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STEKLOV TYPE PROBLEM IN A HALF-CYLINDER WITH A
SMALL CAVITY

D.B. DAVLETOV, D.V. KOZHEVNIKOV

Abstract. In the work we consider a Steklov type problem for the Laplace operator in
a n-dimensional cylinder with a small cavity. On the lateral surfaces one of three classic
boundary conditions is imposed, the boundary of the cavity is subject to the Dirichlet
condition, while on the base of the cylinder we impose the spectral Steklov condition. We
prove the convergence theorems for the eigenvalues of this problems as the small parameter,
the diameter of the cavity, tends to zero. We construct and justify the complete asymptotic
expansions in the small parameter converging both to a simple or a double eigenvalue of
the limiting problem, which is the problem without the cavity.
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1. INTRODUCTION

The studying of the eigenvalues of the boundary value problems for elliptic operators in
domains with a small cavity has a rather long history. In [I], the estimate for the rate of
the convergence of a Dirichlet eigenvalue for the Laplace operator in a three-dimensional do-
main with a small cavity. Later similar results were obtained in [2, 3, 4]. Then in [5], there
were constructed complete asymptotic expansions for the first eigenvalues and corresponding
eigenfunctions in two- and three-dimensional domains with small cavities.

The asymptotics of the solution to an elliptic boundary value problem with a small cavity
on the spectrum of the limiting problem was obtained in [6]. The boundary value problems
for elliptic operators in the elasticity theory with small holes were studied in works [7, [,
9, 10]. In the case of Neumann conditions on the boundary of the small cavity, in [7], the
complete asymptotic expansions for the eigenvalues of the perturbed boundary value problem
were constructed. In work [§], there was proven the convergence of the eigenelements of the
Dirichlet problem to the eigenelements of the corresponding limiting eigenvalue, while in [9] [10]
there were constructed two-terms asymptotics w.r.t. a small parameter in two- and three-
dimensional cases, respectively. The complete asymptotics for the eigenvalues of the Steklov
problem for the Laplace operator in domain with a small cavity were constructed in [11].

In the present work we study a Steklov type problem for the Laplace operator in an n-
dimensional cylinder containing a small cavity. On the later surface we impose one of the
classical boundary conditions (Dirichlet or Neumann or Robin condition), on the boundary of
the small cavity we impose the Dirichlet condition, while the base of the half-cylinder is subject
to the Steklov condition. Such issues arise in boundary value problems for the Laplace operator
in a domain perforated along a part of the boundary [12]. Similar problems in half-strips and
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half-cylinders with singularly perturbed boundary conditions arose earlier in problems with
frequent alternation of boundary conditions [13] 14, [15].

In conclusion we mention that the emergence of the eigenvalues from the thresholds of the
essential spectrum for the cylinders with small cavities and with the Dirichlet condition on the
boundary of these small cavities was studied in [16, [17].

2. FORMULATION OF THE MAIN STATEMENTS

Let 3 < n € N, ¥ be an (n — 1)-dimensional bounded domain with a smooth boundary,
II:=% X (a,4+00), —00 < a < 0, 3, := 3 x {a}, {0} € II, w be a bounded connected domain
in R" with a smooth boundary, w. = {z : e 'z € w}, 0 < e <« 1, II. = I\ @;. We consider a
singular perturbation of the following Steklov eigenvalue problem:

_Awo :07 x e H7 [¢0 = (}J2 + h) d]o = 0, x € 0Il \i(u
5 v (2.1)
%o o, xe %,
ov

where v is the outward normal, H, h > 0, H + h # 0. The perturbation is made by cutting out
the small hole w, in the half-cylinder and by imposing the Dirichlet condition on its boundary:

—A?/fs :07 VIS H€7 [we = 07 r € Jll \iau

2.2
aad;s :As¢s: S Eaa ¢s = 07 T C 8(4-)5' ( )

The eigenfunctions are considered in the class of functions with a finite Dirichlet integral:

/va0\2dx < 00, /|Vw€\2dx < 0.
1 I

By the Fourier method one can show easily that the eigenvalues A\g; < Ago < - < Agp < -+
and the associated orthonormalized in Ly(X,) eigenfunctions g to Steklov problem (2.1 are
determined by the identities:

Aok =V Ck; You(x) = d(a’)e Vsl (2.3)
where ' := (z1,...,2,1), (& and ¢, are the eigenvalues and the associated normalized in

Ly (%) eigenfunctions to the boundary value problem:
n—1
82
- Z ad)?k = G In X, [¢pr =0 on J%. (2.4)
T*
i=1 i

In the next section we shall prove

Theorem 2.1. Assume that the segment [A\_, A\,| contains no eigenvalues of Steklov problem
. Then for all sufficiently small €, this segment contains no eigenvalues of Steklov problem
)

Assume the multiplicity of an eigenvalue Ao of Steklov problem is equal to d. Then
Steklov problem has exactly d eigenvalues )\g), | = 1,d, (counting the multiplicities)
converging to A\g as € — 0.

The corresponding projectors Py and P. satisfies the convergence P. — Py as € — 0 in
Ly(X%,).

The main content of the work is the proof of the following Theorems and by the
method of matching of asymptotic expansions [18, [19] 20].

Before we proceed to the formulations of these statements, we introduce some notations.
Hereafter, r = |z, |5, is the area of the unit sphere in R™.
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By 2,(z), ¢ = 0,n, we denote harmonic in R™\ @ functions decaying at infinity and satisfying
the boundary conditions:

zo(x) =1, () =2, m=1,n on Ow.

It is well-known that these functions have differentiable asymptotic expansions:
n D
z(T) =cgor ™" + Z CapTpr "+ Z Z;q)(x)r_m_"“, r— 00, (2.5)
p=1 i=2

where Zi(q) (z) are homogeneous harmonic polynomials of degree ¢ with an index q. The constant
o0 = c(w) > 0 is called the harmonic capacity, while the constants ¢, 4, m,q = 1,n, are called
the coefficients of the dipole form associated with a polarization [21].

Integrating by parts in the right hand sides of the identities

0= [ (o= 2@ -~ @) do,

{r<R}\w

3
I
E

0= / (Tm — 2m(2))A(1 — 2z0(x))dz, m = 1,n,
{r<R}\w
as R — +oo, it is easy to show that
Cmj = Cim, Jym=1,n, (n —2)emo = com, m=1,n. (2.6)
By these identities, the n x n-matrices C(w) and C(w) with the entries Cm,q and

~ Cm,0€0,q
Cm,q - Cm,q - C(W) )

m,q=1,n,

are symmetric.

Theorem 2.2. Let \y be a simple eigenvalue of Steklov problem , Yo be the associated
normalized in Ly(%,) eigenfunction.

Then the eigenvalue A\, of perturbed Steklov problem converging to Ao has the asymptotic
expansion

Ae = Ao +e"72 i € X244, (2.7)
where -
Mz = @) [Su] (n — 2)03(0). (2.8)
If ¥ (0) = 0, then

An—o =0, (2.9)
An_1 =0, (2.10)
An = [Sn] Viho(0)C(w) Vo (0). (2.11)

Remark 2.1. It is obvious that if w is the unit ball centered at the origin, then

20(x) = r~ "2 () = Tpr™™, m=1,n.

By shifting and dilating the coordinate system, one can show easily that in the case when w is
a ball of radius R centered at the point (0,...,0,t), then matrices C(w) and C(w) are diagonal
and

oo =c(w) = R"2,

. 2.12
Cnn :Rn_2<R2 + (TL - 2)t2)7 Cjj = fcvj,j = gn,n = Rn7 J=1n- L. ( )
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2) (2.13)
respectively.

Remark 2.2. If (; is a simple eigenvalues of boundary value problem , then by
identities (@ and become
An—2 =c(w) |Sp| (n — 2)62(1\/?%5%(0)7
Aumz =R"721S,] (n = 2)e*Vo 6 (0),
Ao =R"72(S,] VS (R2V/ 6, (0))2 + (R? + (n — 2)t7) (u02(0))
respectively, where V'¢ stands for the vector with the components
9¢
3xj ’
In the work we also construct the complete asymptotic expansion for the eigenfunction . of
Steklov problem ([2.2]) associated with the eigenvalue A.. However, by Theorem , the limiting

value for 1. is known and it is unique up to the sign and is equal to the eigenfunction 1)y of the
limiting Steklov problem (2.1)).

Remark 2.3. In the work we consider both the case of simple and multiple eigenvalue. Since
all the arguments for the double eigenvalue are easily adapted for the case of a n-multiple
eigenvalue, for the simplicity of the presentation we construct the asymptotic expansions for a
double eigenvalue.

If )y is a double eigenvalue of problem , it follows from Theorem that there are two
options for the eigenvalues of perturbed problem converging to A\g. These are either two
simple eigenvalues or one double eigenvalue, or for different values of € one of these options
hold true. And even if two simple eigenvalues AY and AP converge to \g, it does not impl
that the associated normalized in Ly(X,) eigenfunctions wél) and wéz) have limits. Theorem
just ensures that from each sequence €, — 0 one can choose a subsequence 5, — 0 such that
the convergence ¥/ — ¥ holds true in Ly(,), where ¢ are orthonormalized in Ly(5,)
eigenfunctions of problem associated with \g. However, generally speaking, these limits
can vary subject to the choice of sequence ¢, — 0.

In the work we consider the most general case:

Therefore, in this the identities (2.8) and become
M—z =R"72[S,] (n — 2)15(0),

Iy

A =R"72|S,| (RQ\W/JO(O)F + (n — 2)t? 87(0)

j=1n—-1

467 (0)] + 1457 (0)] # 0. (2.14)
Then it is obvious that these eigenvalues can be orthonormalized in Ly(%,) such that
GO £0, U0 =0, (2.15)

We shall prove the following

Theorem 2.3. Let \y be a double eigenvalue of problem , wél) and ¢é2) be the associated
eigenfunctions satisfying condition and orthonormalized in Lo(X,) in accordance with

E10).
Then there exist two simple eigenvalues A and AP of perturbed Steklov problem
converging to Ag. These eigenvalue have the asymptotic expansions

Agl) :>\0 + €n_2 Z 57:)\,(11_)2_,_7;, (216)
=0
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A =), + " f: e (2.17)

where B
A, = efw) 53] (n - 2) (4P(0) > 0, (2.18)
AP =18, Vi (0)C(w) Vi (0). (2.19)

The associated eigenfunctions wéj) converge to w(()j) in Ly(X,).

Remark 2.4. In particular, it follows from the above theorem that if condition holds
true, then under the considered perturbation, a double eigenvalue \g splits into two simple
eigenvalues and the associated eigenfunction converge to the eigenfunctions of Steklov problem

orthonormalized in Lo(X,) in accordance with .

Remark 2.5. If w is a ball of radius R centered at the point (0,...,0,t), then by (2.19),
1dentities and become
2

Ny = B2 500 (0 = 2) (47(0))

A = R[S,

) (2.20)
v )] >0,

respectively.

Remark 2.6. If ;, = (k41 ts a double eigenvalue of boundary value problem and the
associated eigenfunctions are orthonormalized in Lo(X) such that ¢x(0") = 0, ¢r41(0") # 0, then

by identities (2.18) and (2.2(}) become
MYy =c(w) [Sa (n — 2)e* VS @3(0),
MYy =R"2S,| (n — 2)e*V5 g2 (0),
AP =R"[8,] VS (IV/ g1 (0 + G4 (0))

respectively.

3. PROOF OF THEOREM [2.1]

We introduce the space H'(II) as the completion by the norm
1/2

|wl| ey = /|Vw|2 dx+/w2da:’ (3.1)
i

Ya

of the functions in C“(ﬁ_) possessing a finite Dirichlet integral. The subset of functions in
H(IT) vanishing on 911 \ %, is denoted by H'(II; I\ 3,). The space H'(II.) is defined as the

completion by norm
1/2

|| gy = / V| da + /w2dx’ (3.2)
e Za
of the functions in C*°(II,) possessing a finite Dirichlet integral. The subset of the functions in
H(I1.) vanishing on dw, (on dw.UATI\Y,) is denoted by H*(II.; dw,) (by H'(IL.; Ow.UIII\X,)).
The boundary value problems

_ U
—~AUy=0, zell, [Wy=0 =zedll\I,, a—VO+U0:f, T EY,, (3.3)
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and o
—AU, =0, x € 11, (U, =0, x € Ol \ X,
oU. (3:4)
5 = T € Y, U. =0, T € Jw,,
v

will be treated in the generalized (weak) sense. That is, let f, f. € Lo(¥,). Then as h =0 (as
H =0), an element of H'(II) (an element of H'(II; 9T\ ¥,)) is called a generalized solution to
boundary value problem (3.3) if for each v € H*(II) (for each v € H'(IT; 911\ X,)) the following
identity

/VUOVvdx + / Uopvdz' = /fvdx (3.5)
I Y
holds true. As hH # 0, an element of H'(II) is called a generallzed solution to the boundary
value problem ([3.3)) if for each v € H'(II) the identity

/VUOVUCZJH—H_lh / Uovds—l—/Uovdx —/fvd:c (3.6)
I OI\Z, Ya

holds true. In the same way, as h = 0 (as H = 0), an element U, € H'(Il.; Ow.) (an element
U. € H'(II; 0w, U OIT \ 5,)) is called a generalized solution to boundary value problem (i3.4)
if for each v € H'(IL.; Ow,) (for each v € H'(IL.; Ow. U OII \ ¥,)) the identity

/ VU.Vodz + / U.vdy' = / fovda! (3.7)

holds. As hH # 0, an element U. € HY(I1; &ue) is called a generalized solution to boundary
value problem (3.4)) if for each v € H(II,; Ow,) the identity

/VU€Vvdx+H_1h / UUdS—l—/Ude —/favdx (3.8)
1L

OT\E, Za
holds true.

It is obvious that if we extend a function in H'(Il.; Ow.) (in H'(Il; dw.UOII\ ¥,)) by zero in
W, it belongs to H(IT) (belongs H'(IT; I\ X,)). For these extensions, we keep their original
notations.

Substituting v = Uy and v = U, into , and into , , we obtain the apriori
estimates

10|y < 1 f 1 Lacs) Ul rramy < l|fallL2 (3.9)
It implies the uniqueness of solutions to boundary value problems (3.3] and .

Separating variables, we show easily that the sought solution to boundary value problem

(3.3) can be represented as

[e.9]

e Véen=a) (3.10)

where (u,v)g is the scalar product in Ly(X).
Let us prove the solvability of boundary value problem (|3.4 . We denote by (u,v); the scalar
product in H'(IL.). Then integral identity (3.7) is written as

(U.,v), = [ fovdx'. (3.11)
/

For each fixed f. € Ly(X), the right hand side is a linear bounded functional on the Hilbert
space H'(II.; 0w, ) (on the Hilbert space H'(II; 0w, U I\ 3,)). This is by the Riesz theorem
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there exists the unique element F. € H'(II,; Ow.) (element of F, € H(IL.; w. UOII\ %,)) such
that

/favdx' = (F.,v),

for each v € HY(Il,; Ow,) (each v € HY(Il; dw. U AII \ 3,)). By it follows that U. = F,
that is, boundary value problem ({3.4]) is uniquely solvable as h = 0 and H = 0. In the same
way, by using integral identity we prove the unique solvability of boundary value problem
as hH # 0.

We denote by Ty : La(3,) — Lo(X,) the linear operator mapping a function f into the
restriction of solution Uy of boundary value problem (3.3]) on X,, that is, (see (3.10]))

Tof == Zéﬁjl ) (3.12)

And by T. : Ly(3,) — Lo(X,) we denote the linear operator mapping a function f. into the
restriction of solution U, of boundary value problem on Y,.

Since fr, — f in Lo(X,) as k — oo, and the operator Tj is compact by the compactness of
the embedding of H'(IT) in Ly(%,), we have the convergence

T()fk — T()f in LQ(E ) as k — oo. (313)
Lemma 3.1. Let v be an arbitrary function in C®(II) (in C*°(I1) vanishing on OI \ 3,)

possessing a finite Dirichlet integral. Then there exist functions v. € H UIL; Ow.) (functions
v. € H'(IL,; Ow. UL\ X,)) such that ||v — ve| gy — 0 as e — 0.

Proof. Without loss of generality, we assume that the domain w; is located in the ball of radius
e centered at the origin. Let Y(f) be an infinitely differentiable cut-off function vanishing as

t < 1 and being one as t > 2. It is easy to check that the functions v.(z) = X <%> v(x) satisfy

the statement of the lemma.

For R > 0 we denote II(R) = ¥ x (a, R),

]| e (i ry) = / |Vw|2dx—|—/w2d:):'

(R) Ya

1/2

Since, obviously, [|w|[rair)) < lwllmay, and [[wllwmery < C(R)||lwllmqery) by [22 Ch. 1L
Sect. 5, Thm. 5], then
lwllwimeryy < C(R)[|wll g - (3.14)
Lemma 3.2. [f
fe—=f in Ly(X,) as e—0,

for the solutions to boundary value problems and the convergence

T.fe = Tof in L(X,) as e&—0, (3.15)
holds true.

Proof. By the weak compactness of a bounded set in a Hilbert space (see, for instance, [23, Ch.
2, Sect. 3]), estimates and and the compact embedding of W3 (TI(R)) into Lo(3,),
from each sequence ¢, —> 0 we can choose a subsequence (which, without loss of generality,

is assumed to coincide Wlth sequence {ex}) such that on this sequence
U.—U, in HY(I) as e=g¢, =0,

. (3.16)
U.— U, in LyX,) as e —0,
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and U, € H'(T) if U, € H'(Il.; Ow,) and U, € H(IL; 011 \ %,) if U. € HY(II,; Ow. UIIT \ X,).

It remains to show that U, = Uy. Then the arbitrary choice of the original sequence &y, k—) 0
—00

will imply convergence . Let v be an arbitrary function in C*°(II) (in C*°(II) vanishing
on OIT\ X,) possessing a finite Dirichlet integral, the functions v, satisfy Lemma . Passing to
the limit as ¢ — 0 in (3.7 and for v = v,, by and by Lemma , by the definition
of the space H'(IT) and H*(II; OIT\ X,) we obtain that the function U, is a generalized solution
to boundary value problem . And since the solution to boundary value problem is
unique, we have U, = U,. O

Lemma 3.3. As ¢ — 0, the convergence 1. — Ty holds true in the sense of the operator
norm.

Proof. In order to prove the lemma, it is sufficient to prove the uniform convergence
1Tef = Tof Loz =0 (3.17)

e—0
for functions f normalized in Ly(X%,).
We assume the opposite. Then there exists a number 6 > 0, a sequence ¢, — 0 as k — 00
and a sequence of normalized in Ly(3,) functions fj such that

T2, fe = To fillrasa) > 6. (3.18)
Since a bounded set is weakly compact, without loss of generality we can assume that
Je—f
in Ly(3,). By (3.18)) and the triangle inequality we get the inequality
1Tz fr = Tof lzaa) + 1 Tof = TofellLacza) > 9, (3.19)
which contradicts (3.13]) and Lemma |3.2] O

Since boundary value problems ({3.3) and (3.4) are uniquely solvable, there exist the inverse
operators Sy = T, ' and S, = T~ defined in Ly(¥). This lemma and [23, Ch. 4, Sect. 2] imply
the following statement.

Lemma 3.4. As ¢ — 0, the operator S. converges to the operator Sy in the generalized
sense.

Proof of Theorem[2.1]. It follows from the definition of the operators Sy and S. that the eigen-
values Ay and A, of these operators and the eigenvalues Ay and \. of Steklov problems and
are related by the identities \g = Ag — 1 and A\, = A, — 1, while the associated normalized
in Ly(X,) eigenfunctions coincide. By Lemma [3.4 and [23, Ch. 4, Thm. 3.16] this implies the
statement of the theorem. O

4. AUXILIARY STATEMENTS

We recall that X ,gq) (), Yk(q)(a:) and Z ,iq)(:v) are homogeneous harmonic polynomials of degree
k with an index ¢ indicating the function, for which they are written.

Lemma 4.1. For each harmonic polynomial V there exists a solution V € C*°(R"™\@) to the
boundary value problem

AV =0, ze€R"\, V=0 uz€oiuw, (4.1)

having a differentiable asymptotic expansion

V(z) =V(z) + Z Zi(x)r— 2t r— 00. (4.2)
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Proof. Tt follows from [I8, Ch. 3, Sect. 1] that the boundary value problem
Av=0, ze€R"\w, v=-V, z€dw,
is solvable in the class of decaying as r — oo function and the differentiable asymptotic expan-

sion of the solution is of the form

v(x) = Z Zi(x)r 22— o0,
i=0

Therefore, Steklov problem 1} has the solution V = V + v with asymptotics 1} as r —
Q. [

We denote by A the subset of functions u(x) in the class C>°(II1\{0}) such that u(x)Y(rR)
is an element of H'(II) for each sufficiently large R > 0. We recall that Y(¢) is an infinitely
differentiable cut-off function vanishing as ¢ < 1 and being equal to one as ¢t > 2.

Lemma 4.2. Let \y be a simple eigenvalue of Steklov problem , Yi(x) be an arbitrary
harmonic polynomial, F' € C*(X,). Then there exists a constant u, for which the Steklov
problem

—AFE =0, x € 1Il\ {0}, [E=0, x€dll\3x%,,
O (4.3)
E :)\oE + F+ ,M¢0, T € Ea,

is solvable and a solution is orthogonal to the function vy in Ly(X,), and E € A and has the
following differentiable asymptotic expansion

E(x) = Y;(x)r %" 4 Z Xi(z), x — 0. (4.4)
k=0

Proof. We seek E(x) as

E(x) = (1= X(rR)) Y;(x)r ="+ 4 E(x), (4.5)
where R is a~sufﬁciently large positive number. Substituting (4.5 into (4.3]), we obtain the
problem for F(z):

~AE=F, zell\{0}, (E=0, zedll\X,,

oF B (4.6)
% :)\0E+ F +,L“7D(), T € Ea;

where F € C°(IT). Separating variables, it is easy to show the existence of a number pu, for
which a solution E(z) to problem exists, belongs to C°°(II) N H'(II) and is defined up to
a term at)o(x) with an arbitrary a. Then for an appropriate choice of a function satisfies
the statement of the lemma. O]

It follows from the definition of spaces H'(IT) and A that for 1y(z) and each function E(z)
solving problem (4.3)), the identities

oE

(o) g (@) + [ B S22

ox,,

+ B

— 0, (4.7)

(37) Ty —>00

hold true.

Corollary 1. There ezist functions £, € A, ¢ = 0,n, as r — 0, having the differentiable
asymptotic expansions:

Ey=r"""4) " Xy(x), (4.8)
k=0
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En=x,r "+ Z Xi(z), m=1n, (4.9)
k=0

and being the solutions to the boundary value problems

—AE, =0, z e 11\ {0}, (£, =0, z € Il \ X,
OF (4.10)
a_yq :)\OEq + Mq%, MRS Em
as
fo = |Snl(n — 2)1h(0), (4.11)
fin = 18,1 522(0), 10 =T (112)

Proof. In view of Lemma [4.2]it is sufficient to check identities (4.11)) and (4.12). Let us prove
(4.11)). Let Bs be the ball of radius § < 1 centered at the origin. Then integrating twice by
parts, we obtain

0= / AEol/JodZE =

(6~ ")\Bs s
— aEO awo , aEO awo .
— / (al’n¢0 - al'nEO) dx’ — / ( 67“ wO - 87” EO d3—|—lu0.
en=0"1 r=4§
The Taylor series of the function ¥y(x) at zero is
dol@) =3 X (@), =0,
N "9 (4.14)
Y
XO@) =vof0), X0) = 3 S 0y
m=1 m

Substituting (4.7)), (4.8]) and (4.14)) into (4.13) and passing to the limit as § — 0, we obtain
identity (4.11)). Identity (4.12)) can be proved in the same way. O

Similar to Lemma [4.2] we prove

Lemma 4.3. Let Ay be a double eigenvalue of Steklov problem , w(()l) and zp(‘f) be the as-
sociated orthonormalized in Ly(X,) eigenfunctions, Y;(x) be an arbitrary harmonic polynomial,
FeC® (ia). Then there exist constants u'?), for which the Steklov problem

—AFE =0, x eI\ {0}, [E=0, x€dll\3x%,,

OF
5;=%E+F+um%“+M”§% =

is solvable and the solution is orthogonal to the functions w(()i) in Ly(X,) and E € A and it has
differentiable asymptotic expansion .

Similar to Corollary [I| but using Lemma instead of Lemma [4.2 one can prove

Corollary 2. Let \g be a double eigenvalue of Steklov problem , w(()l) and 1/1(()2) be the
associated eigenfunctions orthonormalized in Ls(X,) and satisfying . Then there exist
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functions E, € A, ¢ = 0,n, having differentiable asymptotic expansions (@, asr — 0
and solving the boundary value problems

—AE, =0, x eI\ {0}, (E,=0, x€dll\x%,,
% =By + pVi) + 1Py e, (419)
as
us” =15, (n = 2)u"(0), ug’ =0,
) :|sn|gig) (0), m=Tm i=12 (4.16)

In its true, Corollary [2| and Lemma imply the following two statements.

Corollary 3. Let Ay be a double eigenvalue of Steklov problem , 7,0(()1) and 1/)(()2) be the
associated eigenfunctions orthonormalized in Ly(3,) and satisfying . Then the function

En(2) = Ep(2) 4 01 (2) € A, m=1,n,

has the differentiable asymptotic expansion

e 24 o)
En(2) =2t ™ + 0 "+ Y Xi(2), O = Om ., m=1,n,
; (n —2)45”(0)
as v — 0 and solves the boundary value problem
~AE,, =0, xell\{0}, (E, =0, z€dll\3,,
OB,

. :)\OEm + /ng)wéma HS Eaa

ov
for MS,? determined by identity .
Lemma 4.4. Let \y be a double eigenvalue of Steklov problem 7 ¢él) and ¢(()2) be the

associated eigenfunction orthonormalized in Lo(X,), Y;(x) be an arbitrary harmonic polynomial,
j=1, Fe(C™ (fa). Then there exists a function E € A orthogonal to the functions w(()z) m
Ly(X,) solving Steklov problem

~AE =0, xzell\{0}, (E=0, zcoll\%,,

oF ~
8_ :)\0E + F+ /Lw((f), T e Ea,
v

and having differentiable asymptotic expansions:

En(x) =x,r " 4+ or " + ZXk(x), m=1n, r—0,
k=0
for some d and p.

5. PROOF OF THEOREM [2.2]

Outside a neighbourhood of the cavity, it is natural to seek an approximation U(x, ¢) (external
expansion) for the function 1. as U(z,e) = ¢o(z). In the vicinity of w, it is natural to seek
an approximation V' (x, ) (internal expansion) for the function 1. as an expansion in functions

depending on the variable £ = ze~1.
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Denote p = [£|. Rewriting the right hand side in (4.14) in terms of the variable £, we have
- o - k y(0)
Uz, €) & to(x) = to(0) + emzl B (0&m + ;g x0©),  pe=r—0.

Thus, following the method of matching asymptotic expansions [I§], we seek the internal ex-
pansion as

V(§,€) :Uo( +€U1 +Z€ Uk (51)
where
00(©) ~XO() = v0(0), 0a(€) ~ X0 =S 2D 06, 5 oo,
= Oy (5.2)

w(&) ~X0), k=2, p— oo

Substituting (5.1)) into (2.2)), passing to the variable ¢ and equating the coefficients at the
like powers of ¢, we obtain the following boundary value problems for vy

AEUkZO £ER"\w, v =10 éeaw. (53)

Remark 5.1. Here A¢ stands for the Laplace operator in the variable . Since below in the
equations for the coefficients of the internal expansions the Laplace operator is used only in
such sense, for the sake of simplicity we shall omit the subscript & in Ag.

The function

vo(§) = 1ho(0)(1 = 20(¢)) (5.4)
is a solution to boundary value problem ([5.3) having the asymptotic expansion
o Y(O) 3
vo(€) :XéO) + Z p;i+rgg’ p—r 0, (55)
i=0
%Y = —wo(0)ew), YO =027, k=1, (5.6)
which specifies required asymptotic expansion (5.2)) for vy(§).
Rewriting (5.5)) in the variables x = £, we obtain that
ARG 1
04 Zgn +i T;ZM 2 e r — o0. (5.7)

In view of this identity and in accordance with the method of matching asymptotic expansions,
the external expansion for the eigenfunction should be sought as

U(z,e) = to(x) + "2 e'hirna(z), (5.8)
=0
where
Yna(z) ~ Yo r "2 = g (0)c(w)r™*2, 1 =0, (5.9)
Pisno(@) ~ Y, Or 242 = _y (01 2O () 212 i1, r—0. (5.10)

Since the external expansion should describe the behavior of the eigenfunction almost in the
entire domain I (except a small neighbourhood of the hole), by analogy with (5.8)), it is natural
to seek the asymptotic expansion for the eigenvalue as series ([2.7)).
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Substituting series ) and ( into . and equating the coefficients at the like powers
of £, we obtain boundary value problem ) for ¢y and the following boundary value problems
for other coefficients of external expansion 1)

—Aty_9 =0, zell\ {0}, o =0, x€0ll\X,,
Oy (5.11)
12” 2 = Ao¥n-2+ Anotho, € T,
_Awnf2+i = 0, z e ll \ {O}, [wnf2+i = 0, x € 0l \Ea,
' (5.12)
% = )\O(pn72+i + )\n72+’iw07 T e Zav I<i<n— 37
_Awn72+i = 07 rell \ {0}7 [wn72+i = 07 x € Ol \iaa
s | (5.13)
% = Motn-24i T Anc2pilo + O Anarktik, TETa, iZn—2.
v k=0
By Corollary [1} the function
PYn-a(z) = —o(0)c(w) Ep(x) € A, (5.14)

solves boundary value problem ([5.11]) for A,_s determined by identity (2.8) and has the differ-
entiable asymptotic expansion

Yoa(z) = Vi Or 2 3" X (@), r 0, (5.15)

which specifies asymptotics ([5.9)).

Remark 5.2. Thus, we have proved the existence of functions vo(§) and ¥, _s(x) solving
boundary value problems and for A\,_o defined by identity @ and having asymp-

totics (W and (5.9 (-)

It is easy to see that in the class of functions orthogonal to g in Ly(X%,), the solution ¥, _s(x)
to boundary value problem with asymptotics (5.9 (E) 15 unique. However, it is also easy to
see that the solutions to problems and are not uniquely determined by the main
singularities at zero; for instance, we can add the term aEy(x) with arbitrary o.

In the same way, it is easy to see that the unique solution vo(§) to boundary value problem
with asymptotics s determined by identity . On the other hand, it is also easy
to see that as k > 1, the solutions vg(§) to boundary value problems with asymptotics
at infinity are determined non-uniquely; for instance, we can add the term azo(x) with
an arbitrary o.

Thus, we have constructed the leading terms vo(§), V¥n—2(x) and N\,—o for asymptotic expan-
stons , (@ and and we have determined the leading terms of the asymptotics at
infinity and at zero for the coefficients vi(§) and V¥, o k() as k = 1, respectively.

The matter of the further matching of series and is constructing the solutions
k(&) and oy (x) to boundary value problems and (5.19), such that if in (5.8)
we replace the coefficients o(x) and ¥, oy i(x) by their asymptotic expansion as r — 0 and
pass to the variable ¢ = e 'z and if in series we replace the coefficients v;(§) by their
asymptotic expansions as p — 00, then we obtain to same series.

The following statement is a key one for matching the asymptotic expansions.

Lemma 5.1. Let

Ve () = Wo(x) + "2 i Wy o(z), (5.16)
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= () (5.17)
=0
7) = Z X (x), (5.18)
U, (e Z YU () Z XU @), iz, (5.19)
P;(&) = )+ ZY( NEp 2 0<i<n—2, (5.20)
1—n+2 '
®i(¢) = XV(©) + > X+ ZY D(e)p2nt2  izn—2  (521)
=0

where X,gj), Yq(j) are arbitrary harmonic polynomials. Then

W (=€) = B4() (522)

There exist v; € C®(R™\wW), Yn_or; € A, i = 0, satisfying boundary value problems
and (5.11), (5.19), (5.15) for some \,_2y; and having asymptotic expansions

Un—opi(x) =V, _oy4(2), r—0, (5.24)

where Xéo) come from expansion at zero for the function vy(x), while other Xéj), Yq(j)

are some harmonic polynOmials.

Identities (2.8), (5.4) and - hold true.
If 9o(0) = 0, then zdentztzes . (2-10), (2-11) hold true and

vo(f) =0,  Yno(2) =0, (5.25)
8%

Z Gy, (06— 20(6)), (5.26)

Yn-1(z) = — Ep(z Z gfo 0)Cm,0- (5.27)

Proof. Identity ([5.22)) is checked by changing x = £ in ¥¢(z).
The statements of the lemma for \,,_5, v9(&) and ¥, _o(z) including identities (2.8)), (5.4 and
(5.14) have already been proved. We stress that since the functions 1g(x), vo(€) and 1, _o(x)

are found, then the same is true for the harmonic polynomials X lgo), Yk(o) and X ,gn_Z), k> 0.
It follows from the definition of ®;(§) that

@, (&) =X1"(€) + XV + v (©p T, n=3, (5.28)
k=0

®,(¢) )+ ZY pHE >3 (5.29)

where

3%
Z éhcm &
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in accordance with 1} Xél) is the determined constant from W,,_; for n = 3, and Yk(l) are
still arbitrary harmonic polynomials. It follows from the definition of the functions z, (see
(2.5))) that the function

Z 00 () — () + X1 = (€))7 =3 (5.30)
Z gfi —zm(§)), n>3 (5.31)

is a solution to boundary value problem (|5.3) having asymptotic expansions (5.23)), (5.20]),
d5.21|), (]5.28[), d5.29[) with some harmonic polynomials Y,j”(g ) and

o3 g% AP, e o
Tm
5’%
Z &Cm Cmo, 1> 3, (5.33)
Z gf Z ey — XS cogy n=3, (5.34)
m =1 q=1
81/10
Z axm ; Cmalq 1> 3. (5.35)

Having determined Y,j”(g), by Lemma we obtain that there exists a function ¢, ; € A
solving problem (|5.13) for n = 3 and problem (5.12)) for n > 4 for some A, ; and having

asymptotic expansion 1} for some harmonic polynomials X ,En_l)(x).

Then, having determined X ,g”_l)(x), by Lemma 4.1| we obtain that there exists a solution
vg € C°(R™\W) to boundary value problem having asymptotic expansion for some
harmonic polynomials Yk@) (€).

In its turn, having determined Yk(z) (£), by Lemma m we obtain that there exist a constant
)\ and a function ¢, € A such that v, is a solution to problem (5 as n = 4 and to problem

as n > 5 and has asymptotic expansion for some harmomc polynomials X (n )( )
and so forth.

Let 10(0) = 0. Then by (5.4)), (5.14)) and (2.8)) we get identities (5.25)), (2.9). Therefore, first,

G (5.36)
3" (€) =0, (5.37)
and, second, Xél) =0 asn =3 and by (15.32I), (IE) 33I), d5.34|), (I5.35|) we obtain that
3%
Cm,0 23, 5.38
Z 8xm 0, M (5.38)

y (e Z %o Z ol 133, (5.39)

axm g

Since 1(0) = A\,—o = 0, the function ,_;(x), determined by identity (5.27) has asymptotic
expansion (5.24)), (5.19), (5.36), (5-38) as i = 1. Thus, in accordance with Corollary [1] it solves
boundary value problem (5.12)) as n > 4 and boundary value problem (5.13) asn = 3 for \,,_; =
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0. That is, identity (2.10) holds true. In its turn, since 1(0) = ¥,,—2(z) = Ay—2 = A1 = 0,
the function

O
2_: Ox:z qz; aPal@) + Y3V By ()

has asymptotic expansion , -, (15.37)), - ) for 7+ = 2 and in accordance with Corol-
lary I 1]is solves boundary Value problem (|5. 12 as n > 4 and boundary value problem ({5.13]) as

n = 3 for A\, determined by identity ([2.11 O

We denote AaN, U- n(2), V- n(€) partial sums of series and . ) up to power N.
Lemma implies the following statement.

Lemma 5.2. The function u. n € A solves the boundary value problem

—Au. y(z) =0, zell\ {0}, . n(z) =0, x€0ll\X,,
%%—N(I) = Aenlen(@) + O(ENTY), 2 €T,
v
The convergence holds:
/ (G — ) de’ =0, 0. (5.40)
Ya

The function v, y € C*(R™\W) solves the boundary value problem
A n(§) =0, §€R"\w, U-n(€) =0, &€ dw.
Aser <r <22 (or the same, as 2 < p < 2e72) the differentiable identity holds:
Uen(2) = Oen(§) = O (P 4 eV 4 p NV NpTh). (5.41)
We denote
@) = K= 3 n(@) + (1 K= (2).

where, we recall, \(¢) is an infinitely differentiable cut-off function vanishing as t < 1 and
equalling to one as t > 2.

It follows from ((5.40|) and Theorem [2.1] that
/ﬂsyNwsdac' —1, —=0. (5.42)

Ya

Lemma 5.3. The function u. xy € H'(II.) is a solution to the boundary value problem

—Au. y =F. N, x € Il,, .y =0, x€dll\X,,
8152]\[ :B\\E,Nae,N + ge N, T € X, s n =0, T € dw,, (5.43)
where
e | o) < CNT, (5.44)
[ Fe vl oy < Ce = (5.45)
suppF. y C st%\BE%. (5.46)

Proof. All statements except (5.45)) and (5.46)) are implied directly by Lemma 5.2l By applying
the Laplace operator to the function u. n, we obtain that

Fon(z) = — (a&N (g) . @E,N(a;)) AX(re"3) — V (aE,N (g) . @g,N(x)) VX(re3).  (5.47)
This yields (5.46). In its turn, (5.47), (5.46) and (5.41)) imply estimate ([5.45]). O
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Multiplying equation ((5.43)) by the eigenfunction 1. and integrating by parts over Il., thanks
to boundary value problems ([5.43)), (2.2) we obtain

(As_XE,N>/ﬁ€,Nwedx/:/FE,Nwsdx+/gs,Nwsdxl~ (548)
Ea Hs Za
Since ||1e]|Ly(s.) = 1, by (5.44]) we obtain that
/g&]\/wgdw’ =0 ("), (5.49)
Ya

By the integral identity for the function 1. we have:

/|w€|2dx+71 / W2ds = A,
II.

O\Z,

where h =0if H =0 and h = ﬁ if H # 0. Therefore,

ey = / Vo de + / S <

ILe

Then, extending 1. by zero in w., by (3.14) we get ||¢EHW1(H(R)) < C. This is why it follows
2

from ([5.45)) and (5.46)) that
/ F.xtpedz = O <52N*4"’2) . (5.50)

e

It follows from (5.48)), (5.49)), (5.50) and ([5.42) that
A= Ao =0 (£757).

Since N is arbitrary, it proves ([2.7)). The proof of Theorem is complete.

6. PROOF OF THEOREM [2.3]

Hereinafter A is a double eigenvalue of Steklov problem (2.1)), and wél)(x) and zp(()2) (x) are
the associated orthonormalized in Ly(3,) eigenfunctions chosen in accordance with (2.15)). The

Taylor series for functions w(()s) (z) at zero are of the form:
! 0,1 2 0,2
(@) =S XV, P =3 x @), ro0,
k=0 —

XD (@) =g (0), X (2) = Z

(6.1)

Outside a neighbourhood of the cavity, we construct the external expansion U")(z, ¢) for the
eigenfunction zbél)(a:) for Steklov problem (2.2) as UM (z,¢) ~ [gl)(x). Rewriting (6.1) in the
variable &, we have

0
U(l)(x,a)%d}él)(x):¢61)(0>+EZ 0 §m+z kXOI) ), pe=r—0.
Following the matching method, we construct the 1nterna1 expansion as

(1)(5,5)—1)()( +5v —|—Z€ vk ), (6.2)
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where

v () ~XV(€) = 0P (0), p— oo,
o) ~X V(e Za% 0. p— o0, 63)

8xm

o) ~XOV(6), k=2, po oo

Substituting (6.2)) into (2.2)), passing to the variable ¢ and equating the coefficients at the

like powers of €, we obtain the boundary value problems for v,(cl):

AV =0 ceR"\w, oV =0 ¢eiw. (6.4)
The function
1 1
5(©) = " (0)(1 — 20(6)) (6.5)
is a solution to boundary value problem ([6.4] @ ) having the differentiable asymptotic expansion
0 0 1)
1 0 1
0(©) >+Z s P (6:6)
¥ = - wé”<o>c<w>, v =002, k=1, (6.7)
which specifies required asymptotics 1} for v(()l)(ﬁ ).
Rewriting now in variables z = €£, we obtain that
(0,1)
Y,
A = X e ) ©8)

=0

In view of this identity, similar to the previous section one can suggest to seek the external
expansion for the eigenfunction as

UD(z,¢) = iﬂ(()l)(x) + "2 Z Eiwﬁ)n_z(m)
=0

where
W () ~ YOV 2 = gD (0)e(w)r 2, r =0, (6.9)
O (@) ~ YO @) e 0, G20 (6.10)

But since in the considered case of the double eigenvalue A there is one more eigenfunction
wéQ) (x), we construct the external expansion as

U(l)(x’g) = wél)(x) + e Z sz—i-n o(2) + 51% Z az+18 (6.11)

=0

where the coefﬁcients wﬁ)n_z(x) have asymptotics , 6.10)), and agi)l are some constants.

Similar to , we seek the asymptotic expansion for eigenvalue AY as lb
Subst1tut1ng series and - into ( -, we obtain boundary value problems for the

coefficients of external expansion

—ApW, =0, zem\{o}, W, =0 zedl\%,,

) (6.12)

87;2_A¢ DA A 0 e s,
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_Al/}'r(Ll)Q—&-i - 07 rell \ {0} ) [wfll_)g_’_z - O, T e 81_1 \ia,

77Z)n 241 2) — 1
5 = Moty U0 YAy (6.13)
p:l
AW ) oMW P rew, 1<i<n—3,
Ay, =0, zen\{o}, W, =0 zedl\3%,
8V = A wn 2+1 + Z >\n 2+k¢z k + 77Z} Z a >\z+n 2— p (614)

a0, gl>+a§ PYCRVCE era, >n—2.
By Corollary 2] the function
iy (x) = —§ (0)e(w) Eo(z), ¢LY, € A, (6.15)

is a solution to boundary value problem 1} for )\21_)2 determined by identity ‘D and it
has the differentiable asymptotic expansion:

Uly(@) =Yg e 1y X (@), 0, (6.16)

=0
which specifies required asymptotics .

Remark 6.1. Thus, we have proved the existence of the functions vél)(f) and gbflle(x) being
solutions to boundary value problems and (6.12) for /\S_)Q determined by identity (2.18
and having asymptotics and .

Lemma 6.1. Let

T (z) = e~ 22 W @) el (@)Y al)e (6.17)
111(1) ZX (@ 1) \If(()2)(33) _ ZX£O,2) (z)
k=1
() ZY D (@) L N X (), iz,
k=0
Pl(g) =D ai(g), (6.18)
1=0

(&) =X"(©) + D ¥ "+2+Z L X9, 0<i<n-2,

i—n+2

(O =XV + Y XL+ Vs
k=0 k=0

1—2
+3 o) X006,  izn-2
k=0

where Xéj’p ), Y;](j’l) are arbitrary harmonic polynomials and 045-1) are arbitrary numbers. Then

T=l(e8) = (). (6.19)
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There exist vfl) € C*(R"\w), 1/)7(11_)2+i € A, i >0, satisfying boundary value problems
and (6.19), (6.15), (6.14]) for some )‘511—)2% and having differentiable asymptotic expansions

vy =oe),  p— oo, (6.20)
i) =00, (@), =0, (6.21)

where X 0) come from the expansion at zero (ﬂ) for the functions w(()s) (x), other Xéj’l), Y}}j’l)
are some harmomc polynomzals and a( )

Identities (-) and (6.15 hold

Proof. Identity (6.19) is checked by making the change r = &€ in U&!(x).
The statements of the lemma for ALV r/J(l) (x ) v(()l)(f ) have already been proved. We recall

n—2

are some numbers.

that since the functions 1/10 ( ) v(() (&) and wn_Q(x) are defined, the harmonic polynomials
X% y O and XYk >0, are known as well.
It follows from the definition of ®(¢) that

eV (&) =X1"V(©) + X" + Y Ve, n=3,
L (6.22)
26 =XV © + Dy 03,

and

8,7(€) =X"V(© + X+ XV 3 VO + VNP, n=3,
k=0

24 (€) =XV (©) + X + 3 VENQp T +aX(G, n=a, (6.23)

o) (€) =XV + VBV (©p P £ oVX0(e), n>4,

where Yk(l’l), Yk(Q’l), Xéo’l) are still arbitrary harmonic polynomials, and agl)

constant.

By Lemma there exists a solution v{" € C*>*(R™\@) to boundary value problem
having differentiable asymptotic expansion with some harmonic polynomials Yk(l’l)(§ ).

In particular having determined Y( &), by Corollary we obtain that there exists a func-
tion w ’, € A solving problem m dél%l} for some )\ 1 and a( ) and having differentiable
asymptotic expansion @b with some harmonic polynomials X ’gn L 1)(x).

In its turn, once agl and X (01 are determined we see that in 3)) only Y(2 Y are still
arbitrary. By Lemma {.1| there exists a solution o) e C>*(R"\w) to boundary value problem
1' having dif‘ferentiable asymptotic expansion (6.20)) for some harmonic polynom1als Y( )(5 ).

Once we find Yo(g’l)(f) (and also Yl(l’l)(f)7 YZ(M)( before), by Lemma 4 3| we obtain that

)ﬂl) 6. 13 for some /\ Y and oz(l) nd

having differentiable asymptotic expansion (|6.21)) for some harmonic polynomials X ,i ( ) and
so forth. O

is an arbitrary

there exists a function Qpﬁf) € A solving problem (6

We proceed to construotmg formal asymptotic expansions for the nvalue /\ and the

associated eigenfunction ¢ )(z). Since S ( ) = 0, similar to ), and
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(5.25)), (5.2)), in the critical case 1y(0) = 0, given a simple eigenvalue Ay, we construct asymptotic

expansion for the eigenvalue /\5;2) and the internal expansion for the eigenfunctions as {}
and

@ (¢ e) = evl?(€) Za‘ vk ) (6.24)
where
N
(2) 0

2 0,2
O ~XN, k22, oo
Substituting ((6.24)) into (2.2)), passing to the variable £ and equating the coefficients at the like

powers of £, we obtain boundary value problems for v,gl):

AP =0 ceR"\w, 0P =0 ¢cow. (6.26)

Similar to the external expansion (5.8)), (5.25) of the eigenfunction in the critical case 1y(0) =
0 for a simple eigenvalue \g and similar to external expansion 1) for the eigenfunction 1/J§1) (x)
for a multiple eigenvalue )y, we seek the external expansion for the eigenfunction 1/J§2)(x) as

o0

U (z,e) = o7 (x) + "~ 1Zw§i>n1 )+ eus (@)Y ale (6.27)

i=0
By matching the first term and the last sum in series (6.27) with series (6.24)) we specify

asymptotics (6.25):

oy
o?(€) ~X17(€) + o XY Z S (006 + a4 (0), p— oo,
k (6.28)
o (&) ~X (¢ Z PXOVE), k=2 p— .
=1
It follows from the definition of the functions z,(§) that the function
— Py (0)(1 - 6.29
Z o zm(€)) + a1 " (0)(1 = 20(8)) (6.29)
is a solution to boundary value problem (|6.26]) and it has the differentiable asymptotic expansion
0?6 = X°7(©) + o X+ Y VI p o ec, (6.30)
where
12 _ N~ o) 2)
Yy :_Z or (0)emo — o 1/10 ( Je(w), (6.31)
m=1 m
1.2) n a¢é2) n
Yio(g) = - Z o (0) Z Cmqq — 041 Z c0,48q> (6.32)
m=1 m q=1
(1.2) ou” ) 2),,(1) () 70
V@) == 0026 — a8 (04.7(€), k=2, (6.:33)
m=1 m

which specifies required asymptotics (6.28) for vf) (€).
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Rewriting the asymptotic expansion at infinity of the function 51)9) (€) in external variables,

we obtain the leading terms for the asymptotics at zero for the coefficients Q/Ji(i)n_l(l‘) of the
external expansion:

@/1(2) () ~ Y-(1’2) x r_”_2j+2, r—0, j=0. 6.34
n—1+j J

Substituting series and (| into , we obtain the boundary value problem for
2
¢n71(x)3

~AyP | =0, zell\ {0}, w2 =0, zedl\x,
81/191 (6.35)

“on —/\¢n 1+)\n1 07 T € X,

where )\ 1 = 0. But if Y (1,2) 7& 0, then by Corollary [2 I problem - - is insolvable for
all )\n ;- Hence, in view of . we obtain that Y =0,

(@) =0, (6.36)

2 _ 1 - aw((f) 0 6.37

= o) 2 Da U (030
n P (2) n 1 o

O =3 GO et o(w) £ % CmoZCOqfq (6.38)

We stress that once we determine 0452), by d6.29b, d6.31b, d6.32b, d6.33|) we find completely v?)
and Y, j > 0.

Substltutlng series and into , we obtain the following boundary value
problems for the coefﬁ01ents of external expansion :

~AYP =0, zell\{0}, WP =0, xear{\ia,

e (6.39)
AR L TN

ov
—AgY) =0, well\ {0}, W2, =0, xedl\,,
o, W (6.40)
a; = N2 4+ ;amm p+/\n+l¢o , TE€EY, 1<i<n—1,
—A@bnﬂ 0, zel\{0}, W =0 zecdl\I,
8; = )\01/17(11 + Z )\ﬁk + 1/10 Z af))\gi)n_er (6.41)

p=1
+ )\fﬂwo + a@))\g)qﬁén, T E Yy, 1 = n.

K3
By Lemma and the definition of function zj, one can see easily that for each number

Y0(2’2) and for some ,ug) there exists a solution v§2) to boundary value problem 1} with the

differentiable asymptotic expansion at infinity:
2 0,2 2) +(0,1 2) +(0,1
07(€) =X,"(6) + 0t XV () + 0 X"V () +
+ Y;J(Q»Q)p—n-i& + Z Yj(272) (g)p—n+2—2j,

j=1

(6.42)

where Yj(2’ ) are some polynomials j > 1. This expansion specifies asymptotics ((6.28]).
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By rewriting asymptotic expansion at infinity for the function 52v§2) (€) in the external vari-

ables specifies asymptotics at zero (6.34]) for the coefficients of the external expansion:

P (x) Y (@) 1 Y2 0, (6.43)
U (@) Y @) YR T 0, 2

By (6.38) and Corollary |3| the function

noo@ noo ) n
wff)(fv)Z—Z%(O)Zcm,qEq(va 1)26% (0)cmo Y cogBylx) €A (6.44)

C(w m=1 q=1

is a solution to boundary value problem 1} for \?) determined by identity || and has
the differentiable asymptotic expansion

WP (@) =Y @) Y 1 Y X @), 0, (6.45)
j=0
for some explicitly calculated YO(2’2). This expansion specifies asymptotics 1} We stress
(2,2)

that by determining Y;~" we also find ug) and, therefore, we have completely found vf) (€).

At the next step of matching by the solvability condition of problem ((6.40)), (6.41)) for %(12421 by

Lemma (4.4 we find ,Lbéz), /\7(1211, 1/17(321, v§2) and specify the asymptotics at zero for the coefficients
of external expansion 1/17321 +j as j 2 1 and so forth.
As a result, we arrive at the following statement.

Lemma 6.2. There exist series (2.17), (0.27), (0.30), (0.24) such that the coefficients of
series belong to A, solve boundary value problems (6.39), (6.40), (0.41]) and have differ-

entiable asymptotic expansions at zero:

1 0,1 2 02
@)=Y @), Wl ZX
k=0

i+1
(e ZY (R ettt SO s
k=0
while the coefficients of series (m belong to C*(R™\w), are solutions to boundary value
problems and at infinity, they have the differentiable asymptotic expansions:

o) 1—1
o€ =X + 3P ©Op T 1Y ol X0, 1<i<n
= k=0
i—n 0o i—1
, i—k, i, _2k—n , .
v?(€) =XV + Y X + Y V@ 43 el X0 e, izn
k=0 k=0 k=0

Identities (2.19), (6. 4_4|) 16.29), 463’/]; hold true.

We denote by )\6 N> Ug, J)V(x), SJ)\,(@ partial sums of series (2.16|), (6.11)) and (6.2) up to powers
N and by )\fN, Agv(x), 522])\](5) we denote partial sums of series (2.17)), (6.27)), (6.36)), (6.24).
Lemmata 6.1} [6.2] imply the following statement.

Lemma 6.3. The function uéN € A solves the problem

~ ATl () =0, z eI\ {0}, @ (x) =0, x€dll\Z,,
ou”
%—N()—)\ (@) +0(EM), zex,.

ov
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The convergence

. A\ 2
/ (aﬁ’}v _ wé“) dr' =0, -0, (6.46)

holds true. ‘
The function 65% € C*(R™\w) is a solution to the boundary value problem

AGIN(E) =0, €€RM\T, TN =0, £€dw.
Ase? <1 <22 (or, the same, ase 2 < p < 2e72) the diﬁerentiable identity
) (2) = BN (E) = O (PN 4+ eNr 4 p7 N 4 N ) (6.47)
holds true.

We denote

~(i ~r L\~ x
il (@) = X(reHalh (@) + (1= X))l (2)).
Similar to Lemmal5.3]but using Lemmal6.3]instead of Lemmal5.2 one can prove the following

statement.

Lemma 6.4. The function ﬁg\, € H(I1.) solves boundary value problem

—Aul) =FLY, rell, W=0  zedl\%,
duy _ 5 @ o (6.48)
“ov aNueN + 9e N T € X, u.y =0, T € Jw,,
where
198N oz, < CEMY, (6.49)
1E 2oy < O™, (6.50)

suppF(])v cB ;\BE

2

. (6.51)

— N

Multiplying equation (|6.48]) by the eigenfunction wéj and integrating by parts over Il., by

boundary value problems ((6.48)), (2.2)) we obtain

00 =30 [Wa0ar = [ FQud+ [ gutiar (652
Ea Il Ea
Similar to ((5.49)) and (5.50)) we obtain that
[dar 0@, [Flea=o (). (6.59)
P3N ILe

It follows from Theorem that in each sequence €, — 0 we can choose a subsequence ¢y,
such that on this subsequence, the convergences

, , , N 2 AN 2
wéz) N agl)w(()l) + @gl)w(g?)’ (a&”) + <a§)> =1, (1) ( ) +04(1) 2 _ g

hold. Assume that agl)ag) # 0. Then 0452)04%2) # 0 and it follows from (|6.52|), d6.53|), d6.46b
that

A3 =0 (5“7) L AL 3@ —0 (€L> . VN.

&,



86 D.B. DAVLETOV, D.V. KOZHEVNIKOV

The above is impossible since |XSJ)\, — XSJ)\J > ce?, where ¢ > 0, by (2.16), (2.17) and (2.18).
Therefore, agl)agl) = agz)af) = 0. Since the original sequence ¢y, is arbitrary, it follows that
108 = 6 sy = 0, &= 0. (6.54)

And finally, (6.52) as j =4, (6.53) and (6.54]) yield that
N =0 =0 (247

Since N is arbitrary, it implies expansions (2.16)), (2.17). The proof of Theorem [2.3]is complete.
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