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ON SOLUTIONS OF SECOND ORDER ELLIPTIC
EQUATIONS IN CYLINDRICAL DOMAINS

A.V. NEKLUDOV

Abstract. In a semi-infinite cylinder, we consider a second order elliptic equation with
a lower order term. On the lateral boundary of the cylinder we impose the homogeneous
Neumann condition. We show that each bounded solution tends to a constant at infinity
and once the lower order term does not decay too fast, this constant vanishes. We establish
that for a sufficiently fast decay of the lower order term, we have a trichotomy of the
solutions as for the equation without the lower order term: the solution tends to a general
non-zero constant or grows linearly or grows exponentially. The decay conditions for the
lower order term are formulated in an integral form.
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1. INTRODUCTION

The behavior of solutions to elliptic equations in cylindrical or close domains with the Dirich-
let, Neumann or periodic w.r.t. all variables except one boundary conditions on the lateral
surface was studied rather well for the divergent type equations with no lower order terms
[1-[]. For the equations with lower order terms, the most studied case is for the coefficients
periodic w.r.t. the variable directed along the axis of the cylinder [5], [6].

In the present work we study the behavior of the generalized solutions to the elliptic second
order equations with a lower order term subject to the Neumann condition on the lateral surface
by means of energy estimates of Saint-Venant’s principle kind [2]-[4]. The main attention is
paid to the dependence of the properties of the solution on the behavior of the coefficient
q(z) at the lower order term of the equation. We show that under rather fast decay of the
lower coefficient, the behavior of the solutions is similar to the behavior of the solutions to the
divergent type equations with no lower terms and subject to Neumann condition: the tending
of bounded solution to a constant, trichotomy of solutions. In the case of a slowly decaying
lower order term, the behavior of bounded solutions is similar to the behavior of solutions to
equations with no lower terms and subject to Dirichlet condition (each bounded solution tends
to zero).

2.  MAIN NOTATIONS AND DEFINITIONS
In the n-dimensional cylinder Q = (0, 4+00) x Q we consider the elliptic equation
n
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where x = (21, 29,...,2,) = (v1,%) € R, Qc R2™! be a bounded domain with a Lipschitz
boundary, a;;(x) are measurable functions in €, a;; = aj;, M|¢* < EZj:l aij(1)&& < Ma€)?,
&€ R", A\, Ay = const > 0, g(z) > 0 is a locally bounded measurable function.

On the lateral boundary of the cylinder I' = (0,00) x 02 we impose Neumann boundary

condition

ou

| =0 2

ay r ) ( )
where du/0v =370 aij(x)0u/0x; cos(ii, x;), 7 is the unit normal to I'.

We introduce the following notations: Q(a,b) = QN {z :a < z; < b}, U = Q(t,t + 1),
T(a,b) =TN{z:a<z <b}, Ty =Ttt+1), S ={r:z =t 7 cQ}, Vu = gradu,
Mo = mes,_1, u(t) = my* th udz.

By solutions to — in 2 we mean generalized solutions, that is, the functions belonging
to Sobolev space W3 (2(0,¢)) for each t > 0 and satisfying the integral identity

/ Zaij%@dx—i-/ quvdz =0 (3)
Q0,8) ;=1 O axj Q(0,t)

for all functions v € W3 (2(0,¢)) such that v|g,us, = 0.

3. AUXILIARY STATEMENTS

Lemma 1. Let u(z) be a solution to equation in Sy satisfying condition on'y. Then
the estimates

1/2 1/2
SUPg, lu| < CO(/Q u? da:) : supSm/Q(u -0)< g (/Q (u — C)? dx)
t t

hold true, where cq is independent of u, t; ¢1 is independent of u, t, C' > 0.

Proof. Tt is known, see, for instance, [7], that the solution to a second order elliptic equation
satisfying the homogeneous Neumann condition on I';, for each point I';, by means of local
flattening and symmetry principle, can be continued to a domain w containing a neighbourhood
of this boundary point and the structure of the equation is preserved.

Let C >0, k >0, 2° € w, po € (0,1), p(x) € CLHR"), 0 < ¢ < 1, p(x) = 1 as
|z — 2% < p(1 — o), p(x) = 0 as |z — 2% = p, |Vy| < const/(po). We choose p such
that suppp C w. Letting v = max{u — C' — k,0}p in integral identity and taking into
consideration that [ (20O k>0) qu(u — C' — k) pdx > 0, we obtain the estimate

/ Vw|? dz < cg(pa)Q/ (w — k)*dx,
Akp(1-0)

Ak,p

where w = u — C, Ay, = {x:w(x) > k}N{z: |z —2° < s}, ¢y is independent of w, k, p, o,
0
T

This follows [8, Ch. II, Sect. 5.3] that for each domain w’ CC w the estimate

1/2 1/2
sSup,, w < c(/ w? dx) < (/ w? dx)
w Qt

holds true. Covering I'(t+1/4,t+3/4) by finitely many constructed neighbourhoods, we obtain
that this estimate is true for supg1/4445/4) w and therefore, for supg, | ), w. Thus, the second
of the needed estimates is proved. Moreover, as C' = 0, similar to the obtained estimate for
sup u, we obtain the estimate for sup(—u). The proof is complete. O
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For a solution u(x) to equation satisfying , in the standard way we introduce the
notion of the “heat flow” through the section S; of Cylinder Q:

P(t,u) = lim (h1 / Z Girg— dx> /S t Z aﬂ

Q(t,t+h) =1

the latter identity is true for almost each ¢t > 0. Let 0 <t < T, hy > 0, hy > 0. We choose v = ®
(3), where & = ®(z) is continuous function, ® =1 ast+ hy < xy < T, O(t) = &(T + hy) = 0,
dislinear fort <axy <t+hyandfor T < 2y < T + hy:
- ou - ou
h_l/ a1 —dx — h, 1/ aj1— dx +/ qud dx = 0. (4)
! Q(t,t+h1) ZZ Ox; Q(T,T+hs) 121 Ox; Q(t,T+h2)

Making hy to tend to zero and then doing the same with hs, we obtain the relation
P(T,u) — P(t,u) = / qudz. (5)
Q(t,T)

It is easy to see that as t > 0, in the definition of the flow, the domain of the integration
Q(t,t + h) can be replaced by Q(t — h,t).
We consider the equation with no lower order term corresponding to equation (1f):

) ov
Lv=> (a2 ) =0 6
=Y (a5 ) (6)
It is well-known, see, for instance [9, Thm. 2|, that there exists a positive solution V'(z) to
equation @ in () satisfying the homogeneous Neumann condition (8‘// 8V) = (0 on I' and the

estimate

I

Cixy < V(z) < Cyxy, C1,Cy = const > 0,
as x1 > 1. The function V' (z) also satisfies [I0, Form. (12)] the conditions

IVV|?de < ¢y =const, P(t,V)=1, t>0,
Q

the second condition is satisfied by multiplying V' by a constant. As ¢ > 0, the function V'
satisfies the integral identity

/ Zaij%%daﬂ:@ (7)
Q(0,t) R
for all functions v € W3 ((0,¢)) such that v|g,us, = 0.
Lemma 2. Let u(z) be a bounded in Q2 solution to (1)-(2)), My = supg, u. Then the estimate
u(z) < max{ M, 0}
holds true in €.

Proof. Let V (z) be the solution to equation (€] defined above. We fix € > 0. It is obvious that
for the function w = v — eV we have w < My on Sy and on St for sufficiently large T(e).
Since Lw = ¢V > 0 and (Ow/dv)|r = 0, the function w can not have a positive maximum
in Q(0,7()) UI'(0,T(g)), that is w < max{M,,0}. Making ¢ to tend to 0, we arrive at the
statement of the lemma. ]

Lemma 3. Let u(z) be a bounded in Q solution to ([I)-(2)). Then

/ (IVul® + qu®) dz < <.
Q
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Proof. Choosing v = u® in (3)), where ® = ®(z;) € C*(R), 0 < ? <1, d=1as1<x; <N,
®=0asxz <0andasx; > N +1, (9)? < ¢, c = const, employlng the elllpt1c1ty of the
equation and the estimate of form ab < ea?/2 + b?/(2¢), we obtain the estimate

/ (IVul® + qu*) @ dr < co + 01/ |u||Vu||®'| de << ¢ —I—/ (cou® + |Vul*®) d
Q(0,N+1) Qn Q

N

¢; = const > 0. Then

/ (IVul® + qu®) da < o + 02/ u? dx (8)
Q(1,N) QN

that implies the statement of the lemma. O

Lemma 4. Let u(z) be a solution to (1)) in Q, V(z) is the solution to equation (0]
defined above. Then

N+1

AN = V(N) /

P(t,u)dt —/ quV o dx + Iy,
N Q(0,N+1)

where
1/2
[In| < CO</ |Vu|2dx> + ¢, ¢, cp = const > 0,
Qn

O = ®(x4) is a continuous function, ®(x1) =1 as1 < zy < N, (0) = P(N+1) =0, ¢ is
linear as 0 <1 <1l and N <x1 < N+ 1.

Letting v = u® in integral identity , we obtain

L9V au / / "IV
Qijm— a; u dr — a;1=—udx
/Q(O N+1) Z ! ox; &U ZZ:: 1 Qo ; ' Ox;

Choosing the test function v = V& in integral identity for u, we obtain

"L Ou oV
/ Z a,-j—u—d) de = — / quV ® dx
N+ ST 0 0z Q(0,N+1)

/Q Za“ de—/QZaﬂ

N =1 0 =1

By two latter identities and the symmetricity of the matrix a,;; we get that

/ Zaﬂa—vudx:/ Zaﬂ%\/dx—/ quV ® dz + I,
QN =1 Oz )N — O Q(0,N+1)

where Iy = const is independent of N. This yields

N+1
u(N) :V(N)/ P(t,u)dt — / quV & dx
Q(0,N+1)

/Q Za”( >>§;ﬁ (“—ﬂ(N))§Z> dz + I,

N =1
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Employing Cauchy-Schwarz and Poincaré inequalities and the estimate for the Dirichlet integral
for V', we obtain

‘ /Q 3 ((v ~ V() g;‘ ~(u- H(N))(O;Z) "

N =1

< [(/QN (v —V(N))de) 1/2(/% \vu\2dx) v
+ </QN (u—H(N))de)l/z(/QN\VV|2dx>1/T
<c3(/QN |VV|2dx)1/2(/QN |Vu|2dx)1/2 < c4(/QN |Vu|2dx)1/2,

¢; > 0 are independent of N. Then by @D we obtain the statement of the lemma.

4. BEHAVIOR OF BOUNDED SOLUTIONS
Theorem 1. Let u(z) be a bounded in Q solution (1)-([), ¢(z) > 0 in Q. Then for some

C = const

/ (u— C)*dr — 0, t— o0,

Q

If the condition ||q||z,@,) — 0, t = 00, p > n/2 is satisfied as well or C =0, then
supg, |u — C| =0, t — oo.

Proof. The boundedness of the solution implies the boundedness of u(t). Hence, for some
sequence t, — 00, k — 0o, we have u(ty) — C = const. Then, employing Poincaré inequality
and a finiteness of the Dirichlet integral for u(x) by Lemmal3] we obtain that

J

Let us show that ||u—C||z,@,) — 0, t — co. We assume the opposite, then ||u—C"||1,, ) — 0
k

(u—C)dr < 2/ (u— ﬂ(tk))de + 2myo (u(ty) — 0)2 — 0, k— oo.

th Qe

as k — oo for some sequence t;, — oo and a constant C’ # C. In view of the continuity of the
function w(t), without loss of generality we can assume that C' and C” are of the same sign, for

instance, 0 < C < C’. In accordance with Lemma [If we have
SupStkH/Q(u —CO)< ap=cllu— C’||L2(th) — 0, k— o0, c¢=const.
By Lemma [2[ we obtain that u < C' + oy as 1 > t; + 1/2, which contradicts the condition
C<C.
The statement of the theorem on the uniform convergence of u to a constant as C' # 0
is implied by the fact that Lo(u — C') = qu and De Georgi estimate [2] supg, , ,[u— C| <

c(Jlu—Cllron +lqullL, @) As C = 0, this is implies by Lemma. The proof is complete. [
Theorem 2. Assume that the function q(x) > 0 satisfies one of the following conditions:
1) q(z) > qo = const > 0 in €2,

2) fQ l’l(I(Ilf) dx = oo, ||Q||Lp(ﬂt) —0,t =00, p> TL/Q
Then for each bounded in ) solution —

supg, |u(z)] = 0, t— oo.

Proof. Suppose that Condition 1) holds. Then by Lemmata 1| and |3| we obtain

supg, u? < co/ u? dr — 0,
Q172
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t — 00, ¢g > 0 is independent of ¢.
Suppose that Condition 2) holds. Assume that © — C' # 0 as ;7 — oco. We can assume that
C > 0. By Lemma [4] we have

N+1
V(N) / P(t,u)dt = / quV o dx + Iy, (10)
N Q(0,N+1)
where |Iy| < c¢; =const, P =P(z1) =1las0< 2 <K N, P=N+1—-—xz3as N<x3 <N+ 1.
Since by the assumptionu — AC > 0, 21 — oo, and in accordance with Theorem [I] this
convergence is uniform in z € €, then u(z) > 0 in Q(ty, 00) for sufficiently large ¢;. Then it
follows from that P(t,u) is a non-decreasing function of ¢ as ¢ > ¢;. Since by Lemma
Jo IVul? dz < oo, then P(t,u) — 0, t — oo, and therefore, P(t,u) < 0 for sufficiently large
t. Since u — C > 0, it follows from Condition 2) that fﬂ quV dx = +o0o. Then the left hand
side and the right hand side in have opposite signs if N is large enough. The obtained
contradiction implies that C' = 0. The proof is complete. [

5. FAST DECAYING LOWER COEFFICIENT: THE EXISTENCE OF SOLUTION WITH A LINEAR
GROWTH, TRICHOTOMY OF SOLUTIONS

It is known [II, Ch. VI, Thm. 5] that for each solution to ordinary differential equation

u" — q(t)u =0, / tq(t) dt < oo,
to
on the half-line ¢t > ¢y, one of the asymptotics u(t) ~ ct, ¢ = const # 0 and wu(t) — const
holds true as t — co. In what follows we show that under an appropriate integral condition for
q(z), for the solutions to (I)-(2) in Q a similar result is true with an additional third option:
exponential growth (trichotomy of solutions).

Theorem 3. Let q(x) > 0 in Q, [ z1q9(x)dx < oo, |||, @) < ¢ ast >ty = const > 0,

p > n/2, ¢ > 0 is some constant depending on (AZ, A1, Aa. Then there exists a positive in )
solution U(x) to problem (1)—~(2) satisfying the conditions

U|50 =0, Az <U(x)<Ayxy (x121), Ay, Ay=const >0,

P(t,U) — py = const >0, t— 0.

Proof. Let V(z) > 0 be the above introduced positive linearly growing solution to equation ()
in €2 satisfying homogeneous Neumann condition on I'. For an arbitrary N € IN, in the domain
(0, N) we consider solution Uy(x) to the problem

Uy

LUy =0, Un|g, =0, Un|g =CN, —=

= 0.
r'(0,N)

In accordance with the maximum principle, Uy can not has a negative minimum in (0, N)
and on I'(0, V). Therefore, Uy > 0 in (0, N). Choosing the test function v = Uy® in integral
identity for u = Uy, where & = ®(z1) is a continuous function, ® =1 as 0 < x; < N — h,
®(N) =0, ¢ is linear as N — h < 1 < N, we obtain

/ > aij%%q)dm—i—/ qUZ® dx = h—l/ UNZaﬂ% dx
ao,N) S~ Oz Oz Q(0,N) QIN—R,N) T 0x;
i,5=1 =1
_ " Uy _ " Uy
:hl/ Uy — CN a; d:r+thN/ a;1—— dx.
Q(N—h,N)( " 1 ); ' Ox; ' Q(N—h,N) ; ! ox;
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Since (Uy — C1N )} sy = 0, by the Fridrichs type inequality

/ ©? dr < cohz/ Vol|? dz, gp‘s =0, c¢y= const,
Q(N—h,N) Q(N—h,N) N

we obtain

n

oUyn
Uy —CiN a;1—— dzx
/Q(N—h,N)< " ' ); ' O;

Hereinafter in the proof, ¢; = const > 0 depend only on Q, A1, A2. Then by the above identity
we obtain

h*l

gcl/ IVUx|*dz — 0, h— 0.
Q(N—h,N)

", OUyOUy / )
ajj————dzr + qUxn dx = C1NP(N,Uy).
/Q(O,N) Z 7 Ox; Ox; ooy WNPN, Uy)

2,7=1

Hence, taking into consideration that U N! g =0 and therefore, by [2, Form. (46)], the inequality

moCiN? = / U% dz < caN IVUx|? dz
SN Q(0,N)

holds, we obtain

P(N, UN) 203N_1 |VUN|2dZL‘>C4 > 0. (11)
Q(0,N)
For the function w = Uy —V we have Lw = ¢V > 0inQ(0, N), (Ow/0v)|ro,.n) = 0, w|s,usy < 0.
Then w can not have a positive maximum in (0, N)UT'(0, N). Hence, w < 0in (0, N). Thus,
the inequality
0<Un<V (12)

holds true in ©(0, N). Since in accordance (b)) for t < N

P(t,Uy) = P(N, Uy) — / U do

Q(t,N)
we have, by and we obtain that there exists a tg > 0 such that for allt > tgand N >t
P(t,UN) 204/2>0. (13)

It follows from estimates and (8)) that the sequence Uy (N > t) is bounded in W} (2(0, 1))
for each ¢t > 0. Hence, applying diagonal process, we obtain a sequence Uy, weakly convergent
in W3(22(0,¢)) and strongly convergent in Ly(2(0,¢)) to some function U for each ¢t > 0.
It is obvious that U satisfies (I)—(2) and the estimate 0 < U(z) < V(z) < Chx; almost
everywhere in €(1,00) and by the Holder continuity of generalized solutions to second order
elliptic equations [8, Ch. I, Thm. 14.1], 0 < U(z) < V(x) < Coxy everywhere in Q(1, 00). By
() we obtain that P(t,U) — py = const, t — oco. Since it follows from that P(t,Uyn) =
Jo P(r,Un)dr + fﬂ((),t) qUNV(z1)dz, ¥ = 21 a8 0 < 21 <1, ¥ =1as 1 < x; < ¢, then
P(t,U) = limg_,o P(t,Uy,). Thanks to , we obtain that P(t,U) > ¢4/2 as t > t, and
po = c4/2 > 0.

Let us estimate Dirichlet integral for U. Choosing the test function v = U® in the integral
identity of type for U(x), where ® = ®(z;) is continuous function, = 1 as 0 < x; < ¢,
O(t+h) =0; @ is linear as t < x; < t+ h; h > 0, we obtain

/ > aUa_U@der/ qU2<I>dx:h—1/ Uzaﬂa—U dz.
Q(0,t4-h) Q(0,t+h)

aij—
ij=1 Ox; O Qtt+h) =g Oz
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Making h to tend to zero, we obtain that for almost each ¢ > 0

"\ QU oU "oU
E:az ——dx +/ qUdeSZ/U a; —— d7. 14
/Q(O on T 0z (9% Q(0,1) s, ; 18371- (14)

Hence, for almost each ¢t > 0 we obtain
I(t) = / VU ?dx < 05/ T < cot/I'(t).
Q(0,t) St

Then, integrating inequality I'1~2 > ¢; %2 from ¢ to T and making T to tend to oo, we obtain
I(t) < cit.

Let Ny € N be such that fF(N oy QU dz < csC1/(3Cs) and P(t,U) > ¢4/2 as t = Ny.
Employing Poincaré inequality and the estimate for Dirichlet integral of U, by Lemma 4] l 4| for
u = U in the domain 2(Ny, co) we obtain

o0 =7 [

N

P(t,U)dt — / qUV dx — ¢;N'/?
Q(No,N+1)

20401]\[/2 — CQ(N + 1)0401/(302) — C7N1/2 2 CgN.

for sufficiently large N > Nj.

Let us estimate the deviation of U from U(N) in the domain . Since the function U—U(N)
satisfies the equation Lo(U — U(N)) = qU in Q and homogeneous Neumann condition on T,
then for p > n/2, in view of De Georgi estimate [2], Poincaré inequality and the estimates for
the function U and its Dirichlet integral we obtain that

= 2 = 2
sup (U-T0N) <l [ (0 -T00) d+ a0l 0,
SNt1/2 Qn
<c(N + *N?) < ciN?/4, N > N} = const
if cjoc® < ¢2/5. In view of the linear lower bound for U(N), we obtain the required lower bound
for U(z). The proof is complete. O
Lemma 5. Let q(z) > 0 in Q, |lq/|r,@ < ¢ ast >t = const for some p >n/2, ¢ is

some constant independent of 2, A1, Ao; u(x) is the solution to f and for some sequence
ty — oo the condition supg, lu| = o(exp(Aty)) holds, k — oo, where A > 0 is some constant

depending on f\l, A, A2. Then there exists a sequence tj, — 0o, k — 00, such that the estimate

1 1
a(ty) — S[at)| - I < u() <TH) + ST + 1, 3 € Sy,

holds true and Iy > 0 is independent of k.

Proof. Employing estimate ({§]), we obtain

/ |Vul? de < Ty + cl/ u? dr = o(exp(24ty)), k — oo, (15)
(O tk) th
c = Ci(ﬁ,/\l,/\g) > 0, Iy > 0 is independent of £k € IN. Let us show that for some sequence
t, — 00
/ IVl dz < 6 VulPdz, §=exp{24} —1>0. (16)
2 Q(0,t))

Indeed, otherwise for an arbitrary ¢ > ¢y = const

|Vu|2d$:/ |Vu|2da:—/ Vul? dr > 5/ |Vul? dx,
o Q0,t+1) Q(0,t) Q(0,t)
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that in view of we obtain that

/ (Vul? dz < (1+ 5)_1/ \Vul?de < ...
Q(0,t)

Q(0,t+1)
ce < (14 6) N / |Vul? de = (1 4+ 0) Mro(exp{2A(t + Ni)}) — 0, k — oo,
Q(0,t+Ny,)

if we take N, € IN such that ¢, — 1 < t+ Ny < t;. Thus, Vu = 0 and estimate holds true.
Then by and Poincaré inequality we obtain

/ ]Vu]2d:v<(5(lo+cl/ u2dx) <cg(5(/
Q, Q 0

e

\Vul? dz + @ (t),) + [0> :

;

If § < c;'/2, then

/ IVl dr < 26,6(@ (L) + 1), (17)
Q

!
e

Let us estimate the deviation of u(x) from u(t}). Employing Poincaré inequality and estimate
, by Lemma |1| we obtain

SUPs, 11 u' < C3</Q [Vul? da + ﬂ2(t2)) < es((6 + 1)@ () + 61p).
.

Hence, since Lo(u — u(t})) = qu, we employ De Georgi estimate [2] and inequality once
again, for k > ky = const we obtain

N2
SUps, ., , (u—1u(ty)” <cs (/Q

o]

Ler( 6@ (1) + Lo) + () ((0 + D)u(ty,) + 510)) < i(#(t;) + Ip)

— 2
(u = a6 o + ol )

/
g

[Vul? dz + () ((0 + 1)u’(ty) + Mo))

!
e

if ¢7()? < 1/8 and ¢76(1 + (/)?) < 1/8. Thus, the statement of the lemma is true for the
sequence 1}, k > ko, ¢ = (8¢7)7"/2, 6 = min {¢;'/2, (8¢7(1 + (c’)Q))fl}7 A=2"1In(1+4). O

Lemma 6. Suppose that u(x) satisfies the assumptions of Lemma @ and moreover,
Jomq(z)de < oo and ||q||r,@) < ¢ ast >ty = const, where ¢ > 0 is a constant in The-

orem[3. Then
lu(z)| < Czy, C = const >0

forall x1 > 1.

Proof. We suppose the opposite, then for some sequence tj, — oo

Sups, lu|/t), — o0, k — o0. (18)

Let U be a linearly growing solution to — in (). The existence of such solution was proved
in Theorem [3] Applying the maximum principle to the functions u & ¢oU for sufficiently large
co > 0, by we obtain that supg, |u|/t — oo, t — oco. Let t) be a sequence, for which
Lemma [5| holds true. Without loss of generality we can assume that sup Sy s1/2 u > 0. Then by

Lemma (5 we obtain that infg, p u/t, — 400, k — oo. Applying the maximum principle to
k

the function U — ¢; — eu for sufficiently large ¢; > 0 and making ¢ to tend to 0, we obtain that
U < ¢ in Q(t] +1/2,00), which contradicts the linear growth of U. The obtained contradiction
means that relation (18] is wrong that proves the lemma. O



140 A.V. NEKLUDOV

Lemma 7. Suppose that the assumptions of Lemma[6 holds true and moreover, the condition
P(t,u) = 0, t = oo is satisfied. Then the solution u(x) to (I)-(2)) is bounded in Q.

Proof. According to Lemma |§|, |u(z)] < Cxq, 21 = 1. Then fQ(O p T1qudz = o(t), t = oo. This
follows from Lemma [4] that

(1) < oft) +cl( [

c1 > 0 is independent of t. Estimating Dirichlet integral for u in the same way as this was done
for the function U in the proof of Theorem |3| we obtain that fQ(O 9 |Vul? dr < cot, cg > 0 is

independent of ¢. Then w(t) = o(t). Employing Lemma , we obtain that supg, lu| = o(tx)

1/2
|Vu]2dx> , t— 00,

for some sequence t; — oo, that is, u(z) < ¢g +eU on Sy, U S, as k > ky(e). Applying the
maximum principle and making € to tend to 0, we obtain that u(x) < ¢y for sufficiently large
x1. In the same way we obtain the estimates from below. The proof is complete. O

The main result on the trichotomy of solutions in the case of a fast decaying is a follows.

Theorem 4. Let q(z) >0 in Q, [, x1q9(z)dr < o0, ||q||r, @, < min{c, '} ast >ty = const,
¢, c are constants in Theorem @ and Lemma @ respectively. Then each solution to -
behaves in one of the following three ways:

1) u(z) is bounded in );

2) supq, [u| = Cpexp(At), where the constant A > 0 is independent of ﬁ, A, Aoy Cp =
const > 0;

3) Cixy < u(z) < Coxy as xq > x(lo) = const > 0, C;, Cy = const, C1Cy > 0.

Proof. According to Lemma@ there exists A > 0 such that each solution to — not obeying

2) satisfies the inequality |u(z)| < cozy as x1 = 1, ¢g = const. It follows from . that for
such solution there exists the finite limit hm P(t, u) Then for the solution w = v — p;U to

. . where U is a linearly growing solutlon . in Theorem 3 I p1 = const, we obtain

thm P(t,w) = 0. According to Lemma [7] the function w is bounded in . Thus, we obtain
—

that u = w + p1U satisfies either Condition 1) as p; = 0 or Condition 3) as p; # 0. The proof
is complete. O

In conclusion let us show that in the case of a fast decaying lower order term, the limiting
constant C' of the bounded solution can be written explicitly in terms of the values of the
solutions on the base Sy of the cylinder.

Theorem 5. Suppose that the function q(x) satisfies the assumptions of Theorem @ Then
the limiting constant C' of the bounded in €2 solution to - u(x) satisfies the representation

C = lim hl/ uZaﬂa—U dx,
Q(0,h) 1

h—0 ox;

where U(x) is the linearly growing solution to - in Theorem @ satisfying the condition
P(t,U) —py=1,1t— oc.

Proof. Let @), y = ®;, n(x1) be a continuous function, @, n(21) =1 as h < x1 < N, @5, 5(0) =
Q) N(N+1) =0, Oy is linear as 0 < x; < hand N < 23 < N + 1. Letting v = u®;, y in
integral identity for U(x), we obtain

"L 9U Ou
/ Z Ajj=— <I>h ydr = / quU®), y dz

n

oU . oU
—I—/ U ai—dx—h_l/ U a;1=— dz.
QN Z 'O Q(0,h) Z 183%

v i=1
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Let Py(z1) =1las0<xy < N, Py(x)) =N+1—127 a8 N <27 < N+ 1. Choosing the test
function v = U®y in integral identity for u, we obtain

"\ Ou U
/ Z A5 Y (I)Ndilf_ / QUU(I)Nd.T+/ UZCL“
Q(0,N+1) ij=1 8 ax] Q(0,N+1) i—1

By the last two identities, in view of symmetricity of the matrix a;;, we get

"L U
U a; dx —/ U a; d$+h / U a;1— dx
[rEms Sngtrt” [ 3y

" 9u dU
’ /ﬂ(o,h) ( 2 Y9 9z, 0, - un) (Ppn — 1) da.

ij=1

Making h to tend to zero, we obtain

/ /
QN

N+1 o N+1
E(N)/ P(t,U)dt U(N)/ P(t, u)dt—l—hmh / uZaﬂ—dx
aon = Oz

n

" oU
/ U Z a1 dx.
h—0 Q(0,h) i 8371

=1

Hence,

N h—0

ou oUu
i — (u —u(N dz.
/Z( (V) (w-V) G ) da
The left hand side in (19)) tends to C' as N — oo. Since for the bounded solution u(z) we have
Jo IVul? dz < oo, then by (B) we obtain that P(t,u) — 0, t — oo and P(t,u) fQ ) qudz.

Then

(19)

|P(t,u)] < Co/ qdr < cot_l/ riqdr = o(t™"), t— oo.
(t,00) Q(t,00)

Hereinafter ¢; = const > 0. Then the first term in the right hand side in tends to zero as
N — oo.
Since fQ(O N) IVU*dz < ¢ N, there exists a sequence N, — oo, kK — oo, for which

fQN IVU|? dx < co. Applying Cauchy-Schwarz and Poincaré inequalities, in view of Lemma
k

we obtain

/Q Z“Zl( TN g - W—WM))?Z) da

N i=1
1/2 1/2
< C3</ |Vu\2d:c) (/ ]VUPd:c) — 0, k— 0.
O, Qw,
Thus, by we obtain the statement of the theorem. O]

We observe that the obtained expression for the limiting constant C' depends only on the
values of the function u(z) on Sy. Indeed, for the functions u; and uy such that (u; — ug)|s, =0

we have
. 9U
(up — ug) a1 — dx
/Q(O,h) ; O

1/2 1/2
< C(/ IV (u1 — us)|? dl‘) (/ VU |? d:l:) — 0, h — 0.
Q(0,h) Q(0,h)

h_l




142 A.V. NEKLUDOV

It

is obvious that for the classical solution the limiting constant C' is expressed explicitly in

terms of the integral over Sy:

~  oU .
C—/SOuZaila—xidx.

i=1

In the simplest case of the Laplace operator L = A we have U = mg 2y, C = my " fSo udz. Tt

is

obviously implied by the identity |, s, 88—; dr = const and for the bounded solutio this constant

vanishes.

10.

11
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