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ON SIMULTANEOUS SOLUTION OF THE KDV EQUATION

AND A FIFTH-ORDER DIFFERENTIAL EQUATION

R.N. GARIFULLIN

Abstract. In the paper we consider an universal solution to the KdV equation. This
solution also satisfies a fifth order ordinary differential equation. We pose the problem on
studying the behavior of this solution as 𝑡 → ∞. For large time, the asymptotic solution has
different structure depending on the slow variable 𝑠 = 𝑥2/𝑡. We construct the asymptotic
solution in the domains 𝑠 < −3/4, −3/4 < 𝑠 < 5/24 and in the vicinity of the point
𝑠 = −3/4. It is shown that a slow modulation of solution’s parameters in the vicinity of
the point 𝑠 = −3/4 is described by a solution to Painlevé IV equation.
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non-dissipative shock waves.
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1. Introduction

In works by A.M. Il’in and S.V. Zakharov [1–3] there was initiated the study on influence of
a small dissipation on the processes of transforming weak discontinuities into the strong ones.
It was shown in these works that in the leading term, this process is described by a special
solution to the Burgers equation. It was shown in work [4] that in the problems with a small
dispersion, a similar role is played by two special solutions to the Korteweg-de Vries equation
(KdV)

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (1.1)

In the present work we study one of these solutions with the prescribed asymptotics:

𝑢
⃒⃒
𝑥→∞ = 0, 𝑢

⃒⃒
𝑥→−∞ = (𝑡+

√
𝑡2 − 4𝑥)/2. (1.2)

The solutions 𝑢(𝑥, 𝑡) plays an universal role [4] in problem on appearance of non-dissipative
shock waves [4,5]. In work [4], for the solution to problem (1.1), (1.2), the asymptotic solutions
was constructed in some directions as 𝑥2 + 𝑡2 → ∞; in the domain of non-damped oscillations
this asymptotic solution was determined by quasi-simple solutions to the Whitham equations.
In the present work the asymptotics to this solution as 𝑡 → ∞ is studied in more details.
Namely, we propose an ansätz for the zone, in which fast oscillations arise, we determine
the equation for the phase shift in the zone of the Whitham oscillations, we construct the
asymptotics for the solution before the zone of these oscillations. We show that Painlevé IV
equation determines the leading term of the asymptotics in the vicinity of the zone of Whitham
oscillations appearance.

It was shown in [4] that the solution 𝑢(𝑥, 𝑡) satisfies the fifth order ordinary differential
equation in the variable 𝑥:(︂

𝑢𝑥𝑥𝑥𝑥 +
5𝑢𝑥𝑥𝑢

3
+

5𝑢2𝑥
6

+
5𝑢3

18

)︂′

𝑥

+
2𝑢+ 𝑥𝑢𝑥 − 3𝑡(𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥)

6
= 0. (1.3)
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Equation (1.3) is a combination of stationary parts of the symmetries for KdV equation. One
of them is the highest (generalized) fifth order symmetry:

𝑢𝜏5 =

(︂
𝑢𝑥𝑥𝑥𝑥 +

5𝑢𝑥𝑥𝑢

3
+

5𝑢2𝑥
6

+
5𝑢3

18

)︂′

𝑥

, (1.4)

the second one is the classical dilation symmetry:

𝑢𝜏𝑟 = 2𝑢+ 𝑥𝑢𝑥 − 3𝑡(𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥). (1.5)

Equation (1.3) can be called as the first highest analogue of Painlevé I equation, see [4, Eq.
(6.2)].

The asymptotic solution to problem (1.1, 1.2, 1.3) as 𝑡→ ∞ has various structure depending
on the direction [4]. These directions are determined by the values of the variable

𝑠 =
𝑥

𝑡2
. (1.6)

The Whitham oscillations zone associated with −3
4
< 𝑠 < 5

24
, some neighbourhood of the point

𝑠 = −3
4

corresponds to the zone of the appearance of Whitham oscillations, 𝑠 < −3
4

is the zone
before the Whitham oscillations.

The work is devoted to studying the asymptotic solutions in these domains and to matching
these asymptotics. It should be mentioned that to solve this problem, together with usual
averaging methods [6], we employ the condition that the sought solution satisfy simultaneously
two equations. This condition allows us to obtain the equation in a slow variable, see [7], [8].

2. Asymptotics as 𝑠 < −3/4

We make the change of variables

𝑢 = 𝑡 𝑈(𝑡, 𝑠), 𝑠 =
𝑥

𝑡2
.

Under such change, equations (1.1,1.3) cast into the form:

𝑡−5𝑈𝑠𝑠𝑠 + 𝑡𝑈𝑡 − 2𝑠𝑈𝑠 + 𝑈𝑈𝑠 + 𝑈 = 0, (2.1)

𝑡−10𝑈𝑠𝑠𝑠𝑠𝑠 +
1

6
𝑡−5(20𝑈𝑠𝑈𝑠𝑠 + (10𝑈 − 3)𝑈𝑠𝑠𝑠) +

1

6
(5𝑈2 + 𝑠− 3𝑈)𝑈𝑠 +

1

3
𝑈 = 0. (2.2)

In equation (2.2), all the derivatives of the third and higher order in the variable 𝑥 can be
replaced by the equation (2.1):

1

3
𝑡−5(𝑈𝑠 + 9)𝑈𝑠𝑠 − 𝑡−4𝑈𝑠𝑠𝑡 +

1

6
(𝑈2 − 4𝑠𝑈 + 24𝑠2 − 5𝑠)𝑈𝑠−

−1

6
(4𝑈 − 3 + 12𝑠)𝑡𝑈𝑡 −

1

6
(4𝑈 + 12𝑠− 5)𝑈 = 0.

(2.3)

The leading term of the asymptotics depends on the slow variable only 𝑠:

𝑈 = 𝑉0(𝑠) + · · · , 𝑡→ ∞, 𝑠 < −3

4
.

Substituting this formula into equations (2.1) and(2.3) lead us to two equations for 𝑉0(𝑠):

1

6
(𝑉 2

0 − 4𝑠𝑉 0 − 5𝑠+ 24𝑠2)𝑉 ′
0 −

1

6
𝑉0(4𝑉0 − 5 + 12𝑠) = 0, (𝑉0 − 2𝑠)𝑉 ′

0 + 𝑉0 = 0. (2.4)

This system implies the algebraic equation:

𝑉 2
0 − 𝑉0 + 𝑠 = 0,

whose solutions satisfy system (2.4). It follows from (1.2) that we should choose on the roots
to this equation:

𝑉0 = (1 +
√

1 − 4𝑠)/2. (2.5)
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It follows from the results of paper [4] that fast oscillations arise in the terms of the asymp-
totics, and this is the asymptotics for the solution is constructed as a partial sum of the series:

𝑈 = 𝑉0+𝑉1(𝑝, 𝑉0)𝑡
−5/2+𝑉2(𝑝, 𝑉0)𝑡

−5+𝑉3(𝑝, 𝑉0)𝑡
−15/2+𝑉4(𝑝, 𝑉0)𝑡

−10+𝑉5(𝑝, 𝑉0)𝑡
−25/2+. . . (2.6)

For the fast variable 𝑝 we construct its series:

𝑝 = 𝑡5/2𝑝−1(𝑉0)+𝑝ln ln 𝑡+𝑝0(𝑉0)+𝑝1(𝑉0)𝑡
−5/2+𝑝2(𝑉0)𝑡

−5+𝑝3(𝑉0)𝑡
−15/2+𝑝4(𝑉0)𝑡

−10+ . . . (2.7)

The coefficients 𝑉𝑘(𝑝, 𝑠) we impose the condition of 2𝜋-periodicity w.r.t. the variable 𝑝. In the
coefficients of the asymptotic expansion, the slow variable 𝑠 is replaced by the dependence on
𝑉0 for simplicity of calculations.

Substituting series (2.6) and (2.7) into (2.1) and (2.3), for 𝑉1 we obtain two equations:

−
(𝑝′−1)

3

(2𝑉0 − 1)3
𝜕3𝑉1
𝜕𝑝3

+
1

2
(5𝑝−1 − 2𝑝′−1𝑉0)

𝜕𝑉1
𝜕𝑝

= 0,

− 5

2

𝑝−1(𝑝
′
−1)

2

(2𝑉 0 − 1)2
𝜕3𝑉1
𝜕𝑝3

+
1

12
(𝑝−1(12𝑉 2

0 − 16𝑉0 + 3) − 2𝑉0(2𝑉0 − 1)(6𝑉0 − 5)𝑝′−1)
𝜕𝑉1
𝜕𝑝

= 0.

Excluding 𝜕3𝑉1
𝜕𝑝3

from this system, we obtain the relation:(︁
2𝑉0(6𝑉0 − 5)𝑝′−1 + 15(2𝑉0 − 1)𝑝−1

)︁(︁
(2𝑉0 − 1)𝑝′−1 − 5𝑝−1

)︁𝜕𝑉1
𝜕𝑝

= 0.

Since 𝑉1 should depend on 𝑝, by the last relation we can find 𝑝−1. The bounded terms of
asymptotics exist under the only choice of 𝑝−1, namely, as

𝑝−1(𝑉0) = − 2
√

2

15
√

3
𝑉

3/2
0 (6𝑉0 − 5). (2.8)

Here the constatns of the integrations are determined by condition of 2𝜋-periodicity of 𝑉1. The
equation for 𝑉1 becomes:

𝜕3𝑉1
𝜕𝑝3

+
𝜕𝑉1
𝜕𝑝

= 0;

we write its solution as
𝑉1 = 𝐷1(𝑉0) + 𝐴1(𝑉0) cos 𝑝, (2.9)

where 𝐷1(𝑉0), 𝐴1(𝑉0) are functions in slow variable to be determined by the existence and
boundedness conditions for the next terms of the asymptotics. Hereinafter, the third integration
constant corresponds to the phase shift 𝑝𝑗(𝑉0).

For the function 𝑉2 we obtain two inhomogeneous equations in the variable 𝑝:

𝜕3𝑉2
𝜕𝑝3

+
𝜕𝑉2
𝜕𝑝

= 𝐹21(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴
′
1, 𝐷

′
1, 𝑝

′
0),

𝜕3𝑉2
𝜕𝑝3

+
𝜕𝑉2
𝜕𝑝

= 𝐹22(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴
′
1, 𝐷

′
1, 𝑝

′
0).

(2.10)

The existence and boundedness condition for the solutions is that the right hand sides should
coincide and they should be orthogonal to the solutions of the homogeneous equation, that is,

𝐹21(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴
′
1, 𝐷

′
1, 𝑝

′
0) = 𝐹22(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴

′
1, 𝐷

′
1, 𝑝

′
0),∫︁ 2𝜋

0

𝐹21(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴
′
1, 𝐷

′
1, 𝑝

′
0)𝑑𝑝 = 0,∫︁ 2𝜋

0

𝐹21(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴
′
1, 𝐷

′
1, 𝑝

′
0) cos 𝑝𝑑𝑝 = 0,∫︁ 2𝜋

0

𝐹21(𝑝, 𝑉0, 𝐴1, 𝐷1, 𝐴
′
1, 𝐷

′
1, 𝑝

′
0) sin 𝑝𝑑𝑝 = 0.

(2.11)
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The solutions to system (2.11) are of the form:

𝐴1 =
𝐶1√

𝑉0(2𝑉0 − 3)
,

𝐷1 = − 2𝑝𝑙𝑛
√

6

5
√
𝑉0(2𝑉0 − 1)

,

𝑝0 =
𝑝𝑙𝑛
5

ln((2𝑉0 − 3)2𝑉 3
0 ) + 𝑝0,

(2.12)

where 𝐶1, 𝑝
0 are arbitrary constants. The equation for 𝑉2 is of the form:

𝜕3𝑉2
𝜕𝑝3

+
𝜕𝑉2
𝜕𝑝

=
3𝐶2

1

4(2𝑉0 − 3)2𝑉 2
0

sin 2𝑝, (2.13)

and its solution is

𝑉2 = 𝐷2(𝑉0) + 𝐴2(𝑉0) cos 𝑝+
𝐶2

1

8(2𝑉0 − 3)2𝑉 2
0

cos 2𝑝. (2.14)

For the next terms in the asymptotics we obtain systems of form (2.10) with solvability
condition of form (2.11). We failed to prove the solvability of these systems for all the terms.
By straightforward calculations we checked that up to 𝑉5 all terms are constructed uniquely
and no new constants arise. We provide explcit formulae for 𝐷2, 𝐴2, 𝑝1:

𝐷2 = − 𝐶2
1

24𝑉 2
0 (2𝑉0 − 1)(2𝑉0 − 3)

− 12(4𝑉0 − 1)𝑝2ln
25𝑉 2

0 (2𝑉0 − 1)3
+

4

(2𝑉0 − 1)4
,

𝐴2 = − 3
√

6(14𝑉0 + 15)𝐶1𝑝ln
20(2𝑉0 − 3)3𝑉 2

0

𝑝1 = −
√

6

𝑉
3/2
0 (2𝑉0 − 3)2

(︂
(4𝑉 2

0 − 96𝑉0 + 63)𝑝2ln
50(2𝑉0 − 1)

− (2𝑉0 + 9)𝐶2
1

288

+
(2𝑉0 + 1)(212𝑉 2

0 − 204𝑉0 + 45)

24(2𝑉0 − 1)2

)︂
.

(2.15)

These formulae determine 𝑉2 completely.
The coefficients 𝑝ln, 𝑝0, 𝐶1 in series (2.6) and (2.7) are still arbitrary. They can be determined

by comparing the series with formula (5.3) and the next formula in [4]. We find:

𝑝ln =
5 ln 2

2𝜋
, 𝐶1 = −3

√
6 ln 2

𝜋
, 𝑝0 =

ln 2 ln 24

2𝜋
− 𝜋

2
+ 2 arg Γ

(︂
𝑖 ln 2

2𝜋

)︂
. (2.16)

Employing expressions (2.9), (2.12), (2.14), (2.15) for 𝑉1 and 𝑉2, we find the applicability
domain for asymptotic expansion by the condition 𝑉1 ≫ 𝑡−5/2𝑉2. We find |𝑉0 − 3/2| ≫ 𝑡−5/4;
in terms of the variable 𝑠 the domain is of the form |𝑠+ 3/4| ≫ 𝑡−5/4. This is why slow variable
for the internal variable is of the form:

𝑦 = (𝑠+ 3/4)𝑡5/4. (2.17)

Replacing the variable 𝑠 by formula (2.17) in series (2.6) and (2.7), we obtain:

𝑈 ≈ 3

2
+

(︂
−𝑦

2
+

(︂
6 ln 2

𝜋𝑦
+

108 ln2 2

𝜋2𝑦3
− 432 ln 2(5𝜋2 − 9 ln2 2)

𝜋3𝑦5
+ . . .

)︂
cos 𝑝

)︂
𝑡−5/4 + . . .

𝑝 ≈ −4

5
𝑡5/2 + 𝑦𝑡5/4 − 5 ln 2 ln 𝑡

4𝜋
− 𝑦2

12
− ln 2 ln(−𝑦)

𝜋
− 3 ln 2 ln(3/2)

2𝜋
+ 𝑝0 + . . .

(2.18)

These formulae determine the asymptotics of the coefficients in the internal expansion as 𝑦 →
−∞.
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3. Asymptotic solution in the vicinity of the point 𝑠 = −3/4

To construct the asymptotic solution in the vicinity of the point 𝑠 = −3/4, we make the
change:

𝑈 =
3

2
+ 𝑡−5/4𝑊 (𝑦, 𝑡), 𝑦 = (𝑠+ 3/4)𝑡5/4. (3.1)

Equations (2.1) and (2.3) become

𝑡−9/4𝑊𝑦𝑦𝑦 + 𝑡−1(𝑊𝑊𝑦 −
3

4
𝑦𝑊𝑦 −

1

4
𝑊 ) + 𝑡1/4(3𝑊𝑦 +

3

2
) +𝑊𝑡 = 0

𝑡−5/2𝑊𝑡𝑦𝑦 − 𝑡−7/2𝑊𝑦𝑦

12
(4𝑊𝑦 − 21) + 𝑡−1 1

24
(𝑊𝑦(68𝑦 − 12𝑊 ) + 22𝑊 + 27𝑦)−

− 𝑡−9/4 1

48
(𝑊𝑦(8𝑊

2 − 12𝑦𝑊 − 27𝑦2) +𝑊 (8𝑊 + 9𝑦))+

+ 𝑡−5/4𝑊𝑦

12
(8𝑊 + 9𝑦) −𝑊𝑡 + 𝑡1/42(2𝑊𝑦 + 1) = 0.

(3.2)

An asymptotic solution 𝑊 is constructed as:

𝑊 = 𝑊0(𝜓, 𝑦) + 𝑡−5/4𝑊1(𝜓, 𝑦) + 𝑡−5/2𝑊2(𝜓, 𝑦) + 𝑡−15/4𝑊3(𝜓, 𝑦) + . . . , 𝑡→ ∞, (3.3)

with the fast variable

𝜓 = −4

5
𝑡5/2 + 𝑦𝑡5/4 − 5 ln 2

4𝜋
ln 𝑡+ 𝜓0(𝑦) + 𝑡−5/4𝜓1(𝑦) + 𝑡−5/2𝜓2(𝑦) + . . . , 𝑡→ ∞. (3.4)

By substituting (3.3) and (3.4) into (3.2) we obtain the equations for the coefficients of series
(3.3). The equations for the leading term 𝑊0 coincide and are of the form:

𝜕3𝜓𝑊0 + 𝜕𝜓𝑊0 = 0. (3.5)

We write its soltion as

𝑊0 = 𝐻0(𝑦) +𝑅0(𝑦) cos𝜓, (3.6)

where 𝐻0(𝑦), 𝑅0(𝑦) are unknown function of slow variable, the term with sin𝜓 is taken in the
phase shift 𝜓0(𝑦). The equation for 𝑊1 is

𝜕3𝜓𝑊1 + 𝜕𝜓𝑊1 =
𝑅0

2
(𝑦 + 2𝐻0) sin𝜓 − 3

2
(1 + 2𝐻 ′

0) +
𝑅2

0

2
sin 2𝜓,

𝜕3𝜓𝑊1 + 𝜕𝜓𝑊1 =
5𝑅0

6
(𝑦 + 2𝐻0) sin𝜓 +

1

2
(1 + 2𝐻 ′

0) +
𝑅2

0

2
sin 2𝜓.

(3.7)

The existence and boundedness conditions for the solutions of this system gives:

𝐻0(𝑦) = −𝑦
2
.

Under such choice of 𝐻0, the solution to system (3.7) exists and bounded as 𝜓 → ∞. Function
𝑊1 is of the form:

𝑊1 = 𝐻1(𝑦) +𝑅1(𝑦) cos 2𝜓 +
𝑅2

0

12
cos 2𝜓. (3.8)

For the terms of the asymptotics we obtain equations of form (2.10), the solvability and bound-
edness conditions for the solution are of form (2.11). By the existence and boundedness condi-
tion for 𝑊2 we obtain:

𝐻1 = −𝑅
2
0

12
− 𝑦2

8
− 1

𝜋
, (3.9)
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𝑅′′
0 = 𝑅0(𝜓

′
0)

2 +
5

12
𝑦𝑅0𝜓

′
0 +

1

72
𝑅3

0 +
𝑦2

24
𝑅2

0 −
1

12𝜋
𝑅0, (3.10a)

𝑅0𝜓
′′
0 = −2𝑅′

0𝜓
′
0 −

5

12
𝑦𝑅′

0 −
1

4
𝑅0. (3.10b)

The solution 𝑊2(𝑝, 𝑦) becomes

𝑊2 = 𝑅2 cos𝜓 +𝐻2(𝑦) +
𝑅3

0

192
cos 2𝜓 − 𝑅2

0

6
𝜓′
0 cos 2𝜓 +

𝑅0

6
𝑅1 cos 2𝜓 − 𝑅0

6
𝑅′

0 sin 2𝜓. (3.11)

Then we checked that all the terms up to 𝑉5 are in the class of bounded periodic in 𝑝 functions.
The functions 𝑅1, 𝑅2, 𝑅3, 𝜓1, 𝜓2, 𝜓3, 𝐻3, 𝐻4 are determined uniquely, with no additional
arbitrary coefficients.

Let us show that system (3.10) is equivalent to Painlevé IV equation. We observe that this
system possesses the first integral quadratic in the derivatives:

𝐼 = (𝑅′
0)

2 +𝑅2
0(𝜓

′
0)

2 +
𝑦

2
𝑅2

0𝜓
′
0 +

3𝜋𝑦2 + 4

48𝜋
𝑅2

0 −
1

144
𝑅4

0. (3.12)

System (3.10a) and (3.12) can be considered as a one second differential equation for 𝑅0(𝑦)
with the parameter 𝜓′

0. We make a change in this system:

𝜓′
0 = 𝑖𝑅′

0/𝑅0 + 𝑃 (𝑦) − 𝑦/4, (3.13)

where 𝑖 is the imaginary unit. Excluding the function 𝑅0(𝑦) from (3.10a) and (3.12), for a new
unknown function 𝑃 (𝑦) we obtain the Painlevé IV equation:

2𝑃 (𝑦)𝑃 ′′(𝑦) = (𝑃 ′(𝑦))2 − 3𝑃 4(𝑦) +
1

3
𝑦𝑃 3(𝑦) +

(︂
− 𝑦2

144
+

1

6
(𝑖− ln 2/𝜋)

)︂
𝑃 2(𝑦). (3.14)

The function 𝑄(𝑧) = (2 + 2𝑖)
√

3𝑃 ((−2 + 2𝑖)
√

3𝑧) satisfies the usual Painlevé IV equation.
In (3.14) we have substituted the value 𝐼 found by means of formulae (2.18), which give the
asymptotics of the functions 𝜓0, 𝑅0 as 𝑦 → −∞, and therefore, they allow to find the value 𝐼
and the asymptotics 𝑃 (𝑦) as 𝑦 → −∞:

𝐼 =
ln2 2

4𝜋2
,

𝑃 (𝑦) =
𝑦

12
+

1

𝑦
(𝑖− ln 2/𝜋) +

6

𝑦3

(︂
6𝑖 ln 2

𝜋
− 3 ln2 2

𝜋2
+ 4

)︂
+ . . . . (3.15)

By straightforward calculations we can check that equation (3.14) has a solution with asymp-
totics (3.15). However, at present, we do not know the asymptotics of this solution as 𝑦 → ∞;
such problem can be solved by the approaches from work [9].

4. Asymptotic solution in the zone of Whitham oscillations

In the zone of Whitham oscillations, the asymptotic solution 𝑈 to system (2.1), (2.3) is
constructed as a series in inverse powers of 𝑡:

𝑈 = 𝑈0(𝜙, 𝑠) + 𝑡−5/4𝑈1(𝜙, 𝑠) + 𝑡−5/2𝑈2(𝜙, 𝑠) + . . . , 𝑡→ ∞. (4.1)

Here 𝑈0, 𝑈1 and 𝑈2 are 2𝜋-periodic function in the fast variable 𝜙. This variable is of the form

𝜙 = 𝑡5/2𝑓(𝑠) + 𝑛(𝑠),

where 𝑓(𝑠), 𝑛(𝑠) are unknown functions.
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For the function 𝑈0 we obtain the following nonlinear system of equation in the fast variable
𝜙:

(𝑓 ′)2
𝜕3𝑈0

𝜕𝜙3
+ (𝑈0 − 𝑎(𝑠))

𝜕𝑈0

𝜕𝜙
= 0,

𝑎(𝑠)(𝑓 ′)2
𝜕3𝑈0

𝜕𝜙3
− 1

3
(𝑓 ′)2

𝜕𝑈0

𝜕𝜙

𝜕2𝑈0

𝜕𝜙2
+

1

6

(︀
𝑈2
0 + 𝑠+ 4𝑎(𝑠)𝑈0 − 3𝑎(𝑠)

)︀ 𝜕𝑈0

𝜕𝜙
= 0.

(4.2)

Here we denote

𝑎(𝑠) = 2𝑠− 5𝑓

2𝑓 ′ .

Excluding the expression 𝜕3𝜙𝑈0 from (4.2), we obtain the second order equation for the func-
tion 𝑈0:

(𝑓 ′)2
𝜕2𝑈0

𝜕𝜙2
+

1

2
𝑈2
0 − 𝑎(𝑠)𝑈0 + 3𝑎(𝑠)2 +

𝑠− 3𝑎(𝑠)

2
= 0. (4.3)

Equation (4.3) can be integrated once:(︂
𝑓 ′𝜕𝑈0

𝜕𝜙

)︂2

+
1

3
𝑈3
0 − 𝑎(𝑠)𝑈2

0 + (6𝑎2 − 3𝑎+ 𝑠)𝑈0 + 𝑏(𝑠) = 0. (4.4)

Here 𝑏(𝑠) is an arbitrary function arising an integration constant.
We shall an explicit formula for 𝑈0 later, while now we assume that this is some 2𝜋-periodic

function satisfying equation (4.4). By this equation all the derivatives of 𝜕𝜙𝑈0 can be written
as fractional-rational expression in terms of

𝑈0, 𝜕𝜙𝑈0, 𝜕𝑠𝑈0, 𝜕
2
𝑠𝑈0, . . . .

Employing this conditions, we can find the boundedness condition for the next terms of the
asymptotics, which are the equations for slowly varying functions 𝑓(𝑠), 𝑛(𝑠), 𝑏(𝑠).

The equations for 𝑈1 have the form:

(𝑓 ′)2𝜕3𝜙𝑈1 + (𝑈0 − 𝑎) 𝜕𝜙𝑈1 + 𝜕𝜙𝑈0𝑈1 =
𝐹1(𝑈0, 𝜕𝜙𝑈0, 𝜕𝑠𝑈0, 𝑎, 𝑎

′, 𝑛′, 𝑠)

𝑓
,

𝑎(𝑠)(𝑓 ′)2𝜕3𝜙𝑈1 −
1

3
(𝑓 ′)2(𝜕2𝜙𝑈1𝜕𝜙𝑈0 + 𝜕2𝜙𝑈0𝜕𝜙𝑈1) +

1

6
𝜕𝜙𝑈1(𝑈

2
0 + 𝑠+ 4𝑎𝑈0 − 3𝑎)

+
1

3
𝜕𝜙𝑈0(𝑈0 + 2𝑎)𝑈1 =

𝐹2(𝑈0, 𝜕𝜙𝑈0, 𝜕𝑠𝑈0, 𝑎, 𝑏, 𝑎
′, 𝑏′, 𝑛′, 𝑠)

𝑓𝜕𝜙𝑈0

.

(4.5)

Here 𝐹1, 𝐹2 are polynomial functions of their arguments. Excluding the higher derivatives of
𝑈1 w.r.t. the variable 𝜙 from system (4.5), we arrive at a relation not involving function 𝑈1,
which is a compatibility condition for this system:(︁

𝑓(360𝑎− 30𝑠− 45 − 540𝑎2)𝑎′ − 10𝑓𝑏′

+ 2𝑓 ′(108𝑎3 − 108𝑎2 + 6𝑎𝑠+ 6𝑏+ 27𝑎− 2𝑠)
)︁
𝑈0

+ 15𝑓(54𝑎2 − 72𝑎3 − 12𝑎𝑠+ 4𝑏− 9𝑎+ 3𝑠)𝑎′ + 15𝑓(4𝑎− 1)𝑏′

+ 6𝑓 ′(72𝑎4 − 66𝑎3 + 12𝑎2𝑠− 16𝑎𝑏+ 15𝑎2 + 5𝑎𝑠− 5𝑏) = 0.

(4.6)

Since equation (4.6) should be satisfied identically, the coefficients at various powers of 𝑈0

should vanish. Therefore, we obtain the closed system of equations for 𝑎(𝑠), 𝑏(𝑠):

𝑎′ =
(2𝑎− 1)(288𝑎3 − 192𝑎2 + 24𝑠𝑎+ 27𝑎− 4𝑠− 4𝑏)

(𝑎− 2𝑠)(−576𝑎3 + 504𝑎2 − 126𝑎− 48𝑠𝑎+ 8𝑏+ 12𝑠+ 9)
,

𝑏′ = (36𝑎− 3𝑠− 54𝑎2 − 9/2)𝑎′ − 108𝑎3 − 108𝑎2 + 6𝑎𝑠+ 6𝑏+ 27𝑎− 4𝑠

2𝑎− 4𝑠
.

(4.7)
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System (4.5) is compatible if and only if 𝑎(𝑠) and 𝑏(𝑠) are determined by equations (4.7).
If this condition is satisfied, all the derivatives of 𝑈1 w.r.t. 𝜙 of order higher than two can be
expressed via lower derivatives, for instance,

(𝑓 ′)2𝜕2𝜙𝑈1 = (𝑎− 𝑈0)𝑈1 + (𝑛′ + 𝜕𝑠𝑈0/𝜕𝜙𝑈0)𝐺1(𝑈0, 𝑎, 𝑠)/𝑠+𝐺2(𝑈0, 𝑎, 𝑏, 𝑠)/𝑓/𝜕𝜙𝑈0,

where 𝐺1, 𝐺2 are some functions.
The equation for 𝑈2 are of the form:

(𝑓 ′)2𝜕3𝜙𝑈1 + (𝑈0 − 𝑎) 𝜕𝜙𝑈1 + 𝜕𝜙𝑈0𝑈1 =
𝐹3

𝑓
,

𝑎(𝑠)(𝑓 ′)2𝜕3𝜙𝑈1 −
1

3
(𝑓 ′)2(𝜕2𝜙𝑈1𝜕𝜙𝑈0 + 𝜕2𝜙𝑈0𝜕𝜙𝑈1) +

1

6
𝜕𝜙𝑈1(𝑈

2
0 + 𝑠+ 4𝑎𝑈0 − 3𝑎)

+
1

3
𝜕𝜙𝑈0(𝑈0 + 2𝑎)𝑈1 =

𝐹4

𝑓𝜕𝜙𝑈0

.

(4.8)

Here 𝐹3, 𝐹4 are functions depending on previous terms.
Excluding the derivatives of the function 𝑈2 from these equations, we obtain the relation:

𝜕𝜙𝑠𝑈1 −
𝜕2𝜙𝑈0

𝜕𝜙𝑈0

𝜕𝑠𝑈1 +

(︂
𝜕2𝜙𝑈0𝜕𝑠𝑈0

(𝜕𝜙𝑈0)2
+

𝐺3(𝑈0, 𝑎, 𝑏)

(𝑓𝜕𝜙𝑈0)2(2𝑈0 + 3 − 12𝑎)

)︂
𝜕𝜙𝑈1

−
(︂
𝜕3𝜙𝑈0𝜕𝑠𝑈0

(𝜕𝜙𝑈0)2
− 𝐺4(𝑈0, 𝑎, 𝑏)

(𝑓𝜕𝜙𝑈0)2(2𝑈0 + 3 − 12𝑎)

)︂
𝑈1 = 𝐺5(𝑈0, 𝑎, 𝑏, 𝑛

′, 𝑛′′).

(4.9)

Differentiating this equation in 𝜙, we obtain a relation of the same form and excluding 𝜕𝜙𝑠𝑈1

from these equations, we obtain

𝜕𝜙𝑈1 =
𝜕2𝜙𝑈0

𝜕𝜙𝑈0

𝑈1 +
𝑛′′𝐺6(𝑠, 𝑎, 𝑏, 𝑓) + 𝑛′𝐺7(𝑈0, 𝑠, 𝑎, 𝑏, 𝑓)

𝜕𝜙𝑈0

+𝐺8(𝜕
3
𝑠𝑈0, 𝜕

2
𝑠𝑈0, 𝜕𝑠𝑈0, 𝑈0, 𝑎, 𝑏, 𝑓, 𝑠).

(4.10)

Substituting (4.10) into equation (4.9), we obtain the relation of the form:

𝜕𝜙𝑈0(𝑛
′′′ + 𝐴1𝑛

′′ + 𝐴2𝑛
′) + 𝜕3𝑠𝑈0 +𝐵1𝜕

2
𝑠𝑈0𝜕𝑠𝑈0 +𝐵2𝜕

2
𝑠𝑈0

+𝐵3(𝜕𝑠𝑈0)
3 +𝐵4(𝜕𝑠𝑈0)

2 +𝐵5𝜕𝑠𝑈0 +𝐵6 = 0,
(4.11)

where

𝐴𝑖 = 𝐴𝑖(𝑠, 𝑓, 𝑎, 𝑏), 𝐵𝑖 = 𝐵𝑖(𝑈0, 𝑠, 𝑓, 𝑎, 𝑏)

are some functions.
Without loss of generality we can assume that the function 𝑈0 is even in 𝜙. Then in (4.11),

the first part is odd, while the other is even w.r.t. 𝜙. Therefore, by (4.11) we get immediately
two equations:

𝑛′′′ + 𝐴1𝑛
′′ + 𝐴2𝑛

′ = 0, (4.12)

𝜕3𝑠𝑈0 +𝐵1𝜕
2
𝑠𝑈0𝜕𝑠𝑈0 +𝐵2𝜕

2
𝑠𝑈0 +𝐵3(𝜕𝑠𝑈0)

3 +𝐵4(𝜕𝑠𝑈0)
2 +𝐵5𝜕𝑠𝑈0 +𝐵6 = 0. (4.13)

Let us determined the leading term of asymptotic solution (4.1). We seek a solution to
equation (4.4) as

𝑈0 = 𝐴(𝑠)dn2

(︂
𝐵(𝑠)

𝑓 ′(𝑠)
𝑝; 𝑘(𝑠)

)︂
+ 𝐶(𝑠), (4.14)

where 𝐴, 𝐵, 𝑘, 𝐶 are functions in slow variables, dn is the Jacobi elliptic function. They are
determined by substituting (4.14) into (4.3), equating to zero the coefficients at various powers
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of dn and postulating the oscillation period to be 2𝜋. By this system we find:

𝐴 =6𝐵2, 𝑓 ′ =
𝜋𝐵

𝐾(𝑘)
, 𝑎 = −4𝑘2𝐵2 + 8𝐵2 + 𝐶,

𝑓 =
2𝜋𝐵(4𝐵2𝑘2 − 8𝐵2 − 𝐶 + 2𝑠)

5𝐾(𝑘)
,

𝑏 =4608(2𝑘2 − 3)(4𝑘4 − 17𝑘2 + 19)𝐵6 − 384(𝑘2 − 2)(7𝑘2 − 13)(10𝐶 − 3)𝐵4

+ 8(4𝐶(41𝑘2 − 79)(5𝐶 − 3) + 12(2𝑘2 − 3)𝑠+ 63(𝑘2 − 2))𝐵2

− 1

3
(10𝐶 − 3)(32𝐶(5𝐶 − 3) + 12𝑠+ 9).

(4.15)

Hereinafter, 𝐾(𝑘), 𝐸(𝑘) are complete elliptic integrals. Moreover, we have one more algebraic
relation:

45(2𝑘4 − 7𝑘2 + 7)𝐵4 − 4(𝑘2 − 2)(10𝐶 − 3)𝐵2 + 5𝐶2 − 3𝐶 + 𝑠 = 0. (4.16)

At the present step, all functions of slow variables are expressed via 𝐵, 𝑘, 𝐶, we have
one algebraic equation (4.16) and three differential equation, (4.7) and the implication of the
identity (𝑓)′ = 𝑓 ′, where 𝑓 , 𝑓 ′ were determined independently in (4.15). Differentiating (4.16),
we obtain a differential implication. Excluding the derivatives 𝐵′, 𝑘′, 𝐶 ′ from four differential
implications, we obtain an additional algebraic relations in terms of 𝐵, 𝑘, 𝐶, 𝑞 = 𝐸(𝑘)/𝐾(𝑘).
It can be also differentiated w.r.t. 𝑠 and again substitute the found derivatives to obtain an
additional algebraic equation.

Employing these relations, the functions 𝐵(𝑠), 𝑘(𝑠), 𝐶(𝑠) are found implicitly:

𝐵2 =
5(𝑘2𝑞 + 𝑘2 + 𝑞 − 1)

12(3𝑘3𝑞 + 𝑘4 + 2𝑘2𝑞 + 2𝑘2 + 3𝑞 − 3)
, 𝐶 = 6𝐵2(𝑘2 − 1)

𝑠 =
1

3𝑘4 + 2𝑘2 + 3

(︃
3(𝑘2 + 1)2

4
− 1

3

(︂
𝑘2 + 1 +

5𝑘2(𝑘2 − 1)2

3𝑘4𝑞 + 𝑘4 + 2𝑘2𝑞 + 2𝑘2 + 3𝑞 − 3

)︂2
)︃
.

The dependence on the slow variable 𝑠 in the functions 𝐴, 𝐵, 𝐶, 𝑘, 𝑓 , 𝑎 is determined.
In this paper we do not give an answer to the question on which solution to equation (4.12)

corresponds to the studied solution. However, by matching with the expansion in the vicinity
of the point 𝑠 = −3/4 we can find the asymptotics of the function 𝑛(𝑠) as 𝑠→ −3/4.

In order to do it, we find the asymptotics of solution (4.1) as 𝑠→ −3/4 :

𝑈 =
3

2
+ 𝑡−5/4

(︁
−𝑦

2
+
(︀𝑦

3
+ . . .

)︀
cos𝜙

)︁
+ . . . , 𝑦 = (𝑠+ 3/4)𝑡5/2,

𝜙 = −4

5
𝑡5/2 + 𝑡5/4𝑦 +

(︂
−𝑦

2

9
+ . . .

)︂
+ . . .

These formulae allow us to find the leading term in the asymptotics of the function 𝑃 (𝑦) as
𝑦 → ∞. By formula (3.13) we find:

𝑃 (𝑦) =
𝑦

36
+

−𝑖
𝑦

+ . . . , 𝑦 → ∞.

By means of equation (3.14) we can find the next terms in the asymptotics for this solution:

𝑃 =
𝑦

36
+

ln 2/𝜋 − 𝑖

𝑦
+

6(3 ln2 2/𝜋2 − 4 − 6𝑖 ln 2/𝜋)

𝑦3
+ . . . , 𝑦 → ∞.

Returning back to the variable 𝑠 for the function 𝑛(𝑠), we find

𝑛(𝑠) =
ln 2

𝜋
ln(𝑠+ 3/4) +

(︂
𝑝0 −

3 ln 2 ln(3/2)

2𝜋

)︂
+ . . . , 𝑠→ −3/4.

We see that in this case the function 𝑛(𝑠) is not a constant in contrast to similar problems [8], [7].
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5. Conclusion

In the work we study the solution introduced in paper [4]. The main result is the description
of the asymptotics of the leading front. We show that the main term is described by Painlevé
IV equation. In the work we also found the equation for the phase shift in the Whitham
oscillations zone. We show that in this case the function 𝑛(𝑠) is not constant in contrast to
similar cases in [7, 8].

In future we plan to show that equation (3.14) has a solution with prescribed asymptotics
(3.15) and (4) as 𝑦 → ±∞ and to determine function 𝑛(𝑠).
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