphi d x \geqslant 0$, we obtain the estimate

$$
\int_{A_{k, \rho(1-\sigma)}}|\nabla w|^{2} d x \leqslant c_{2}(\rho \sigma)^{-2} \int_{A_{k, \rho}}(w-k)^{2} d x
$$

where $w=u-C, A_{k, \varkappa}=\{x: w(x)>k\} \cap\left\{x:\left|x-x^{0}\right|<\varkappa\right\}, c_{2}$ is independent of w, k, ρ, σ, x^{0}.

This follows [8, Ch. II, Sect. 5.3] that for each domain $\omega^{\prime} \subset \subset \omega$ the estimate

$$
\sup _{\omega^{\prime}} w \leqslant c\left(\int_{\omega} w^{2} d x\right)^{1 / 2} \leqslant c_{1}\left(\int_{\Omega_{t}} w^{2} d x\right)^{1 / 2}
$$

holds true. Covering $\Gamma(t+1 / 4, t+3 / 4)$ by finitely many constructed neighbourhoods, we obtain that this estimate is true for $\sup _{\Omega(t+1 / 4, t+3 / 4)} w$ and therefore, for $\sup _{S_{t+1 / 2}} w$. Thus, the second of the needed estimates is proved. Moreover, as $C=0$, similar to the obtained estimate for $\sup u$, we obtain the estimate for $\sup (-u)$. The proof is complete.

For a solution $u(x)$ to equation (1) satisfying (2), in the standard way we introduce the notion of the "heat flow" through the section S_{t} of cylinder Ω :

$$
P(t, u)=\lim _{h \rightarrow 0+}\left(h^{-1} \int_{\Omega(t, t+h)} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d x\right)=\int_{S_{t}} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d \widehat{x}
$$

the latter identity is true for almost each $t \geqslant 0$. Let $0 \leqslant t<T, h_{1}>0, h_{2}>0$. We choose $v=\Phi$ (3), where $\Phi=\Phi\left(x_{1}\right)$ is continuous function, $\Phi=1$ as $t+h_{1} \leqslant x_{1} \leqslant T, \Phi(t)=\Phi\left(T+h_{2}\right)=0$, Φ is linear for $t \leqslant x_{1} \leqslant t+h_{1}$ and for $T \leqslant x_{1} \leqslant T+h_{2}$:

$$
\begin{equation*}
h_{1}^{-1} \int_{\Omega\left(t, t+h_{1}\right)} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d x-h_{2}^{-1} \int_{\Omega\left(T, T+h_{2}\right)} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d x+\int_{\Omega\left(t, T+h_{2}\right)} q u \Phi d x=0 . \tag{4}
\end{equation*}
$$

Making h_{1} to tend to zero and then doing the same with h_{2}, we obtain the relation

$$
\begin{equation*}
P(T, u)-P(t, u)=\int_{\Omega(t, T)} q u d x \tag{5}
\end{equation*}
$$

It is easy to see that as $t>0$, in the definition of the flow, the domain of the integration $\Omega(t, t+h)$ can be replaced by $\Omega(t-h, t)$.

We consider the equation with no lower order term corresponding to equation (11):

$$
\begin{equation*}
L_{0} V \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial V}{\partial x_{i}}\right)=0 \tag{6}
\end{equation*}
$$

It is well-known, see, for instance [9, Thm. 2], that there exists a positive solution $V(x)$ to equation (6) in Ω satisfying the homogeneous Neumann condition $\left.(\partial V / \partial \nu)\right|_{\Gamma}=0$ on Γ and the estimate

$$
C_{1} x_{1} \leqslant V(x) \leqslant C_{2} x_{1}, \quad C_{1}, C_{2}=\text { const }>0
$$

as $x_{1}>1$. The function $V(x)$ also satisfies [10, Form. (12)] the conditions

$$
\int_{\Omega_{t}}|\nabla V|^{2} d x \leqslant c_{1}=\text { const, } \quad P(t, V)=1, \quad t \geqslant 0
$$

the second condition is satisfied by multiplying V by a constant. As $t>0$, the function V satisfies the integral identity

$$
\begin{equation*}
\int_{\Omega(0, t)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial V}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x=0 \tag{7}
\end{equation*}
$$

for all functions $v \in W_{2}^{1}(\Omega(0, t))$ such that $\left.v\right|_{S_{0} \cup S_{t}}=0$.
Lemma 2. Let $u(x)$ be a bounded in Ω solution to (1)-(2), $M_{0}=\sup _{S_{0}} u$. Then the estimate

$$
u(x) \leqslant \max \left\{M_{0}, 0\right\}
$$

holds true in Ω.
Proof. Let $V(x)$ be the solution to equation (6) defined above. We fix $\varepsilon>0$. It is obvious that for the function $w=u-\varepsilon V$ we have $w \leqslant M_{0}$ on S_{0} and on $S_{T(\varepsilon)}$ for sufficiently large $T(\varepsilon)$. Since $L w=\varepsilon q V \geqslant 0$ and $\left.(\partial w / \partial \nu)\right|_{\Gamma}=0$, the function w can not have a positive maximum in $\Omega(0, T(\varepsilon)) \cup \Gamma(0, T(\varepsilon))$, that is $w \leqslant \max \left\{M_{0}, 0\right\}$. Making ε to tend to 0 , we arrive at the statement of the lemma.

Lemma 3. Let $u(x)$ be a bounded in Ω solution to (1)-(2). Then

$$
\int_{\Omega}\left(|\nabla u|^{2}+q u^{2}\right) d x<\infty
$$

Proof. Choosing $v=u \Phi$ in (3), where $\Phi=\Phi\left(x_{1}\right) \in C^{2}(\mathbb{R}), 0 \leqslant \Phi \leqslant 1, \Phi=1$ as $1 \leqslant x_{1} \leqslant N$, $\Phi=0$ as $x_{1} \leqslant 0$ and as $x_{1} \geqslant N+1,\left(\Phi^{\prime}\right)^{2} \leqslant c \Phi, c=$ const, employing the ellipticity of the equation and the estimate of form $a b \leqslant \varepsilon a^{2} / 2+b^{2} /(2 \varepsilon)$, we obtain the estimate

$$
\int_{\Omega(0, N+1)}\left(|\nabla u|^{2}+q u^{2}\right) \Phi d x \leqslant c_{0}+c_{1} \int_{\Omega_{N}}|u||\nabla u|\left|\Phi^{\prime}\right| d x \leqslant \leqslant c_{0}+\int_{\Omega_{N}}\left(c_{2} u^{2}+|\nabla u|^{2} \Phi\right) d x
$$

$c_{i}=$ const >0. Then

$$
\begin{equation*}
\int_{\Omega(1, N)}\left(|\nabla u|^{2}+q u^{2}\right) d x \leqslant c_{0}+c_{2} \int_{\Omega_{N}} u^{2} d x \tag{8}
\end{equation*}
$$

that implies the statement of the lemma.
Lemma 4. Let $u(x)$ be a solution to (1) -(2) in Ω, $V(x)$ is the solution to equation (6) defined above. Then

$$
\bar{u}(N)=\bar{V}(N) \int_{N}^{N+1} P(t, u) d t-\int_{\Omega(0, N+1)} q u V \Phi d x+I_{N}
$$

where

$$
\left|I_{N}\right| \leqslant c_{0}\left(\int_{\Omega_{N}}|\nabla u|^{2} d x\right)^{1 / 2}+c_{1}, \quad c_{0}, c_{1}=\text { const }>0
$$

$\Phi=\Phi\left(x_{1}\right)$ is a continuous function, $\Phi\left(x_{1}\right)=1$ as $1 \leqslant x_{1} \leqslant N, \Phi(0)=\Phi(N+1)=0$, Φ is linear as $0 \leqslant x_{1} \leqslant 1$ and $N \leqslant x_{1} \leqslant N+1$.

Letting $v=u \Phi$ in integral identity (7), we obtain

$$
\int_{\Omega(0, N+1)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial V}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \Phi d x=\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1} \frac{\partial V}{\partial x_{i}} u d x-\int_{\Omega_{0}} \sum_{i=1}^{n} a_{i 1} \frac{\partial V}{\partial x_{i}} u d x
$$

Choosing the test function $v=V \Phi$ in integral identity (3) for u, we obtain

$$
\begin{aligned}
\int_{\Omega(0, N+1)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial V}{\partial x_{j}} \Phi d x= & -\int_{\Omega(0, N+1)} q u V \Phi d x \\
& +\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} V d x-\int_{\Omega_{0}} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} V d x .
\end{aligned}
$$

By two latter identities and the symmetricity of the matrix $a_{i j}$ we get that

$$
\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1} \frac{\partial V}{\partial x_{i}} u d x=\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} V d x-\int_{\Omega(0, N+1)} q u V \Phi d x+I_{0}
$$

where $I_{0}=$ const is independent of N. This yields

$$
\begin{align*}
\bar{u}(N)= & \bar{V}(N) \int_{N}^{N+1} P(t, u) d t-\int_{\Omega(0, N+1)} q u V \Phi d x \\
& +\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1}\left((V-\bar{V}(N)) \frac{\partial u}{\partial x_{i}}-(u-\bar{u}(N)) \frac{\partial V}{\partial x_{i}}\right) d x+I_{0} \tag{9}
\end{align*}
$$

Employing Cauchy-Schwarz and Poincaré inequalities and the estimate for the Dirichlet integral for V, we obtain

$$
\begin{aligned}
& \left|\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1}\left((V-\bar{V}(N)) \frac{\partial u}{\partial x_{i}}-(u-\bar{u}(N)) \frac{\partial V}{\partial x_{i}}\right) d x\right| \\
& \quad \leqslant c_{2}\left[\left(\int_{\Omega_{N}}(V-\bar{V}(N))^{2} d x\right)^{1 / 2}\left(\int_{\Omega_{N}}|\nabla u|^{2} d x\right)^{1 / 2}\right. \\
& \left.\quad+\left(\int_{\Omega_{N}}(u-\bar{u}(N))^{2} d x\right)^{1 / 2}\left(\int_{\Omega_{N}}|\nabla V|^{2} d x\right)^{1 / 2}\right] \\
& \leqslant c_{3}\left(\int_{\Omega_{N}}|\nabla V|^{2} d x\right)^{1 / 2}\left(\int_{\Omega_{N}}|\nabla u|^{2} d x\right)^{1 / 2} \leqslant c_{4}\left(\int_{\Omega_{N}}|\nabla u|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

$c_{i}>0$ are independent of N. Then by (9) we obtain the statement of the lemma.

4. Behavior of bounded solutions

Theorem 1. Let $u(x)$ be a bounded in Ω solution (1)-(2), $q(x) \geqslant 0$ in Ω. Then for some $C=$ const

$$
\int_{\Omega_{t}}(u-C)^{2} d x \rightarrow 0, \quad t \rightarrow \infty
$$

If the condition $\|q\|_{L_{p}\left(\Omega_{t}\right)} \rightarrow 0, t \rightarrow \infty, p>n / 2$ is satisfied as well or $C=0$, then

$$
\sup _{S_{t}}|u-C| \rightarrow 0, \quad t \rightarrow \infty
$$

Proof. The boundedness of the solution implies the boundedness of $\bar{u}(t)$. Hence, for some sequence $t_{k} \rightarrow \infty, k \rightarrow \infty$, we have $\bar{u}\left(t_{k}\right) \rightarrow C=$ const. Then, employing Poincaré inequality and a finiteness of the Dirichlet integral for $u(x)$ by Lemma 3, we obtain that

$$
\int_{\Omega_{t_{k}}}(u-C)^{2} d x \leqslant 2 \int_{\Omega_{t_{k}}}\left(u-\bar{u}\left(t_{k}\right)\right)^{2} d x+2 m_{0}\left(\bar{u}\left(t_{k}\right)-C\right)^{2} \rightarrow 0, \quad k \rightarrow \infty
$$

Let us show that $\|u-C\|_{L_{2}\left(\Omega_{t}\right)} \rightarrow 0, t \rightarrow \infty$. We assume the opposite, then $\left\|u-C^{\prime}\right\|_{L_{2}\left(\Omega_{t_{k}^{\prime}}\right)} \rightarrow 0$ as $k \rightarrow \infty$ for some sequence $t_{k}^{\prime} \rightarrow \infty$ and a constant $C^{\prime} \neq C$. In view of the continuity of the function $\bar{u}(t)$, without loss of generality we can assume that C and C^{\prime} are of the same sign, for instance, $0 \leqslant C<C^{\prime}$. In accordance with Lemma 1 we have

$$
\sup _{S_{t_{k}+1 / 2}}(u-C) \leqslant \alpha_{k} \equiv c\|u-C\|_{L_{2}\left(\Omega_{t_{k}}\right)} \rightarrow 0, \quad k \rightarrow \infty, \quad c=\text { const. }
$$

By Lemma 2 we obtain that $u \leqslant C+\alpha_{k}$ as $x_{1}>t_{k}+1 / 2$, which contradicts the condition $C<C^{\prime}$.

The statement of the theorem on the uniform convergence of u to a constant as $C \neq 0$ is implied by the fact that $L_{0}(u-C)=q u$ and De Georgi estimate [2] $\sup _{S_{t+1 / 2}}|u-C| \leqslant$ $c\left(\|u-C\|_{L_{2}\left(\Omega_{t}\right)}+\|q u\|_{L_{p}\left(\Omega_{t}\right)}\right)$. As $C=0$, this is implies by Lemma 1 . The proof is complete.

Theorem 2. Assume that the function $q(x) \geqslant 0$ satisfies one of the following conditions:

1) $q(x) \geqslant q_{0}=$ const >0 in Ω,
2) $\int_{\Omega} x_{1} q(x) d x=\infty,\|q\|_{L_{p}\left(\Omega_{t}\right)} \rightarrow 0, t \rightarrow \infty, p>n / 2$.

Then for each bounded in Ω solution (11)-(2)

$$
\sup _{S_{t}}|u(x)| \rightarrow 0, \quad t \rightarrow \infty
$$

Proof. Suppose that Condition 1) holds. Then by Lemmata 1 and 3 we obtain

$$
\sup _{S_{t}} u^{2} \leqslant c_{0} \int_{\Omega_{t-1 / 2}} u^{2} d x \rightarrow 0
$$

$t \rightarrow \infty, c_{0}>0$ is independent of t.
Suppose that Condition 2) holds. Assume that $u \rightarrow C \neq 0$ as $x_{1} \rightarrow \infty$. We can assume that $C>0$. By Lemma 4 we have

$$
\begin{equation*}
\bar{V}(N) \int_{N}^{N+1} P(t, u) d t=\int_{\Omega(0, N+1)} q u V \Phi d x+I_{N} \tag{10}
\end{equation*}
$$

where $\left|I_{N}\right| \leqslant c_{1}=$ const, $\Phi=\Phi\left(x_{1}\right)=1$ as $0 \leqslant x_{1} \leqslant N, \Phi=N+1-x_{1}$ as $N \leqslant x_{1} \leqslant N+1$. Since by the assumption $u \rightarrow C>0, x_{1} \rightarrow \infty$, and in accordance with Theorem 11, this convergence is uniform in $\widehat{x} \in \widehat{\Omega}$, then $u(x)>0$ in $\Omega\left(t_{0}, \infty\right)$ for sufficiently large t_{0}. Then it follows from (5) that $P(t, u)$ is a non-decreasing function of t as $t>t_{0}$. Since by Lemma 3 $\int_{\Omega}|\nabla u|^{2} d x<\infty$, then $P(t, u) \rightarrow 0, t \rightarrow \infty$, and therefore, $P(t, u)<0$ for sufficiently large t. Since $u \rightarrow C>0$, it follows from Condition 2) that $\int_{\Omega} q u V d x=+\infty$. Then the left hand side and the right hand side in (10) have opposite signs if N is large enough. The obtained contradiction implies that $C=0$. The proof is complete.

5. FASt DECAYing LOWER COEFFICIENT: THE EXistence of SOlution with a linear GROWTH, TRICHOTOMY OF SOLUTIONS

It is known [11, Ch. VI, Thm. 5] that for each solution to ordinary differential equation

$$
u^{\prime \prime}-q(t) u=0, \quad \int_{t_{0}}^{\infty} t q(t) d t<\infty
$$

on the half-line $t>t_{0}$, one of the asymptotics $u(t) \sim c t, c=$ const $\neq 0$ and $u(t) \rightarrow$ const holds true as $t \rightarrow \infty$. In what follows we show that under an appropriate integral condition for $q(x)$, for the solutions to (1)-(2) in Ω a similar result is true with an additional third option: exponential growth (trichotomy of solutions).

Theorem 3. Let $q(x) \geqslant 0$ in $\Omega, \int_{\Omega} x_{1} q(x) d x<\infty,\|q\|_{L_{p}\left(\Omega_{t}\right)} \leqslant c$ as $t \geqslant t_{0}=$ const >0, $p>n / 2, c>0$ is some constant depending on $\widehat{\Omega}, \lambda_{1}, \lambda_{2}$. Then there exists a positive in Ω solution $U(x)$ to problem (1)-(2) satisfying the conditions

$$
\begin{gathered}
\left.U\right|_{S_{0}}=0, \quad A_{1} x_{1} \leqslant U(x) \leqslant A_{2} x_{1} \quad\left(x_{1} \geqslant 1\right), \quad A_{1}, A_{2}=\text { const }>0 \\
P(t, U) \rightarrow p_{0}=\text { const }>0, \quad t \rightarrow \infty
\end{gathered}
$$

Proof. Let $V(x)>0$ be the above introduced positive linearly growing solution to equation (6) in Ω satisfying homogeneous Neumann condition on Γ. For an arbitrary $N \in \mathbb{N}$, in the domain $\Omega(0, N)$ we consider solution $U_{N}(x)$ to the problem

$$
L U_{N}=0,\left.\quad U_{N}\right|_{S_{0}}=0,\left.\quad U_{N}\right|_{S_{N}}=C_{1} N,\left.\quad \frac{\partial U_{N}}{\partial \nu}\right|_{\Gamma(0, N)}=0 .
$$

In accordance with the maximum principle, U_{N} can not has a negative minimum in $\Omega(0, N)$ and on $\Gamma(0, N)$. Therefore, $U_{N}>0$ in $\Omega(0, N)$. Choosing the test function $v=U_{N} \Phi$ in integral identity (3) for $u=U_{N}$, where $\Phi=\Phi\left(x_{1}\right)$ is a continuous function, $\Phi=1$ as $0 \leqslant x_{1} \leqslant N-h$, $\Phi(N)=0, \Phi$ is linear as $N-h \leqslant x_{1} \leqslant N$, we obtain

$$
\begin{aligned}
& \int_{\Omega(0, N)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial U_{N}}{\partial x_{i}} \frac{\partial U_{N}}{\partial x_{j}} \Phi d x+\int_{\Omega(0, N)} q U_{N}^{2} \Phi d x=h^{-1} \int_{\Omega(N-h, N)} U_{N} \sum_{i=1}^{n} a_{i 1} \frac{\partial U_{N}}{\partial x_{i}} d x \\
& \quad=h^{-1} \int_{\Omega(N-h, N)}\left(U_{N}-C_{1} N\right) \sum_{i=1}^{n} a_{i 1} \frac{\partial U_{N}}{\partial x_{i}} d x+h^{-1} C_{1} N \int_{\Omega(N-h, N)} \sum_{i=1}^{n} a_{i 1} \frac{\partial U_{N}}{\partial x_{i}} d x .
\end{aligned}
$$

Since $\left.\left(U_{N}-C_{1} N\right)\right|_{S_{N}}=0$, by the Fridrichs type inequality

$$
\int_{\Omega(N-h, N)} \varphi^{2} d x \leqslant c_{0} h^{2} \int_{\Omega(N-h, N)}|\nabla \varphi|^{2} d x,\left.\quad \varphi\right|_{S_{N}}=0, \quad c_{0}=\text { const },
$$

we obtain

$$
h^{-1}\left|\int_{\Omega(N-h, N)}\left(U_{N}-C_{1} N\right) \sum_{i=1}^{n} a_{i 1} \frac{\partial U_{N}}{\partial x_{i}} d x\right| \leqslant c_{1} \int_{\Omega(N-h, N)}\left|\nabla U_{N}\right|^{2} d x \rightarrow 0, \quad h \rightarrow 0 .
$$

Hereinafter in the proof, $c_{i}=$ const >0 depend only on $\widehat{\Omega}, \lambda_{1}, \lambda_{2}$. Then by the above identity we obtain

$$
\int_{\Omega(0, N)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial U_{N}}{\partial x_{i}} \frac{\partial U_{N}}{\partial x_{j}} d x+\int_{\Omega(0, N)} q U_{N}^{2} d x=C_{1} N P\left(N, U_{N}\right)
$$

Hence, taking into consideration that $\left.U_{N}\right|_{S_{0}}=0$ and therefore, by [2, Form. (46)], the inequality

$$
m_{0} C_{1}^{2} N^{2}=\int_{S_{N}} U_{N}^{2} d \widehat{x} \leqslant c_{2} N \int_{\Omega(0, N)}\left|\nabla U_{N}\right|^{2} d x
$$

holds, we obtain

$$
\begin{equation*}
P\left(N, U_{N}\right) \geqslant c_{3} N^{-1} \int_{\Omega(0, N)}\left|\nabla U_{N}\right|^{2} d x \geqslant c_{4}>0 \tag{11}
\end{equation*}
$$

For the function $w=U_{N}-V$ we have $L w=q V \geqslant 0 \operatorname{in} \Omega(0, N),\left.(\partial w / \partial \nu)\right|_{\Gamma(0, N)}=0,\left.w\right|_{S_{0} \cup S_{N}} \leqslant 0$. Then w can not have a positive maximum in $\Omega(0, N) \cup \Gamma(0, N)$. Hence, $w<0$ in $\Omega(0, N)$. Thus, the inequality

$$
\begin{equation*}
0<U_{N}<V \tag{12}
\end{equation*}
$$

holds true in $\Omega(0, N)$. Since in accordance (5) for $t<N$

$$
P\left(t, U_{N}\right)=P\left(N, U_{N}\right)-\int_{\Omega(t, N)} q U_{N} d x
$$

we have, by (11) and (12) we obtain that there exists a $t_{0}>0$ such that for all $t \geqslant t_{0}$ and $N \geqslant t$

$$
\begin{equation*}
P\left(t, U_{N}\right) \geqslant c_{4} / 2>0 \tag{13}
\end{equation*}
$$

It follows from estimates (12) and (8) that the sequence $U_{N}(N \geqslant t)$ is bounded in $W_{2}^{1}(\Omega(0, t))$ for each $t>0$. Hence, applying diagonal process, we obtain a sequence $U_{N_{k}}$ weakly convergent in $W_{2}^{1}(\Omega(0, t))$ and strongly convergent in $L_{2}(\Omega(0, t))$ to some function U for each $t>0$. It is obvious that U satisfies (1)-(2) and the estimate $0 \leqslant U(x) \leqslant V(x) \leqslant C_{2} x_{1}$ almost everywhere in $\Omega(1, \infty)$ and by the Hölder continuity of generalized solutions to second order elliptic equations [8, Ch. III, Thm. 14.1], $0 \leqslant U(x) \leqslant V(x) \leqslant C_{2} x_{1}$ everywhere in $\Omega(1, \infty)$. By (5) we obtain that $P(t, U) \rightarrow p_{0}=$ const, $t \rightarrow \infty$. Since it follows from (4) that $P\left(t, U_{N}\right)=$ $\int_{0}^{1} P\left(\tau, U_{N}\right) d \tau+\int_{\Omega(0, t)} q U_{N} \Psi\left(x_{1}\right) d x, \Psi=x_{1}$ as $0 \leqslant x_{1} \leqslant 1, \Psi=1$ as $1 \leqslant x_{1} \leqslant t$, then $P(t, U)=\lim _{k \rightarrow \infty} P\left(t, U_{N_{k}}\right)$. Thanks to (13), we obtain that $P(t, U) \geqslant c_{4} / 2$ as $t \geqslant t_{0}$ and $p_{0} \geqslant c_{4} / 2>0$.

Let us estimate Dirichlet integral for U. Choosing the test function $v=U \Phi$ in the integral identity of type (3) for $U(x)$, where $\Phi=\Phi\left(x_{1}\right)$ is continuous function, $\Phi=1$ as $0 \leqslant x_{1} \leqslant t$, $\Phi(t+h)=0 ; \Phi$ is linear as $t \leqslant x_{1} \leqslant t+h ; h>0$, we obtain

$$
\int_{\Omega(0, t+h)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial U}{\partial x_{i}} \frac{\partial U}{\partial x_{j}} \Phi d x+\int_{\Omega(0, t+h)} q U^{2} \Phi d x=h^{-1} \int_{\Omega(t, t+h)} U \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x
$$

Making h to tend to zero, we obtain that for almost each $t>0$

$$
\begin{equation*}
\int_{\Omega(0, t)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial U}{\partial x_{i}} \frac{\partial U}{\partial x_{j}} d x+\int_{\Omega(0, t)} q U^{2} d x=\int_{S_{t}} U \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d \widehat{x} . \tag{14}
\end{equation*}
$$

Hence, for almost each $t>0$ we obtain

$$
I(t) \equiv \int_{\Omega(0, t)}|\nabla U|^{2} d x \leqslant c_{5} \int_{S_{t}} U \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d \widehat{x} \leqslant c_{6} t \sqrt{I^{\prime}(t)} .
$$

Then, integrating inequality $I^{\prime} I^{-2} \geqslant c_{6}^{-2} t^{-2}$ from t to T and making T to tend to ∞, we obtain $I(t) \leqslant c_{6}^{2} t$.

Let $N_{0} \in \mathbb{N}$ be such that $\int_{\Gamma\left(N_{0}, \infty\right)} q U d x<c_{4} C_{1} /\left(3 C_{2}\right)$ and $P(t, U) \geqslant c_{4} / 2$ as $t \geqslant N_{0}$. Employing Poincaré inequality and the estimate for Dirichlet integral of U, by Lemma 4 for $u=U$ in the domain $\Omega\left(N_{0}, \infty\right)$ we obtain

$$
\begin{aligned}
\bar{U}(N) & \geqslant \bar{V}(N) \int_{N}^{N+1} P(t, U) d t-\int_{\Omega\left(N_{0}, N+1\right)} q U V d x-c_{7} N^{1 / 2} \\
& \geqslant c_{4} C_{1} N / 2-C_{2}(N+1) c_{4} C_{1} /\left(3 C_{2}\right)-c_{7} N^{1 / 2} \geqslant c_{8} N .
\end{aligned}
$$

for sufficiently large $N \geqslant N_{0}$.
Let us estimate the deviation of U from $\bar{U}(N)$ in the domain Ω_{N}. Since the function $U-\bar{U}(N)$ satisfies the equation $L_{0}(U-\bar{U}(N))=q U$ in Ω and homogeneous Neumann condition on Γ, then for $p>n / 2$, in view of De Georgi estimate [2], Poincaré inequality and the estimates for the function U and its Dirichlet integral we obtain that

$$
\begin{aligned}
\sup _{S_{N+1 / 2}}(U-\bar{U}(N))^{2} & \leqslant c_{9}\left(\int_{\Omega_{N}}(U-\bar{U}(N))^{2} d x+\|q U\|_{L_{p}\left(\Omega_{N}\right)}^{2}\right) \\
& \leqslant c_{10}\left(N+c^{2} N^{2}\right) \leqslant c_{8}^{2} N^{2} / 4, \quad N \geqslant N_{0}^{\prime}=\mathrm{const}
\end{aligned}
$$

if $c_{10} c^{2} \leqslant c_{8}^{2} / 5$. In view of the linear lower bound for $\bar{U}(N)$, we obtain the required lower bound for $U(x)$. The proof is complete.

Lemma 5. Let $q(x) \geqslant 0$ in $\Omega,\|q\|_{L_{p}\left(\Omega_{t}\right.} \leqslant c^{\prime}$ as $t \geqslant t_{1}=$ const for some $p>n / 2, c^{\prime}$ is some constant independent of $\widehat{\Omega}, \lambda_{1}, \lambda_{2} ; u(x)$ is the solution to (11)-(2) and for some sequence $t_{k} \rightarrow \infty$ the condition $\sup _{\Omega_{t_{k}}}|u|=o\left(\exp \left(A t_{k}\right)\right)$ holds, $k \rightarrow \infty$, where $A>0$ is some constant depending on $\widehat{\Omega}, \lambda_{1}, \lambda_{2}$. Then there exists a sequence $t_{k}^{\prime} \rightarrow \infty, k \rightarrow \infty$, such that the estimate

$$
\bar{u}\left(t_{k}^{\prime}\right)-\frac{1}{2}\left|\bar{u}\left(t_{k}^{\prime}\right)\right|-I_{1} \leqslant u(x) \leqslant \bar{u}\left(t_{k}^{\prime}\right)+\frac{1}{2}\left|\bar{u}\left(t_{k}^{\prime}\right)\right|+I_{1}, \quad x \in S_{t_{k}^{\prime}+1 / 2},
$$

holds true and $I_{1} \geqslant 0$ is independent of k.
Proof. Employing estimate (8), we obtain

$$
\begin{equation*}
\int_{\Omega\left(0, t_{k}\right)}|\nabla u|^{2} d x \leqslant I_{0}+c_{1} \int_{\Omega_{t_{k}}} u^{2} d x=o\left(\exp \left(2 A t_{k}\right)\right), \quad k \rightarrow \infty \tag{15}
\end{equation*}
$$

$c_{i}=c_{i}\left(\widehat{\Omega}, \lambda_{1}, \lambda_{2}\right)>0, I_{0} \geqslant 0$ is independent of $k \in \mathbb{N}$. Let us show that for some sequence $t_{k}^{\prime} \rightarrow \infty$

$$
\begin{equation*}
\int_{\Omega_{t_{k}^{\prime}}}|\nabla u|^{2} d x \leqslant \delta \int_{\Omega\left(0, t_{k}^{\prime}\right)}|\nabla u|^{2} d x, \quad \delta=\exp \{2 A\}-1>0 . \tag{16}
\end{equation*}
$$

Indeed, otherwise for an arbitrary $t \geqslant t_{0}=$ const

$$
\int_{\Omega_{t}}|\nabla u|^{2} d x=\int_{\Omega(0, t+1)}|\nabla u|^{2} d x-\int_{\Omega(0, t)}|\nabla u|^{2} d x>\delta \int_{\Omega(0, t)}|\nabla u|^{2} d x
$$

that in view of (15) we obtain that

$$
\begin{aligned}
& \int_{\Omega(0, t)}|\nabla u|^{2} d x<(1+\delta)^{-1} \int_{\Omega(0, t+1)}|\nabla u|^{2} d x<\ldots \\
& \quad \cdots<(1+\delta)^{-N_{k}} \int_{\Omega\left(0, t+N_{k}\right)}|\nabla u|^{2} d x=(1+\delta)^{-N_{k}} o\left(\exp \left\{2 A\left(t+N_{k}\right)\right\}\right) \rightarrow 0, \quad k \rightarrow \infty
\end{aligned}
$$

if we take $N_{k} \in \mathbb{N}$ such that $t_{k}-1 \leqslant t+N_{k} \leqslant t_{k}$. Thus, $\nabla u \equiv 0$ and estimate (16) holds true. Then by (15) and Poincaré inequality we obtain

$$
\int_{\Omega_{t_{k}^{\prime}}}|\nabla u|^{2} d x \leqslant \delta\left(I_{0}+c_{1} \int_{\Omega_{t_{k}^{\prime}}} u^{2} d x\right) \leqslant c_{2} \delta\left(\int_{\Omega_{t_{k}^{\prime}}}|\nabla u|^{2} d x+\bar{u}^{2}\left(t_{k}^{\prime}\right)+I_{0}\right)
$$

If $\delta \leqslant c_{2}^{-1} / 2$, then

$$
\begin{equation*}
\int_{\Omega_{t_{k}^{\prime}}}|\nabla u|^{2} d x \leqslant 2 c_{2} \delta\left(\bar{u}^{2}\left(t_{k}^{\prime}\right)+I_{0}\right) \tag{17}
\end{equation*}
$$

Let us estimate the deviation of $u(x)$ from $\bar{u}\left(t_{k}^{\prime}\right)$. Employing Poincaré inequality and estimate (17), by Lemma 1 we obtain

$$
\sup _{S_{t_{k}^{\prime}+1 / 2}} u^{2} \leqslant c_{3}\left(\int_{\Omega_{t_{k}^{\prime}}}|\nabla u|^{2} d x+\bar{u}^{2}\left(t_{k}^{\prime}\right)\right) \leqslant c_{4}\left((\delta+1) \bar{u}^{2}\left(t_{k}^{\prime}\right)+\delta I_{0}\right)
$$

Hence, since $L_{0}\left(u-\bar{u}\left(t_{k}^{\prime}\right)\right)=q u$, we employ De Georgi estimate [2] and inequality (17) once again, for $k \geqslant k_{0}=$ const we obtain

$$
\begin{aligned}
\sup _{S_{t_{k}^{\prime}+1 / 2}}\left(u-\bar{u}\left(t_{k}^{\prime}\right)\right)^{2} & \leqslant c_{5}\left(\int_{\Omega_{t_{k}^{\prime}}}\left(u-\bar{u}\left(t_{k}^{\prime}\right)\right)^{2} d x+\|q u\|_{L_{p}\left(\Omega_{t_{k}^{\prime}}\right)}^{2}\right) \\
& \leqslant c_{6}\left(\int_{\Omega_{t_{k}^{\prime}}}|\nabla u|^{2} d x+\left(c^{\prime}\right)^{2}\left((\delta+1) \bar{u}^{2}\left(t_{k}^{\prime}\right)+\delta I_{0}\right)\right) \\
& \leqslant c_{7}\left(\delta\left(\bar{u}^{2}\left(t_{k}^{\prime}\right)+I_{0}\right)+\left(c^{\prime}\right)^{2}\left((\delta+1) \bar{u}^{2}\left(t_{k}^{\prime}\right)+\delta I_{0}\right)\right) \leqslant \frac{1}{4}\left(\bar{u}^{2}\left(t_{k}^{\prime}\right)+I_{0}\right)
\end{aligned}
$$

if $c_{7}\left(c^{\prime}\right)^{2} \leqslant 1 / 8$ and $c_{7} \delta\left(1+\left(c^{\prime}\right)^{2}\right) \leqslant 1 / 8$. Thus, the statement of the lemma is true for the sequence $t_{k}^{\prime}, k \geqslant k_{0}, c^{\prime}=\left(8 c_{7}\right)^{-1 / 2}, \delta=\min \left\{c_{2}^{-1} / 2,\left(8 c_{7}\left(1+\left(c^{\prime}\right)^{2}\right)\right)^{-1}\right\}, A=2^{-1} \ln (1+\delta)$.

Lemma 6. Suppose that $u(x)$ satisfies the assumptions of Lemma 5 and moreover, $\int_{\Omega} x_{1} q(x) d x<\infty$ and $\|q\|_{L_{p}\left(\Omega_{t}\right)} \leqslant c$ as $t \geqslant t_{0}=$ const, where $c>0$ is a constant in Theorem 3. Then

$$
|u(x)| \leqslant C x_{1}, \quad C=\text { const }>0
$$

for all $x_{1} \geqslant 1$.
Proof. We suppose the opposite, then for some sequence $\widetilde{t}_{k} \rightarrow \infty$

$$
\begin{equation*}
\sup _{S_{\tilde{t}_{k}}}|u| / \widetilde{t_{k}} \rightarrow \infty, \quad k \rightarrow \infty \tag{18}
\end{equation*}
$$

Let U be a linearly growing solution to (11)-(2) in Ω. The existence of such solution was proved in Theorem 3. Applying the maximum principle to the functions $u \pm c_{0} U$ for sufficiently large $c_{0}>0$, by (18) we obtain that $\sup _{S_{t}}|u| / t \rightarrow \infty, t \rightarrow \infty$. Let t_{k}^{\prime} be a sequence, for which Lemma 5 holds true. Without loss of generality we can assume that $\sup _{S_{t_{k}^{\prime}+1 / 2}} u>0$. Then by Lemma 5 we obtain that $\inf _{S_{t_{k}^{\prime}+1 / 2}} u / t_{k}^{\prime} \rightarrow+\infty, k \rightarrow \infty$. Applying the maximum principle to the function $U-c_{1}-\varepsilon u$ for sufficiently large $c_{1}>0$ and making ε to tend to 0 , we obtain that $U \leqslant c_{1}$ in $\Omega\left(t_{1}^{\prime}+1 / 2, \infty\right)$, which contradicts the linear growth of U. The obtained contradiction means that relation (18) is wrong that proves the lemma.

Lemma 7. Suppose that the assumptions of Lemma 6 holds true and moreover, the condition $P(t, u) \rightarrow 0, t \rightarrow \infty$ is satisfied. Then the solution $u(x)$ to (1)-(2) is bounded in Ω.
Proof. According to Lemma $6,|u(x)| \leqslant C x_{1}, x_{1} \geqslant 1$. Then $\int_{\Omega(0, t)} x_{1} q u d x=o(t), t \rightarrow \infty$. This follows from Lemma 4 that

$$
|\bar{u}(t)| \leqslant o(t)+c_{1}\left(\int_{\Omega_{t}}|\nabla u|^{2} d x\right)^{1 / 2}, \quad t \rightarrow \infty,
$$

$c_{1}>0$ is independent of t. Estimating Dirichlet integral for u in the same way as this was done for the function U in the proof of Theorem 3, we obtain that $\int_{\Omega(0, t)}|\nabla u|^{2} d x \leqslant c_{2} t, c_{2}>0$ is independent of t. Then $\bar{u}(t)=o(t)$. Employing Lemma 5, we obtain that $\sup _{S_{t_{k}}}|u|=o\left(t_{k}\right)$ for some sequence $t_{k} \rightarrow \infty$, that is, $u(x) \leqslant c_{0}+\varepsilon U$ on $S_{t_{1}} \cup S_{t_{k}}$ as $k>k_{0}(\varepsilon)$. Applying the maximum principle and making ε to tend to 0 , we obtain that $u(x) \leqslant c_{0}$ for sufficiently large x_{1}. In the same way we obtain the estimates from below. The proof is complete.

The main result on the trichotomy of solutions in the case of a fast decaying is a follows.
Theorem 4. Let $q(x) \geqslant 0$ in $\Omega, \int_{\Omega} x_{1} q(x) d x<\infty,\|q\|_{L_{p}\left(\Omega_{t}\right)} \leqslant \min \left\{c, c^{\prime}\right\}$ as $t \geqslant t_{0}=$ const, c, c^{\prime} are constants in Theorem 3 and Lemma 5, respectively. Then each solution to (1)-(2) behaves in one of the following three ways:

1) $u(x)$ is bounded in Ω;
2) $\sup _{\Omega_{t}}|u| \geqslant C_{0} \exp (A t)$, where the constant $A>0$ is independent of $\widehat{\Omega}, \lambda_{1}, \lambda_{2} ; C_{0}=$ const >0;
3) $C_{1} x_{1} \leqslant u(x) \leqslant C_{2} x_{1}$ as $x_{1} \geqslant x_{1}^{(0)}=\mathrm{const}>0, C_{1}, C_{2}=\mathrm{const}, C_{1} C_{2}>0$.

Proof. According to Lemma 6, there exists $A>0$ such that each solution to (1)-(2) not obeying 2) satisfies the inequality $|u(x)| \leqslant c_{0} x_{1}$ as $x_{1} \geqslant 1, c_{0}=$ const. It follows from (5) that for such solution there exists the finite limit $\lim _{t \rightarrow \infty} P(t, u)$. Then for the solution $w \equiv u-p_{1} U$ to (1)-(2), where U is a linearly growing solution (1)-(2) in Theorem 3, $p_{1}=$ const, we obtain $\lim _{t \rightarrow \infty} \vec{P}(t, w)=0$. According to Lemma 7, the function w is bounded in Ω. Thus, we obtain that $u=w+p_{1} U$ satisfies either Condition 1) as $p_{1}=0$ or Condition 3) as $p_{1} \neq 0$. The proof is complete.

In conclusion let us show that in the case of a fast decaying lower order term, the limiting constant C of the bounded solution can be written explicitly in terms of the values of the solutions on the base S_{0} of the cylinder.

Theorem 5. Suppose that the function $q(x)$ satisfies the assumptions of Theorem 3. Then the limiting constant C of the bounded in Ω solution to (1)-(2) $u(x)$ satisfies the representation

$$
C=\lim _{h \rightarrow 0} h^{-1} \int_{\Omega(0, h)} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x
$$

where $U(x)$ is the linearly growing solution to (1)-(2) in Theorem 3 satisfying the condition $P(t, U) \rightarrow p_{0}=1, t \rightarrow \infty$.
Proof. Let $\Phi_{h, N}=\Phi_{h, N}\left(x_{1}\right)$ be a continuous function, $\Phi_{h, N}\left(x_{1}\right)=1$ as $h \leqslant x_{1} \leqslant N, \Phi_{h, N}(0)=$ $\Phi_{h, N}(N+1)=0, \Phi_{h, N}$ is linear as $0 \leqslant x_{1} \leqslant h$ and $N \leqslant x_{1} \leqslant N+1$. Letting $v=u \Phi_{h, N}$ in integral identity (3) for $U(x)$, we obtain

$$
\begin{aligned}
\int_{\Omega(0, N+1)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial U}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \Phi_{h, N} d x= & -\int_{\Omega(0, N+1)} q u U \Phi_{h, N} d x \\
& +\int_{\Omega_{N}} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x-h^{-1} \int_{\Omega(0, h)} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x .
\end{aligned}
$$

Let $\Phi_{N}\left(x_{1}\right)=1$ as $0 \leqslant x_{1} \leqslant N, \Phi_{N}\left(x_{1}\right)=N+1-x_{1}$ as $N \leqslant x_{1} \leqslant N+1$. Choosing the test function $v=U \Phi_{N}$ in integral identity (3) for u, we obtain

$$
\int_{\Omega(0, N+1)} \sum_{i, j=1}^{n} a_{i j} \frac{\partial u}{\partial x} \frac{\partial U}{\partial x_{j}} \Phi_{N} d x=-\int_{\Omega(0, N+1)} q u U \Phi_{N} d x+\int_{\Omega_{N}} U \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d x
$$

By the last two identities, in view of symmetricity of the matrix $a_{i j}$, we get

$$
\begin{aligned}
\int_{\Omega_{N}} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x= & \int_{\Omega_{N}} U \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d x+h^{-1} \int_{\Omega(0, h)} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x \\
& +\int_{\Omega(0, h)}\left(\sum_{i, j=1}^{n} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial U}{\partial x_{j}}+q u U\right)\left(\Phi_{h, N}-1\right) d x
\end{aligned}
$$

Making h to tend to zero, we obtain

$$
\int_{\Omega_{N}} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x=\int_{\Omega_{N}} U \sum_{i=1}^{n} a_{i 1} \frac{\partial u}{\partial x_{i}} d x+\lim _{h \rightarrow 0} h^{-1} \int_{\Omega(0, h)} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x
$$

Hence,

$$
\begin{align*}
\bar{u}(N) \int_{N}^{N+1} P(t, U) d t= & \bar{U}(N) \int_{N}^{N+1} P(t, u) d t+\lim _{h \rightarrow 0} h^{-1} \int_{\Omega(0, h)} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x \tag{19}\\
& +\int_{\Omega_{N}} \sum_{i=1}^{n} a_{i 1}\left((U-\bar{U}(N)) \frac{\partial u}{\partial x_{i}}-(u-\bar{u}(N)) \frac{\partial U}{\partial x_{i}}\right) d x
\end{align*}
$$

The left hand side in (19) tends to C as $N \rightarrow \infty$. Since for the bounded solution $u(x)$ we have $\int_{\Omega}|\nabla u|^{2} d x<\infty$, then by (5) we obtain that $P(t, u) \rightarrow 0, t \rightarrow \infty$ and $P(t, u)=-\int_{\Omega(t, \infty)} q u d x$. Then

$$
|P(t, u)| \leqslant c_{0} \int_{\Omega(t, \infty)} q d x \leqslant c_{0} t^{-1} \int_{\Omega(t, \infty)} x_{1} q d x=o\left(t^{-1}\right), \quad t \rightarrow \infty
$$

Hereinafter $c_{i}=$ const >0. Then the first term in the right hand side in (19) tends to zero as $N \rightarrow \infty$.

Since $\int_{\Omega(0, N)}|\nabla U|^{2} d x \leqslant c_{1} N$, there exists a sequence $N_{k} \rightarrow \infty, k \rightarrow \infty$, for which $\int_{\Omega_{N_{k}}}|\nabla U|^{2} d x \leqslant c_{2}$. Applying Cauchy-Schwarz and Poincaré inequalities, in view of Lemma 3 we obtain

$$
\begin{aligned}
& \left|\int_{\Omega_{N_{k}}} \sum_{i=1}^{n} a_{i 1}\left(\left(U-\bar{U}\left(N_{k}\right)\right) \frac{\partial u}{\partial x_{i}}-\left(u-\bar{u}\left(N_{k}\right)\right) \frac{\partial U}{\partial x_{i}}\right) d x\right| \\
& \quad \leqslant c_{3}\left(\int_{\Omega_{N_{k}}}|\nabla u|^{2} d x\right)^{1 / 2}\left(\int_{\Omega_{N_{k}}}|\nabla U|^{2} d x\right)^{1 / 2} \rightarrow 0, \quad k \rightarrow \infty
\end{aligned}
$$

Thus, by (19) we obtain the statement of the theorem.
We observe that the obtained expression for the limiting constant C depends only on the values of the function $u(x)$ on S_{0}. Indeed, for the functions u_{1} and u_{2} such that $\left.\left(u_{1}-u_{2}\right)\right|_{S_{0}}=0$ we have

$$
\begin{aligned}
& h^{-1}\left|\int_{\Omega(0, h)}\left(u_{1}-u_{2}\right) \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d x\right| \\
& \quad \leqslant c\left(\int_{\Omega(0, h)}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega(0, h)}|\nabla U|^{2} d x\right)^{1 / 2} \rightarrow 0, \quad h \rightarrow 0 .
\end{aligned}
$$

It is obvious that for the classical solution the limiting constant C is expressed explicitly in terms of the integral over S_{0} :

$$
C=\int_{S_{0}} u \sum_{i=1}^{n} a_{i 1} \frac{\partial U}{\partial x_{i}} d \widehat{x} .
$$

In the simplest case of the Laplace operator $L=\Delta$ we have $U=m_{0}^{-1} x_{1}, C=m_{0}^{-1} \int_{S_{0}} u d \widehat{x}$. It is obviously implied by the identity $\int_{S_{t}} \frac{\partial u}{\partial x_{1}} d \widehat{x}=$ const and for the bounded solutio this constant vanishes.

BIBLIOGRAPHY

1. E.M. Landis, G.P. Panasenko. A variant of a Phragmén-Lindelöf theorem for elliptic equations with coefficients that are periodic functions of all variables except one // Trudy Semin. im I.G. Petrovskogo, 5, 105-136 (1979). [Topics Modern Math. Petrovskii Semin. 5, 133-172 (1985).]
2. O.A. Oleinik, G.A. Iosif'yan. On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary // Matem. Sborn. 112:4, 588-610 (1980). [Math. USSR. Sb. 40:4, 527-548 (1981).]
3. O.A. Oleinik, G.A. Yosifian. On the asymptotic behavior at infinity of solutions in linear elasticity // Arch. Rat. Mech. Anal. 78:1, 29-53 (1982).
4. A.V. Neklyudov. On Neumann problem for high order divergent elliptic equations in unbounded domains close to a cylinder // Trudy Semin. im I.G. Petrovskogo. 16, 191-217 (1991). (in Russian).
5. A.L. Piatnitski. On the behaviour at infinity of the solution of a second-order elliptic equation given on a cylinder // Uspekhi Matem. Nauk. 37:2, 231-232 (1982). [Russ. Math. Surv. 37:2, 249-250 (1982).]
6. A.V. Neklyudov. Solutions of nondivergent second-order elliptic equations in a nonbounded domain // Vestn. Mosk. Univ. Ser. I. 1, 93-95 (1989). [Mosc. Univ. Math. Bull. 44:1, $80-83$ (1989).]
7. V. A. Kondrat'ev. Positive solutions to weakly nonlinear elliptic equations of second order on cylindrical domains // Trudy Mat. Inst. Steklova. 250, 183-191 (2005). [Proc. Steklov Inst. Math. 250, 169-177 (2005).]
8. O.A. Ladyzhenskaya and N.N. Ural'tseva. Linear and quasilinear elliptic equations. Nauka, Moscow (1973). [Academic Press, New York (1968).]
9. S.S. Lakhturov. The asymptotic behaviour of solutions of the second boundary-value problem in unbounded domains // Uspekhi Matem. Nauk. 35:4, 195-196 (1980). [Russ. Math. Surveys. 35:4, 175-176 (1980).]
10. A.V. Neklyudov. The behavior of solutions of semilinear elliptic equations of second order of the form $L u=e^{u}$ in the infinite cylinder // Matem. Zametki. 85:3, 408-420 (2009). [Math. Notes. 85:3-4, 397-408 (2009).]
11. R. Bellman. Stability theory of differential equations. McGraw-Hill Book Company, New York (1953).

Alexey Vladimirovich Neklyudov, Bauman Moscow State Technical University, Rubstovskaya quay $2 / 18$, Moscow, 105005, Russia
E-mail: nek15@yandex.ru

[^0]: A.V. Nekludov,On solutions of second order elliptic equations in cylindrical domains. (c) Nekludov A.V. 2016.

