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Abstract. In the work we consider a class of overdetermined system of second order

partial differential equations for one unknown function involving one or two second order

derivatives in the right hand side. We find the compatibility conditions and prove theorems

on existence and uniqueness of solutions involving at most six arbitrary constants.
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1. Introduction and formulation of the problem

In monograph [1], systems of first order partial differential equations with one unknown

function were considered. In [2] and [3], there were studied some second order quasilinear

system of equations for one unknown function. These studies were continued in works [4]–[6].

In the present work we consider nonlinear systems of four second order differential equations,

where the unknown function depends on three independent variables and the right hand sides

involve nonlinearly one or two of the derivatives Uxx, Uyy, Uzz, Uxy, Uyz , Uxz.

We restrict ourselves by considering one system in each group, namely:

Uxx, Uxy, Uxz, Uyz = f i(x, y, z, U, Ux, Uy, Uz, Uyy), i = 1, 4 (1.1)

and

Uxx, Uxy, Uxz, Uyz = f i(x, y, z, U, Ux, Uy, Uz, Uyy, Uzz), i = 1, 4. (1.2)

Using the same notation f i in systems (1.1) and (1.2) for the functions depending on various

amount of the arguments (8 and 9, respectively), is justified by the fact that these systems

are studied independently. In these systems U = U(x, y, z) is the unknown function which is

sought in class C4(Π0); here

Π0 = {(x, y, z) : | x− x0 |6 a, | y − y0 |6 a, | z − z0 |6 a}

for some a > 0.
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The main method of studying the above mentioned systems is replacing the first and second

order derivatives by new functions, passing to systems with more variables and establishing

connection with quite well studied total differential systems (TDS) (see, for instance, [2]).

2. Study of system (1.1)

We consider first system (1.1). By Π = Π(a, b) we denote a rectangle in space R8 introduced

by the inequalities:

|x− x0| 6 a, |y − y0| 6 a, |z − z0| 6 a, |U − U0| 6 b,

|Ux − U0

x | 6 b, |Uy − U0

y | 6 b, |Uz − U0

z | 6 b, |Uyy − U0

yy| 6 b.

Superscript “0” stands for the value of a function at point (x0, y0, z0). Let f
i ∈ C2(Π), i = 1, 4.

We make the change Ux = p(x, y, z), Uy = q(x, y, z), Uz = W (x, y, z), Uyy = qy = τ(x, y, z).

Then we have obvious identities: py ≡ qx, qz ≡ Wy and pz ≡ Wx. Under these changes system

(1.1) becomes:

Ux = P (x, y, z), Uy = q(x, y, z), Uz = W (x, y, z),

px, py, pz = f i(x, y, z;U, p, g,W, τ), i = 1, 3,

qx = f 2(x, y, z;U, p, g,W, τ), qy = τ, qz = f 4(x, y, z;U, p, g,W, τ),

Wx = f 3(x, y, z;U, p, g,W, τ), Wy = f 4(x, y, z;U, p, g,W, τ).

(2.1)

The identities for the mixed derivatives pyz = pzy, qyz = qzy, qxy = qyx and qxz = qzx by simple

transformations lead us to the equations:

f 2

WWz + f 2

τ τz − f 3

τ τy =f 3

y − f 2

z + f 3

Uq − f 2

UW

+ f 3

p f
2 − f 2

Pf
3 − f 3

q τ − f 2

q f
4 + f 3

Wf 4(≡ L1),
(2.2)

−f 4

τ τy + τz = f 4

y + f 4

Uq + f 4

p f
2 + f 4

q τ + f 4

W f 4(≡ L2), (2.3)

τx − f 2

τ τy = f 2

y + f 2

Uq + f 2

p f
2 + f 2

q τ + f 2

Wf 4(≡ L3), (2.4)

f 2

WWz + f 2

τ τz − f 4

τ τx =f 4

x − f 2

z + f 4

Up− f 2

UW + f 4

p f
1

− f 2

p f
3 + f 4

q f
2 − f 2

q f
4 + f 4

W f 3(≡ L4).
(2.5)

As f 2
W 6= 0 and f 2

τ f
4
τ − f 3

τ 6= 0, by (2.2)–(2.5) we find algebraically Wz, τy, τx and τz as

Wz, τy, τx, τz = f j(x, y, z, U, p, q,W, τ), j = 5, 8, (2.6)

where

f 2

Wf 5 = L4 − f 2

τL
2 + f 2

τ f
3,

(f 2

τ f
4

τ − f 3

τ )f
6 = L1 − L4 − f 4

τ f
3,

f 7 = L3 + fτf
2, f 8 = f 4

τ f
6 + L2.

(2.7)

Joining (2.6) and (2.1), we arrive at TDS w.r.t. five unknown functions. The identities for the

mixed derivatives pyz = pzy, qxy = qyx, qyz = qzy in systems (2.1) and (2.6) can be checked by

simple calculations; they also used in completion of the system. Other nine identities qzx = qxz,

pxy = pyx, pzx = pxz, Wxy = Wyx, Wyz = Wzy, Wxz = Wzx, τxy = τyx, τyz = τzy and τxz = τzx
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are finally transformed to the following functional relations:

H1(x, y, z;U, p, q,W, τ) ≡ f 2

z + f 2

UW + f 2

p f
3 + f 2

q f
4 + f 2

Wf 5 + f 2

τ f
8

− f 4

x − f 4

Up− f 4

p f
1 − f 4

q f
2 − f 4

Wf 3 − f 4

τ f
7 = 0,

H2(x, y, z;U, p, q,W, τ) = f 1

y + f 1

Uq + f 1

p f
2 + f 1

q τ + f 1

Wf 4 + f 1

τ f
6

− f 2

x − f 2

Up− f 2

p f1 − f 2

q f
2 − f 2

τ f
7 = 0,

H3(x, y, z;U, p, q,W, τ) ≡ f 1

z + f 1

UW + f 1

p f
3 + f 1

q f
4 + f 1

Wf 5 + f 1

τ f
8

− f 3

x − f 3

Up− f 3

p f
1 − f 3

q f
2 − f 3

Wf 3 − f 3

τ f
7 = 0,

H4(x, y, z;U, p, q,W, τ) ≡ f 3

y + f 3

Uq + f 3

p f
2 + f 3

q τ + f 3

W f 4 + f 3

τ f
6

− f 4

x − f 4

Up− f 4

p f
1 − f 4

q f
2 − f 4

Wf 3 − f 4

τ f
7 = 0,

H5(x, y, z;U, p, q,W, τ) ≡ f 4

z + f 4

UW + f 4

p f
3 + f 4

q f
4 + f 4

Wf 5

− f 5

y − f 5

Uf
2 − f 5

p f
2 − f 5

q τ − f 5

W f 4 − f 5

τ f
6 = 0,

H6(x, y, z;U, p, q,W, τ) ≡ f 3

z + f 3

UW + f 3

p f
3 + f 3

q f
4 + f 3

Wf 5

− f 5

x − f 5

Uf
1 − f 5

p f
1 − f 5

q f
2 − f 5

W f 3 − f 5

τ f
7 = 0,

H7(x, y, z;U, p, q,W, τ) ≡ f 7

y + f 7

Uq + f 7

p f
2 + f 7

q τ + f 7

W f 4 + f 7

τ f
6

− f 6

x − f 6

Up− f 6

p f
1 − f 6

q f
2 − f 6

Wf 3 − f 6

τ f
7 = 0,

H8(x, y, z;U, p, q,W, τ) ≡ f 6

z + f 6

UW + f 6

p f
3 + f 6

q f
4 + f 6

wf
5 + f 6

τ f
8

− f 8

y − f 8

Uq − f 8

p f
2 − f 8

q τ − f 8

W f 4 − f 8

τ f
6 = 0,

H9(x, y, z;U, p, q,W, τ) ≡ f 7

z + f 7

UW + f 7

p f
3 + f 7

q f
4 + f 7

Wf 5 + f 7

τ f
8

− f 8

x − f 8

Uf
1 − f 8

p f
1 − f 8

q f
2 − f 8

W f 3 − f 8

τ f
7 = 0.

(2.8)

Since (2.1) and (2.6) are obtained by equivalent transformations from (1.1), the initial con-

ditions for this system are defined by the formulae

[U ]0 = c1, [Ux]0 = c2, [Uy]0 = c3, [Uz]0 = c4, [Uyy]0 = c5. (2.9)

On the basis of the above described scheme of the study transforming a nonlinear system to a

quasilinear total differential system, the next theorem is proved.

Theorem 2.1. Let f i ∈ C2(Π), f 2
W 6= 0 and f 2

τ f
4
τ − f 3

τ 6= 0. If all nine conditions (2.8) and

α < min (a, b/M), M = max|f i| hold true identically w.r.t. U , Ux, Uy, Uz, Uyy, then problem

(1.1),(2.9) in Π(α, b) is uniquely solvable in C4(Π0).

In other words, under the conditions of Theorem 2.1, the manifold of solutions to system

(1.1) contains five arbitrary constants c1, c2, c3, c4 and c5.

Remark 2.1. Assume that one of conditions (2.8) does not hold identically and assume that

it leads to the relation τ = ϕ(x, y, z, U, Ux, Uy, Uz), ϕ ∈ C1(Π). Then the solution contains four

arbitrary constants c1, . . . , c4.

Let us provide two examples demonstrating Theorem 2.1 and Remark 2.1. As the first

example we consider an overdetermined system: Uxx = Uyy, Uxy = Uz, Uxz = −Uyy, Uyz = −Uyy.

After appropriate changes this system is reduced to TDS w.r.t. five unknowns U , p, q, W and
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τ : 




Ux = p, Uy = q, Uz = W,

px = τ, py = W, pz = −τ,

qx = W, qy = τ, qz = −τ,

Wx = −τ, Wy = −τ, Wz = τ,

τx = −τ, τy = −τ, τz = τ.

(2.10)

The assumptions of Theorem 2.1 hold true; in particular, relations (2.8) are satisfied identically.

Therefore, the considered system is compatible. It is easy to see that its solution is the function

U(x, y, z) = c1e
−x−y+z + c2(xy + z) + c3y + c4x+ c5.

As the second example, we consider the overdetermined system: Uxx = Ux, Uxy = Uz,

Uxz = −Uyy , Uyz = Uyy. It is reduced to TDS




Ux = p, Uy = q, Uz = W,

px = p, py = W, pz = −τ,

qx = W, qy = τ, qz = τ,

Wx = −τ, Wy = τ, Wz = τ,

τx = τ, τy = τ, τz = −τ.

(2.11)

All relations (2.8) hold true identically except the relation corresponding to the identity Pxy =

Pyx. This relation leads us to the equation τ +W = 0. By Remark 2.1 this system is reduced

to TDS for four unknown functions:





Ux = p, Uy = q, Uz = W,

px = p, py = W, pz = W,

qx = W, qy = −W, qz = −W,

Wx = W, Wy = −W, Wz = −W.

(2.12)

Therefore, the considered system is compatible; it is easy to see that its solution is the function

U(x, y, z) = −c1e
x−y−z + c2y + c3e

x + c4.

3. Study of system (1.2)

We proceed to nonlinear system (1.2). By Π = Π(a, b) we denote a rectangle in space R9

defined by the inequalities: |x− x0| 6 a, |y− y0| 6 a, |z− z0| 6 a, |U −U0| 6 b, |Ux −U0
x | 6 b,

|Uy − U0
y | 6 b, |Uz − U0

z | 6 b, |Uyy − U0
yy| 6 b, |Uzz − U0

zz| 6 b. Let f i ∈ C2(Π), i = 1, 4.

The change Ux = p(x, y, z), Uy = q(x, y, z), Uz = W (x, y, z), Uyy = qy = τ(x, y, z) and

Uzz = Wz = θ(x, y, z) transforms system (1.2) in the following quasilinear first order system




Ux = P, Uy = q, Uz = W,

Px = f i, Py = f 2, Pz = f 3,

qx = f 2, qy = τ, qz = f 4,

Wx = f 3, Wy = f 4, Wz = θ.

(3.1)

We note that the made change ensures py = qx, qz = Wy, pz = Wx identically. The identities

pxy = pyx, qxy = qyx, Wxy = Wyx, pxz = pzx, qxz = qzx, Wxz = Wzx, pyz = pzy, qyz = qzy,



62 R. PIROV

Wyz = Wzy lead us to the following nine equations

−f 2

τ τx + f 1

τ τy − f 2

θ θx + f 1

θ θy = f 2

x + f 2

Up+ f 2

p f
1 + f 2

q f
2 + f 2

W f 3

− f 1

y − f 1

Uq − f 1

p q − f 1

p f
2 − f 1

q τ − f 1

W f 4,

τx − f 2

τ τy − f 2

θ θy = f 2

y + f 2

Uq + f 2

p f
2 + f 2

q τ + f 2

W f 4,

−f 4

τ τx + f 3

τ τy − f 4

θ θx + f 3

θ θy = f 4

y + f 4

Up+ f 4

p f
1 + f 4

q f
2 + f 4

W f 3

− f 3

y − f 3

Uq − f 3

p f
2 − f 3

W f 4,

−f 3

τ τx + f 1

τ τz − f 3

θ θx + f 1

θ θz = f 3

x + f 3

Up+ f 3

p f
1 + f 3

q f
2 + f 3

Wf 3

− f 1

z − f 1

UW − f 1

p f
3 − f 1

q f
4 − f 1

W θ,

−f 4

τ τx + f 2

τ τz − f 4

θ θx + f 2

θ θz = f 4

x + f 4

Up+ f 4

p f
1 + f 4

q f
2 + f 4

Wf 3

− f 2

z − f 2

UW − f 2

p f
3 − f 2

q f
4 − f 2

W θ,

−f 3

τ τz + θx − f 3

θ θz = f 3

z + f 3

UW + f 3

p f
3 + f 3

q f
4 + f 3

Wθ,

−f 3

τ τy + f 2

τ τz − f 3

θ θy + f 2

θ θz = f 3

y + f 3

Uq + f 3

p f
2 + f 3

W f 4 − f 2

z

− f 2

UW − f 2

p f
3 − f 2

q f
4 − f 2

W θ,

−f 4

τ τy + τz − f 4

θ θy = f 4

y + f 4

Uq + f 4

p f
2 + f 4

q τ + f 4

W f 4,

−f 4

τ τz + θy − f 4

θ θz = f 4

z + f 4

UW + f 4

p f
3 + f 4

q f
4 + f 4

W θ.

(3.2)

Since in some neighbourhood of point (x0, y0, z0;U
0, U0

x , U
0
y , U

0
z , U

0
yy, U

0
zz) the rank of the 6×9

matrix ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−f 2
τ f 1

τ 0 f 2
θ f 1

θ 0

1 −f 2
τ 0 0 −f 2

θ 0

−f 4
τ f 2

τ 0 −f 4
θ f 3

θ 0

−f 3
τ 0 f 1

τ −f 3
θ 0 f 1

θ

−f 4
τ 0 f 2

τ −f 4
θ 0 f 2

θ

0 0 −f 3
τ 1 0 −f 3

θ

0 −f 3
τ f 2

τ 0 −f 3
θ f 2

θ

0 −f 4
τ 1 0 −f 4

θ 0

0 0 −f 4
τ 0 1 −f 4

θ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(3.3)

formed by the coefficients at the derivatives τx, τy, τz, θx, θy, θz is equal 6 (that can be checked

by straightforward calculations), by (3.2) we find

τx, τy, τz, θx, θy, θz = fk(x, y, z;U, p, q,W, τ, θ), k = 5, 10. (3.4)

We observe that functions fk, k = 5, 10, are expressed explicitly via functions f 1, . . . , f 4,

and their first partial derivatives. Joining (3.4) and (3.1), we arrive at TDS for six unknown

functions U , p, q, W , τ , θ:




Ux = P, Uy = q, Uz = W,

px = f 1, py = f 2, pz = f 3,

qx = f 2, qy = τ, qz = f 4,

Wx = f 3, Wy = f 4, Wz = θ,

τx = f 5, τy = f 6, τz = f 7,

θx = f 8, θy = f 9, θz = f 10.

(3.5)
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In system (3.5) equivalent to (1.2) first 12 identities for mixed derivatives hold true immedi-

ately while other six τxy = τyx, τyz = τzy, τxz = τzx, θxy = θyx, θyz = θzy, θxz = θzx after simple

transformations lead to six functional equations

H̃1(x, y, z;U, p, q,W, τ, θ) ≡ f 5

y − f 6

x + f 5

Uq − f 6

Up+ f 5

p f
2 − f 6

p f
1 + f 5

q τ − f 6

q f
2

+ f 5

Wf 4 − f 6

W f 3 + f 5

θ q − f 6

θ f
8 + f 5

τ f
6 − f 6

τ f
5 = 0,

H̃2(x, y, z;U, p, q,W, τ, θ) ≡ f 6

z − f 7

y + f 6

UW − f 7

Uf
4 + f 6

p f
3 − f 7

p f
2 + f 6

q f
4 − f 7

q τ

+ f 6

Wθ − f 7

W f 4 + f 6

τ f
7 − f 7

τ f
6 + f 6

θ f
10 − f 7

θ f
9 = 0,

H̃3(x, y, z;U, p, q,W, τ, θ) ≡ f 5

z − f 7

x + f 5

UW − f 7

Up+ f 5

p f
3 − f 7

p f
1 + f 5

q f
4 − f 7

q f
2

+ f 5

Wθ − f 7

W f 3 + f 5

τ f
7 − f 7

τ f
5 + f 5

θ f
10 + f 7

θ f
8 = 0,

H̃4(x, y, z;U, p, q,W, τ, θ) ≡ f 8

y − f 9

x + f 8

Uq − f 9

Up+ f 8

p f
2 − f 9

p f
1 + f 8

q τ − f 9

q fr
2

+ f 8

Wf 4 − f 9

W f 3 + f 8

τ f
6 − f 5

τ + f 8

θ f
9 − f 9

θ f
8 = 0,

H̃5(x, y, z;U, p, q,W, τ, θ) ≡ f 9

z − f 10

y + f 9

UW − f 10

U q + f 9

p f
3 − f 10

p f 2 + f 9

q f
4

− f 10

q τ + f 9

W θ − f 10

W f 4 + f 9

τ f
7 − f 10

τ f 6 + f 10

θ f 9 = 0,

H̃6(x, y, z;U, p, q,W, τ, θ) ≡ f 8

z − f 10

x + f 8

UW − f 10

U p+ f 8

p f
3 − f 10

p f 1 + f 8

q f
4 − f 10

q f 2

+ f 8

Wθ − f 10

W f 3 + f 8

τ f
7 − f 10

τ f 5 + f 8

θ f
10 − f 10

θ f 8 = 0.

(3.6)

It is clear that if in some neighbourhood of the point (x0, y0, z0;U0, p0, q0,W0, τ0, θ0) the identities

H i(x, y, z;U, p, q,W, τ, θ) ≡ 0, i = 1, 6, hold true, then system (3.5) is completely integrable

and we can apply total differential theory [7], [8] to the following problem with initial data:

[U ]0 = c1, [p]0 = c2, [q]0 = c3, [W ]0 = c4, [τ ]0 = c5, [θ]0 = c6,

which in comparison with original system (1.2) is transformed to the problem

[U ]0 = c1, [Ux]0 = c2, [Uy]0 = c3, [Uz]0 = c4, [Uxx]0 = c5, [Uzz]0 = c6. (3.7)

Theorem 3.1. Let f i ∈ C2(Π) and in some neighbourhood of the point

(x0, y0, z0;U
0, U0

x , U
0

y , U
0

z , U
0

xx, U
0

zz)

the identities H̃ i ≡ 0, i = 1, 6, hold true, where functions H̃ i are introduced by formulae (3.6).

Let α < min (a, b/M),M = max|f i|. Then problem (1.2), (3.7) in Π(α, b) is uniquely solvable

in class C4(Π0).

In particular, this theorem implies that under its assumptions, the manifold of the solutions

to system (1.2) contains six arbitrary constants c1, . . . , c6.
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