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ON SOLUTIONS OF SECOND ORDER ELLIPTIC

EQUATIONS IN CYLINDRICAL DOMAINS

A.V. NEKLUDOV

Abstract. In a semi-infinite cylinder, we consider a second order elliptic equation with
a lower order term. On the lateral boundary of the cylinder we impose the homogeneous
Neumann condition. We show that each bounded solution tends to a constant at infinity
and once the lower order term does not decay too fast, this constant vanishes. We establish
that for a sufficiently fast decay of the lower order term, we have a trichotomy of the
solutions as for the equation without the lower order term: the solution tends to a general
non-zero constant or grows linearly or grows exponentially. The decay conditions for the
lower order term are formulated in an integral form.

Keywords: Elliptic equation, Neumann boundary value condition, unbounded domain,
low order term, asymptotic behavior of solutions, trichotomy of solutions.

Mathematics Subject Classification: 35J15, 35J25

1. Introduction

The behavior of solutions to elliptic equations in cylindrical or close domains with the Dirich-
let, Neumann or periodic w.r.t. all variables except one boundary conditions on the lateral
surface was studied rather well for the divergent type equations with no lower order terms
[1]-[4]. For the equations with lower order terms, the most studied case is for the coefficients
periodic w.r.t. the variable directed along the axis of the cylinder [5], [6].

In the present work we study the behavior of the generalized solutions to the elliptic second
order equations with a lower order term subject to the Neumann condition on the lateral surface
by means of energy estimates of Saint-Venant’s principle kind [2]–[4]. The main attention is
paid to the dependence of the properties of the solution on the behavior of the coefficient
𝑞(𝑥) at the lower order term of the equation. We show that under rather fast decay of the
lower coefficient, the behavior of the solutions is similar to the behavior of the solutions to the
divergent type equations with no lower terms and subject to Neumann condition: the tending
of bounded solution to a constant, trichotomy of solutions. In the case of a slowly decaying
lower order term, the behavior of bounded solutions is similar to the behavior of solutions to
equations with no lower terms and subject to Dirichlet condition (each bounded solution tends
to zero).

2. Main notations and definitions

In the 𝑛-dimensional cylinder Ω = (0,+∞) × ̂︀Ω we consider the elliptic equation

𝐿𝑢 ≡
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑗

(︂
𝑎𝑖𝑗(𝑥)

𝜕𝑢

𝜕𝑥𝑖

)︂
− 𝑞(𝑥)𝑢 = 0, (1)
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where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥1, ̂︀𝑥) ∈ R𝑛
𝑥, ̂︀Ω ⊂ R𝑛−1̂︀𝑥 be a bounded domain with a Lipschitz

boundary, 𝑎𝑖𝑗(𝑥) are measurable functions in Ω, 𝑎𝑖𝑗 = 𝑎𝑗𝑖, 𝜆1|𝜉|2 6
∑︀𝑛

𝑖,𝑗=1 𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 6 𝜆2|𝜉|2,
𝜉 ∈ R𝑛, 𝜆1, 𝜆2 = const > 0, 𝑞(𝑥) > 0 is a locally bounded measurable function.

On the lateral boundary of the cylinder Γ = (0,∞) × 𝜕̂︀Ω we impose Neumann boundary
condition

𝜕𝑢

𝜕𝜈

⃒⃒⃒⃒
Γ

= 0, (2)

where 𝜕𝑢/𝜕𝜈 ≡
∑︀𝑛

𝑖,𝑗=1 𝑎𝑖𝑗(𝑥)𝜕𝑢/𝜕𝑥𝑖 cos(�⃗�, 𝑥𝑗), �⃗� is the unit normal to Γ.

We introduce the following notations: Ω(𝑎, 𝑏) = Ω ∩ {𝑥 : 𝑎 < 𝑥1 < 𝑏}, Ω𝑡 = Ω(𝑡, 𝑡 + 1),

Γ(𝑎, 𝑏) = Γ ∩ {𝑥 : 𝑎 < 𝑥1 < 𝑏}, Γ𝑡 = Γ(𝑡, 𝑡 + 1), 𝑆𝑡 = {𝑥 : 𝑥1 = 𝑡, ̂︀𝑥 ∈ ̂︀Ω}, ∇𝑢 = grad𝑢,

𝑚0 = mes𝑛−1
̂︀Ω, 𝑢(𝑡) = 𝑚−1

0

∫︀
Ω𝑡

𝑢 𝑑𝑥.

By solutions to (1)-(2) in Ω we mean generalized solutions, that is, the functions belonging
to Sobolev space 𝑊 1

2 (Ω(0, 𝑡)) for each 𝑡 > 0 and satisfying the integral identity∫︁
Ω(0,𝑡)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑗

𝑑𝑥 +

∫︁
Ω(0,𝑡)

𝑞𝑢𝑣 𝑑𝑥 = 0 (3)

for all functions 𝑣 ∈ 𝑊 1
2 (Ω(0, 𝑡)) such that 𝑣|𝑆0∪𝑆𝑡 = 0.

3. Auxiliary statements

Lemma 1. Let 𝑢(𝑥) be a solution to equation (1) in Ω𝑡 satisfying condition (2) on Γ𝑡. Then
the estimates

sup𝑆𝑡+1/2
|𝑢| 6 𝑐0

(︂∫︁
Ω𝑡

𝑢2 𝑑𝑥

)︂1/2

, sup𝑆𝑡+1/2
(𝑢− 𝐶) 6 𝑐1

(︂∫︁
Ω𝑡

(𝑢− 𝐶)2 𝑑𝑥

)︂1/2

hold true, where 𝑐0 is independent of 𝑢, 𝑡; 𝑐1 is independent of 𝑢, 𝑡, 𝐶 > 0.

Proof. It is known, see, for instance, [7], that the solution to a second order elliptic equation
satisfying the homogeneous Neumann condition on Γ𝑡, for each point Γ𝑡, by means of local
flattening and symmetry principle, can be continued to a domain 𝜔 containing a neighbourhood
of this boundary point and the structure of the equation is preserved.

Let 𝐶 > 0, 𝑘 > 0, 𝑥0 ∈ 𝜔, 𝜌, 𝜎 ∈ (0, 1), 𝜙(𝑥) ∈ 𝐶1(R𝑛), 0 6 𝜙 6 1, 𝜙(𝑥) = 1 as
|𝑥 − 𝑥0| 6 𝜌(1 − 𝜎), 𝜙(𝑥) = 0 as |𝑥 − 𝑥0| > 𝜌, |∇𝜙| 6 const/(𝜌𝜎). We choose 𝜌 such
that supp𝜙 ⊂ 𝜔. Letting 𝑣 = max{𝑢 − 𝐶 − 𝑘, 0}𝜙 in integral identity (3) and taking into
consideration that

∫︀
{𝑥:𝑢−𝐶−𝑘>0} 𝑞𝑢(𝑢− 𝐶 − 𝑘)𝜙𝑑𝑥 > 0, we obtain the estimate∫︁

𝐴𝑘,𝜌(1−𝜎)

|∇𝑤|2 𝑑𝑥 6 𝑐2(𝜌𝜎)−2

∫︁
𝐴𝑘,𝜌

(𝑤 − 𝑘)2 𝑑𝑥,

where 𝑤 = 𝑢− 𝐶, 𝐴𝑘,κ = {𝑥 : 𝑤(𝑥) > 𝑘} ∩ {𝑥 : |𝑥− 𝑥0| < κ}, 𝑐2 is independent of 𝑤, 𝑘, 𝜌, 𝜎,
𝑥0.

This follows [8, Ch. II, Sect. 5.3] that for each domain 𝜔′ ⊂⊂ 𝜔 the estimate

sup𝜔′ 𝑤 6 𝑐

(︂∫︁
𝜔

𝑤2 𝑑𝑥

)︂1/2

6 𝑐1

(︂∫︁
Ω𝑡

𝑤2 𝑑𝑥

)︂1/2

holds true. Covering Γ(𝑡+1/4, 𝑡+3/4) by finitely many constructed neighbourhoods, we obtain
that this estimate is true for supΩ(𝑡+1/4,𝑡+3/4)𝑤 and therefore, for sup𝑆𝑡+1/2

𝑤. Thus, the second

of the needed estimates is proved. Moreover, as 𝐶 = 0, similar to the obtained estimate for
sup𝑢, we obtain the estimate for sup(−𝑢). The proof is complete.
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For a solution 𝑢(𝑥) to equation (1) satisfying (2), in the standard way we introduce the
notion of the “heat flow” through the section 𝑆𝑡 of cylinder Ω:

𝑃 (𝑡, 𝑢) = lim
ℎ→0+

(︂
ℎ−1

∫︁
Ω(𝑡,𝑡+ℎ)

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥

)︂
=

∫︁
𝑆𝑡

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑̂︀𝑥;

the latter identity is true for almost each 𝑡 > 0. Let 0 6 𝑡 < 𝑇 , ℎ1 > 0, ℎ2 > 0. We choose 𝑣 = Φ
(3), where Φ = Φ(𝑥1) is continuous function, Φ = 1 as 𝑡 + ℎ1 6 𝑥1 6 𝑇 , Φ(𝑡) = Φ(𝑇 + ℎ2) = 0,
Φ is linear for 𝑡 6 𝑥1 6 𝑡 + ℎ1 and for 𝑇 6 𝑥1 6 𝑇 + ℎ2:

ℎ−1
1

∫︁
Ω(𝑡,𝑡+ℎ1)

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥− ℎ−1
2

∫︁
Ω(𝑇,𝑇+ℎ2)

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥 +

∫︁
Ω(𝑡,𝑇+ℎ2)

𝑞𝑢Φ 𝑑𝑥 = 0. (4)

Making ℎ1 to tend to zero and then doing the same with ℎ2, we obtain the relation

𝑃 (𝑇, 𝑢) − 𝑃 (𝑡, 𝑢) =

∫︁
Ω(𝑡,𝑇 )

𝑞𝑢 𝑑𝑥. (5)

It is easy to see that as 𝑡 > 0, in the definition of the flow, the domain of the integration
Ω(𝑡, 𝑡 + ℎ) can be replaced by Ω(𝑡− ℎ, 𝑡).

We consider the equation with no lower order term corresponding to equation (1):

𝐿0𝑉 ≡
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑗

(︂
𝑎𝑖𝑗(𝑥)

𝜕𝑉

𝜕𝑥𝑖

)︂
= 0. (6)

It is well-known, see, for instance [9, Thm. 2], that there exists a positive solution 𝑉 (𝑥) to
equation (6) in Ω satisfying the homogeneous Neumann condition

(︀
𝜕𝑉/𝜕𝜈

)︀⃒⃒
Γ

= 0 on Γ and the
estimate

𝐶1𝑥1 6 𝑉 (𝑥) 6 𝐶2𝑥1, 𝐶1, 𝐶2 = const > 0,

as 𝑥1 > 1. The function 𝑉 (𝑥) also satisfies [10, Form. (12)] the conditions∫︁
Ω𝑡

|∇𝑉 |2 𝑑𝑥 6 𝑐1 = const, 𝑃 (𝑡, 𝑉 ) = 1, 𝑡 > 0,

the second condition is satisfied by multiplying 𝑉 by a constant. As 𝑡 > 0, the function 𝑉
satisfies the integral identity ∫︁

Ω(0,𝑡)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑉

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑗

𝑑𝑥 = 0 (7)

for all functions 𝑣 ∈ 𝑊 1
2 (Ω(0, 𝑡)) such that 𝑣|𝑆0∪𝑆𝑡 = 0.

Lemma 2. Let 𝑢(𝑥) be a bounded in Ω solution to (1)-(2), 𝑀0 = sup𝑆0
𝑢. Then the estimate

𝑢(𝑥) 6 max{𝑀0, 0}
holds true in Ω.

Proof. Let 𝑉 (𝑥) be the solution to equation (6) defined above. We fix 𝜀 > 0. It is obvious that
for the function 𝑤 = 𝑢 − 𝜀𝑉 we have 𝑤 6 𝑀0 on 𝑆0 and on 𝑆𝑇 (𝜀) for sufficiently large 𝑇 (𝜀).
Since 𝐿𝑤 = 𝜀𝑞𝑉 > 0 and (𝜕𝑤/𝜕𝜈)|Γ = 0, the function 𝑤 can not have a positive maximum
in Ω(0, 𝑇 (𝜀)) ∪ Γ(0, 𝑇 (𝜀)), that is 𝑤 6 max{𝑀0, 0}. Making 𝜀 to tend to 0, we arrive at the
statement of the lemma.

Lemma 3. Let 𝑢(𝑥) be a bounded in Ω solution to (1)-(2). Then∫︁
Ω

(︀
|∇𝑢|2 + 𝑞𝑢2

)︀
𝑑𝑥 < ∞.



134 A.V. NEKLUDOV

Proof. Choosing 𝑣 = 𝑢Φ in (3), where Φ = Φ(𝑥1) ∈ 𝐶2(R), 0 6 Φ 6 1, Φ = 1 as 1 6 𝑥1 6 𝑁 ,
Φ = 0 as 𝑥1 6 0 and as 𝑥1 > 𝑁 + 1, (Φ′)2 6 𝑐Φ, 𝑐 = const, employing the ellipticity of the
equation and the estimate of form 𝑎𝑏 6 𝜀𝑎2/2 + 𝑏2/(2𝜀), we obtain the estimate∫︁

Ω(0,𝑁+1)

(︀
|∇𝑢|2 + 𝑞𝑢2

)︀
Φ 𝑑𝑥 6 𝑐0 + 𝑐1

∫︁
Ω𝑁

|𝑢||∇𝑢||Φ′| 𝑑𝑥 66 𝑐0 +

∫︁
Ω𝑁

(︀
𝑐2𝑢

2 + |∇𝑢|2Φ
)︀
𝑑𝑥,

𝑐𝑖 = const > 0. Then ∫︁
Ω(1,𝑁)

(︀
|∇𝑢|2 + 𝑞𝑢2

)︀
𝑑𝑥 6 𝑐0 + 𝑐2

∫︁
Ω𝑁

𝑢2 𝑑𝑥 (8)

that implies the statement of the lemma.

Lemma 4. Let 𝑢(𝑥) be a solution to (1)–(2) in Ω, 𝑉 (𝑥) is the solution to equation (6)
defined above. Then

𝑢(𝑁) = 𝑉 (𝑁)

∫︁ 𝑁+1

𝑁

𝑃 (𝑡, 𝑢)𝑑𝑡−
∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑉 Φ 𝑑𝑥 + 𝐼𝑁 ,

where

|𝐼𝑁 | 6 𝑐0

(︂∫︁
Ω𝑁

|∇𝑢|2 𝑑𝑥
)︂1/2

+ 𝑐1, 𝑐0, 𝑐1 = const > 0,

Φ = Φ(𝑥1) is a continuous function, Φ(𝑥1) = 1 as 1 6 𝑥1 6 𝑁 , Φ(0) = Φ(𝑁 + 1) = 0, Φ is
linear as 0 6 𝑥1 6 1 and 𝑁 6 𝑥1 6 𝑁 + 1.

Letting 𝑣 = 𝑢Φ in integral identity (7), we obtain∫︁
Ω(0,𝑁+1)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑉

𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

Φ 𝑑𝑥 =

∫︁
Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑉

𝜕𝑥𝑖

𝑢 𝑑𝑥−
∫︁
Ω0

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑉

𝜕𝑥𝑖

𝑢 𝑑𝑥.

Choosing the test function 𝑣 = 𝑉 Φ in integral identity (3) for 𝑢, we obtain∫︁
Ω(0,𝑁+1)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑖

𝜕𝑉

𝜕𝑥𝑗

Φ 𝑑𝑥 = −
∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑉 Φ 𝑑𝑥

+

∫︁
Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑉 𝑑𝑥−
∫︁
Ω0

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑉 𝑑𝑥.

By two latter identities and the symmetricity of the matrix 𝑎𝑖𝑗 we get that∫︁
Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑉

𝜕𝑥𝑖

𝑢 𝑑𝑥 =

∫︁
Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑉 𝑑𝑥−
∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑉 Φ 𝑑𝑥 + 𝐼0,

where 𝐼0 = const is independent of 𝑁 . This yields

𝑢(𝑁) =𝑉 (𝑁)

∫︁ 𝑁+1

𝑁

𝑃 (𝑡, 𝑢)𝑑𝑡−
∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑉 Φ 𝑑𝑥

+

∫︁
Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1

(︂
(𝑉 − 𝑉 (𝑁))

𝜕𝑢

𝜕𝑥𝑖

− (𝑢− 𝑢(𝑁))
𝜕𝑉

𝜕𝑥𝑖

)︂
𝑑𝑥 + 𝐼0.

(9)
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Employing Cauchy-Schwarz and Poincaré inequalities and the estimate for the Dirichlet integral
for 𝑉 , we obtain⃒⃒⃒⃒ ∫︁

Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1

(︂
(𝑉 − 𝑉 (𝑁))

𝜕𝑢

𝜕𝑥𝑖

− (𝑢− 𝑢(𝑁))
𝜕𝑉

𝜕𝑥𝑖

)︂
𝑑𝑥

⃒⃒⃒⃒

6𝑐2

[︂(︂∫︁
Ω𝑁

(︀
𝑉 − 𝑉 (𝑁)

)︀2
𝑑𝑥

)︂1/2(︂∫︁
Ω𝑁

|∇𝑢|2 𝑑𝑥
)︂1/2

+

(︂∫︁
Ω𝑁

(︀
𝑢− 𝑢(𝑁)

)︀2
𝑑𝑥

)︂1/2(︂∫︁
Ω𝑁

|∇𝑉 |2 𝑑𝑥
)︂1/2]︂

6𝑐3

(︂∫︁
Ω𝑁

|∇𝑉 |2 𝑑𝑥
)︂1/2(︂∫︁

Ω𝑁

|∇𝑢|2 𝑑𝑥
)︂1/2

6 𝑐4

(︂∫︁
Ω𝑁

|∇𝑢|2 𝑑𝑥
)︂1/2

,

𝑐𝑖 > 0 are independent of 𝑁 . Then by (9) we obtain the statement of the lemma.

4. Behavior of bounded solutions

Theorem 1. Let 𝑢(𝑥) be a bounded in Ω solution (1)-(2), 𝑞(𝑥) > 0 in Ω. Then for some
𝐶 = const ∫︁

Ω𝑡

(𝑢− 𝐶)2 𝑑𝑥 → 0, 𝑡 → ∞.

If the condition ‖𝑞‖𝐿𝑝(Ω𝑡) → 0, 𝑡 → ∞, 𝑝 > 𝑛/2 is satisfied as well or 𝐶 = 0, then

sup𝑆𝑡
|𝑢− 𝐶| → 0, 𝑡 → ∞.

Proof. The boundedness of the solution implies the boundedness of 𝑢(𝑡). Hence, for some
sequence 𝑡𝑘 → ∞, 𝑘 → ∞, we have 𝑢(𝑡𝑘) → 𝐶 = const. Then, employing Poincaré inequality
and a finiteness of the Dirichlet integral for 𝑢(𝑥) by Lemma 3, we obtain that∫︁

Ω𝑡𝑘

(𝑢− 𝐶)2 𝑑𝑥 6 2

∫︁
Ω𝑡𝑘

(︀
𝑢− 𝑢(𝑡𝑘)

)︀2
𝑑𝑥 + 2𝑚0

(︀
𝑢(𝑡𝑘) − 𝐶

)︀2 → 0, 𝑘 → ∞.

Let us show that ‖𝑢−𝐶‖𝐿2(Ω𝑡) → 0, 𝑡 → ∞. We assume the opposite, then ‖𝑢−𝐶 ′‖𝐿2(Ω𝑡′
𝑘
) → 0

as 𝑘 → ∞ for some sequence 𝑡′𝑘 → ∞ and a constant 𝐶 ′ ̸= 𝐶. In view of the continuity of the
function 𝑢(𝑡), without loss of generality we can assume that 𝐶 and 𝐶 ′ are of the same sign, for
instance, 0 6 𝐶 < 𝐶 ′. In accordance with Lemma 1 we have

sup𝑆𝑡𝑘+1/2
(𝑢− 𝐶) 6 𝛼𝑘 ≡ 𝑐‖𝑢− 𝐶‖𝐿2(Ω𝑡𝑘

) → 0, 𝑘 → ∞, 𝑐 = const.

By Lemma 2 we obtain that 𝑢 6 𝐶 + 𝛼𝑘 as 𝑥1 > 𝑡𝑘 + 1/2, which contradicts the condition
𝐶 < 𝐶 ′.

The statement of the theorem on the uniform convergence of 𝑢 to a constant as 𝐶 ̸= 0
is implied by the fact that 𝐿0(𝑢 − 𝐶) = 𝑞𝑢 and De Georgi estimate [2] sup𝑆𝑡+1/2

|𝑢 − 𝐶| 6
𝑐
(︀
‖𝑢−𝐶‖𝐿2(Ω𝑡)+‖𝑞𝑢‖𝐿𝑝(Ω𝑡)

)︀
. As 𝐶 = 0, this is implies by Lemma 1. The proof is complete.

Theorem 2. Assume that the function 𝑞(𝑥) > 0 satisfies one of the following conditions:
1) 𝑞(𝑥) > 𝑞0 = const > 0 in Ω,
2)

∫︀
Ω
𝑥1𝑞(𝑥) 𝑑𝑥 = ∞, ‖𝑞‖𝐿𝑝(Ω𝑡) → 0, 𝑡 → ∞, 𝑝 > 𝑛/2.

Then for each bounded in Ω solution (1)-(2)

sup𝑆𝑡
|𝑢(𝑥)| → 0, 𝑡 → ∞.

Proof. Suppose that Condition 1) holds. Then by Lemmata 1 and 3 we obtain

sup𝑆𝑡
𝑢2 6 𝑐0

∫︁
Ω𝑡−1/2

𝑢2 𝑑𝑥 → 0,
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𝑡 → ∞, 𝑐0 > 0 is independent of 𝑡.
Suppose that Condition 2) holds. Assume that 𝑢 → 𝐶 ̸= 0 as 𝑥1 → ∞. We can assume that

𝐶 > 0. By Lemma 4 we have

𝑉 (𝑁)

∫︁ 𝑁+1

𝑁

𝑃 (𝑡, 𝑢)𝑑𝑡 =

∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑉 Φ 𝑑𝑥 + 𝐼𝑁 , (10)

where |𝐼𝑁 | 6 𝑐1 = const, Φ = Φ(𝑥1) = 1 as 0 6 𝑥1 6 𝑁 , Φ = 𝑁 + 1 − 𝑥1 as 𝑁 6 𝑥1 6 𝑁 + 1.
Since by the assumption𝑢 → 𝐶 > 0, 𝑥1 → ∞, and in accordance with Theorem 1, this

convergence is uniform in ̂︀𝑥 ∈ ̂︀Ω, then 𝑢(𝑥) > 0 in Ω(𝑡0,∞) for sufficiently large 𝑡0. Then it
follows from (5) that 𝑃 (𝑡, 𝑢) is a non-decreasing function of 𝑡 as 𝑡 > 𝑡0. Since by Lemma 3∫︀
Ω
|∇𝑢|2 𝑑𝑥 < ∞, then 𝑃 (𝑡, 𝑢) → 0, 𝑡 → ∞, and therefore, 𝑃 (𝑡, 𝑢) < 0 for sufficiently large

𝑡. Since 𝑢 → 𝐶 > 0, it follows from Condition 2) that
∫︀
Ω
𝑞𝑢𝑉 𝑑𝑥 = +∞. Then the left hand

side and the right hand side in (10) have opposite signs if 𝑁 is large enough. The obtained
contradiction implies that 𝐶 = 0. The proof is complete.

5. Fast decaying lower coefficient: the existence of solution with a linear
growth, trichotomy of solutions

It is known [11, Ch. VI, Thm. 5] that for each solution to ordinary differential equation

𝑢′′ − 𝑞(𝑡)𝑢 = 0,

∫︁ ∞

𝑡0

𝑡𝑞(𝑡) 𝑑𝑡 < ∞,

on the half-line 𝑡 > 𝑡0, one of the asymptotics 𝑢(𝑡) ∼ 𝑐𝑡, 𝑐 = const ̸= 0 and 𝑢(𝑡) → const
holds true as 𝑡 → ∞. In what follows we show that under an appropriate integral condition for
𝑞(𝑥), for the solutions to (1)-(2) in Ω a similar result is true with an additional third option:
exponential growth (trichotomy of solutions).

Theorem 3. Let 𝑞(𝑥) > 0 in Ω,
∫︀
Ω
𝑥1𝑞(𝑥) 𝑑𝑥 < ∞, ‖𝑞‖𝐿𝑝(Ω𝑡) 6 𝑐 as 𝑡 > 𝑡0 = const > 0,

𝑝 > 𝑛/2, 𝑐 > 0 is some constant depending on ̂︀Ω, 𝜆1, 𝜆2. Then there exists a positive in Ω
solution 𝑈(𝑥) to problem (1)–(2) satisfying the conditions

𝑈
⃒⃒
𝑆0

= 0, 𝐴1𝑥1 6 𝑈(𝑥) 6 𝐴2𝑥1 (𝑥1 > 1), 𝐴1, 𝐴2 = const > 0,

𝑃 (𝑡, 𝑈) → 𝑝0 = const > 0, 𝑡 → ∞.

Proof. Let 𝑉 (𝑥) > 0 be the above introduced positive linearly growing solution to equation (6)
in Ω satisfying homogeneous Neumann condition on Γ. For an arbitrary 𝑁 ∈ N, in the domain
Ω(0, 𝑁) we consider solution 𝑈𝑁(𝑥) to the problem

𝐿𝑈𝑁 = 0, 𝑈𝑁

⃒⃒
𝑆0

= 0, 𝑈𝑁

⃒⃒
𝑆𝑁

= 𝐶1𝑁,
𝜕𝑈𝑁

𝜕𝜈

⃒⃒⃒⃒
Γ(0,𝑁)

= 0.

In accordance with the maximum principle, 𝑈𝑁 can not has a negative minimum in Ω(0, 𝑁)
and on Γ(0, 𝑁). Therefore, 𝑈𝑁 > 0 in Ω(0, 𝑁). Choosing the test function 𝑣 = 𝑈𝑁Φ in integral
identity (3) for 𝑢 = 𝑈𝑁 , where Φ = Φ(𝑥1) is a continuous function, Φ = 1 as 0 6 𝑥1 6 𝑁 − ℎ,
Φ(𝑁) = 0, Φ is linear as 𝑁 − ℎ 6 𝑥1 6 𝑁 , we obtain∫︁

Ω(0,𝑁)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑈𝑁

𝜕𝑥𝑖

𝜕𝑈𝑁

𝜕𝑥𝑗

Φ 𝑑𝑥 +

∫︁
Ω(0,𝑁)

𝑞𝑈2
𝑁Φ 𝑑𝑥 = ℎ−1

∫︁
Ω(𝑁−ℎ,𝑁)

𝑈𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈𝑁

𝜕𝑥𝑖

𝑑𝑥

= ℎ−1

∫︁
Ω(𝑁−ℎ,𝑁)

(𝑈𝑁 − 𝐶1𝑁)
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈𝑁

𝜕𝑥𝑖

𝑑𝑥 + ℎ−1𝐶1𝑁

∫︁
Ω(𝑁−ℎ,𝑁)

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈𝑁

𝜕𝑥𝑖

𝑑𝑥.
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Since (𝑈𝑁 − 𝐶1𝑁)
⃒⃒
𝑆𝑁

= 0, by the Fridrichs type inequality∫︁
Ω(𝑁−ℎ,𝑁)

𝜙2 𝑑𝑥 6 𝑐0ℎ
2

∫︁
Ω(𝑁−ℎ,𝑁)

|∇𝜙|2 𝑑𝑥, 𝜙
⃒⃒
𝑆𝑁

= 0, 𝑐0 = const,

we obtain

ℎ−1

⃒⃒⃒⃒ ∫︁
Ω(𝑁−ℎ,𝑁)

(𝑈𝑁 − 𝐶1𝑁)
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈𝑁

𝜕𝑥𝑖

𝑑𝑥

⃒⃒⃒⃒
6 𝑐1

∫︁
Ω(𝑁−ℎ,𝑁)

|∇𝑈𝑁 |2 𝑑𝑥 → 0, ℎ → 0.

Hereinafter in the proof, 𝑐𝑖 = const > 0 depend only on ̂︀Ω, 𝜆1, 𝜆2. Then by the above identity
we obtain ∫︁

Ω(0,𝑁)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑈𝑁

𝜕𝑥𝑖

𝜕𝑈𝑁

𝜕𝑥𝑗

𝑑𝑥 +

∫︁
Ω(0,𝑁)

𝑞𝑈2
𝑁 𝑑𝑥 = 𝐶1𝑁𝑃 (𝑁,𝑈𝑁).

Hence, taking into consideration that 𝑈𝑁

⃒⃒
𝑆0

= 0 and therefore, by [2, Form. (46)], the inequality

𝑚0𝐶
2
1𝑁

2 =

∫︁
𝑆𝑁

𝑈2
𝑁 𝑑̂︀𝑥 6 𝑐2𝑁

∫︁
Ω(0,𝑁)

|∇𝑈𝑁 |2 𝑑𝑥

holds, we obtain

𝑃 (𝑁,𝑈𝑁) > 𝑐3𝑁
−1

∫︁
Ω(0,𝑁)

|∇𝑈𝑁 |2 𝑑𝑥 > 𝑐4 > 0. (11)

For the function 𝑤 = 𝑈𝑁−𝑉 we have 𝐿𝑤 = 𝑞𝑉 > 0 inΩ(0, 𝑁), (𝜕𝑤/𝜕𝜈)|Γ(0,𝑁) = 0, 𝑤|𝑆0∪𝑆𝑁
6 0.

Then 𝑤 can not have a positive maximum in Ω(0, 𝑁)∪Γ(0, 𝑁). Hence, 𝑤 < 0 in Ω(0, 𝑁). Thus,
the inequality

0 < 𝑈𝑁 < 𝑉 (12)

holds true in Ω(0, 𝑁). Since in accordance (5) for 𝑡 < 𝑁

𝑃 (𝑡, 𝑈𝑁) = 𝑃 (𝑁,𝑈𝑁) −
∫︁
Ω(𝑡,𝑁)

𝑞𝑈𝑁 𝑑𝑥

we have, by (11) and (12) we obtain that there exists a 𝑡0 > 0 such that for all 𝑡 > 𝑡0 and 𝑁 > 𝑡

𝑃 (𝑡, 𝑈𝑁) > 𝑐4/2 > 0. (13)

It follows from estimates (12) and (8) that the sequence 𝑈𝑁 (𝑁 > 𝑡) is bounded in 𝑊 1
2 (Ω(0, 𝑡))

for each 𝑡 > 0. Hence, applying diagonal process, we obtain a sequence 𝑈𝑁𝑘
weakly convergent

in 𝑊 1
2 (Ω(0, 𝑡)) and strongly convergent in 𝐿2(Ω(0, 𝑡)) to some function 𝑈 for each 𝑡 > 0.

It is obvious that 𝑈 satisfies (1)–(2) and the estimate 0 6 𝑈(𝑥) 6 𝑉 (𝑥) 6 𝐶2𝑥1 almost
everywhere in Ω(1,∞) and by the Hölder continuity of generalized solutions to second order
elliptic equations [8, Ch. III, Thm. 14.1], 0 6 𝑈(𝑥) 6 𝑉 (𝑥) 6 𝐶2𝑥1 everywhere in Ω(1,∞). By
(5) we obtain that 𝑃 (𝑡, 𝑈) → 𝑝0 = const, 𝑡 → ∞. Since it follows from (4) that 𝑃 (𝑡, 𝑈𝑁) =∫︀ 1

0
𝑃 (𝜏, 𝑈𝑁) 𝑑𝜏 +

∫︀
Ω(0,𝑡)

𝑞𝑈𝑁Ψ(𝑥1) 𝑑𝑥, Ψ = 𝑥1 as 0 6 𝑥1 6 1, Ψ = 1 as 1 6 𝑥1 6 𝑡, then

𝑃 (𝑡, 𝑈) = lim𝑘→∞ 𝑃 (𝑡, 𝑈𝑁𝑘
). Thanks to (13), we obtain that 𝑃 (𝑡, 𝑈) > 𝑐4/2 as 𝑡 > 𝑡0 and

𝑝0 > 𝑐4/2 > 0.
Let us estimate Dirichlet integral for 𝑈 . Choosing the test function 𝑣 = 𝑈Φ in the integral

identity of type (3) for 𝑈(𝑥), where Φ = Φ(𝑥1) is continuous function, Φ = 1 as 0 6 𝑥1 6 𝑡,
Φ(𝑡 + ℎ) = 0; Φ is linear as 𝑡 6 𝑥1 6 𝑡 + ℎ; ℎ > 0, we obtain∫︁

Ω(0,𝑡+ℎ)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑈

𝜕𝑥𝑖

𝜕𝑈

𝜕𝑥𝑗

Φ 𝑑𝑥 +

∫︁
Ω(0,𝑡+ℎ)

𝑞𝑈2Φ 𝑑𝑥 = ℎ−1

∫︁
Ω(𝑡,𝑡+ℎ)

𝑈

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥.
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Making ℎ to tend to zero, we obtain that for almost each 𝑡 > 0∫︁
Ω(0,𝑡)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑈

𝜕𝑥𝑖

𝜕𝑈

𝜕𝑥𝑗

𝑑𝑥 +

∫︁
Ω(0,𝑡)

𝑞𝑈2 𝑑𝑥 =

∫︁
𝑆𝑡

𝑈

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑̂︀𝑥. (14)

Hence, for almost each 𝑡 > 0 we obtain

𝐼(𝑡) ≡
∫︁
Ω(0,𝑡)

|∇𝑈 |2 𝑑𝑥 6 𝑐5

∫︁
𝑆𝑡

𝑈
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑̂︀𝑥 6 𝑐6𝑡
√︀

𝐼 ′(𝑡).

Then, integrating inequality 𝐼 ′𝐼−2 > 𝑐−2
6 𝑡−2 from 𝑡 to 𝑇 and making 𝑇 to tend to ∞, we obtain

𝐼(𝑡) 6 𝑐26𝑡.
Let 𝑁0 ∈ N be such that

∫︀
Γ(𝑁0,∞)

𝑞𝑈 𝑑𝑥 < 𝑐4𝐶1/(3𝐶2) and 𝑃 (𝑡, 𝑈) > 𝑐4/2 as 𝑡 > 𝑁0.

Employing Poincaré inequality and the estimate for Dirichlet integral of 𝑈 , by Lemma 4 for
𝑢 = 𝑈 in the domain Ω(𝑁0,∞) we obtain

𝑈(𝑁) >𝑉 (𝑁)

∫︁ 𝑁+1

𝑁

𝑃 (𝑡, 𝑈)𝑑𝑡−
∫︁
Ω(𝑁0,𝑁+1)

𝑞𝑈𝑉 𝑑𝑥− 𝑐7𝑁
1/2

>𝑐4𝐶1𝑁/2 − 𝐶2(𝑁 + 1)𝑐4𝐶1/(3𝐶2) − 𝑐7𝑁
1/2 > 𝑐8𝑁.

for sufficiently large 𝑁 > 𝑁0.
Let us estimate the deviation of 𝑈 from 𝑈(𝑁) in the domain Ω𝑁 . Since the function 𝑈−𝑈(𝑁)

satisfies the equation 𝐿0(𝑈 − 𝑈(𝑁)) = 𝑞𝑈 in Ω and homogeneous Neumann condition on Γ,
then for 𝑝 > 𝑛/2, in view of De Georgi estimate [2], Poincaré inequality and the estimates for
the function 𝑈 and its Dirichlet integral we obtain that

sup
𝑆𝑁+1/2

(︀
𝑈 − 𝑈(𝑁)

)︀2
6𝑐9

(︂∫︁
Ω𝑁

(︀
𝑈 − 𝑈(𝑁)

)︀2
𝑑𝑥 + ||𝑞𝑈 ||2𝐿𝑝(Ω𝑁 )

)︂
6𝑐10(𝑁 + 𝑐2𝑁2) 6 𝑐28𝑁

2/4, 𝑁 > 𝑁 ′
0 = const

if 𝑐10𝑐
2 6 𝑐28/5. In view of the linear lower bound for 𝑈(𝑁), we obtain the required lower bound

for 𝑈(𝑥). The proof is complete.

Lemma 5. Let 𝑞(𝑥) > 0 in Ω, ‖𝑞‖𝐿𝑝(Ω𝑡 6 𝑐′ as 𝑡 > 𝑡1 = const for some 𝑝 > 𝑛/2, 𝑐′ is

some constant independent of ̂︀Ω, 𝜆1, 𝜆2; 𝑢(𝑥) is the solution to (1)–(2) and for some sequence
𝑡𝑘 → ∞ the condition supΩ𝑡𝑘

|𝑢| = 𝑜(exp(𝐴𝑡𝑘)) holds, 𝑘 → ∞, where 𝐴 > 0 is some constant

depending on ̂︀Ω, 𝜆1, 𝜆2. Then there exists a sequence 𝑡′𝑘 → ∞, 𝑘 → ∞, such that the estimate

𝑢(𝑡′𝑘) − 1

2
|𝑢(𝑡′𝑘)| − 𝐼1 6 𝑢(𝑥) 6 𝑢(𝑡′𝑘) +

1

2
|𝑢(𝑡′𝑘)| + 𝐼1, 𝑥 ∈ 𝑆𝑡′𝑘+1/2,

holds true and 𝐼1 > 0 is independent of 𝑘.

Proof. Employing estimate (8), we obtain∫︁
Ω(0,𝑡𝑘)

|∇𝑢|2 𝑑𝑥 6 𝐼0 + 𝑐1

∫︁
Ω𝑡𝑘

𝑢2 𝑑𝑥 = 𝑜(exp(2𝐴𝑡𝑘)), 𝑘 → ∞, (15)

𝑐𝑖 = 𝑐𝑖(̂︀Ω, 𝜆1, 𝜆2) > 0, 𝐼0 > 0 is independent of 𝑘 ∈ N. Let us show that for some sequence
𝑡′𝑘 → ∞ ∫︁

Ω𝑡′
𝑘

|∇𝑢|2 𝑑𝑥 6 𝛿

∫︁
Ω(0,𝑡′𝑘)

|∇𝑢|2 𝑑𝑥, 𝛿 = exp{2𝐴} − 1 > 0. (16)

Indeed, otherwise for an arbitrary 𝑡 > 𝑡0 = const∫︁
Ω𝑡

|∇𝑢|2 𝑑𝑥 =

∫︁
Ω(0,𝑡+1)

|∇𝑢|2 𝑑𝑥−
∫︁
Ω(0,𝑡)

|∇𝑢|2 𝑑𝑥 > 𝛿

∫︁
Ω(0,𝑡)

|∇𝑢|2 𝑑𝑥,
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that in view of (15) we obtain that∫︁
Ω(0,𝑡)

|∇𝑢|2 𝑑𝑥 < (1 + 𝛿)−1

∫︁
Ω(0,𝑡+1)

|∇𝑢|2 𝑑𝑥 < . . .

· · · < (1 + 𝛿)−𝑁𝑘

∫︁
Ω(0,𝑡+𝑁𝑘)

|∇𝑢|2 𝑑𝑥 = (1 + 𝛿)−𝑁𝑘𝑜(exp{2𝐴(𝑡 + 𝑁𝑘)}) → 0, 𝑘 → ∞,

if we take 𝑁𝑘 ∈ N such that 𝑡𝑘 − 1 6 𝑡 + 𝑁𝑘 6 𝑡𝑘. Thus, ∇𝑢 ≡ 0 and estimate (16) holds true.
Then by (15) and Poincaré inequality we obtain∫︁

Ω𝑡′
𝑘

|∇𝑢|2 𝑑𝑥 6 𝛿

(︂
𝐼0 + 𝑐1

∫︁
Ω𝑡′

𝑘

𝑢2 𝑑𝑥

)︂
6 𝑐2𝛿

(︂∫︁
Ω𝑡′

𝑘

|∇𝑢|2 𝑑𝑥 + 𝑢2(𝑡′𝑘) + 𝐼0

)︂
.

If 𝛿 6 𝑐−1
2 /2, then ∫︁

Ω𝑡′
𝑘

|∇𝑢|2 𝑑𝑥 6 2𝑐2𝛿(𝑢2(𝑡′𝑘) + 𝐼0). (17)

Let us estimate the deviation of 𝑢(𝑥) from 𝑢(𝑡′𝑘). Employing Poincaré inequality and estimate
(17), by Lemma 1 we obtain

sup𝑆𝑡′
𝑘
+1/2

𝑢2 6 𝑐3

(︂∫︁
Ω𝑡′

𝑘

|∇𝑢|2 𝑑𝑥 + 𝑢2(𝑡′𝑘)

)︂
6 𝑐4

(︀
(𝛿 + 1)𝑢2(𝑡′𝑘) + 𝛿𝐼0

)︀
.

Hence, since 𝐿0(𝑢 − 𝑢(𝑡′𝑘)) = 𝑞𝑢, we employ De Georgi estimate [2] and inequality (17) once
again, for 𝑘 > 𝑘0 = const we obtain

sup𝑆𝑡′
𝑘
+1/2

(︀
𝑢− 𝑢(𝑡′𝑘)

)︀2
6𝑐5

(︂∫︁
Ω𝑡′

𝑘

(︀
𝑢− 𝑢(𝑡′𝑘)

)︀2
𝑑𝑥 + ||𝑞𝑢||2𝐿𝑝(Ω𝑡′

𝑘
)

)︂
6𝑐6

(︂∫︁
Ω𝑡′

𝑘

|∇𝑢|2 𝑑𝑥 + (𝑐′)2
(︀
(𝛿 + 1)𝑢2(𝑡′𝑘) + 𝛿𝐼0

)︀)︂
6𝑐7

(︂
𝛿(𝑢2(𝑡′𝑘) + 𝐼0) + (𝑐′)2

(︀
(𝛿 + 1)𝑢2(𝑡′𝑘) + 𝛿𝐼0

)︀)︂
6

1

4

(︀
𝑢2(𝑡′𝑘) + 𝐼0

)︀
if 𝑐7(𝑐

′)2 6 1/8 and 𝑐7𝛿(1 + (𝑐′)2) 6 1/8. Thus, the statement of the lemma is true for the

sequence 𝑡′𝑘, 𝑘 > 𝑘0, 𝑐
′ = (8𝑐7)

−1/2, 𝛿 = min
{︀
𝑐−1
2 /2,

(︀
8𝑐7(1 + (𝑐′)2)

)︀−1}︀
, 𝐴 = 2−1 ln(1 + 𝛿).

Lemma 6. Suppose that 𝑢(𝑥) satisfies the assumptions of Lemma 5 and moreover,∫︀
Ω
𝑥1𝑞(𝑥) 𝑑𝑥 < ∞ and ‖𝑞‖𝐿𝑝(Ω𝑡) 6 𝑐 as 𝑡 > 𝑡0 = const, where 𝑐 > 0 is a constant in The-

orem 3. Then
|𝑢(𝑥)| 6 𝐶𝑥1, 𝐶 = const > 0

for all 𝑥1 > 1.

Proof. We suppose the opposite, then for some sequence ̃︀𝑡𝑘 → ∞
sup𝑆̃︀𝑡𝑘 |𝑢|/̃︀𝑡𝑘 → ∞, 𝑘 → ∞. (18)

Let 𝑈 be a linearly growing solution to (1)-(2) in Ω. The existence of such solution was proved
in Theorem 3. Applying the maximum principle to the functions 𝑢± 𝑐0𝑈 for sufficiently large
𝑐0 > 0, by (18) we obtain that sup𝑆𝑡

|𝑢|/𝑡 → ∞, 𝑡 → ∞. Let 𝑡′𝑘 be a sequence, for which
Lemma 5 holds true. Without loss of generality we can assume that sup𝑆𝑡′

𝑘
+1/2

𝑢 > 0. Then by

Lemma 5 we obtain that inf𝑆𝑡′
𝑘
+1/2

𝑢/𝑡′𝑘 → +∞, 𝑘 → ∞. Applying the maximum principle to

the function 𝑈 − 𝑐1 − 𝜀𝑢 for sufficiently large 𝑐1 > 0 and making 𝜀 to tend to 0, we obtain that
𝑈 6 𝑐1 in Ω(𝑡′1 +1/2,∞), which contradicts the linear growth of 𝑈 . The obtained contradiction
means that relation (18) is wrong that proves the lemma.
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Lemma 7. Suppose that the assumptions of Lemma 6 holds true and moreover, the condition
𝑃 (𝑡, 𝑢) → 0, 𝑡 → ∞ is satisfied. Then the solution 𝑢(𝑥) to (1)-(2) is bounded in Ω.

Proof. According to Lemma 6, |𝑢(𝑥)| 6 𝐶𝑥1, 𝑥1 > 1. Then
∫︀
Ω(0,𝑡)

𝑥1𝑞𝑢 𝑑𝑥 = 𝑜(𝑡), 𝑡 → ∞. This

follows from Lemma 4 that

|𝑢(𝑡)| 6 𝑜(𝑡) + 𝑐1

(︂∫︁
Ω𝑡

|∇𝑢|2 𝑑𝑥
)︂1/2

, 𝑡 → ∞,

𝑐1 > 0 is independent of 𝑡. Estimating Dirichlet integral for 𝑢 in the same way as this was done
for the function 𝑈 in the proof of Theorem 3, we obtain that

∫︀
Ω(0,𝑡)

|∇𝑢|2 𝑑𝑥 6 𝑐2𝑡, 𝑐2 > 0 is

independent of 𝑡. Then 𝑢(𝑡) = 𝑜(𝑡). Employing Lemma 5, we obtain that sup𝑆𝑡𝑘
|𝑢| = 𝑜(𝑡𝑘)

for some sequence 𝑡𝑘 → ∞, that is, 𝑢(𝑥) 6 𝑐0 + 𝜀𝑈 on 𝑆𝑡1 ∪ 𝑆𝑡𝑘 as 𝑘 > 𝑘0(𝜀). Applying the
maximum principle and making 𝜀 to tend to 0, we obtain that 𝑢(𝑥) 6 𝑐0 for sufficiently large
𝑥1. In the same way we obtain the estimates from below. The proof is complete.

The main result on the trichotomy of solutions in the case of a fast decaying is a follows.

Theorem 4. Let 𝑞(𝑥) > 0 in Ω,
∫︀
Ω
𝑥1𝑞(𝑥) 𝑑𝑥 < ∞, ‖𝑞‖𝐿𝑝(Ω𝑡) 6 min{𝑐, 𝑐′} as 𝑡 > 𝑡0 = const,

𝑐, 𝑐′ are constants in Theorem 3 and Lemma 5, respectively. Then each solution to (1)-(2)
behaves in one of the following three ways:

1) 𝑢(𝑥) is bounded in Ω;

2) supΩ𝑡
|𝑢| > 𝐶0 exp(𝐴𝑡), where the constant 𝐴 > 0 is independent of ̂︀Ω, 𝜆1, 𝜆2; 𝐶0 =

const > 0;

3) 𝐶1𝑥1 6 𝑢(𝑥) 6 𝐶2𝑥1 as 𝑥1 > 𝑥
(0)
1 = const > 0, 𝐶1, 𝐶2 = const, 𝐶1𝐶2 > 0.

Proof. According to Lemma 6, there exists 𝐴 > 0 such that each solution to (1)-(2) not obeying
2) satisfies the inequality |𝑢(𝑥)| 6 𝑐0𝑥1 as 𝑥1 > 1, 𝑐0 = const. It follows from (5) that for
such solution there exists the finite limit lim

𝑡→∞
𝑃 (𝑡, 𝑢). Then for the solution 𝑤 ≡ 𝑢 − 𝑝1𝑈 to

(1)-(2), where 𝑈 is a linearly growing solution (1)-(2) in Theorem 3, 𝑝1 = const, we obtain
lim
𝑡→∞

𝑃 (𝑡, 𝑤) = 0. According to Lemma 7, the function 𝑤 is bounded in Ω. Thus, we obtain

that 𝑢 = 𝑤 + 𝑝1𝑈 satisfies either Condition 1) as 𝑝1 = 0 or Condition 3) as 𝑝1 ̸= 0. The proof
is complete.

In conclusion let us show that in the case of a fast decaying lower order term, the limiting
constant 𝐶 of the bounded solution can be written explicitly in terms of the values of the
solutions on the base 𝑆0 of the cylinder.

Theorem 5. Suppose that the function 𝑞(𝑥) satisfies the assumptions of Theorem 3. Then
the limiting constant 𝐶 of the bounded in Ω solution to (1)-(2) 𝑢(𝑥) satisfies the representation

𝐶 = lim
ℎ→0

ℎ−1

∫︁
Ω(0,ℎ)

𝑢
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥,

where 𝑈(𝑥) is the linearly growing solution to (1)-(2) in Theorem 3 satisfying the condition
𝑃 (𝑡, 𝑈) → 𝑝0 = 1, 𝑡 → ∞.

Proof. Let Φℎ,𝑁 = Φℎ,𝑁(𝑥1) be a continuous function, Φℎ,𝑁(𝑥1) = 1 as ℎ 6 𝑥1 6 𝑁 , Φℎ,𝑁(0) =
Φℎ,𝑁(𝑁 + 1) = 0, Φℎ,𝑁 is linear as 0 6 𝑥1 6 ℎ and 𝑁 6 𝑥1 6 𝑁 + 1. Letting 𝑣 = 𝑢Φℎ,𝑁 in
integral identity (3) for 𝑈(𝑥), we obtain∫︁

Ω(0,𝑁+1)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑈

𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

Φℎ,𝑁 𝑑𝑥 = −
∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑈Φℎ,𝑁 𝑑𝑥

+

∫︁
Ω𝑁

𝑢

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥− ℎ−1

∫︁
Ω(0,ℎ)

𝑢

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥.
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Let Φ𝑁(𝑥1) = 1 as 0 6 𝑥1 6 𝑁 , Φ𝑁(𝑥1) = 𝑁 + 1 − 𝑥1 as 𝑁 6 𝑥1 6 𝑁 + 1. Choosing the test
function 𝑣 = 𝑈Φ𝑁 in integral identity (3) for 𝑢, we obtain∫︁

Ω(0,𝑁+1)

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑖

𝜕𝑈

𝜕𝑥𝑗

Φ𝑁 𝑑𝑥 = −
∫︁
Ω(0,𝑁+1)

𝑞𝑢𝑈Φ𝑁 𝑑𝑥 +

∫︁
Ω𝑁

𝑈

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥.

By the last two identities, in view of symmetricity of the matrix 𝑎𝑖𝑗, we get∫︁
Ω𝑁

𝑢
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥 =

∫︁
Ω𝑁

𝑈

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥 + ℎ−1

∫︁
Ω(0,ℎ)

𝑢

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥

+

∫︁
Ω(0,ℎ)

(︂ 𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑖

𝜕𝑈

𝜕𝑥𝑗

+ 𝑞𝑢𝑈

)︂
(Φℎ,𝑁 − 1) 𝑑𝑥.

Making ℎ to tend to zero, we obtain∫︁
Ω𝑁

𝑢
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥 =

∫︁
Ω𝑁

𝑈
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥 + lim
ℎ→0

ℎ−1

∫︁
Ω(0,ℎ)

𝑢

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥.

Hence,

𝑢(𝑁)

∫︁ 𝑁+1

𝑁

𝑃 (𝑡, 𝑈) 𝑑𝑡 =𝑈(𝑁)

∫︁ 𝑁+1

𝑁

𝑃 (𝑡, 𝑢)𝑑𝑡 + lim
ℎ→0

ℎ−1

∫︁
Ω(0,ℎ)

𝑢
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥

+

∫︁
Ω𝑁

𝑛∑︁
𝑖=1

𝑎𝑖1

(︂
(𝑈 − 𝑈(𝑁))

𝜕𝑢

𝜕𝑥𝑖

− (𝑢− 𝑢(𝑁))
𝜕𝑈

𝜕𝑥𝑖

)︂
𝑑𝑥.

(19)

The left hand side in (19) tends to 𝐶 as 𝑁 → ∞. Since for the bounded solution 𝑢(𝑥) we have∫︀
Ω
|∇𝑢|2 𝑑𝑥 < ∞, then by (5) we obtain that 𝑃 (𝑡, 𝑢) → 0, 𝑡 → ∞ and 𝑃 (𝑡, 𝑢) = −

∫︀
Ω(𝑡,∞)

𝑞𝑢 𝑑𝑥.

Then

|𝑃 (𝑡, 𝑢)| 6 𝑐0

∫︁
Ω(𝑡,∞)

𝑞 𝑑𝑥 6 𝑐0𝑡
−1

∫︁
Ω(𝑡,∞)

𝑥1𝑞 𝑑𝑥 = 𝑜(𝑡−1), 𝑡 → ∞.

Hereinafter 𝑐𝑖 = const > 0. Then the first term in the right hand side in (19) tends to zero as
𝑁 → ∞.

Since
∫︀
Ω(0,𝑁)

|∇𝑈 |2 𝑑𝑥 6 𝑐1𝑁 , there exists a sequence 𝑁𝑘 → ∞, 𝑘 → ∞, for which∫︀
Ω𝑁𝑘

|∇𝑈 |2 𝑑𝑥 6 𝑐2. Applying Cauchy-Schwarz and Poincaré inequalities, in view of Lemma 3

we obtain ⃒⃒⃒⃒ ∫︁
Ω𝑁𝑘

𝑛∑︁
𝑖=1

𝑎𝑖1

(︂
(𝑈 − 𝑈(𝑁𝑘))

𝜕𝑢

𝜕𝑥𝑖

− (𝑢− 𝑢(𝑁𝑘))
𝜕𝑈

𝜕𝑥𝑖

)︂
𝑑𝑥

⃒⃒⃒⃒

6 𝑐3

(︂∫︁
Ω𝑁𝑘

|∇𝑢|2 𝑑𝑥
)︂1/2(︂∫︁

Ω𝑁𝑘

|∇𝑈 |2 𝑑𝑥
)︂1/2

→ 0, 𝑘 → ∞.

Thus, by (19) we obtain the statement of the theorem.

We observe that the obtained expression for the limiting constant 𝐶 depends only on the
values of the function 𝑢(𝑥) on 𝑆0. Indeed, for the functions 𝑢1 and 𝑢2 such that (𝑢1 − 𝑢2)|𝑆0 = 0
we have

ℎ−1

⃒⃒⃒⃒ ∫︁
Ω(0,ℎ)

(𝑢1 − 𝑢2)
𝑛∑︁

𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑𝑥

⃒⃒⃒⃒

6 𝑐

(︂∫︁
Ω(0,ℎ)

|∇(𝑢1 − 𝑢2)|2 𝑑𝑥
)︂1/2(︂∫︁

Ω(0,ℎ)

|∇𝑈 |2 𝑑𝑥
)︂1/2

→ 0, ℎ → 0.
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It is obvious that for the classical solution the limiting constant 𝐶 is expressed explicitly in
terms of the integral over 𝑆0:

𝐶 =

∫︁
𝑆0

𝑢

𝑛∑︁
𝑖=1

𝑎𝑖1
𝜕𝑈

𝜕𝑥𝑖

𝑑̂︀𝑥.
In the simplest case of the Laplace operator 𝐿 = ∆ we have 𝑈 = 𝑚−1

0 𝑥1, 𝐶 = 𝑚−1
0

∫︀
𝑆0
𝑢 𝑑̂︀𝑥. It

is obviously implied by the identity
∫︀
𝑆𝑡

𝜕𝑢
𝜕𝑥1

𝑑̂︀𝑥 = const and for the bounded solutio this constant
vanishes.
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