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STEKLOV TYPE PROBLEM IN A HALF-CYLINDER WITH A

SMALL CAVITY
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Abstract. In the work we consider a Steklov type problem for the Laplace operator in
a 𝑛-dimensional cylinder with a small cavity. On the lateral surfaces one of three classic
boundary conditions is imposed, the boundary of the cavity is subject to the Dirichlet
condition, while on the base of the cylinder we impose the spectral Steklov condition. We
prove the convergence theorems for the eigenvalues of this problems as the small parameter,
the diameter of the cavity, tends to zero. We construct and justify the complete asymptotic
expansions in the small parameter converging both to a simple or a double eigenvalue of
the limiting problem, which is the problem without the cavity.
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1. Introduction

The studying of the eigenvalues of the boundary value problems for elliptic operators in
domains with a small cavity has a rather long history. In [1], the estimate for the rate of
the convergence of a Dirichlet eigenvalue for the Laplace operator in a three-dimensional do-
main with a small cavity. Later similar results were obtained in [2, 3, 4]. Then in [5], there
were constructed complete asymptotic expansions for the first eigenvalues and corresponding
eigenfunctions in two- and three-dimensional domains with small cavities.

The asymptotics of the solution to an elliptic boundary value problem with a small cavity
on the spectrum of the limiting problem was obtained in [6]. The boundary value problems
for elliptic operators in the elasticity theory with small holes were studied in works [7, 8,
9, 10]. In the case of Neumann conditions on the boundary of the small cavity, in [7], the
complete asymptotic expansions for the eigenvalues of the perturbed boundary value problem
were constructed. In work [8], there was proven the convergence of the eigenelements of the
Dirichlet problem to the eigenelements of the corresponding limiting eigenvalue, while in [9, 10]
there were constructed two-terms asymptotics w.r.t. a small parameter in two- and three-
dimensional cases, respectively. The complete asymptotics for the eigenvalues of the Steklov
problem for the Laplace operator in domain with a small cavity were constructed in [11].

In the present work we study a Steklov type problem for the Laplace operator in an 𝑛-
dimensional cylinder containing a small cavity. On the later surface we impose one of the
classical boundary conditions (Dirichlet or Neumann or Robin condition), on the boundary of
the small cavity we impose the Dirichlet condition, while the base of the half-cylinder is subject
to the Steklov condition. Such issues arise in boundary value problems for the Laplace operator
in a domain perforated along a part of the boundary [12]. Similar problems in half-strips and
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half-cylinders with singularly perturbed boundary conditions arose earlier in problems with
frequent alternation of boundary conditions [13, 14, 15].

In conclusion we mention that the emergence of the eigenvalues from the thresholds of the
essential spectrum for the cylinders with small cavities and with the Dirichlet condition on the
boundary of these small cavities was studied in [16, 17].

2. Formulation of the main statements

Let 3 6 𝑛 ∈ N, Σ be an (𝑛 − 1)-dimensional bounded domain with a smooth boundary,
Π := Σ × (𝑎,+∞), −∞ < 𝑎 < 0, Σ𝑎 := Σ × {𝑎}, {0} ∈ Π, 𝜔 be a bounded connected domain
in R𝑛 with a smooth boundary, 𝜔𝜀 = {𝑥 : 𝜀−1𝑥 ∈ 𝜔}, 0 < 𝜀 ≪ 1, Π𝜀 = Π ∖ 𝜔𝜀. We consider a
singular perturbation of the following Steklov eigenvalue problem:

−∆𝜓0 =0, 𝑥 ∈ Π, l𝜓0 :=

(︂
𝐻
𝜕

𝜕𝜈
+ ℎ

)︂
𝜓0 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓0

𝜕𝜈
=𝜆0𝜓0, 𝑥 ∈ Σ𝑎,

(2.1)

where 𝜈 is the outward normal, 𝐻, ℎ > 0, 𝐻 +ℎ ̸= 0. The perturbation is made by cutting out
the small hole 𝜔𝜀 in the half-cylinder and by imposing the Dirichlet condition on its boundary:

−∆𝜓𝜀 = 0, 𝑥 ∈ Π𝜀, l𝜓𝜀 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓𝜀
𝜕𝜈

=𝜆𝜀𝜓𝜀, 𝑥 ∈ Σ𝑎, 𝜓𝜀 = 0, 𝑥 ∈ 𝜕𝜔𝜀.
(2.2)

The eigenfunctions are considered in the class of functions with a finite Dirichlet integral:∫︁
Π

|∇𝜓0|2𝑑𝑥 <∞,

∫︁
Π𝜀

|∇𝜓𝜀|2𝑑𝑥 <∞.

By the Fourier method one can show easily that the eigenvalues 𝜆0,1 < 𝜆0,2 6 · · · 6 𝜆0,𝑘 6 · · ·
and the associated orthonormalized in 𝐿2(Σ𝑎) eigenfunctions 𝜓0,𝑘 to Steklov problem (2.1) are
determined by the identities:

𝜆0,𝑘 =
√︀
𝜁𝑘, 𝜓0,𝑘(𝑥) = 𝜑𝑘(𝑥

′)e−
√
𝜁𝑘(𝑥𝑛−𝑎), (2.3)

where 𝑥′ := (𝑥1, . . . , 𝑥𝑛−1), 𝜁𝑘 and 𝜑𝑘 are the eigenvalues and the associated normalized in
𝐿2(Σ) eigenfunctions to the boundary value problem:

−
𝑛−1∑︁
𝑖=1

𝜕2𝜑𝑘
𝜕𝑥2𝑖

= 𝜁𝑘𝜑𝑘 in Σ, l𝜑𝑘 = 0 on 𝜕Σ. (2.4)

In the next section we shall prove

Theorem 2.1. Assume that the segment [𝜆−, 𝜆+] contains no eigenvalues of Steklov problem
(2.1). Then for all sufficiently small 𝜀, this segment contains no eigenvalues of Steklov problem
(2.2).

Assume the multiplicity of an eigenvalue 𝜆0 of Steklov problem (2.1) is equal to 𝑑. Then

Steklov problem (2.2) has exactly 𝑑 eigenvalues 𝜆
(𝑙)
𝜀 , 𝑙 = 1, 𝑑, (counting the multiplicities)

converging to 𝜆0 as 𝜀→ 0.
The corresponding projectors 𝒫0 and 𝒫𝜀 satisfies the convergence 𝒫𝜀 → 𝒫0 as 𝜀 → 0 in

𝐿2(Σ𝑎).

The main content of the work is the proof of the following Theorems 2.2 and 2.3 by the
method of matching of asymptotic expansions [18, 19, 20].

Before we proceed to the formulations of these statements, we introduce some notations.
Hereafter, 𝑟 = |𝑥|, |𝑆𝑛| is the area of the unit sphere in R𝑛.
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By 𝑧𝑞(𝑥), 𝑞 = 0, 𝑛, we denote harmonic in R𝑛 ∖𝜔 functions decaying at infinity and satisfying
the boundary conditions:

𝑧0(𝑥) = 1, 𝑧𝑚(𝑥) = 𝑥𝑚, 𝑚 = 1, 𝑛 on 𝜕𝜔.

It is well-known that these functions have differentiable asymptotic expansions:

𝑧𝑞(𝑥) =𝑐𝑞,0𝑟
−𝑛+2 +

𝑛∑︁
𝑝=1

𝑐𝑞,𝑝𝑥𝑝𝑟
−𝑛 +

∞∑︁
𝑖=2

𝑍
(𝑞)
𝑖 (𝑥)𝑟−2𝑖−𝑛+2, 𝑟 → ∞, (2.5)

where 𝑍
(𝑞)
𝑖 (𝑥) are homogeneous harmonic polynomials of degree 𝑖 with an index 𝑞. The constant

𝑐0,0 = 𝑐(𝜔) > 0 is called the harmonic capacity, while the constants 𝑐𝑚,𝑞, 𝑚, 𝑞 = 1, 𝑛, are called
the coefficients of the dipole form associated with a polarization [21].

Integrating by parts in the right hand sides of the identities

0 =

∫︁
{𝑟<𝑅}∖𝜔

(𝑥𝑚 − 𝑧𝑚(𝑥))∆(𝑥𝑗 − 𝑧𝑗(𝑥)) d𝑥, 𝑗,𝑚 = 1, 𝑛,

0 =

∫︁
{𝑟<𝑅}∖𝜔

(𝑥𝑚 − 𝑧𝑚(𝑥))∆(1 − 𝑧0(𝑥)) d𝑥, 𝑚 = 1, 𝑛,

as 𝑅 → +∞, it is easy to show that

𝑐𝑚,𝑗 = 𝑐𝑗,𝑚, 𝑗,𝑚 = 1, 𝑛, (𝑛− 2)𝑐𝑚,0 = 𝑐0,𝑚, 𝑚 = 1, 𝑛. (2.6)

By these identities, the 𝑛× 𝑛-matrices 𝐶(𝜔) and ̃︀𝐶(𝜔) with the entries 𝑐𝑚,𝑞 and

̃︀𝑐𝑚,𝑞 = 𝑐𝑚,𝑞 −
𝑐𝑚,0𝑐0,𝑞
𝑐(𝜔)

, 𝑚, 𝑞 = 1, 𝑛,

are symmetric.

Theorem 2.2. Let 𝜆0 be a simple eigenvalue of Steklov problem (2.1), 𝜓0 be the associated
normalized in 𝐿2(Σ𝑎) eigenfunction.

Then the eigenvalue 𝜆𝜀 of perturbed Steklov problem (2.2) converging to 𝜆0 has the asymptotic
expansion

𝜆𝜀 = 𝜆0 + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖𝜆𝑛−2+𝑖, (2.7)

where

𝜆𝑛−2 = 𝑐(𝜔) |𝑆𝑛| (𝑛− 2)𝜓2
0(0). (2.8)

If 𝜓0(0) = 0, then

𝜆𝑛−2 =0, (2.9)

𝜆𝑛−1 =0, (2.10)

𝜆𝑛 = |𝑆𝑛| ∇𝜓0(0)𝐶(𝜔)∇𝜓0(0). (2.11)

Remark 2.1. It is obvious that if 𝜔 is the unit ball centered at the origin, then

𝑧0(𝑥) = 𝑟−𝑛+2, 𝑧𝑚(𝑥) = 𝑥𝑚𝑟
−𝑛, 𝑚 = 1, 𝑛.

By shifting and dilating the coordinate system, one can show easily that in the case when 𝜔 is

a ball of radius 𝑅 centered at the point (0, . . . , 0, 𝑡), then matrices 𝐶(𝜔) and ̃︀𝐶(𝜔) are diagonal
and

𝑐0,0 =𝑐(𝜔) = 𝑅𝑛−2,

𝑐𝑛,𝑛 =𝑅𝑛−2(𝑅2 + (𝑛− 2)𝑡2), 𝑐𝑗,𝑗 = ̃︀𝑐𝑗,𝑗 = ̃︀𝑐𝑛,𝑛 = 𝑅𝑛, 𝑗 = 1, 𝑛− 1.
(2.12)
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Therefore, in this the identities (2.8) and (2.11) become

𝜆𝑛−2 =𝑅𝑛−2 |𝑆𝑛| (𝑛− 2)𝜓2
0(0),

𝜆𝑛 =𝑅𝑛−2 |𝑆𝑛|

(︃
𝑅2|∇𝜓0(0)|2 + (𝑛− 2)𝑡2

⃒⃒⃒⃒
𝜕𝜓0

𝜕𝑥𝑛
(0)

⃒⃒⃒⃒2)︃
,

(2.13)

respectively.

Remark 2.2. If 𝜁𝑘 is a simple eigenvalues of boundary value problem (2.4), then by (2.3)
identities (2.8) and (2.13) become

𝜆𝑛−2 =𝑐(𝜔) |𝑆𝑛| (𝑛− 2)e2𝑎
√
𝜁𝑘𝜑2

𝑘(0),

𝜆𝑛−2 =𝑅𝑛−2 |𝑆𝑛| (𝑛− 2)e2𝑎
√
𝜁𝑘𝜑2

𝑘(0),

𝜆𝑛 =𝑅𝑛−2 |𝑆𝑛| e2𝑎
√
𝜁𝑘
(︀
𝑅2|∇′𝜑𝑘(0)|2 +

(︀
𝑅2 + (𝑛− 2)𝑡2

)︀
𝜁𝑘𝜑

2
𝑘(0)

)︀
,

respectively, where ∇′𝜑 stands for the vector with the components

𝜕𝜑

𝜕𝑥𝑗
, 𝑗 = 1, 𝑛− 1.

In the work we also construct the complete asymptotic expansion for the eigenfunction 𝜓𝜀 of
Steklov problem (2.2) associated with the eigenvalue 𝜆𝜀. However, by Theorem 2.1, the limiting
value for 𝜓𝜀 is known and it is unique up to the sign and is equal to the eigenfunction 𝜓0 of the
limiting Steklov problem (2.1).

Remark 2.3. In the work we consider both the case of simple and multiple eigenvalue. Since
all the arguments for the double eigenvalue are easily adapted for the case of a 𝑛-multiple
eigenvalue, for the simplicity of the presentation we construct the asymptotic expansions for a
double eigenvalue.

If 𝜆0 is a double eigenvalue of problem (2.1), it follows from Theorem 2.1 that there are two
options for the eigenvalues of perturbed problem (2.2) converging to 𝜆0. These are either two
simple eigenvalues or one double eigenvalue, or for different values of 𝜀 one of these options

hold true. And even if two simple eigenvalues 𝜆
(1)
𝜀 and 𝜆

(2)
𝜀 converge to 𝜆0, it does not imply

that the associated normalized in 𝐿2(Σ𝑎) eigenfunctions 𝜓
(1)
𝜀 and 𝜓

(2)
𝜀 have limits. Theorem 2.1

just ensures that from each sequence 𝜀𝑘 → 0 one can choose a subsequence 𝜀𝑘𝑚 → 0 such that

the convergence 𝜓
(𝑗)
𝜀 → 𝜓

(𝑗)
0 holds true in 𝐿2(Σ𝑎), where 𝜓

(𝑗)
0 are orthonormalized in 𝐿2(Σ𝑎)

eigenfunctions of problem (2.1) associated with 𝜆0. However, generally speaking, these limits
can vary subject to the choice of sequence 𝜀𝑘𝑚 → 0.

In the work we consider the most general case:

|𝜓(1)
0 (0)| + |𝜓(2)

0 (0)| ≠ 0. (2.14)

Then it is obvious that these eigenvalues can be orthonormalized in 𝐿2(Σ𝑎) such that

𝜓
(1)
0 (0) ̸= 0, 𝜓

(2)
0 (0) = 0. (2.15)

We shall prove the following

Theorem 2.3. Let 𝜆0 be a double eigenvalue of problem (2.1), 𝜓
(1)
0 and 𝜓

(2)
0 be the associated

eigenfunctions satisfying condition (2.14) and orthonormalized in 𝐿2(Σ𝑎) in accordance with
(2.15).

Then there exist two simple eigenvalues 𝜆
(1)
𝜀 and 𝜆

(2)
𝜀 of perturbed Steklov problem (2.2)

converging to 𝜆0. These eigenvalue have the asymptotic expansions

𝜆(1)𝜀 =𝜆0 + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖𝜆
(1)
𝑛−2+𝑖, (2.16)
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𝜆(2)𝜀 =𝜆0 + 𝜀𝑛
∞∑︁
𝑖=0

𝜀𝑖𝜆
(2)
𝑛+𝑖, (2.17)

where

𝜆
(1)
𝑛−2 = 𝑐(𝜔) |𝑆𝑛| (𝑛− 2)

(︁
𝜓

(1)
0 (0)

)︁2
> 0, (2.18)

𝜆(2)𝑛 = |𝑆𝑛| ∇𝜓(2)
0 (0) ̃︀𝐶(𝜔)∇𝜓(2)

0 (0). (2.19)

The associated eigenfunctions 𝜓
(𝑗)
𝜀 converge to 𝜓

(𝑗)
0 in 𝐿2(Σ𝑎).

Remark 2.4. In particular, it follows from the above theorem that if condition (2.14) holds
true, then under the considered perturbation, a double eigenvalue 𝜆0 splits into two simple
eigenvalues and the associated eigenfunction converge to the eigenfunctions of Steklov problem
(2.1) orthonormalized in 𝐿2(Σ𝑎) in accordance with (2.15).

Remark 2.5. If 𝜔 is a ball of radius 𝑅 centered at the point (0, . . . , 0, 𝑡), then by (2.12),
identities (2.18) and (2.19) become

𝜆
(1)
𝑛−2 = 𝑅𝑛−2 |𝑆𝑛| (𝑛− 2)

(︁
𝜓

(1)
0 (0)

)︁2
,

𝜆(2)𝑛 = 𝑅𝑛 |𝑆𝑛|
⃒⃒⃒
∇𝜓(2)

0 (0)
⃒⃒⃒2
> 0,

(2.20)

respectively.

Remark 2.6. If 𝜁𝑘 = 𝜁𝑘+1 is a double eigenvalue of boundary value problem (2.4) and the
associated eigenfunctions are orthonormalized in 𝐿2(Σ) such that 𝜑𝑘(0

′) = 0, 𝜑𝑘+1(0
′) ̸= 0, then

by (2.3) identities (2.18) and (2.20) become

𝜆
(1)
𝑛−2 =𝑐(𝜔) |𝑆𝑛| (𝑛− 2)e2𝑎

√
𝜁𝑘𝜑2

𝑘(0
′),

𝜆
(1)
𝑛−2 =𝑅𝑛−2 |𝑆𝑛| (𝑛− 2)e2𝑎

√
𝜁𝑘𝜑2

𝑘(0
′),

𝜆(2)𝑛 =𝑅𝑛 |𝑆𝑛| e2𝑎
√
𝜁𝑘
(︀
|∇′𝜑𝑘+1(0

′)|2 + 𝜁𝑘𝜑
2
𝑘+1(0

′)
)︀
,

respectively.

3. Proof of Theorem 2.1

We introduce the space 𝐻1(Π) as the completion by the norm

‖𝑤‖𝐻1(Π) =

⎛⎝∫︁
Π

|∇𝑤|2 𝑑𝑥+

∫︁
Σ𝑎

𝑤2𝑑𝑥′

⎞⎠1/2

(3.1)

of the functions in 𝐶∞(Π) possessing a finite Dirichlet integral. The subset of functions in
𝐻1(Π) vanishing on 𝜕Π ∖Σ𝑎 is denoted by 𝐻1(Π; 𝜕Π ∖Σ𝑎). The space 𝐻1(Π𝜀) is defined as the
completion by norm

‖𝑤‖𝐻1(Π𝜀) =

⎛⎝∫︁
Π𝜀

|∇𝑤|2 𝑑𝑥+

∫︁
Σ𝑎

𝑤2𝑑𝑥′

⎞⎠1/2

(3.2)

of the functions in 𝐶∞(Π𝜀) possessing a finite Dirichlet integral. The subset of the functions in
𝐻1(Π𝜀) vanishing on 𝜕𝜔𝜀 (on 𝜕𝜔𝜀∪𝜕Π∖Σ𝑎) is denoted by𝐻1(Π𝜀; 𝜕𝜔𝜀) (by𝐻1(Π𝜀; 𝜕𝜔𝜀∪𝜕Π∖Σ𝑎)).

The boundary value problems

− ∆𝑈0 = 0, 𝑥 ∈ Π, l𝑈0 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,
𝜕𝑈0

𝜕𝜈
+ 𝑈0 = 𝑓, 𝑥 ∈ Σ𝑎, (3.3)
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and
−∆𝑈𝜀 = 0, 𝑥 ∈ Π𝜀, l𝑈𝜀 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝑈𝜀
𝜕𝜈

+ 𝑈𝜀 = 𝑓𝜀, 𝑥 ∈ Σ𝑎, 𝑈𝜀 = 0, 𝑥 ∈ 𝜕𝜔𝜀,
(3.4)

will be treated in the generalized (weak) sense. That is, let 𝑓, 𝑓𝜀 ∈ 𝐿2(Σ𝑎). Then as ℎ = 0 (as
𝐻 = 0), an element of 𝐻1(Π) (an element of 𝐻1(Π; 𝜕Π ∖Σ𝑎)) is called a generalized solution to
boundary value problem (3.3) if for each 𝑣 ∈ 𝐻1(Π) (for each 𝑣 ∈ 𝐻1(Π; 𝜕Π∖Σ𝑎)) the following
identity ∫︁

Π

∇𝑈0∇𝑣𝑑𝑥+

∫︁
Σ𝑎

𝑈0𝑣𝑑𝑥
′ =

∫︁
Σ𝑎

𝑓𝑣𝑑𝑥′ (3.5)

holds true. As ℎ𝐻 ̸= 0, an element of 𝐻1(Π) is called a generalized solution to the boundary
value problem (3.3) if for each 𝑣 ∈ 𝐻1(Π) the identity∫︁

Π

∇𝑈0∇𝑣𝑑𝑥+𝐻−1ℎ

∫︁
𝜕Π∖Σ𝑎

𝑈0𝑣𝑑𝑠+

∫︁
Σ𝑎

𝑈0𝑣𝑑𝑥
′ =

∫︁
Σ𝑎

𝑓𝑣𝑑𝑥′ (3.6)

holds true. In the same way, as ℎ = 0 (as 𝐻 = 0), an element 𝑈𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) (an element
𝑈𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀 ∪ 𝜕Π ∖ Σ𝑎)) is called a generalized solution to boundary value problem (3.4)
if for each 𝑣 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) (for each 𝑣 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀 ∪ 𝜕Π ∖ Σ𝑎)) the identity∫︁

Π𝜀

∇𝑈𝜀∇𝑣𝑑𝑥+

∫︁
Σ𝑎

𝑈𝜀𝑣𝑑𝑥
′ =

∫︁
Σ𝑎

𝑓𝜀𝑣𝑑𝑥
′ (3.7)

holds. As ℎ𝐻 ̸= 0, an element 𝑈𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) is called a generalized solution to boundary
value problem (3.4) if for each 𝑣 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) the identity∫︁

Π𝜀

∇𝑈𝜀∇𝑣𝑑𝑥+𝐻−1ℎ

∫︁
𝜕Π∖Σ𝑎

𝑈𝜀𝑣𝑑𝑠+

∫︁
Σ𝑎

𝑈𝜀𝑣𝑑𝑥
′ =

∫︁
Σ𝑎

𝑓𝜀𝑣𝑑𝑥
′ (3.8)

holds true.
It is obvious that if we extend a function in 𝐻1(Π𝜀; 𝜕𝜔𝜀) (in 𝐻1(Π𝜀; 𝜕𝜔𝜀∪𝜕Π∖Σ𝑎)) by zero in

𝜔𝜀, it belongs to 𝐻1(Π) (belongs 𝐻1(Π; 𝜕Π ∖ Σ𝑎)). For these extensions, we keep their original
notations.

Substituting 𝑣 = 𝑈0 and 𝑣 = 𝑈𝜀 into (3.5), (3.6) and into (3.7), (3.8), we obtain the apriori
estimates

‖𝑈0‖𝐻1(Π) 6 ‖𝑓‖𝐿2(Σ), ‖𝑈𝜀‖𝐻1(Π) 6 ‖𝑓𝜀‖𝐿2(Σ). (3.9)

It implies the uniqueness of solutions to boundary value problems (3.3) and (3.4).
Separating variables, we show easily that the sought solution to boundary value problem

(3.3) can be represented as

𝑈0(𝑥) =
∞∑︁
𝑗=1

(𝑓, 𝜑𝑗)0
𝜁𝑗 + 1

𝜑𝑗(𝑥
′)e−

√
𝜁𝑗(𝑥𝑛−𝑎), (3.10)

where (𝑢, 𝑣)0 is the scalar product in 𝐿2(Σ).
Let us prove the solvability of boundary value problem (3.4). We denote by (𝑢, 𝑣)1 the scalar

product in 𝐻1(Π𝜀). Then integral identity (3.7) is written as

(𝑈𝜀, 𝑣)1 =

∫︁
Σ𝑎

𝑓𝜀𝑣𝑑𝑥
′. (3.11)

For each fixed 𝑓𝜀 ∈ 𝐿2(Σ), the right hand side is a linear bounded functional on the Hilbert
space 𝐻1(Π𝜀; 𝜕𝜔𝜀) (on the Hilbert space 𝐻1(Π𝜀; 𝜕𝜔𝜀 ∪ 𝜕Π ∖ Σ𝑎)). This is by the Riesz theorem
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there exists the unique element 𝐹𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) (element of 𝐹𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀∪𝜕Π∖Σ𝑎)) such
that ∫︁

Σ𝑎

𝑓𝜀𝑣𝑑𝑥
′ = (𝐹𝜀, 𝑣)1

for each 𝑣 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) (each 𝑣 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀 ∪ 𝜕Π ∖ Σ𝑎)). By (3.11) it follows that 𝑈𝜀 = 𝐹𝜀,
that is, boundary value problem (3.4) is uniquely solvable as ℎ = 0 and 𝐻 = 0. In the same
way, by using integral identity (3.8) we prove the unique solvability of boundary value problem
(3.4) as ℎ𝐻 ̸= 0.

We denote by 𝑇0 : 𝐿2(Σ𝑎) → 𝐿2(Σ𝑎) the linear operator mapping a function 𝑓 into the
restriction of solution 𝑈0 of boundary value problem (3.3) on Σ𝑎, that is, (see (3.10))

𝑇0𝑓 :=
∞∑︁
𝑗=1

(𝑓, 𝜑𝑗)0
𝜁𝑗 + 1

𝜑𝑗(𝑥
′). (3.12)

And by 𝑇𝜀 : 𝐿2(Σ𝑎) → 𝐿2(Σ𝑎) we denote the linear operator mapping a function 𝑓𝜀 into the
restriction of solution 𝑈𝜀 of boundary value problem (3.4) on Σ𝑎.

Since 𝑓𝑘 ⇀ 𝑓 in 𝐿2(Σ𝑎) as 𝑘 → ∞, and the operator 𝑇0 is compact by the compactness of
the embedding of 𝐻1(Π) in 𝐿2(Σ𝑎), we have the convergence

𝑇0𝑓𝑘 → 𝑇0𝑓 in 𝐿2(Σ𝑎) as 𝑘 → ∞. (3.13)

Lemma 3.1. Let 𝑣 be an arbitrary function in 𝐶∞(Π) (in 𝐶∞(Π) vanishing on 𝜕Π ∖ Σ𝑎)
possessing a finite Dirichlet integral. Then there exist functions 𝑣𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) (functions
𝑣𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀 ∪ 𝜕Π ∖ Σ𝑎)) such that ‖𝑣 − 𝑣𝜀‖𝐻1(Π) → 0 as 𝜀→ 0.

Proof. Without loss of generality, we assume that the domain 𝜔𝜀 is located in the ball of radius
𝜀 centered at the origin. Let ̃︀𝜒(𝑡) be an infinitely differentiable cut-off function vanishing as

𝑡 6 1 and being one as 𝑡 > 2. It is easy to check that the functions 𝑣𝜀(𝑥) = ̃︀𝜒(︁ |𝑥|
𝜀

)︁
𝑣(𝑥) satisfy

the statement of the lemma.

For 𝑅 > 0 we denote Π(𝑅) = Σ × (𝑎,𝑅),

‖𝑤‖𝐻1(Π(𝑅)) =

⎛⎜⎝ ∫︁
Π(𝑅)

|∇𝑤|2 𝑑𝑥+

∫︁
Σ𝑎

𝑤2𝑑𝑥′

⎞⎟⎠
1/2

.

Since, obviously, ‖𝑤‖𝐻1(Π(𝑅)) 6 ‖𝑤‖𝐻1(Π), and ‖𝑤‖𝑊 1
2 (Π(𝑅)) 6 𝐶(𝑅)‖𝑤‖𝐻1(Π(𝑅)) by [22, Ch. III,

Sect. 5, Thm. 5], then
‖𝑤‖𝑊 1

2 (Π(𝑅)) 6 𝐶(𝑅)‖𝑤‖𝐻1(Π). (3.14)

Lemma 3.2. If
𝑓𝜀 ⇀ 𝑓 in 𝐿2(Σ𝑎) as 𝜀→ 0,

for the solutions to boundary value problems (3.3) and (3.4) the convergence

𝑇𝜀𝑓𝜀 → 𝑇0𝑓 in 𝐿2(Σ𝑎) as 𝜀→ 0, (3.15)

holds true.

Proof. By the weak compactness of a bounded set in a Hilbert space (see, for instance, [23, Ch.
2, Sect. 3]), estimates (3.9) and (3.14) and the compact embedding of 𝑊 1

2 (Π(𝑅)) into 𝐿2(Σ𝑎),
from each sequence 𝜀𝑘 →

𝑘→∞
0 we can choose a subsequence (which, without loss of generality,

is assumed to coincide with sequence {𝜀𝑘}) such that on this sequence

𝑈𝜀 ⇀ 𝑈* in 𝐻1(Π) as 𝜀 = 𝜀𝑘 → 0,

𝑈𝜀 → 𝑈* in 𝐿2(Σ𝑎) as 𝜀→ 0,
(3.16)
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and 𝑈* ∈ 𝐻1(Π) if 𝑈𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀) and 𝑈* ∈ 𝐻1(Π; 𝜕Π ∖ Σ𝑎) if 𝑈𝜀 ∈ 𝐻1(Π𝜀; 𝜕𝜔𝜀 ∪ 𝜕Π ∖ Σ𝑎).
It remains to show that 𝑈* = 𝑈0. Then the arbitrary choice of the original sequence 𝜀𝑘 →

𝑘→∞
0

will imply convergence (3.15). Let 𝑣 be an arbitrary function in 𝐶∞(Π) (in 𝐶∞(Π) vanishing
on 𝜕Π∖Σ𝑎) possessing a finite Dirichlet integral, the functions 𝑣𝜀 satisfy Lemma 3.1. Passing to
the limit as 𝜀→ 0 in (3.7) and (3.8) for 𝑣 = 𝑣𝜀, by (3.16) and by Lemma 3.1, by the definition
of the space 𝐻1(Π) and 𝐻1(Π; 𝜕Π∖Σ𝑎) we obtain that the function 𝑈* is a generalized solution
to boundary value problem (3.3). And since the solution to boundary value problem (3.3) is
unique, we have 𝑈* = 𝑈0.

Lemma 3.3. As 𝜀 → 0, the convergence 𝑇𝜀 → 𝑇0 holds true in the sense of the operator
norm.

Proof. In order to prove the lemma, it is sufficient to prove the uniform convergence

‖𝑇𝜀𝑓 − 𝑇0𝑓‖𝐿2(Σ𝑎) ⇒
𝜀→0

0 (3.17)

for functions 𝑓 normalized in 𝐿2(Σ𝑎).
We assume the opposite. Then there exists a number 𝛿 > 0, a sequence 𝜀𝑘 → 0 as 𝑘 → ∞

and a sequence of normalized in 𝐿2(Σ𝑎) functions 𝑓𝑘 such that

‖𝑇𝜀𝑘𝑓𝑘 − 𝑇0𝑓𝑘‖𝐿2(Σ𝑎) > 𝛿. (3.18)

Since a bounded set is weakly compact, without loss of generality we can assume that

𝑓𝑘 ⇀ 𝑓

in 𝐿2(Σ𝑎). By (3.18) and the triangle inequality we get the inequality

‖𝑇𝜀𝑘𝑓𝑘 − 𝑇0𝑓‖𝐿2(Σ𝑎) + ‖𝑇0𝑓 − 𝑇0𝑓𝑘‖𝐿2(Σ𝑎) > 𝛿, (3.19)

which contradicts (3.13) and Lemma 3.2.

Since boundary value problems (3.3) and (3.4) are uniquely solvable, there exist the inverse
operators 𝑆0 = 𝑇−1

0 and 𝑆𝜀 = 𝑇−1
𝜀 defined in 𝐿2(Σ). This lemma and [23, Ch. 4, Sect. 2] imply

the following statement.

Lemma 3.4. As 𝜀 → 0, the operator 𝑆𝜀 converges to the operator 𝑆0 in the generalized
sense.

Proof of Theorem 2.1. It follows from the definition of the operators 𝑆0 and 𝑆𝜀 that the eigen-
values Λ0 and Λ𝜀 of these operators and the eigenvalues 𝜆0 and 𝜆𝜀 of Steklov problems (2.1) and
(2.2) are related by the identities 𝜆0 = Λ0− 1 and 𝜆𝜀 = Λ𝜀− 1, while the associated normalized
in 𝐿2(Σ𝑎) eigenfunctions coincide. By Lemma 3.4 and [23, Ch. 4, Thm. 3.16] this implies the
statement of the theorem.

4. Auxiliary statements

We recall that 𝑋
(𝑞)
𝑘 (𝑥), 𝑌

(𝑞)
𝑘 (𝑥) and 𝑍

(𝑞)
𝑘 (𝑥) are homogeneous harmonic polynomials of degree

𝑘 with an index 𝑞 indicating the function, for which they are written.

Lemma 4.1. For each harmonic polynomial ̃︀𝑉 there exists a solution 𝑉 ∈ 𝐶∞(R𝑛∖𝜔) to the
boundary value problem

∆𝑉 = 0, 𝑥 ∈ R𝑛 ∖ 𝜔, 𝑉 = 0, 𝑥 ∈ 𝜕𝜔, (4.1)

having a differentiable asymptotic expansion

𝑉 (𝑥) =̃︀𝑉 (𝑥) +
∞∑︁
𝑖=0

𝑍𝑖(𝑥)𝑟−2𝑖−𝑛+2, 𝑟 → ∞. (4.2)
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Proof. It follows from [18, Ch. 3, Sect. 1] that the boundary value problem

∆𝑣 = 0, 𝑥 ∈ R𝑛 ∖ 𝜔, 𝑣 = −̃︀𝑉 , 𝑥 ∈ 𝜕𝜔,

is solvable in the class of decaying as 𝑟 → ∞ function and the differentiable asymptotic expan-
sion of the solution is of the form

𝑣(𝑥) =
∞∑︁
𝑖=0

𝑍𝑖(𝑥)𝑟−2𝑖−𝑛+2, 𝑟 → ∞.

Therefore, Steklov problem (4.1) has the solution 𝑉 = ̃︀𝑉 + 𝑣 with asymptotics (4.2) as 𝑟 →
∞.

We denote by 𝒜 the subset of functions 𝑢(𝑥) in the class 𝐶∞(Π∖{0}) such that 𝑢(𝑥)̃︀𝜒(𝑟𝑅)
is an element of 𝐻1(Π) for each sufficiently large 𝑅 > 0. We recall that ̃︀𝜒(𝑡) is an infinitely
differentiable cut-off function vanishing as 𝑡 6 1 and being equal to one as 𝑡 > 2.

Lemma 4.2. Let 𝜆0 be a simple eigenvalue of Steklov problem (2.1), 𝑌𝑗(𝑥) be an arbitrary
harmonic polynomial, 𝐹 ∈ 𝐶∞ (Σ𝑎). Then there exists a constant 𝜇, for which the Steklov
problem

−∆𝐸 =0, 𝑥 ∈ Π ∖ {0}, l𝐸 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝐸

𝜕𝜈
=𝜆0𝐸 + 𝐹 + 𝜇𝜓0, 𝑥 ∈ Σ𝑎,

(4.3)

is solvable and a solution is orthogonal to the function 𝜓0 in 𝐿2(Σ𝑎), and 𝐸 ∈ 𝒜 and has the
following differentiable asymptotic expansion

𝐸(𝑥) = 𝑌𝑗(𝑥)𝑟−2𝑗−𝑛+2 +
∞∑︁
𝑘=0

𝑋𝑘(𝑥), 𝑥→ 0. (4.4)

Proof. We seek 𝐸(𝑥) as

𝐸(𝑥) = (1 − ̃︀𝜒(𝑟𝑅))𝑌𝑗(𝑥)𝑟−2𝑗−𝑛+2 + ̃︀𝐸(𝑥), (4.5)

where 𝑅 is a sufficiently large positive number. Substituting (4.5) into (4.3), we obtain the

problem for ̃︀𝐸(𝑥):

−∆ ̃︀𝐸 = ̃︀𝐹 , 𝑥 ∈ Π ∖ {0}, l ̃︀𝐸 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕 ̃︀𝐸
𝜕𝜈

=𝜆0 ̃︀𝐸 + 𝐹 + 𝜇𝜓0, 𝑥 ∈ Σ𝑎,
(4.6)

where ̃︀𝐹 ∈ 𝐶∞
0 (Π). Separating variables, it is easy to show the existence of a number 𝜇, for

which a solution ̃︀𝐸(𝑥) to problem (4.6) exists, belongs to 𝐶∞(Π) ∩𝐻1(Π) and is defined up to
a term 𝛼𝜓0(𝑥) with an arbitrary 𝛼. Then for an appropriate choice of 𝛼 function (4.5) satisfies
the statement of the lemma.

It follows from the definition of spaces 𝐻1(Π) and 𝒜 that for 𝜓0(𝑥) and each function 𝐸(𝑥)
solving problem (4.3), the identities⃒⃒⃒⃒

𝜓0(𝑥)
𝜕𝐸

𝜕𝑥𝑛
(𝑥)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝐸(𝑥)

𝜕𝜓0

𝜕𝑥𝑛
(𝑥)

⃒⃒⃒⃒
−→
𝑥𝑛→∞

0, (4.7)

hold true.

Corollary 1. There exist functions 𝐸𝑞 ∈ 𝒜, 𝑞 = 0, 𝑛, as 𝑟 → 0, having the differentiable
asymptotic expansions:

𝐸0 = 𝑟−𝑛+2 +
∞∑︁
𝑘=0

𝑋𝑘(𝑥), (4.8)
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𝐸𝑚 =𝑥𝑚𝑟
−𝑛 +

∞∑︁
𝑘=0

𝑋𝑘(𝑥), 𝑚 = 1, 𝑛, (4.9)

and being the solutions to the boundary value problems

−∆𝐸𝑞 =0, 𝑥 ∈ Π ∖ {0}, l𝐸𝑞 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝐸𝑞
𝜕𝜈

=𝜆0𝐸𝑞 + 𝜇𝑞𝜓0, 𝑥 ∈ Σ𝑎,
(4.10)

as

𝜇0 = |𝑆𝑛|(𝑛− 2)𝜓0(0), (4.11)

𝜇𝑚 = |𝑆𝑛|
𝜕𝜓0

𝜕𝑥𝑚
(0), 𝑚 = 1, 𝑛. (4.12)

Proof. In view of Lemma 4.2 it is sufficient to check identities (4.11) and (4.12). Let us prove
(4.11). Let 𝐵𝛿 be the ball of radius 𝛿 ≪ 1 centered at the origin. Then integrating twice by
parts, we obtain

0 =

∫︁
Π(𝛿−1)∖𝐵𝛿

∆𝐸0𝜓0𝑑𝑥 =

=

∫︁
𝑥𝑛=𝛿−1

(︂
𝜕𝐸0

𝜕𝑥𝑛
𝜓0 −

𝜕𝜓0

𝜕𝑥𝑛
𝐸0

)︂
𝑑𝑥′ −

∫︁
𝑟=𝛿

(︂
𝜕𝐸0

𝜕𝑟
𝜓0 −

𝜕𝜓0

𝜕𝑟
𝐸0

)︂
𝑑𝑠+ 𝜇0.

(4.13)

The Taylor series of the function 𝜓0(𝑥) at zero is

𝜓0(𝑥) =
∞∑︁
𝑘=0

𝑋
(0)
𝑘 (𝑥), 𝑟 → 0,

𝑋
(0)
0 (𝑥) =𝜓0(0), 𝑋

(0)
1 (𝑥) =

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑥𝑚.

(4.14)

Substituting (4.7), (4.8) and (4.14) into (4.13) and passing to the limit as 𝛿 → 0, we obtain
identity (4.11). Identity (4.12) can be proved in the same way.

Similar to Lemma 4.2 we prove

Lemma 4.3. Let 𝜆0 be a double eigenvalue of Steklov problem (2.1), 𝜓
(1)
0 and 𝜓

(2)
0 be the as-

sociated orthonormalized in 𝐿2(Σ𝑎) eigenfunctions, 𝑌𝑗(𝑥) be an arbitrary harmonic polynomial,
𝐹 ∈ 𝐶∞ (︀Σ𝑎

)︀
. Then there exist constants 𝜇(𝑖), for which the Steklov problem

−∆𝐸 =0, 𝑥 ∈ Π ∖ {0}, l𝐸 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝐸

𝜕𝜈
=𝜆0𝐸 + 𝐹 + 𝜇(1)𝜓

(1)
0 + 𝜇(2)𝜓

(2)
0 , 𝑥 ∈ Σ𝑎,

is solvable and the solution is orthogonal to the functions 𝜓
(𝑖)
0 in 𝐿2(Σ𝑎) and 𝐸 ∈ 𝒜 and it has

differentiable asymptotic expansion (4.4).

Similar to Corollary 1 but using Lemma 4.3 instead of Lemma 4.2 one can prove

Corollary 2. Let 𝜆0 be a double eigenvalue of Steklov problem (2.1), 𝜓
(1)
0 and 𝜓

(2)
0 be the

associated eigenfunctions orthonormalized in 𝐿2(Σ𝑎) and satisfying (2.15). Then there exist
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functions 𝐸𝑞 ∈ 𝒜, 𝑞 = 0, 𝑛, having differentiable asymptotic expansions (4.8), (4.9) as 𝑟 → 0
and solving the boundary value problems

−∆𝐸𝑞 =0, 𝑥 ∈ Π ∖ {0}, l𝐸𝑞 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝐸𝑞
𝜕𝜈

=𝜆0𝐸𝑞 + 𝜇(1)
𝑞 𝜓

(1)
0 + 𝜇(2)

𝑞 𝜓
(2)
0 , 𝑥 ∈ Σ𝑎,

(4.15)

as

𝜇
(1)
0 =|𝑆𝑛|(𝑛− 2)𝜓

(1)
0 (0), 𝜇

(2)
0 = 0,

𝜇(𝑖)
𝑚 =|𝑆𝑛|

𝜕𝜓
(𝑖)
0

𝜕𝑥𝑚
(0), 𝑚 = 1, 𝑛, 𝑖 = 1, 2. (4.16)

In its true, Corollary 2 and Lemma 4.3 imply the following two statements.

Corollary 3. Let 𝜆0 be a double eigenvalue of Steklov problem (2.1), 𝜓
(1)
0 and 𝜓

(2)
0 be the

associated eigenfunctions orthonormalized in 𝐿2(Σ𝑎) and satisfying (2.15). Then the functioñ︀𝐸𝑚(𝑥) = 𝐸𝑚(𝑥) + 𝛿𝑚𝐸1(𝑥) ∈ 𝒜, 𝑚 = 1, 𝑛,

has the differentiable asymptotic expansion

̃︀𝐸𝑚(𝑥) =𝑥𝑚𝑟
−𝑛 + 𝛿𝑚𝑟

−𝑛 +
∞∑︁
𝑘=0

𝑋𝑘(𝑥), 𝛿𝑚 =

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)

(𝑛− 2)𝜓
(1)
0 (0)

, 𝑚 = 1, 𝑛,

as 𝑟 → 0 and solves the boundary value problem

−∆ ̃︀𝐸𝑚 =0, 𝑥 ∈ Π ∖ {0}, l ̃︀𝐸𝑚 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕 ̃︀𝐸𝑚
𝜕𝜈

=𝜆0 ̃︀𝐸𝑚 + 𝜇(2)
𝑚 𝜓

(2)
0 , 𝑥 ∈ Σ𝑎,

for 𝜇
(2)
𝑚 determined by identity (4.16).

Lemma 4.4. Let 𝜆0 be a double eigenvalue of Steklov problem (2.1), 𝜓
(1)
0 and 𝜓

(2)
0 be the

associated eigenfunction orthonormalized in 𝐿2(Σ𝑎), 𝑌𝑗(𝑥) be an arbitrary harmonic polynomial,

𝑗 > 1, 𝐹 ∈ 𝐶∞ (︀Σ𝑎

)︀
. Then there exists a function ̃︀𝐸 ∈ 𝒜 orthogonal to the functions 𝜓

(𝑖)
0 in

𝐿2(Σ𝑎) solving Steklov problem

−∆ ̃︀𝐸 =0, 𝑥 ∈ Π ∖ {0}, l ̃︀𝐸 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕 ̃︀𝐸
𝜕𝜈

=𝜆0 ̃︀𝐸 + 𝐹 + 𝜇𝜓
(2)
0 , 𝑥 ∈ Σ𝑎,

and having differentiable asymptotic expansions:

̃︀𝐸𝑚(𝑥) =𝑥𝑚𝑟
−𝑛 + 𝛿𝑟−𝑛 +

∞∑︁
𝑘=0

𝑋𝑘(𝑥), 𝑚 = 1, 𝑛, 𝑟 → 0,

for some 𝛿 and 𝜇.

5. Proof of Theorem 2.2

Outside a neighbourhood of the cavity, it is natural to seek an approximation 𝑈(𝑥, 𝜀) (external
expansion) for the function 𝜓𝜀 as 𝑈(𝑥, 𝜀) ≈ 𝜓0(𝑥). In the vicinity of 𝜔𝜀, it is natural to seek
an approximation 𝑉 (𝑥, 𝜀) (internal expansion) for the function 𝜓𝜀 as an expansion in functions
depending on the variable 𝜉 = 𝑥𝜀−1.
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Denote 𝜌 = |𝜉|. Rewriting the right hand side in (4.14) in terms of the variable 𝜉, we have

𝑈(𝑥, 𝜀) ≈ 𝜓0(𝑥) = 𝜓0(0) + 𝜀
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚 +

∞∑︁
𝑘=2

𝜀𝑘𝑋
(0)
𝑘 (𝜉), 𝜌𝜀 = 𝑟 → 0.

Thus, following the method of matching asymptotic expansions [18], we seek the internal ex-
pansion as

𝑉 (𝜉, 𝜀) = 𝑣0(𝜉) + 𝜀𝑣1(𝜉) +
∞∑︁
𝑘=2

𝜀𝑘𝑣𝑘(𝜉), (5.1)

where

𝑣0(𝜉) ∼𝑋(0)
0 (𝜉) ≡ 𝜓0(0), 𝑣1(𝜉) ∼ 𝑋

(0)
1 (𝜉) =

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚, 𝜌→ ∞,

𝑣𝑘(𝜉) ∼𝑋(0)
𝑘 (𝜉), 𝑘 > 2, 𝜌→ ∞.

(5.2)

Substituting (5.1) into (2.2), passing to the variable 𝜉 and equating the coefficients at the
like powers of 𝜀, we obtain the following boundary value problems for 𝑣𝑘

∆𝜉𝑣𝑘 = 0 𝜉 ∈ R𝑛 ∖ 𝜔, 𝑣𝑘 = 0 𝜉 ∈ 𝜕𝜔. (5.3)

Remark 5.1. Here ∆𝜉 stands for the Laplace operator in the variable 𝜉. Since below in the
equations for the coefficients of the internal expansions the Laplace operator is used only in
such sense, for the sake of simplicity we shall omit the subscript 𝜉 in ∆𝜉.

The function

𝑣0(𝜉) = 𝜓0(0)(1 − 𝑧0(𝜉)) (5.4)

is a solution to boundary value problem (5.3) having the asymptotic expansion

𝑣0(𝜉) =𝑋
(0)
0 +

∞∑︁
𝑖=0

𝑌
(0)
𝑖 (𝜉)

𝜌2𝑖+𝑛−2
, 𝜌→ ∞, (5.5)

𝑌
(0)
0 = − 𝜓0(0)𝑐(𝜔), 𝑌

(0)
𝑘 (𝜉) = −𝜓0(0)𝑍

(0)
𝑘 (𝜉), 𝑘 > 1, (5.6)

which specifies required asymptotic expansion (5.2) for 𝑣0(𝜉).
Rewriting (5.5) in the variables 𝑥 = 𝜀𝜉, we obtain that

𝑣0(𝜉) = 𝑋
(0)
0 +

∞∑︁
𝑖=0

𝜀𝑛−2+𝑖𝑌
(0)
𝑖 (𝑥)

𝑟2𝑖+𝑛−2
, 𝜀−1𝑟 → ∞. (5.7)

In view of this identity and in accordance with the method of matching asymptotic expansions,
the external expansion for the eigenfunction should be sought as

𝑈(𝑥, 𝜀) = 𝜓0(𝑥) + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖𝜓𝑖+𝑛−2(𝑥), (5.8)

where

𝜓𝑛−2(𝑥) ∼ 𝑌
(0)
0 𝑟−𝑛+2 = −𝜓0(0)𝑐(𝜔)𝑟−𝑛+2, 𝑟 → 0, (5.9)

𝜓𝑖+𝑛−2(𝑥) ∼ 𝑌
(0)
𝑖 𝑟−𝑛−2𝑖+2 = −𝜓0(0)𝑍

(0)
𝑖 (𝑥)𝑟−2𝑖−𝑛+2, 𝑖 > 1, 𝑟 → 0. (5.10)

Since the external expansion should describe the behavior of the eigenfunction almost in the
entire domain Π (except a small neighbourhood of the hole), by analogy with (5.8), it is natural
to seek the asymptotic expansion for the eigenvalue as series (2.7).
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Substituting series (5.8) and (2.7) into (2.2) and equating the coefficients at the like powers
of 𝜀, we obtain boundary value problem (2.1) for 𝜓0 and the following boundary value problems
for other coefficients of external expansion (5.8):

−∆𝜓𝑛−2 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓𝑛−2 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓𝑛−2

𝜕𝜈
= 𝜆0𝜓𝑛−2 + 𝜆𝑛−2𝜓0, 𝑥 ∈ Σ𝑎,

(5.11)

−∆𝜓𝑛−2+𝑖 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓𝑛−2+𝑖 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓𝑛−2+𝑖

𝜕𝜈
= 𝜆0𝜓𝑛−2+𝑖 + 𝜆𝑛−2+𝑖𝜓0, 𝑥 ∈ Σ𝑎, 1 6 𝑖 6 𝑛− 3,

(5.12)

−∆𝜓𝑛−2+𝑖 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓𝑛−2+𝑖 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓𝑛−2+𝑖

𝜕𝜈
= 𝜆0𝜓𝑛−2+𝑖 + 𝜆𝑛−2+𝑖𝜓0 +

𝑖−𝑛+2∑︁
𝑘=0

𝜆𝑛−2+𝑘𝜓𝑖−𝑘, 𝑥 ∈ Σ𝑎, 𝑖 > 𝑛− 2.
(5.13)

By Corollary 1, the function

𝜓𝑛−2(𝑥) = −𝜓0(0)𝑐(𝜔)𝐸0(𝑥) ∈ 𝒜, (5.14)

solves boundary value problem (5.11) for 𝜆𝑛−2 determined by identity (2.8) and has the differ-
entiable asymptotic expansion

𝜓𝑛−2(𝑥) = 𝑌
(0)
0 𝑟−𝑛+2 +

∞∑︁
𝑗=0

𝑋
(𝑛−2)
𝑗 (𝑥), 𝑟 → 0, (5.15)

which specifies asymptotics (5.9).

Remark 5.2. Thus, we have proved the existence of functions 𝑣0(𝜉) and 𝜓𝑛−2(𝑥) solving
boundary value problems (5.3) and (5.11) for 𝜆𝑛−2 defined by identity (2.8) and having asymp-
totics (5.2) and (5.9).

It is easy to see that in the class of functions orthogonal to 𝜓0 in 𝐿2(Σ𝑎), the solution 𝜓𝑛−2(𝑥)
to boundary value problem (5.11) with asymptotics (5.9) is unique. However, it is also easy to
see that the solutions to problems (5.12) and (5.13) are not uniquely determined by the main
singularities (5.10) at zero; for instance, we can add the term 𝛼𝐸0(𝑥) with arbitrary 𝛼.

In the same way, it is easy to see that the unique solution 𝑣0(𝜉) to boundary value problem
(5.3) with asymptotics (5.2) is determined by identity (5.4). On the other hand, it is also easy
to see that as 𝑘 > 1, the solutions 𝑣𝑘(𝜉) to boundary value problems (5.3) with asymptotics
(5.2) at infinity are determined non-uniquely; for instance, we can add the term 𝛼𝑧0(𝑥) with
an arbitrary 𝛼.

Thus, we have constructed the leading terms 𝑣0(𝜉), 𝜓𝑛−2(𝑥) and 𝜆𝑛−2 for asymptotic expan-
sions (5.1), (5.8) and (2.7) and we have determined the leading terms of the asymptotics at
infinity and at zero for the coefficients 𝑣𝑘(𝜉) and 𝜓𝑛−2+𝑘(𝑥) as 𝑘 > 1, respectively.
The matter of the further matching of series (5.1) and (5.8) is constructing the solutions

𝑣𝑘(𝜉) and 𝜓𝑛−2+𝑘(𝑥) to boundary value problems (5.3) and (5.12), (5.13) such that if in (5.8)
we replace the coefficients 𝜓0(𝑥) and 𝜓𝑛−2+𝑖(𝑥) by their asymptotic expansion as 𝑟 → 0 and
pass to the variable 𝜉 = 𝜀−1𝑥 and if in series (5.1) we replace the coefficients 𝑣𝑖(𝜉) by their
asymptotic expansions as 𝜌→ ∞, then we obtain to same series.

The following statement is a key one for matching the asymptotic expansions.

Lemma 5.1. Let

Ψ𝜀(𝑥) = Ψ0(𝑥) + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖Ψ𝑖+𝑛−2(𝑥), (5.16)
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Φ𝜀(𝜉) =
∞∑︁
𝑖=0

𝜀𝑖Φ𝑖(𝜉) (5.17)

Ψ0(𝑥) =
∞∑︁
𝑘=0

𝑋
(0)
𝑘 (𝑥), (5.18)

Ψ𝑛−2+𝑖(𝑥) =
𝑖∑︁

𝑘=0

𝑌
(𝑖−𝑘)
𝑘 (𝑥)𝑟−2𝑘−𝑛+2 +

∞∑︁
𝑘=0

𝑋
(𝑛−2+𝑖)
𝑘 (𝑥), 𝑖 > 0, (5.19)

Φ𝑖(𝜉) = 𝑋
(0)
𝑖 (𝜉) +

∞∑︁
𝑘=0

𝑌
(𝑖)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2, 0 6 𝑖 < 𝑛− 2, (5.20)

Φ𝑖(𝜉) = 𝑋
(0)
𝑖 (𝜉) +

𝑖−𝑛+2∑︁
𝑘=0

𝑋
(𝑖−𝑘)
𝑘 (𝜉) +

∞∑︁
𝑘=0

𝑌
(𝑖)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2, 𝑖 > 𝑛− 2, (5.21)

where 𝑋
(𝑗)
𝑞 , 𝑌

(𝑗)
𝑞 are arbitrary harmonic polynomials. Then

Ψ𝜀(𝜀𝜉) = Φ𝜀(𝜉). (5.22)

There exist 𝑣𝑖 ∈ 𝐶∞(R𝑛∖𝜔), 𝜓𝑛−2+𝑖 ∈ 𝒜, 𝑖 > 0, satisfying boundary value problems (5.3)
and (5.11), (5.12), (5.13) for some 𝜆𝑛−2+𝑖 and having asymptotic expansions

𝑣𝑖(𝜉) =Φ𝑖(𝜉), 𝜌→ ∞, (5.23)

𝜓𝑛−2+𝑖(𝑥) =Ψ𝑛−2+𝑖(𝑥), 𝑟 → 0, (5.24)

where 𝑋
(0)
𝑞 come from expansion (4.14) at zero for the function 𝜓0(𝑥), while other 𝑋

(𝑗)
𝑞 , 𝑌

(𝑗)
𝑞

are some harmonic polynomials.
Identities (2.8), (5.4) and (5.14) hold true.
If 𝜓0(0) = 0, then identities (2.9), (2.10), (2.11) hold true and

𝑣0(𝜉) ≡0, 𝜓𝑛−2(𝑥) ≡ 0, (5.25)

𝑣1(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)(𝜉𝑚 − 𝑧𝑚(𝜉)), (5.26)

𝜓𝑛−1(𝑥) = − 𝐸0(𝑥)
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐𝑚,0. (5.27)

Proof. Identity (5.22) is checked by changing 𝑥 = 𝜀𝜉 in Ψ𝜀(𝑥).
The statements of the lemma for 𝜆𝑛−2, 𝑣0(𝜉) and 𝜓𝑛−2(𝑥) including identities (2.8), (5.4) and

(5.14) have already been proved. We stress that since the functions 𝜓0(𝑥), 𝑣0(𝜉) and 𝜓𝑛−2(𝑥)

are found, then the same is true for the harmonic polynomials 𝑋
(0)
𝑘 , 𝑌

(0)
𝑘 and 𝑋

(𝑛−2)
𝑘 , 𝑘 > 0.

It follows from the definition of Φ1(𝜉) that

Φ1(𝜉) =𝑋
(0)
1 (𝜉) +𝑋

(1)
0 +

∞∑︁
𝑘=0

𝑌
(1)
𝑘 (𝜉)𝜌−2𝑘−1, 𝑛 = 3, (5.28)

Φ1(𝜉) =𝑋
(0)
1 (𝜉) +

∞∑︁
𝑘=0

𝑌
(1)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2, 𝑛 > 3, (5.29)

where

𝑋
(0)
1 (𝜉) =

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝜉𝑚
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in accordance with (4.14), 𝑋
(1)
0 is the determined constant from Ψ𝑛−1 for 𝑛 = 3, and 𝑌

(1)
𝑘 are

still arbitrary harmonic polynomials. It follows from the definition of the functions 𝑧𝑞 (see
(2.5)) that the function

𝑣1(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)(𝜉𝑚 − 𝑧𝑚(𝜉)) +𝑋

(1)
0 (1 − 𝑧0(𝜉)), 𝑛 = 3, (5.30)

𝑣1(𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)(𝜉𝑚 − 𝑧𝑚(𝜉)), 𝑛 > 3 (5.31)

is a solution to boundary value problem (5.3) having asymptotic expansions (5.23), (5.20),

(5.21), (5.28), (5.29) with some harmonic polynomials 𝑌
(1)
𝑘 (𝜉) and

𝑌
(1)
0 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐𝑚,0 − 𝑐(𝜔)𝑋

(1)
0 , 𝑛 = 3, (5.32)

𝑌
(1)
0 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐𝑚,0, 𝑛 > 3, (5.33)

𝑌
(1)
1 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞𝜉𝑞 −𝑋
(1)
0

𝑛∑︁
𝑞=1

𝑐0,𝑞𝜉𝑞, 𝑛 = 3, (5.34)

𝑌
(1)
1 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞𝜉𝑞, 𝑛 > 3. (5.35)

Having determined 𝑌
(1)
𝑘 (𝜉), by Lemma 4.2 we obtain that there exists a function 𝜓𝑛−1 ∈ 𝒜

solving problem (5.13) for 𝑛 = 3 and problem (5.12) for 𝑛 > 4 for some 𝜆𝑛−1 and having

asymptotic expansion (5.24) for some harmonic polynomials 𝑋
(𝑛−1)
𝑘 (𝑥).

Then, having determined 𝑋
(𝑛−1)
𝑘 (𝑥), by Lemma 4.1 we obtain that there exists a solution

𝑣2 ∈ 𝐶∞(R𝑛∖𝜔) to boundary value problem (5.3) having asymptotic expansion (5.23) for some

harmonic polynomials 𝑌
(2)
𝑘 (𝜉).

In its turn, having determined 𝑌
(2)
𝑘 (𝜉), by Lemma 4.2 we obtain that there exist a constant

𝜆𝑛 and a function 𝜓𝑛 ∈ 𝒜 such that 𝜓𝑛 is a solution to problem (5.13) as 𝑛 = 4 and to problem

(5.12) as 𝑛 > 5 and has asymptotic expansion (5.24) for some harmonic polynomials 𝑋
(𝑛)
𝑘 (𝑥)

and so forth.
Let 𝜓0(0) = 0. Then by (5.4), (5.14) and (2.8) we get identities (5.25), (2.9). Therefore, first,

𝑌
(0)
1 (𝜉) ≡0, (5.36)

𝑌
(0)
2 (𝜉) ≡0, (5.37)

and, second, 𝑋
(1)
0 = 0 as 𝑛 = 3 and by (5.32), (5.33), (5.34), (5.35) we obtain that

𝑌
(1)
0 = −

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)𝑐𝑚,0, 𝑛 > 3, (5.38)

𝑌
(1)
1 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞𝜉𝑞, 𝑛 > 3. (5.39)

Since 𝜓0(0) = 𝜆𝑛−2 = 0, the function 𝜓𝑛−1(𝑥), determined by identity (5.27) has asymptotic
expansion (5.24), (5.19), (5.36), (5.38) as 𝑖 = 1. Thus, in accordance with Corollary 1, it solves
boundary value problem (5.12) as 𝑛 > 4 and boundary value problem (5.13) as 𝑛 = 3 for 𝜆𝑛−1 =
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0. That is, identity (2.10) holds true. In its turn, since 𝜓0(0) = 𝜓𝑛−2(𝑥) = 𝜆𝑛−2 = 𝜆𝑛−1 = 0,
the function

𝜓𝑛(𝑥) = −
𝑛∑︁

𝑚=1

𝜕𝜓0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞𝐸𝑞(𝑥) + 𝑌
(2)
0 𝐸0(𝑥)

has asymptotic expansion (5.24), (5.19), (5.37), (5.39) for 𝑖 = 2 and in accordance with Corol-
lary 1 is solves boundary value problem (5.12) as 𝑛 > 4 and boundary value problem (5.13) as
𝑛 = 3 for 𝜆𝑛 determined by identity (2.11).

We denote ̂︀𝜆𝜀,𝑁 , ̂︀𝑢𝜀,𝑁(𝑥), ̂︀𝑣𝜀,𝑁(𝜉) partial sums of series (2.7), (5.8) and (5.1) up to power 𝑁 .
Lemma 5.1 implies the following statement.

Lemma 5.2. The function ̂︀𝑢𝜀,𝑁 ∈ 𝒜 solves the boundary value problem

−∆̂︀𝑢𝜀,𝑁(𝑥) = 0, 𝑥 ∈ Π ∖ {0} , l̂︀𝑢𝜀,𝑁(𝑥) = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕̂︀𝑢𝜀,𝑁(𝑥)

𝜕𝜈
= ̂︀𝜆𝜀,𝑁̂︀𝑢𝜀,𝑁(𝑥) +𝑂(𝜀𝑁+1), 𝑥 ∈ Σ𝑎.

The convergence holds: ∫︁
Σ𝑎

(̂︀𝑢𝜀,𝑁 − 𝜓𝜀)
2 𝑑𝑥′ → 0, 𝜀→ 0. (5.40)

The function ̂︀𝑣𝜀,𝑁 ∈ 𝐶∞(R𝑛∖𝜔) solves the boundary value problem

∆𝜉̂︀𝑣𝜀,𝑁(𝜉) = 0, 𝜉 ∈ R𝑛 ∖ 𝜔, ̂︀𝑣𝜀,𝑁(𝜉) = 0, 𝜉 ∈ 𝜕𝜔.

As 𝜀
1
2 < 𝑟 < 2𝜀

1
2 (or the same, as 𝜀−

1
2 < 𝜌 < 2𝜀−

1
2 ) the differentiable identity holds:̂︀𝑢𝜀,𝑁(𝑥) − ̂︀𝑣𝜀,𝑁(𝜉) = 𝑂

(︀
𝑟𝑁+1 + 𝜀𝑁𝑟 + 𝜌−𝑁−1 + 𝜀𝑁𝜌−1

)︀
. (5.41)

We denote ̃︀𝑢𝜀,𝑁(𝑥) = ̃︀𝜒(𝑟𝜀−
1
2 )̂︀𝑢𝜀,𝑁(𝑥) + (1 − ̃︀𝜒(𝑟𝜀−

1
2 ))̂︀𝑣𝜀,𝑁 (︁𝑥

𝜀

)︁
,

where, we recall, ̃︀𝜒(𝑡) is an infinitely differentiable cut-off function vanishing as 𝑡 6 1 and
equalling to one as 𝑡 > 2.

It follows from (5.40) and Theorem 2.1 that∫︁
Σ𝑎

̃︀𝑢𝜀,𝑁𝜓𝜀𝑑𝑥′ → 1, 𝜀→ 0. (5.42)

Lemma 5.3. The function ̃︀𝑢𝜀,𝑁 ∈ 𝐻1(Π𝜀) is a solution to the boundary value problem

−∆̃︀𝑢𝜀,𝑁 =𝐹𝜀,𝑁 , 𝑥 ∈ Π𝜀, l̃︀𝑢𝜀,𝑁 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕̃︀𝑢𝜀,𝑁
𝜕𝜈

= ̂︀𝜆𝜀,𝑁̃︀𝑢𝜀,𝑁 + 𝑔𝜀,𝑁 , 𝑥 ∈ Σ𝑎, ̃︀𝑢𝜀,𝑁 = 0, 𝑥 ∈ 𝜕𝜔𝜀,
(5.43)

where

‖𝑔𝜀,𝑁‖𝐿2(Σ𝑎) 6 𝐶𝜀𝑁+1, (5.44)

‖𝐹𝜀,𝑁‖𝐿2(Π𝜀) 6 𝐶𝜀
2𝑁+𝑛−2

4 , (5.45)

supp𝐹𝜀,𝑁 ⊂ 𝐵
2𝜀

1
2
∖𝐵

𝜀
1
2
. (5.46)

Proof. All statements except (5.45) and (5.46) are implied directly by Lemma 5.2. By applying
the Laplace operator to the function ̃︀𝑢𝜀,𝑁 , we obtain that

𝐹𝜀,𝑁(𝑥) = −
(︁̂︀𝑢𝜀,𝑁 (︁𝑥

𝜀

)︁
− ̂︀𝑣𝜀,𝑁(𝑥)

)︁
∆̃︀𝜒(𝑟𝜀−

1
2 ) −∇

(︁̂︀𝑢𝜀,𝑁 (︁𝑥
𝜀

)︁
− ̂︀𝑣𝜀,𝑁(𝑥)

)︁
∇̃︀𝜒(𝑟𝜀−

1
2 ). (5.47)

This yields (5.46). In its turn, (5.47), (5.46) and (5.41) imply estimate (5.45).
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Multiplying equation (5.43) by the eigenfunction 𝜓𝜀 and integrating by parts over Π𝜀, thanks
to boundary value problems (5.43), (2.2) we obtain

(𝜆𝜀 − ̂︀𝜆𝜀,𝑁)

∫︁
Σ𝑎

̃︀𝑢𝜀,𝑁𝜓𝜀𝑑𝑥′ =

∫︁
Π𝜀

𝐹𝜀,𝑁𝜓𝜀𝑑𝑥+

∫︁
Σ𝑎

𝑔𝜀,𝑁𝜓𝜀𝑑𝑥
′. (5.48)

Since ‖𝜓𝜀‖𝐿2(Σ𝑎) = 1, by (5.44) we obtain that∫︁
Σ𝑎

𝑔𝜀,𝑁𝜓𝜀𝑑𝑥
′ = 𝑂

(︀
𝜀𝑁+1

)︀
. (5.49)

By the integral identity for the function 𝜓𝜀 we have:∫︁
Π𝜀

|∇𝜓𝜀|2𝑑𝑥+ ̃︀ℎ ∫︁
𝜕Π𝜀∖Σ𝑎

𝜓2
𝜀𝑑𝑠 = 𝜆𝜀,

where ̃︀ℎ = 0 if 𝐻 = 0 and ̃︀ℎ = ℎ
𝐻

if 𝐻 ̸= 0. Therefore,

‖𝜓𝜀‖2𝐻1(Π𝜀)
=

∫︁
Π𝜀

|∇𝜓𝜀|2𝑑𝑥+

∫︁
Σ𝑎

𝜓2
𝜀𝑑𝑥

′ 6 𝐶.

Then, extending 𝜓𝜀 by zero in 𝜔𝜀, by (3.14) we get ‖𝜓𝜀‖2𝑊 1
2 (Π(𝑅))

6 𝐶. This is why it follows

from (5.45) and (5.46) that ∫︁
Π𝜀

𝐹𝜀,𝑁𝜓𝜀𝑑𝑥 = 𝑂
(︁
𝜀

2𝑁+𝑛−2
4

)︁
. (5.50)

It follows from (5.48), (5.49), (5.50) and (5.42) that

𝜆𝜀 − ̂︀𝜆𝜀,𝑁 = 𝑂
(︁
𝜀

2𝑁+𝑛−2
4

)︁
.

Since 𝑁 is arbitrary, it proves (2.7). The proof of Theorem 2.2 is complete.

6. Proof of Theorem 2.3

Hereinafter 𝜆0 is a double eigenvalue of Steklov problem (2.1), and 𝜓
(1)
0 (𝑥) and 𝜓

(2)
0 (𝑥) are

the associated orthonormalized in 𝐿2(Σ𝑎) eigenfunctions chosen in accordance with (2.15). The

Taylor series for functions 𝜓
(𝑠)
0 (𝑥) at zero are of the form:

𝜓
(1)
0 (𝑥) =

∞∑︁
𝑘=0

𝑋
(0,1)
𝑘 (𝑥), 𝜓

(2)
0 (𝑥) =

∞∑︁
𝑘=1

𝑋
(0,2)
𝑘 (𝑥), 𝑟 → 0,

𝑋
(0,1)
0 (𝑥) =𝜓

(1)
0 (0), 𝑋

(0,𝑠)
1 (𝑥) =

𝑛∑︁
𝑚=1

𝜕𝜓
(𝑠)
0

𝜕𝑥𝑚
(0)𝑥𝑚.

(6.1)

Outside a neighbourhood of the cavity, we construct the external expansion 𝑈 (1)(𝑥, 𝜀) for the

eigenfunction 𝜓
(1)
𝜀 (𝑥) for Steklov problem (2.2) as 𝑈 (1)(𝑥, 𝜀) ≈ 𝜓

(1)
0 (𝑥). Rewriting (6.1) in the

variable 𝜉, we have

𝑈 (1)(𝑥, 𝜀) ≈ 𝜓
(1)
0 (𝑥) = 𝜓

(1)
0 (0) + 𝜀

𝑛∑︁
𝑚=1

𝜕𝜓
(1)
0

𝜕𝑥𝑚
(0)𝜉𝑚 +

∞∑︁
𝑘=2

𝜀𝑘𝑋
(0,1)
𝑘 (𝜉), 𝜌𝜀 = 𝑟 → 0.

Following the matching method, we construct the internal expansion as

𝑉 (1)(𝜉, 𝜀) = 𝑣
(1)
0 (𝜉) + 𝜀𝑣

(1)
1 (𝜉) +

∞∑︁
𝑘=2

𝜀𝑘𝑣
(1)
𝑘 (𝜉), (6.2)
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where

𝑣
(1)
0 (𝜉) ∼𝑋(0,1)

0 (𝜉) ≡ 𝜓
(1)
0 (0), 𝜌→ ∞,

𝑣
(1)
1 (𝜉) ∼𝑋(0,1)

1 (𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓
(1)
0

𝜕𝑥𝑚
(0)𝜉𝑚, 𝜌→ ∞,

𝑣
(1)
𝑘 (𝜉) ∼𝑋(0,1)

𝑘 (𝜉), 𝑘 > 2, 𝜌→ ∞.

(6.3)

Substituting (6.2) into (2.2), passing to the variable 𝜉 and equating the coefficients at the

like powers of 𝜀, we obtain the boundary value problems for 𝑣
(1)
𝑘 :

∆𝜉𝑣
(1)
𝑘 = 0 𝜉 ∈ R𝑛 ∖ 𝜔, 𝑣

(1)
𝑘 = 0 𝜉 ∈ 𝜕𝜔. (6.4)

The function

𝑣
(1)
0 (𝜉) = 𝜓

(1)
0 (0)(1 − 𝑧0(𝜉)) (6.5)

is a solution to boundary value problem (6.4) having the differentiable asymptotic expansion

𝑣
(1)
0 (𝜉) =𝑋

(0,1)
0 +

∞∑︁
𝑖=0

𝑌
(0,1)
𝑖 (𝜉)

𝜌2𝑖+𝑛−2
, 𝜌→ ∞, (6.6)

𝑌
(0,1)
0 = − 𝜓

(1)
0 (0)𝑐(𝜔), 𝑌

(0,1)
𝑘 (𝜉) = −𝜓(1)

0 (0)𝑍
(0,1)
𝑘 (𝜉), 𝑘 > 1, (6.7)

which specifies required asymptotics (6.3) for 𝑣
(1)
0 (𝜉).

Rewriting now (6.6) in variables 𝑥 = 𝜀𝜉, we obtain that

𝑣
(1)
0 (𝜉) = 𝑋

(0,1)
0 +

∞∑︁
𝑖=0

𝜀𝑛−2+𝑖𝑌
(0,1)
𝑖 (𝑥)

𝑟2𝑖+𝑛−2
, 𝜀−1𝑟 → ∞. (6.8)

In view of this identity, similar to the previous section one can suggest to seek the external
expansion for the eigenfunction as

𝑈 (1)(𝑥, 𝜀) = 𝜓
(1)
0 (𝑥) + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖𝜓
(1)
𝑖+𝑛−2(𝑥),

where

𝜓
(1)
𝑛−2(𝑥) ∼ 𝑌

(0,1)
0 𝑟−𝑛+2 = −𝜓(1)

0 (0)𝑐(𝜔)𝑟−𝑛+2, 𝑟 → 0, (6.9)

𝜓
(1)
𝑗+𝑛−2(𝑥) ∼ 𝑌

(0,1)
𝑗 (𝑥)𝑟−𝑛−2𝑗+2, 𝑟 → 0, 𝑗 > 1. (6.10)

But since in the considered case of the double eigenvalue 𝜆0 there is one more eigenfunction

𝜓
(2)
0 (𝑥), we construct the external expansion as

𝑈 (1)(𝑥, 𝜀) = 𝜓
(1)
0 (𝑥) + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖𝜓
(1)
𝑖+𝑛−2(𝑥) + 𝜀𝜓

(2)
0 (𝑥)

∞∑︁
𝑖=0

𝛼
(1)
𝑖+1𝜀

𝑖, (6.11)

where the coefficients 𝜓
(1)
𝑖+𝑛−2(𝑥) have asymptotics (6.9), (6.10), and 𝛼

(1)
𝑖+1 are some constants.

Similar to (2.7), we seek the asymptotic expansion for eigenvalue 𝜆
(1)
𝜀 as (2.16).

Substituting series (6.11) and (2.16) into (2.2), we obtain boundary value problems for the
coefficients of external expansion (6.11):

−∆𝜓
(1)
𝑛−2 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓

(1)
𝑛−2 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(1)
𝑛−2

𝜕𝜈
= 𝜆0𝜓

(1)
𝑛−2 + 𝜆

(1)
𝑛−2𝜓

(1)
0 , 𝑥 ∈ Σ𝑎,

(6.12)
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−∆𝜓
(1)
𝑛−2+𝑖 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓

(1)
𝑛−2+𝑖 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(1)
𝑛−2+𝑖

𝜕𝜈
= 𝜆0𝜓

(1)
𝑛−2+𝑖 + 𝜓

(2)
0

𝑖−1∑︁
𝑝=1

𝛼(1)
𝑝 𝜆

(1)
𝑖+𝑛−2−𝑝

+ 𝜆
(1)
𝑛−2+𝑖𝜓

(1)
0 + 𝛼

(1)
𝑖 𝜆

(1)
𝑛−2𝜓

(2)
0 , 𝑥 ∈ Σ𝑎, 1 6 𝑖 6 𝑛− 3,

(6.13)

−∆𝜓
(1)
𝑛−2+𝑖 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓

(1)
𝑛−2+𝑖 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(1)
𝑛−2+𝑖

𝜕𝜈
= 𝜆0𝜓

(1)
𝑛−2+𝑖 +

𝑖−𝑛+2∑︁
𝑘=0

𝜆
(1)
𝑛−2+𝑘𝜓

(1)
𝑖−𝑘 + 𝜓

(2)
0

𝑖−1∑︁
𝑝=1

𝛼(1)
𝑝 𝜆

(𝑠)
𝑖+𝑛−2−𝑝+

+ 𝜆
(1)
𝑛−2+𝑖𝜓

(1)
0 + 𝛼

(1)
𝑖 𝜆

(1)
𝑛−2𝜓

(2)
0 , 𝑥 ∈ Σ𝑎, 𝑖 > 𝑛− 2.

(6.14)

By Corollary 2, the function

𝜓
(1)
𝑛−2(𝑥) = −𝜓(1)

0 (0)𝑐(𝜔)𝐸0(𝑥), 𝜓
(1)
𝑛−2 ∈ 𝒜, (6.15)

is a solution to boundary value problem (6.12) for 𝜆
(1)
𝑛−2 determined by identity (2.18) and it

has the differentiable asymptotic expansion:

𝜓
(1)
𝑛−2(𝑥) = 𝑌

(0,1)
0 𝑟−𝑛+2 +

∞∑︁
𝑗=0

𝑋
(𝑛−2,1)
𝑗 (𝑥), 𝑟 → 0, (6.16)

which specifies required asymptotics (6.9).

Remark 6.1. Thus, we have proved the existence of the functions 𝑣
(1)
0 (𝜉) and 𝜓

(1)
𝑛−2(𝑥) being

solutions to boundary value problems (6.4) and (6.12) for 𝜆
(1)
𝑛−2 determined by identity (2.18)

and having asymptotics (6.3) and (6.9).

Lemma 6.1. Let

Ψ𝜀,1(𝑥) = Ψ
(1)
0 (𝑥) + 𝜀𝑛−2

∞∑︁
𝑖=0

𝜀𝑖Ψ
(1)
𝑖+𝑛−2(𝑥) + 𝜀Ψ

(2)
0 (𝑥)

∞∑︁
𝑖=0

𝛼
(1)
𝑖+1𝜀

𝑖, (6.17)

Ψ
(1)
0 (𝑥) =

∞∑︁
𝑘=0

𝑋
(0,1)
𝑘 (𝑥), Ψ

(2)
0 (𝑥) =

∞∑︁
𝑘=1

𝑋
(0,2)
𝑘 (𝑥),

Ψ
(1)
𝑛−2+𝑖(𝑥) =

𝑖∑︁
𝑘=0

𝑌
(𝑖−𝑘.1)
𝑘 (𝑥)𝑟−2𝑘−𝑛+2 +

∞∑︁
𝑘=0

𝑋
(𝑛−2+𝑖,1)
𝑘 (𝑥), 𝑖 > 0,

Φ𝜀,1(𝜉) =
∞∑︁
𝑖=0

𝜀𝑖Φ
(1)
𝑖 (𝜉), (6.18)

Φ
(1)
𝑖 (𝜉) =𝑋

(0,1)
𝑖 (𝜉) +

∞∑︁
𝑘=0

𝑌
(𝑖,1)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2 +

𝑖−2∑︁
𝑘=0

𝛼
(1)
𝑘+1𝑋

(0,2)
𝑖−𝑘−1(𝜉), 0 6 𝑖 < 𝑛− 2,

Φ
(1)
𝑖 (𝜉) =𝑋

(0,1)
𝑖 (𝜉) +

𝑖−𝑛+2∑︁
𝑘=0

𝑋
(𝑖−𝑘,1)
𝑘 (𝜉) +

∞∑︁
𝑘=0

𝑌
(𝑖,1)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2+

+
𝑖−2∑︁
𝑘=0

𝛼
(1)
𝑘+1𝑋

(0,2)
𝑖−𝑘−1(𝜉), 𝑖 > 𝑛− 2,

where 𝑋
(𝑗,𝑝)
𝑞 , 𝑌

(𝑗,1)
𝑞 are arbitrary harmonic polynomials and 𝛼

(1)
𝑗 are arbitrary numbers. Then

Ψ𝜀,1(𝜀𝜉) = Φ𝜀,1(𝜉). (6.19)



STEKLOV TYPE PROBLEM IN A HALF-CYLINDER. . . 81

There exist 𝑣
(1)
𝑖 ∈ 𝐶∞(R𝑛∖𝜔), 𝜓

(1)
𝑛−2+𝑖 ∈ 𝒜, 𝑖 > 0, satisfying boundary value problems (6.4)

and (6.12), (6.13), (6.14) for some 𝜆
(1)
𝑛−2+𝑖 and having differentiable asymptotic expansions

𝑣
(1)
𝑖 (𝜉) =Φ

(1)
𝑖 (𝜉), 𝜌→ ∞, (6.20)

𝜓
(1)
𝑛−2+𝑖(𝑥) =Ψ

(1)
𝑛−2+𝑖(𝑥), 𝑟 → 0, (6.21)

where 𝑋
(0,𝑠)
𝑞 come from the expansion at zero (6.1) for the functions 𝜓

(𝑠)
0 (𝑥), other 𝑋

(𝑗,1)
𝑞 , 𝑌

(𝑗,1)
𝑞

are some harmonic polynomials, and 𝛼
(1)
𝑗 are some numbers.

Identities (2.18), (6.5) and (6.15) hold.

Proof. Identity (6.19) is checked by making the change 𝑥 = 𝜀𝜉 in Ψ𝜀,1(𝑥).

The statements of the lemma for 𝜆
(1)
𝑛−2, 𝜓

(1)
𝑛−2(𝑥), 𝑣

(1)
0 (𝜉) have already been proved. We recall

that since the functions 𝜓
(𝑠)
0 (𝑥), 𝑣

(1)
0 (𝜉) and 𝜓

(1)
𝑛−2(𝑥) are defined, the harmonic polynomials

𝑋
(0,𝑠)
𝑘 , 𝑌

(0,1)
𝑘 and 𝑋

(𝑛−2,1)
𝑘 , 𝑘 > 0, are known as well.

It follows from the definition of Φ
(1)
𝑖 (𝜉) that

Φ
(1)
1 (𝜉) =𝑋

(0,1)
1 (𝜉) +𝑋

(1,1)
0 +

∞∑︁
𝑘=0

𝑌
(1,1)
𝑘 (𝜉)𝜌−2𝑘−1, 𝑛 = 3,

Φ
(1)
1 (𝜉) =𝑋

(0,1)
1 (𝜉) +

∞∑︁
𝑘=0

𝑌
(1,1)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2, 𝑛 > 3,

(6.22)

and

Φ
(1)
2 (𝜉) =𝑋

(0,1)
2 (𝜉) +𝑋

(1,1)
1 +𝑋

(2,1)
0 +

∞∑︁
𝑘=0

𝑌
(2,1)
𝑘 (𝜉)𝜌−2𝑘−1 + 𝛼

(1)
1 𝑋

(0,2)
1 (𝜉), 𝑛 = 3,

Φ
(1)
2 (𝜉) =𝑋

(0,1)
2 (𝜉) +𝑋

(1,1)
0 +

∞∑︁
𝑘=0

𝑌
(2,1)
𝑘 (𝜉)𝜌−2𝑘−2 + 𝛼

(1)
1 𝑋

(0,2)
1 (𝜉), 𝑛 = 4,

Φ
(1)
2 (𝜉) =𝑋

(0,1)
2 (𝜉) +

∞∑︁
𝑘=0

𝑌
(2,1)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2 + 𝛼

(1)
1 𝑋

(0,2)
1 (𝜉), 𝑛 > 4,

(6.23)

where 𝑌
(1,1)
𝑘 , 𝑌

(2,1)
𝑘 , 𝑋

(0,1)
2 are still arbitrary harmonic polynomials, and 𝛼

(1)
1 is an arbitrary

constant.
By Lemma 4.1 there exists a solution 𝑣

(1)
1 ∈ 𝐶∞(R𝑛∖𝜔) to boundary value problem (6.4)

having differentiable asymptotic expansion (6.20) with some harmonic polynomials 𝑌
(1,1)
𝑘 (𝜉).

In particular, having determined 𝑌
(1,1)
0 (𝜉), by Corollary 2 we obtain that there exists a func-

tion 𝜓
(1)
𝑛−1 ∈ 𝒜 solving problem (6.14), (6.13) for some 𝜆

(1)
𝑛−1 and 𝛼

(1)
1 and having differentiable

asymptotic expansion (6.21) with some harmonic polynomials 𝑋
(𝑛−1,1)
𝑘 (𝑥).

In its turn, once 𝛼
(1)
1 and 𝑋

(0,1)
2 are determined, we see that in (6.23) only 𝑌

(2,1)
𝑘 are still

arbitrary. By Lemma 4.1 there exists a solution 𝑣
(1)
2 ∈ 𝐶∞(R𝑛∖𝜔) to boundary value problem

(6.4) having differentiable asymptotic expansion (6.20) for some harmonic polynomials 𝑌
(2,1)
𝑘 (𝜉).

Once we find 𝑌
(2,1)
0 (𝜉) (and also 𝑌

(1,1)
1 (𝜉), 𝑌

(0,1)
2 (𝜉) before), by Lemma 4.3 we obtain that

there exists a function 𝜓
(1)
𝑛 ∈ 𝒜 solving problem (6.14), (6.13) for some 𝜆

(1)
𝑛 and 𝛼

(1)
2 and

having differentiable asymptotic expansion (6.21) for some harmonic polynomials 𝑋
(𝑛,1)
𝑘 (𝑥) and

so forth.

We proceed to constructing formal asymptotic expansions for the eigenvalue 𝜆
(2)
𝜀 and the

associated eigenfunction 𝜓
(2)
𝜀 (𝑥). Since 𝜓

(2)
𝜀 (0) = 0, similar to (2.7), (2.9), (2.10) and (5.1),
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(5.25), (5.2), in the critical case 𝜓0(0) = 0, given a simple eigenvalue 𝜆0, we construct asymptotic

expansion for the eigenvalue 𝜆
(2)
𝜀 and the internal expansion for the eigenfunctions as (2.17)

and

𝑉 (2)(𝜉, 𝜀) = 𝜀𝑣
(2)
1 (𝜉) +

∞∑︁
𝑘=2

𝜀𝑘𝑣
(2)
𝑘 (𝜉), (6.24)

where

𝑣
(2)
1 (𝜉) ∼𝑋(0,2)

1 (𝜉) =
𝑛∑︁

𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝜉𝑚, 𝜌→ ∞,

𝑣
(2)
𝑘 (𝜉) ∼𝑋(0,2)

𝑘 (𝜉), 𝑘 > 2, 𝜌→ ∞.

(6.25)

Substituting (6.24) into (2.2), passing to the variable 𝜉 and equating the coefficients at the like

powers of 𝜀, we obtain boundary value problems for 𝑣
(1)
𝑘 :

∆𝜉𝑣
(2)
𝑘 = 0 𝜉 ∈ R𝑛 ∖ 𝜔, 𝑣

(2)
𝑘 = 0 𝜉 ∈ 𝜕𝜔. (6.26)

Similar to the external expansion (5.8), (5.25) of the eigenfunction in the critical case 𝜓0(0) =

0 for a simple eigenvalue 𝜆0 and similar to external expansion (6.11) for the eigenfunction 𝜓
(1)
𝜀 (𝑥)

for a multiple eigenvalue 𝜆0, we seek the external expansion for the eigenfunction 𝜓
(2)
𝜀 (𝑥) as

𝑈 (2)(𝑥, 𝜀) = 𝜓
(2)
0 (𝑥) + 𝜀𝑛−1

∞∑︁
𝑖=0

𝜀𝑖𝜓
(2)
𝑖+𝑛−1(𝑥) + 𝜀𝜓

(1)
0 (𝑥)

∞∑︁
𝑖=0

𝛼
(2)
𝑖+1𝜀

𝑖. (6.27)

By matching the first term and the last sum in series (6.27) with series (6.24) we specify
asymptotics (6.25):

𝑣
(2)
1 (𝜉) ∼𝑋(0,2)

1 (𝜉) + 𝛼
(2)
1 𝑋

(0,1)
0 =

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝜉𝑚 + 𝛼

(2)
1 𝜓

(1)
0 (0), 𝜌→ ∞,

𝑣
(2)
𝑘 (𝜉) ∼𝑋(0,2)

𝑘 (𝜉) +
𝑘∑︁
𝑗=1

𝛼
(2)
𝑗 𝑋

(0,1)
𝑘−𝑗 (𝜉), 𝑘 > 2, 𝜌→ ∞.

(6.28)

It follows from the definition of the functions 𝑧𝑞(𝜉) that the function

𝑣
(2)
1 (𝜉) =

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)(𝜉𝑚 − 𝑧𝑚(𝜉)) + 𝛼

(2)
1 𝜓

(1)
0 (0)(1 − 𝑧0(𝜉)) (6.29)

is a solution to boundary value problem (6.26) and it has the differentiable asymptotic expansion

𝑣
(2)
1 (𝜉) = 𝑋

(0,2)
1 (𝜉) + 𝛼

(2)
1 𝑋

(0,1)
0 +

∞∑︁
𝑘=0

𝑌
(1,2)
𝑘 (𝜉)𝜌−2𝑖−𝑛+2, 𝜌→ ∞, (6.30)

where

𝑌
(1,2)
0 = −

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐𝑚,0 − 𝛼

(2)
1 𝜓

(1)
0 (0)𝑐(𝜔), (6.31)

𝑌
(1,2)
1 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞𝜉𝑞 − 𝛼
(2)
1 𝜓

(1)
0 (0)

𝑛∑︁
𝑞=1

𝑐0,𝑞𝜉𝑞, (6.32)

𝑌
(1,2)
𝑘 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑍

(𝑚)
𝑘 (𝜉) − 𝛼

(2)
1 𝜓

(1)
0 (0)𝑍

(0)
𝑘 (𝜉), 𝑘 > 2, (6.33)

which specifies required asymptotics (6.28) for 𝑣
(2)
1 (𝜉).
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Rewriting the asymptotic expansion at infinity of the function 𝜀𝑣
(2)
1 (𝜉) in external variables,

we obtain the leading terms for the asymptotics at zero for the coefficients 𝜓
(2)
𝑖+𝑛−1(𝑥) of the

external expansion:

𝜓
(2)
𝑛−1+𝑗(𝑥) ∼ 𝑌

(1,2)
𝑗 (𝑥)𝑟−𝑛−2𝑗+2, 𝑟 → 0, 𝑗 > 0. (6.34)

Substituting series (6.27) and (2.17) into (2.2), we obtain the boundary value problem for

𝜓
(2)
𝑛−1(𝑥):

−∆𝜓
(2)
𝑛−1 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓

(2)
𝑛−1 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(2)
𝑛−1

𝜕𝜈
= 𝜆0𝜓

(2)
𝑛−1 + 𝜆

(2)
𝑛−1𝜓

(2)
0 , 𝑥 ∈ Σ𝑎,

(6.35)

where 𝜆
(2)
𝑛−1 = 0. But if 𝑌

(1,2)
0 ̸= 0, then by Corollary 2 problem (6.35), (6.34) is insolvable for

all 𝜆
(2)
𝑛−1. Hence, in view of (6.31), (6.32) we obtain that 𝑌

(1,2)
0 = 0,

𝜓
(2)
𝑛−1(𝑥) ≡ 0, (6.36)

𝛼
(2)
1 = − 1

𝜓
(1)
0 (0)𝑐(𝜔)

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐𝑚,0, (6.37)

𝑌
(1,2)
1 (𝜉) = −

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞𝜉𝑞 +
1

𝑐(𝜔)

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐𝑚,0

𝑛∑︁
𝑞=1

𝑐0,𝑞𝜉𝑞. (6.38)

We stress that once we determine 𝛼
(2)
1 , by (6.29), (6.31), (6.32), (6.33) we find completely 𝑣

(2)
1

and 𝑌
(1,2)
𝑗 , 𝑗 > 0.

Substituting series (6.27) and (2.17) into (2.2), we obtain the following boundary value
problems for the coefficients of external expansion (6.11):

−∆𝜓(2)
𝑛 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓(2)

𝑛 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(2)
𝑛

𝜕𝜈
= 𝜆0𝜓

(2)
𝑛 + 𝜆(2)𝑛 𝜓

(2)
0 , 𝑥 ∈ Σ𝑎,

(6.39)

−∆𝜓
(2)
𝑛+𝑖 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓

(2)
𝑛+𝑖 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(2)
𝑛+𝑖

𝜕𝜈
= 𝜆0𝜓

(2)
𝑛+𝑖 + 𝜓

(1)
0

𝑖∑︁
𝑝=1

𝛼(2)
𝑝 𝜆

(2)
𝑖+𝑛−𝑝 + 𝜆

(2)
𝑛+𝑖𝜓

(2)
0 , 𝑥 ∈ Σ𝑎, 1 6 𝑖 6 𝑛− 1,

(6.40)

−∆𝜓
(2)
𝑛+𝑖 = 0, 𝑥 ∈ Π ∖ {0} , l𝜓

(2)
𝑛+𝑖 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕𝜓
(2)
𝑛+𝑖

𝜕𝜈
= 𝜆0𝜓

(2)
𝑛+𝑖 +

𝑖−𝑛∑︁
𝑘=0

𝜆
(2)
𝑛+𝑘𝜓

(2)
𝑖−𝑘 + 𝜓

(1)
0

𝑖∑︁
𝑝=1

𝛼(2)
𝑝 𝜆

(2)
𝑖+𝑛−𝑝+

+ 𝜆
(2)
𝑛+𝑖𝜓

(2)
0 + 𝛼

(2)
𝑖 𝜆(1)𝑛 𝜓

(1)
0 , 𝑥 ∈ Σ𝑎, 𝑖 > 𝑛.

(6.41)

By Lemma 4.1 and the definition of function 𝑧0, one can see easily that for each number

𝑌
(2,2)
0 and for some 𝜇

(2)
2 there exists a solution 𝑣

(2)
2 to boundary value problem (6.26) with the

differentiable asymptotic expansion at infinity:

𝑣
(2)
2 (𝜉) =𝑋

(0,2)
2 (𝜉) + 𝛼

(2)
1 𝑋

(0,1)
1 (𝜉) + 𝛼

(2)
2 𝑋

(0,1)
0 (𝜉)+

+ 𝑌
(2,2)
0 𝜌−𝑛+2 +

∞∑︁
𝑗=1

𝑌
(2,2)
𝑗 (𝜉)𝜌−𝑛+2−2𝑗,

(6.42)

where 𝑌
(2,2)
𝑗 are some polynomials 𝑗 > 1. This expansion specifies asymptotics (6.28).
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By rewriting asymptotic expansion at infinity for the function 𝜀2𝑣
(2)
2 (𝜉) in the external vari-

ables specifies asymptotics at zero (6.34) for the coefficients of the external expansion:

𝜓(2)
𝑛 (𝑥) ∼𝑌 (1,2)

1 (𝑥)𝑟−𝑛 + 𝑌
(2,2)
0 𝑟−𝑛+2, 𝑟 → 0, (6.43)

𝜓
(2)
𝑛+𝑗(𝑥) ∼𝑌 (1,2)

𝑗+1 (𝑥)𝑟−𝑛−2𝑗 + 𝑌
(2,2)
𝑗 𝑟−𝑛−2𝑗+2, 𝑟 → 0, 𝑗 > 1.

By (6.38) and Corollary 3 the function

𝜓(2)
𝑛 (𝑥) = −

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)

𝑛∑︁
𝑞=1

𝑐𝑚,𝑞 ̃︀𝐸𝑞(𝑥) +
1

𝑐(𝜔)

𝑛∑︁
𝑚=1

𝜕𝜓
(2)
0

𝜕𝑥𝑚
(0)𝑐𝑚,0

𝑛∑︁
𝑞=1

𝑐0,𝑞 ̃︀𝐸𝑞(𝑥) ∈ 𝒜 (6.44)

is a solution to boundary value problem (6.39) for 𝜆
(2)
𝑛 determined by identity (2.19) and has

the differentiable asymptotic expansion

𝜓(2)
𝑛 (𝑥) =𝑌

(1,2)
1 (𝑥)𝑟−𝑛 + 𝑌

(2,2)
0 𝑟−𝑛+2 +

∞∑︁
𝑗=0

𝑋
(𝑛,2)
𝑗 (𝑥), 𝑟 → 0, (6.45)

for some explicitly calculated 𝑌
(2,2)
0 . This expansion specifies asymptotics (6.43). We stress

that by determining 𝑌
(2,2)
0 we also find 𝜇

(2)
2 and, therefore, we have completely found 𝑣

(2)
2 (𝜉).

At the next step of matching by the solvability condition of problem (6.40), (6.41) for 𝜓
(2)
𝑛+1 by

Lemma 4.4 we find 𝜇
(2)
3 , 𝜆

(2)
𝑛+1, 𝜓

(2)
𝑛+1, 𝑣

(2)
3 and specify the asymptotics at zero for the coefficients

of external expansion 𝜓
(2)
𝑛+1+𝑗 as 𝑗 > 1 and so forth.

As a result, we arrive at the following statement.

Lemma 6.2. There exist series (2.17), (6.27), (6.36), (6.24) such that the coefficients of
series (6.27) belong to 𝒜, solve boundary value problems (6.39), (6.40), (6.41) and have differ-
entiable asymptotic expansions at zero:

𝜓
(1)
0 (𝑥) =

∞∑︁
𝑘=0

𝑋
(0,1)
𝑘 (𝑥), 𝜓

(2)
0 (𝑥) =

∞∑︁
𝑘=1

𝑋
(0,2)
𝑘 (𝑥),

𝜓
(2)
𝑛+𝑖(𝑥) =

𝑖+1∑︁
𝑘=0

𝑌
(𝑖+2−𝑘.2)
𝑘 (𝑥)𝑟−2𝑘−𝑛+2 +

∞∑︁
𝑘=0

𝑋
(𝑛+𝑖,2)
𝑘 (𝑥), 𝑖 > 0,

while the coefficients of series (6.24) belong to 𝐶∞(R𝑛∖𝜔), are solutions to boundary value
problems (6.26) and at infinity, they have the differentiable asymptotic expansions:

𝑣
(2)
𝑖 (𝜉) =𝑋

(0,2)
𝑖 (𝜉) +

∞∑︁
𝑘=0

𝑌
(𝑖,2)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2 +

𝑖−1∑︁
𝑘=0

𝛼
(2)
𝑘+1𝑋

(0,1)
𝑖−𝑘−1(𝜉), 1 6 𝑖 < 𝑛,

𝑣
(2)
𝑖 (𝜉) =𝑋

(0,2)
𝑖 (𝜉) +

𝑖−𝑛∑︁
𝑘=0

𝑋
(𝑖−𝑘,2)
𝑘 (𝜉) +

∞∑︁
𝑘=0

𝑌
(𝑖,2)
𝑘 (𝜉)𝜌−2𝑘−𝑛+2 +

𝑖−1∑︁
𝑘=0

𝛼
(2)
𝑘+1𝑋

(0,1)
𝑖−𝑘−1(𝜉), 𝑖 > 𝑛.

Identities (2.19), (6.44), (6.29), (6.37) hold true.

We denote by ̂︀𝜆(1)𝜀,𝑁 , ̂︀𝑢(1)𝜀,𝑁(𝑥), ̂︀𝑣(1)𝜀,𝑁(𝜉) partial sums of series (2.16), (6.11) and (6.2) up to powers

𝑁 and by ̂︀𝜆(2)𝜀,𝑁 , ̂︀𝑢(2)𝜀,𝑁(𝑥), ̂︀𝑣(2)𝜀,𝑁(𝜉) we denote partial sums of series (2.17), (6.27), (6.36), (6.24).
Lemmata 6.1, 6.2 imply the following statement.

Lemma 6.3. The function ̂︀𝑢(𝑖)𝜀,𝑁 ∈ 𝒜 solves the problem

−∆̂︀𝑢(𝑖)𝜀,𝑁(𝑥) = 0, 𝑥 ∈ Π ∖ {0} , l̂︀𝑢(𝑖)𝜀,𝑁(𝑥) = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕̂︀𝑢(𝑖)𝜀,𝑁(𝑥)

𝜕𝜈
= ̂︀𝜆(𝑖)𝜀,𝑁̂︀𝑢(𝑖)𝜀,𝑁(𝑥) +𝑂(𝜀𝑁+1), 𝑥 ∈ Σ𝑎.
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The convergence ∫︁
Σ𝑎

(︁̂︀𝑢(𝑖)𝜀,𝑁 − 𝜓
(𝑖)
0

)︁2
𝑑𝑥′ → 0, 𝜀→ 0, (6.46)

holds true.
The function ̂︀𝑣(𝑖)𝜀,𝑁 ∈ 𝐶∞(R𝑛∖𝜔) is a solution to the boundary value problem

∆𝜉̂︀𝑣(𝑖)𝜀,𝑁(𝜉) = 0, 𝜉 ∈ R𝑛 ∖ 𝜔, ̂︀𝑣(𝑖)𝜀,𝑁(𝜉) = 0, 𝜉 ∈ 𝜕𝜔.

As 𝜀
1
2 < 𝑟 < 2𝜀

1
2 (or, the same, as 𝜀−

1
2 < 𝜌 < 2𝜀−

1
2 ) the differentiable identity

̂︀𝑢(𝑖)𝜀,𝑁(𝑥) − ̂︀𝑣(𝑖)𝜀,𝑁(𝜉) = 𝑂
(︀
𝑟𝑁+1 + 𝜀𝑁𝑟 + 𝜌−𝑁−1 + 𝜀𝑁𝜌−1

)︀
(6.47)

holds true.

We denote ̃︀𝑢(𝑖)𝜀,𝑁(𝑥) = ̃︀𝜒(𝑟𝜀−
1
2 )̂︀𝑢(𝑖)𝜀,𝑁(𝑥) + (1 − ̃︀𝜒(𝑟𝜀−

1
2 ))̂︀𝑣(𝑖)𝜀,𝑁 (︁𝑥𝜀)︁ .

Similar to Lemma 5.3 but using Lemma 6.3 instead of Lemma 5.2 one can prove the following
statement.

Lemma 6.4. The function ̃︀𝑢(𝑖)𝜀,𝑁 ∈ 𝐻1(Π𝜀) solves boundary value problem

−∆̃︀𝑢(𝑖)𝜀,𝑁 =𝐹
(𝑖)
𝜀,𝑁 , 𝑥 ∈ Π𝜀, l̃︀𝑢(𝑖)𝜀,𝑁 = 0, 𝑥 ∈ 𝜕Π ∖ Σ𝑎,

𝜕̃︀𝑢(𝑖)𝜀,𝑁
𝜕𝜈

= ̂︀𝜆(𝑖)𝜀,𝑁̃︀𝑢(𝑖)𝜀,𝑁 + 𝑔
(𝑖)
𝜀,𝑁 , 𝑥 ∈ Σ𝑎, ̃︀𝑢(𝑖)𝜀,𝑁 = 0, 𝑥 ∈ 𝜕𝜔𝜀,

(6.48)

where

‖𝑔(𝑖)𝜀,𝑁‖𝐿2(Σ𝑎) 6 𝐶𝜀𝑁+1, (6.49)

‖𝐹 (𝑖)
𝜀,𝑁‖𝐿2(Π𝜀) 6 𝐶𝜀

2𝑁+𝑛−2
4 , (6.50)

supp𝐹
(𝑖)
𝜀,𝑁 ⊂ 𝐵

2𝜀
1
2
∖𝐵

𝜀
1
2
. (6.51)

Multiplying equation (6.48) by the eigenfunction 𝜓
(𝑗)
𝜀 and integrating by parts over Π𝜀, by

boundary value problems (6.48), (2.2) we obtain

(𝜆(𝑗)𝜀 − ̂︀𝜆(𝑖)𝜀,𝑁)

∫︁
Σ𝑎

̃︀𝑢(𝑖)𝜀,𝑁𝜓(𝑗)
𝜀 𝑑𝑥′ =

∫︁
Π𝜀

𝐹
(𝑖)
𝜀,𝑁𝜓

(𝑗)
𝜀 𝑑𝑥+

∫︁
Σ𝑎

𝑔
(𝑖)
𝜀,𝑁𝜓

(𝑗)
𝜀 𝑑𝑥′. (6.52)

Similar to (5.49) and (5.50) we obtain that∫︁
Σ𝑎

𝑔
(𝑖)
𝜀,𝑁𝜓

(𝑗)
𝜀 𝑑𝑥′ = 𝑂

(︀
𝜀𝑁+1

)︀
,

∫︁
Π𝜀

𝐹
(𝑖)
𝜀,𝑁𝜓

(𝑗)
𝜀 𝑑𝑥 = 𝑂

(︁
𝜀

2𝑁+𝑛−2
4

)︁
. (6.53)

It follows from Theorem 2.1 that in each sequence 𝜀𝑘 → 0 we can choose a subsequence 𝜀𝑘𝑚
such that on this subsequence, the convergences

𝜓(𝑖)
𝜀 → 𝛼

(𝑖)
1 𝜓

(1)
0 + 𝛼

(𝑖)
2 𝜓

(2)
0 ,

(︁
𝛼
(𝑖)
1

)︁2
+
(︁
𝛼
(𝑖)
2

)︁2
= 1, 𝛼

(1)
1 𝛼

(2)
1 + 𝛼

(1)
2 𝛼

(2)
2 = 0

hold. Assume that 𝛼
(1)
1 𝛼

(1)
2 ̸= 0. Then 𝛼

(2)
1 𝛼

(2)
2 ̸= 0 and it follows from (6.52), (6.53), (6.46)

that

𝜆(1)𝜀 − ̂︀𝜆(1)𝜀,𝑁 = 𝑂
(︁
𝜀

2𝑁+𝑛−2
4

)︁
, 𝜆(1)𝜀 − ̂︀𝜆(2)𝜀,𝑁 = 𝑂

(︁
𝜀

2𝑁+𝑛−2
4

)︁
, ∀𝑁.
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The above is impossible since |̂︀𝜆(1)𝜀,𝑁 − ̂︀𝜆(2)𝜀,𝑁 | > 𝑐𝜀2, where 𝑐 > 0, by (2.16), (2.17) and (2.18).

Therefore, 𝛼
(1)
1 𝛼

(1)
2 = 𝛼

(2)
1 𝛼

(2)
2 = 0. Since the original sequence 𝜀𝑘 is arbitrary, it follows that

‖𝜓(𝑖)
𝜀 − 𝜓

(𝑖)
0 ‖𝐿2(Σ𝑎) → 0, 𝜀→ 0. (6.54)

And finally, (6.52) as 𝑗 = 𝑖, (6.53) and (6.54) yield that

𝜆(𝑖)𝜀 − ̂︀𝜆(𝑖)𝜀,𝑁 = 𝑂
(︁
𝜀

2𝑁+𝑛−2
4

)︁
.

Since 𝑁 is arbitrary, it implies expansions (2.16), (2.17). The proof of Theorem 2.3 is complete.
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