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ON DECAY OF SOLUTION TO LINEAR PARABOLIC

EQUATION WITH DOUBLE DEGENERACY

V.F. VIL’DANOVA

Abstract. We obtain the upper bound for the decay rate of the solution to the Dirichlet
initial boundary value problem for a linear parabolic second order equation with a double
degeneracy 𝜇(𝑥)𝑢𝑡 = (𝜌(𝑥)𝑎𝑖𝑗(𝑡, 𝑥)𝑢𝑥𝑖)𝑥𝑗 in an unbounded domain. For a wide class of
revolution domains we prove a lower bound. We adduce the examples showing that the
upper and lower bounds are in some sense sharp.

We prove the unique solvability of the problem in an unbounded domain by Galerkin’s
approximations method.

Keywords: parabolic equation with a double degeneracy, decay rate of a solution, upper
bound, existence of a solution.
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1. Introduction

Let Ω be an unbounded domain in space R𝑛, 𝑥 = (𝑥1, 𝑥2, . . ., 𝑥𝑛) ∈ R𝑛, 𝑛 > 2. In a cylindrical
domain 𝐷 = {𝑡 > 0 } × Ω we consider a linear second order equation

𝜇(𝑥)𝑢𝑡 =
𝑛∑︁

𝑖,𝑗=1

(𝜌(𝑥)𝑎𝑖𝑗(𝑡, 𝑥)𝑢𝑥𝑖)𝑥𝑗 , (1)

where weights 𝜇(𝑥) > 0 and 𝜌(𝑥) > 0 are measurable functions integrable over each bounded subset
of Ω: 𝜇, 𝜌 ∈ 𝐿1

loc(Ω). For symmetric coefficients 𝑎𝑖𝑗 = 𝑎𝑗𝑖 we impose the condition of the uniform
ellipticity: there exist positive constants 𝛾, 𝛾1 such that for each vector 𝑦 ∈ R𝑛 and almost each
(𝑡, 𝑥) ∈ 𝐷 the identities

𝛾|𝑦|2 6
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑡, 𝑥)𝑦𝑖𝑦𝑗 6 𝛾1|𝑦|2 (2)

hold true.
On the lateral boundary of cylinder 𝐷 we impose Dirichlet boundary condition:

𝑢(𝑡, 𝑥)
⃒⃒⃒
Γ
= 0, Γ = (0,∞)× 𝜕Ω. (3)

We shall deal with a generalized solution to problem (1), (3) subject to the initial condition

𝑢(0, 𝑥) = 𝜙(𝑥) ∈ 𝐿2(Ω, 𝜇𝑑𝑥). (4)

The present work is devoted to the studying the dependence of the decay rate as 𝑡 → ∞ of a
solution to problem (1), (3), (4) on the geometry of unbounded domain Ω and behavior of weights
𝜇, 𝜌 as 𝑥→ ∞.

The first studies of the decay rate of the solution to a mixed problem of second order uniformly
parabolic equation (𝜇 = 𝜌 ≡ 1) on the geometry of the unbounded domain were made by A.K. Guschin
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in works [1, 2]. For a wide class of domains there was established the estimate for the solution to the
second mixed problem:

|𝑢(𝑡, 𝑥)| 6
‖𝜙‖𝐿1(Ω)

𝑣(
√
𝑡)

, 𝑥 ∈ Ω,

where 𝑣(𝑟) = mes{𝑥 ∈ Ω : |𝑥| < 𝑟}. The sharpness of this estimate was proved. In particular, for the
solution of Cauchy problem this estimate becomes

|𝑢(𝑡, 𝑥)| 6 𝐶
‖𝜙‖𝐿1(R𝑛)

(
√
𝑡)𝑛

.

More complete studies of the dependence of the behavior at infinity of solution to the second mixed
problem on the geometry of the domain and on the initial function were made by A.V. Lezhnev in
[3]. V.I. Ushakov [4] obtained the results close to that by A.K. Guschin for the third mixed problem
in a non-cylindrical domain. Earlier in work [5] F.Kh. Mukminov proved the estimate for the decay
rate of solution to the first mixed problem for a second order uniformly parabolic equation and its
sharpness in the class of unboundedly monotonically increasing revolution domains was proved. In
work [6] there were obtained sharp estimates for solution to a forth and sixth order parabolic equation
with Rickyies condition on the lateral boundary of an unbounded parabolic domain.

We also mention work [7], where the dependence of the solution on the structure of nonlinearities
in equations was studied.

A more complete survey of results related to the subject of our work can be found in [6]–[14].
We proceed to formulating our result. We introduce the functions

𝜆(𝑟) = inf
𝑔∈𝐶∞

0 (Ω)
𝐹𝑟(𝑔), 𝐹𝑟(𝑔) =

∫︀
Ω[𝑟]

𝜌(𝑥)|∇𝑔|2𝑑𝑥∫︀
Ω[𝑟]

𝜇𝑔2𝑑𝑥
, (5)

where Ω[𝑟] = {𝑥 ∈ Ω | |𝑥| < 𝑟};

̃︀𝜆(𝑟) = inf
𝑔∈𝐶∞

0 (Ω)

∫︀
𝑆𝑟

𝜌(𝑥)|∇𝑔|2𝑑𝑆∫︀
𝑆𝑟

𝜌𝑔2𝑑𝑆
, (6)

where 𝑆𝑟 = {𝑥 ∈ Ω| |𝑥| = 𝑟}. It is obvious that function 𝜆(𝑟) is bounded on the interval 𝑟 > 𝑟0 if set
Ω[𝑟0] is non-empty.

In the next statement we discuss a generalized solution to problem (see Section 2).

Theorem 1. Let 𝑢(𝑡, 𝑥) be a solution to problem (1), (3), (4) with the initial function 𝜙 vanishing
as |𝑥| > 𝑅0. Then there exists a number 𝜈1 > 0 depending only on 𝑛, 𝛾1, 𝑅0 and 𝑇 and depending

also on functions 𝜆, ̃︀𝜆 such that for all 𝑡 > 𝑇 the inequality∫︁
Ω

𝜇(𝑥)𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶 exp

⎛⎜⎝−𝜈1

𝑟(𝑡)∫︁
𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠
⎞⎟⎠∫︁

Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥 (7)

holds true, where 𝑟 = 𝑟(𝑡) is an arbitrary continuous function satisfying the inequality

𝑡𝜆(𝑟) >

𝑟∫︁
𝑅0+1

√︁̃︀𝜆(𝑠) 𝑑𝑠.
Constant 𝐶 depends on 𝛾, 𝛾1 and on function ̃︀𝜆.

It is known that in the case of a planar angle Ω = {(𝑟, 𝜓)| 𝑟 > 0, 0 < 𝜓 < 𝛼} as 𝜇 = 𝜌 ≡ 1, the

decay rate of solution to problem (1), (3), (4) is power: 𝑢(𝑡, 𝑥) = 𝑂(𝑡−(𝜋/𝛼+1)) (see [5]). For such
situations (i.e., when the decay of solution is power) estimate (7) provides non-adequate result since
the exact value of constant 𝜈1 is not determined (i.e., exponent 𝑡 is not determined precisely).
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If inequality 𝜌(𝑥) 6 𝜇(𝑥) holds true for almost each 𝑥 ∈ Ω, we can obtain an estimate slightly

weaker than (7) without employing function ̃︀𝜆 (see Theorem 2 in Section 3).
We note that the theorem remains true if we replace domains Ω[𝑟], 𝑆𝑟 by Ω(𝑟) = {𝑥 ∈ Ω | 𝑥1 < 𝑟}

and 𝑆𝑟 = {(𝑥1, 𝑥′) ∈ Ω| 𝑥1 = 𝑟}. At that we assume that domains Ω(𝑟) are bounded for all 𝑟 > 0.
Formally function 𝑟(𝑡) = 𝑅0 + 1 satisfies the inequality in theorem. But it is clear that inequality

(7) becomes stronger if we choose the largest function 𝑟(𝑡) > 𝑅0 + 1 among admissible ones. In
the case when function 𝜆(𝑟) is continuous and positive at least at one point 𝑟 > 𝑅0 + 1, we define

function 𝑟(𝑡) as the largest among the roots of the equation 𝑡𝜆(𝑟) =
𝑟∫︀

𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠 (for sufficiently

large 𝑡 there exists at least one root). In the end of Section 3 we also provide a condition ensuring
the continuity of function 𝜆(𝑟). The same approach is applicable under the presence of the estimate
𝜆(𝑟) > ℎ(𝑟) with replacing 𝜆(𝑟) by a continuous function ℎ(𝑟). In the simplest case 𝜌 = 𝜇 = 1
function ℎ(𝑟) can be chosen by employing inequality (5.4) in [21, CH. II, Sect. 5], which in the case
mesΩ[𝑟] 6 (1− 𝜀)mes𝐵(𝑟), where 𝐵(𝑟) is the ball of radius 𝑟, is written as∫︁

Ω[𝑟]

𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝛽𝜀−2𝑟2
∫︁

Ω[𝑟]

|∇𝑢|2(𝑡, 𝑥)𝑑𝑥, 𝛽 > 0. (8)

It implies the inequality 𝜆(𝑟) > 𝜀2

𝛽𝑟2
. We also observe that inequality (8) applied to the cone with the

vertex at point 𝑂 and spherical basis 𝑆𝑟 instead of Ω[𝑟], gives the estimate ̃︀𝜆(𝑟) > 𝛿2(𝑟)/(𝛽𝑟2), where
1 − 𝛿(𝑟) = mes𝑛−1 𝑆𝑟𝑟

1−𝑛/𝜔𝑛, 𝜔𝑛 is the measure on the unit sphere. In particular, when function

𝛿(𝑟) decays fast enough, the inequality
𝑟∫︀

𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠 <∞ is possible and then estimate (7) becomes

meaningless.
In Section 4 we also provide examples of functions 𝑟(𝑡) for functions 𝜇, 𝜌 not being equal to 1. In

Section 5 we provide Theorem 2 on the lower bound of the non-negative solution in the case when
domain Ω is a revolution one. By the examples we show that inequality (7) of Theorem 1 is in some
sense sharp.

2. Existence and uniqueness of solution

We introduce the following notations: 𝐷𝑏
𝑎 = (𝑎, 𝑏)× Ω, 𝐷𝑇 = 𝐷𝑇

0 , 𝐷 = 𝐷∞
0 ,

‖𝑢‖2𝐷𝑇 ,𝜇 =

∫︁
𝐷𝑇

𝜇𝑢2𝑑𝑥𝑑𝑡, ‖∇𝑢‖𝐷𝑇 ,𝜌 =

∫︁
𝐷𝑇

𝜌|∇𝑢|2𝑑𝑥𝑑𝑡.

On the set of restrictions of functions in 𝐶∞
0 (𝐷𝑇

−1) on 𝐷
𝑇 we define the norms

‖𝑢‖2𝐻0,1(𝐷𝑇 ) = ‖𝑢‖2𝐷𝑇 ,𝜇 + ‖∇𝑢‖2𝐷𝑇 ,𝜌; ‖𝑢‖2𝐻1,1(𝐷𝑇 ) = ‖𝑢‖2𝐻0,1(𝐷𝑇 ) + ‖𝑢𝑡‖2𝐷𝑇 ,𝜇.

The completions of these liner normed spaces are denoted by 𝐻0,1(𝐷𝑇 ) and 𝐻1,1(𝐷𝑇 ). For the unique-
ness of the gradient of the functions in the introduced weighted space we impose the condition in work
[20]:

𝜌−1 ∈ 𝐿1
loc(Ω).

We defined space𝐻1(Ω) as the completion of space 𝐶∞
0 (Ω) by the norm ‖𝑢‖2𝐻1(Ω) =

∫︀
Ω

(𝜇𝑢2+𝜌|∇𝑢|2)𝑑𝑥.

A generalized solution to problem (1), (3), (4) in 𝐷𝑇 is a function 𝑢(𝑡, 𝑥) ∈ 𝐻0,1(𝐷𝑇 ) satisfying the
integral identity ∫︁

𝐷𝑇

(︂
− 𝜇𝑢𝑣𝑡 +

𝑛∑︁
𝑖,𝑗=1

𝜌𝑎𝑖𝑗(𝑡, 𝑥)𝑢𝑥𝑖𝑣𝑥𝑗

)︂
𝑑𝑥𝑑𝑡 =

∫︁
Ω

𝜇𝜙(𝑥)𝑣(0, 𝑥)𝑑𝑥 (9)

for each function 𝑣(𝑡, 𝑥) ∈ 𝐻1,1(𝐷𝑇 ).
Function 𝑢(𝑡, 𝑥) is a solution to problem (1), (3), (4) in 𝐷 if for each 𝑇 > 0 it is a solution to

problem (1), (3), (4) in 𝐷𝑇 .
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The generalized solution of problem (1), (3), (4) in 𝐷𝑇 exists and is unique. The existence can be
proved by Galerkin method (see, for instance, [21]).

We choose a set of linearly independent functions 𝑤𝑖(𝑥) ∈ 𝐶∞
0 (Ω) such that their linear span is

dense in 𝐻1(Ω). Without loss of generality we can assume that these functions are orthonormalized
in 𝐿2(Ω, 𝜇𝑑𝑥).

We seek Galerkin approximations in the form

𝑢𝑙(𝑡, 𝑥) =

𝑛∑︁
𝑖=1

𝐶 𝑙
𝑖(𝑡)𝑤𝑖(𝑥). (10)

We obtain the equations for the sought coefficients by the restriction∫︁
Ω

(𝜇(𝑥)𝑢𝑙𝑡𝑤𝑠 +
𝑛∑︁

𝑖,𝑗=1

𝜌(𝑥)𝑎𝑖𝑗(𝑡, 𝑥)𝑢
𝑙
𝑥𝑖
(𝑤𝑠)𝑥𝑗𝑑𝑥 = 0, 𝑠 = 1, 𝑙. (11)

Thanks to the orthonormaliaty of functions 𝑤𝑖, conditions (11) lead us to the system of ordinary
differential equations

(𝐶 𝑙
𝑖)

′ +

𝑛∑︁
𝑗=1

𝑏𝑖𝑗(𝑡)𝐶
𝑙
𝑗 = 0, 𝑖 = 1, 𝑛. (12)

We choose the initial conditions for system of differential equations (12) as

𝐶 𝑙
𝑖(0) = (𝜙,𝑤𝑖). (13)

Conditions (12), (13) determine the unique set of functions 𝐶 𝑙
𝑖(𝑡).

Let us prove the boundedness of set 𝑢𝑙 of Galerkin approximations in space 𝐻0,1(𝐷𝑇 ). We multiply
identities (11) by 𝐶 𝑙

𝑠 and sum they up. We obtain∫︁
Ω

(𝜇𝑢𝑙𝑡𝑢
𝑙 +

𝑛∑︁
𝑖,𝑗=1

𝜌𝑎𝑖𝑗(𝑡, 𝑥)𝑢
𝑙
𝑥𝑖
𝑢𝑙𝑥𝑗

)𝑑𝑥𝑑𝑡 = 0. (14)

Integrating (14) over 𝑡 ∈ (0, 𝑇 ) and employing condition (2), we get

1

2

∫︁
Ω

𝜇(𝑥)
[︁
(𝑢𝑙(𝑡, 𝑥))2 − (𝑢𝑙(0, 𝑥))2

]︁
𝑑𝑥+ 𝛾

∫︁
𝐷𝑇

𝜌(𝑥)|∇𝑢𝑙|2𝑑𝑥𝑑𝑡 6 0. (15)

It is obvious that

‖𝑢𝑙(0, 𝑥)‖2𝐿2(Ω,𝜇𝑑𝑥) =

𝑙∑︁
𝑖=1

(𝜙,𝑤𝑖)
2.

Then (15) can be rewritten as∫︁
Ω

𝜇(𝑥)𝑢𝑙(𝑡, 𝑥))2𝑑𝑥+ 2𝛾

∫︁
𝐷𝑇

𝜌(𝑥)|∇𝑢𝑙|2𝑑𝑥𝑑𝑡 6 ‖𝜙‖2𝐷𝑇 ,𝜇. (16)

It implies the boundedness of set 𝑢𝑙 in subspace 𝐻0,1(𝐷𝑇 ). This is why we can choose a subsequence

weakly converging in this space to some function 𝑢 ∈ 𝐻0,1(𝐷𝑇 ). In order to avoid cumbersome
superscripts, we assume that the sequence weakly converges itself.

We multiply (11) by function 𝑑𝑠(𝑡) ∈ 𝐶∞
0 (−1, 𝑇 ) and integrate over 𝑡 ∈ (0, 𝑇 ). By denoting

𝑣 = 𝑑𝑠𝑤𝑠, integrating by parts and passing to the limit as 𝑙 → ∞, we obtain∫︁
𝐷𝑇

⎛⎝−𝜇𝑢(𝑣)𝑡 +
𝑛∑︁

𝑖,𝑗=1

𝜌𝑎𝑖𝑗(𝑡, 𝑥)𝑢𝑥𝑖(𝑣)𝑥𝑗𝑑𝑥𝑑𝑡

⎞⎠ =

∫︁
Ω

𝜇𝜙(𝑥)𝑣(0, 𝑥)𝑑𝑥. (17)

We note that (17) is true not only for functions 𝑣 = 𝑑𝑠𝑤𝑠, but also for the sums of such functions. It

remains to mention that by functions 𝑣𝑚 =
𝑚∑︀
𝑠=1

𝑑𝑠𝑤𝑠, we can approximate each function 𝑤 in 𝐶∞
0 (𝐷𝑇

−1)

in the norm of space 𝐻1,1(𝐷𝑇 ).
Let us show the uniqueness of solution to problem (1), (3), (4).
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By 𝑣ℎ(𝑡, 𝑥) we denote the Steklov average of function 𝑣(𝑡, 𝑥):

𝑣ℎ(𝑡, 𝑥) =
1

ℎ

∫︁ 𝑡+ℎ

𝑡
𝑣(𝜏, 𝑥)𝑑𝜏,

which possesses the following properties:
1)(𝑣, 𝑢−ℎ) = (𝑣ℎ, 𝑢)𝐿2(R𝑛+1,𝜇𝑑𝑥𝑑𝑡), where (𝑣, 𝑢)𝐿2(R𝑛+1,𝜇𝑑𝑥𝑑𝑡) =

∫︀
R𝑛+1

𝜇𝑣𝑢 𝑑𝑥𝑑𝑡,

2) if 𝑣 ∈ 𝐻0,1(𝐷𝑇
0 ), then (𝑣ℎ)𝑥𝑖 = (𝑣𝑥𝑖)ℎ,

3) if 𝑣, 𝑣𝑡 ∈ 𝐿2(R
𝑛+1, 𝜇𝑑𝑥𝑑𝑡), then (𝑣𝑡)ℎ = (𝑣ℎ)𝑡,

4) if 𝑣 ∈ 𝐿2(𝐷
𝑇 , 𝜇𝑑𝑥𝑑𝑡), then for each 𝛿 > 0 the convergence 𝑣ℎ → 𝑣 is true in 𝐿2(𝐷

𝑇−𝛿, 𝜇𝑑𝑥𝑑𝑡) as
ℎ→ 0 (ℎ < 𝛿).

We substitute test function 𝑣−ℎ into integral identity (9), where 𝑣 belongs to space 𝐶∞
0 (𝐷𝑇−𝛿

0 ). It
is possible since 𝑣−ℎ ∈ 𝐶∞

0 (𝐷𝑇
0 ) as 0 < ℎ < 𝛿. Employing the properties of Steklov average, we get∫︁
𝐷𝑇

[︂
𝜇(𝑢ℎ)𝑡𝑣 + 𝜌

𝑛∑︁
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖)ℎ𝑣𝑥𝑗

]︂
𝑑𝑥𝑑𝑡 = 0. (18)

By passing to the limit we prove that the latter relation is true not only for 𝑣 ∈ 𝐶∞
0 (𝐷𝑇−𝛿

0 ), but also

for 𝑣 ∈ 𝐻0,1(𝐷𝑇−𝛿
0 ).

We note that identities (18) are of the form∫︁
𝐷𝑇

𝜇(𝑢ℎ)𝑡𝑣𝑑𝑥𝑑𝑡 = 𝑙ℎ(𝑣), (19)

where 𝑙ℎ(𝑣) is a linear functional in space 𝐻0,1(𝐷𝑇−𝛿
0 ).

Let us prove the uniform boundedness of linear functional 𝑙ℎ(𝑣) as |ℎ| < 𝛿0 in the unit ball of space

𝐻0,1(𝐷𝑇−𝛿
0 ).

We consider 𝑙ℎ(𝑣) and in view of the uniform ellipticity we have

|𝑙ℎ(𝑣)| =

⃒⃒⃒⃒
⃒⃒ ∫︁
𝐷𝑇−𝛿

𝜌

𝑛∑︁
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖)ℎ𝑣𝑥𝑗𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 ∫︁

𝐷𝑇−𝛿

⎛⎝𝛾1
ℎ

𝑡+ℎ∫︁
𝑡

𝜌|∇𝑢(𝜏, 𝑥)|𝑑𝜏

⎞⎠ |∇𝑣(𝑡, 𝑥)|𝑑𝑥𝑑𝑡

6
∫︁

𝐷𝑇−𝛿

𝛾1𝜌

⎛⎜⎝ 1

ℎ2

⎛⎝ 𝑡+ℎ∫︁
𝑡

|∇𝑢(𝜏, 𝑥)|𝑑𝜏

⎞⎠2

+ |∇𝑣(𝑡, 𝑥)|2

⎞⎟⎠ 𝑑𝑥𝑑𝑡.

Thus, we obtain that |𝑙ℎ(𝑣)| 6 𝐶. The boundedness of linear functional 𝑙ℎ(𝑣) is proved.

We substitute function 𝑣 = (𝑢ℎ1 − 𝑢ℎ2)𝜒(𝑡1, 𝑡2) ∈ 𝐻0,1(𝐷𝑇−𝛿
0 ) into identities (19)ℎ1–(19)ℎ2 , where

𝜒(𝑡1, 𝑡2) is the characteristic function of the interval (𝑡1, 𝑡2). We obtain⃒⃒⃒⃒
⃒⃒
𝑡2∫︁

𝑡1

∫︁
Ω

𝜇((𝑢ℎ1)𝑡 − (𝑢ℎ2)𝑡)(𝑢ℎ1 − 𝑢ℎ2)𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒⃒ = |(𝑙ℎ1 − 𝑙ℎ2)(𝜒(𝑢ℎ1 − 𝑢ℎ2))| 6 𝐶‖(𝑢ℎ1 − 𝑢ℎ2)‖𝐻0,1 6 𝜀.

The latter inequality for sufficiently small ℎ1, ℎ2 is implied by the convergence 𝑢ℎ → 𝑢 in space
𝐻0,1(𝐷𝑇−𝛿

0 ). After integration in 𝑡 we obtain∫︁
Ω

𝜇(𝑢ℎ1 − 𝑢ℎ2)
2(𝑡1, 𝑥)𝑑𝑥 6

∫︁
Ω

𝜇(𝑢ℎ1 − 𝑢ℎ2)
2(𝑡2, 𝑥)𝑑𝑥+ 2𝜀.

We integrate this inequality in 𝑡2 ∈ [𝑡1, 𝑇 − 𝛿] :

(𝑇 − 𝛿 − 𝑡1)

∫︁
Ω

𝜇(𝑢ℎ1 − 𝑢ℎ2)
2(𝑡1, 𝑥)𝑑𝑥 6 𝜇‖(𝑢ℎ1 − 𝑢ℎ2)‖2𝐿2(𝐷𝑇−𝛿,𝜇𝑑𝑥) + 2𝜀(𝑇 − 𝛿 − 𝑡1).
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Since 𝑢ℎ → 𝑢 in 𝐿2(𝐷
𝑇−𝛿, 𝜇𝑑𝑥), as 𝑡1 < 𝑇 − 2𝛿 we have the inequality∫︁

Ω

𝜇(𝑢ℎ1 − 𝑢ℎ2)
2(𝑡1, 𝑥)𝑑𝑥 6

𝜀1
𝛿

+ 2𝜀.

It yields the uniform fundamentality in 𝑡1 of the family of functions 𝑢ℎ(𝑡1, 𝑥) in 𝐿2(Ω, 𝜇𝑑𝑥). This is
why 𝑢ℎ(𝑡, 𝑥)⇒ 𝑢(𝑡, 𝑥) in 𝐿2(Ω, 𝜇𝑑𝑥) as ℎ→ 0 uniformly in 𝑡 ∈ [0, 𝑇 − 2𝛿] and the limiting function is
continuous in 𝑡 in the norm of 𝐿2(Ω, 𝜇𝑑𝑥). We substitute function 𝑣 = 𝑢ℎ𝜒(0, 𝑡) into (18):∫︁

𝐷𝑡
0

(𝜇(𝑢ℎ)𝑡𝑢ℎ + 𝜌

𝑛∑︁
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖)ℎ(𝑢ℎ)𝑥𝑗 ) 𝑑𝑥𝑑𝑡 = 0.

Integrating the first term in 𝑡 and passing to the limit as ℎ→ 0, we obtain

1

2

∫︁
Ω

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥+

∫︁
𝐷𝑡

0

𝜌

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗𝑑𝑥𝑑𝑡 =
1

2

∫︁
Ω

𝜇𝑢2(0, 𝑥)𝑑𝑥. (20)

If we prove that 𝑢(0, 𝑥) = 𝜙(𝑥), the latter relation coincides with (9). In order to do it, we substitute
a continuous test function 𝑣(𝑡, 𝑥) = 𝜂( 𝑡𝜀)𝜓(𝑥) into identity (9), where 𝜂(𝑡) = 1− 𝑡 as 𝑡 ∈ [0, 1] and 𝜂(𝑡)

is constant in other intervals (−∞, 0], [1,∞). Since 𝑣𝑡 = −1
𝜀𝜓(𝑥), identity (9) becomes

𝜀∫︁
0

∫︁
Ω

1

𝜀
𝜇(𝑥)𝜓(𝑥)𝑢(𝑡, 𝑥)𝑑𝑡𝑑𝑥+ 𝑙𝜀(𝜓) =

∫︁
Ω

𝜇(𝑥)𝜙(𝑥)𝜓(𝑥)𝑑𝑥,

where linear functional 𝑙𝜀(𝜓) tends to zero as 𝜀→ 0. Passing to the limit as 𝜀→ 0, we obtain∫︁
Ω

𝜇(𝑥)𝜓(𝑥)𝑢(0, 𝑥)𝑑𝑥 =

∫︁
Ω

𝜇(𝑥)𝜙(𝑥)𝜓(𝑥)𝑑𝑥

for each 𝜓 ∈ 𝐶∞
0 (Ω). It proves the intitial condition 𝑢(0, 𝑥) = 𝜙(𝑥).

3. Upper bound for solution

We first establish two estimates characterising the decay of solution to problem (1), (3), (4) as
|𝑥| → ∞.

Proposition 1. Let 𝑢(𝑡, 𝑥) be a solution to problem (1), (3), (4) with initial function 𝜙 vanishing
outside the ball of radius 𝑅0. Suppose that the inequality

𝜌(𝑥) 6 𝐶𝜇(𝑥), 𝐶 > 0, 𝑥 ∈ Ω, (21)

holds true. Then for all 𝑡 > 0, 𝑟 > 𝑅0 the inequality∫︁
Ω∖Ω[𝑟]

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝑒 exp
(︁
− ̃︀𝐶𝑡−1(𝑟 −𝑅0)

2
)︁∫︁

Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥 (22)

holds true, where ̃︀𝐶 is a constant depending on 𝛾 and 𝛾1.

Proof. Let 𝜉(𝜏, 𝑟, 𝜚) be a continuous nonnegative function vanishing as 𝜏 6 𝑟 and being one as 𝜏 >
𝑟 + 𝜚. In the remaining interval it is linear: 𝜕𝜉

𝜕𝜏 = 1
𝜚 . We substitute a test function 𝑣 = 𝜂(𝑥; 𝑟, 𝜚)𝑢ℎ,

𝜂(𝑥) = 𝜉2(|𝑥|, 𝑟, 𝜚) into identity (18) to obtain∫︁
𝐷𝑇

[︂
1

2
𝜇(𝑢2ℎ𝜂)𝑡 +

𝑛∑︁
𝑖,𝑗=1

𝜌(𝑎𝑖𝑗𝑢𝑥𝑖)ℎ(𝜂𝑢ℎ)𝑥𝑗

]︂
𝑑𝑥𝑑𝑡 = 0. (23)

We passing to the limit as ℎ→ 0 in identity (23):∫︁
Ω

𝜇(𝑢2(𝑇, 𝑥)− 𝜙2(𝑥))𝜂𝑑𝑥+ 2

∫︁
𝐷𝑇

𝑛∑︁
𝑖,𝑗=1

𝜌𝑎𝑖𝑗𝑢𝑥𝑖(𝜂𝑢)𝑥𝑗𝑑𝑥𝑑𝑡 = 0.
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By the condition supp𝜙 ⊂ Ω[𝑅0], for each 𝑟 > 𝑅0 and 𝜚 > 0 we obtain easily the inequality∫︁
Ω

𝜇𝜂𝑢2(𝑇, 𝑥)𝑑𝑥+ 2

∫︁
𝐷𝑇

𝜌
𝑛∑︁

𝑖,𝑗=1

𝜂𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗𝑑𝑥𝑑𝑡 6 −2

∫︁
𝐷𝑇

𝜌
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢
𝜕𝜂

𝜕𝑥𝑗
𝑑𝑥𝑑𝑡

6 2

∫︁
𝐷𝑇

𝜌𝛾1|𝑢∇𝑢∇𝜂|𝑑𝑥𝑑𝑡.
(24)

Rewriting the latter, we have∫︁
Ω

𝜇𝜂𝑢2(𝑇, 𝑥)𝑑𝑥+

∫︁
𝐷𝑇

𝛾𝜌𝜂|∇𝑢|2𝑑𝑥𝑑𝑡 6 2

∫︁
𝐷𝑇

𝜌𝛾1|𝑢∇𝑢∇𝜂|𝑑𝑥𝑑𝑡.

Employing the structure of function 𝜂, we obtain easily the inequality∫︁
Ω∖Ω[𝑟+𝜚]

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥+

𝑡∫︁
0

∫︁
Ω∖Ω[𝑟+𝜚]

𝜌𝛾|∇𝑢|2𝑑𝑥𝑑𝑡 6 𝐶

𝜚2

𝑡∫︁
0

∫︁
Ω[𝑟+𝜚]∖Ω[𝑟]

𝜌𝑢2𝑑𝑥𝑑𝑡.

We introduce the notation

𝐻𝑟(𝑡) =

∫︁
Ω∖Ω[𝑟]

𝜇𝑢2(𝑥, 𝑡)𝑑𝑥+

𝑡∫︁
0

∫︁
Ω∖Ω[𝑟]

𝜌𝛾|∇𝑢|2𝑑𝑥𝑑𝑡

and employ condition (21) to establish that

𝐻𝑟+𝜚(𝑡) 6
𝐶

𝜚2

𝑡∫︁
0

𝐻𝑟(𝜏)𝑑𝜏. (25)

We apply inequality (25) inductively to sequence 𝑟𝑖, 𝑖 = 0, 1, 2, . . .𝑘, 𝑟𝑖+1 = 𝑟𝑖 + 𝜚, 𝑟0 = 𝑅0. Since
(20) implies the inequality

𝐻𝑟(𝑡) 6 𝐴 =

∫︁
Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥, 𝑟 > 0, 𝑡 > 0,

we get

𝐻𝑅0+𝜚(𝑡) =
𝐴𝐶𝑡

𝜚2
. (26)

Let us establish the inequality

𝐻𝑟𝑘(𝑡) 6
𝐴𝐶𝑘𝑡𝑘

𝜚2𝑘𝑘!
(27)

by induction in 𝑘.
Indeed,

𝐻𝑟𝑘+𝜚(𝑡) 6
𝐶

𝜚2

𝑡∫︁
0

𝐻𝑟𝑘(𝜏)𝑑𝜏 6
𝐶

𝜚2

𝑡∫︁
0

𝐴𝐶𝑘𝜏𝑘

𝜚2𝑘𝑘!
𝑑𝜏 =

𝐴𝐶𝑘+1𝑡𝑘+1

𝜚2(𝑘+1)(𝑘 + 1)!

that completes the induction. Employing Stirling’s inequality, by (27) we obtain easy that

𝐻𝑟𝑘(𝑡) 6
𝐴𝐶𝑘𝑒𝑘𝑡𝑘√
2𝜋𝑘𝜚2𝑘𝑘𝑘

6 𝐴 exp

(︂
−𝑘 ln 𝜚

2𝑘

𝐶𝑒𝑡

)︂
. (28)

We choose 𝑘 equal to the integer part of the number (𝑟−𝑅0)2

𝐶𝑒2𝑡
. If 𝑘 = 0, then (𝑟−𝑅0)2

𝐶𝑒2𝑡
< 1 and

𝐻𝑟(𝑡) 6 𝐴 = 𝑒𝐴𝑒−1 that implies inequality (22). If 𝑘 > 1, then 𝑘 > (𝑟−𝑅0)2

2𝐶𝑒2𝑡
. Now we let 𝜚 =

(𝑟 − 𝑅0)/𝑘. Then 𝑟𝑘 = 𝑟 and 𝜚2𝑘 = (𝑟−𝑅0)2

𝑘 > 𝐶𝑒2𝑡. Therefore, 𝜚2𝑘
𝐶𝑒𝑡 > 1. Hence it follows from (28)

that 𝐻𝑟(𝑡) = 𝐻𝑟𝑘(𝑡) 6 𝐴𝑒
−𝑘. It leads us to inequality (22).
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Proposition 2. Let 𝑢(𝑡, 𝑥) be the solution to problem (1), (3), (4) with an initial function 𝜙 van-
ishing outside a ball of radius 𝑅0. Then for all 𝑡 > 0, 𝑟 > 𝑅0 + 1 the inequality∫︁

Ω∖Ω[𝑟]

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶 exp

⎛⎝−2𝜈

𝑟∫︁
𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠
⎞⎠∫︁

Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥 (29)

holds true, where 𝐶, 𝜈 are constants depending on 𝛾 and 𝛾1, while 𝐶 depends also on function ̃︀𝜆.
Proof. Let 𝜉(𝜏, 𝑟) be a continuous nonnegative function vanishing as 𝜏 6 𝑅0, being linear as 𝑅0 <

𝜏 < 𝑅0+1 and equalling one as 𝜏 > 𝑟. In the remaining interval it satisfies the condition 𝜕𝜉
𝜕𝜏 = 𝜈

√︀̃︀𝜆𝜉,
where number 𝜈 will be fixed later.

It is easy to see that 𝜉𝜏 = 𝜉(𝑅0 + 1, 𝑟) as 𝜏 ∈ (𝑅0, 𝑅0 + 1), where

𝜉(𝑅0 + 1, 𝑟) = exp

⎛⎝−𝜈
𝑟∫︁

𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠
⎞⎠ .

We substitute a test function 𝑣 = 𝜂(𝑥; 𝑟)𝑢ℎ, 𝜂(𝑥; 𝑟) = 𝜉2(|𝑥|, 𝑟), into identity (18) to obtain∫︁
𝐷𝑇

⎡⎣1

2
𝜇(𝑢2ℎ𝜂)𝑡 +

𝑛∑︁
𝑖,𝑗=1

𝜌(𝑎𝑖𝑗𝑢𝑥𝑖)ℎ(𝜂𝑢ℎ)𝑥𝑗

⎤⎦ 𝑑𝑥𝑑𝑡 = 0. (30)

Passing to the limit as ℎ→ 0 in identity (30), we get∫︁
Ω

𝜇(𝑢2(𝑇, 𝑥)− 𝜙2(𝑥))𝜂𝑑𝑥+ 2

∫︁
𝐷𝑇

𝑛∑︁
𝑖,𝑗=1

𝜌𝑎𝑖𝑗𝑢𝑥𝑖(𝜂𝑢)𝑥𝑗𝑑𝑥𝑑𝑡 = 0.

It implies easily the inequality∫︁
Ω

𝜇𝜂𝑢2(𝑇, 𝑥)𝑑𝑥+ 2

∫︁
𝐷𝑇

𝜌

𝑛∑︁
𝑖,𝑗=1

𝜂𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗𝑑𝑥𝑑𝑡 6 2

∫︁
𝐷𝑇

𝜌𝛾1|𝑢∇𝑢∇𝜂|𝑑𝑥𝑑𝑡. (31)

Transforming the latter, we obtain∫︁
Ω

𝜉2𝜇𝑢2𝑑𝑥+

∫︁
𝐷𝑇

𝛾𝜌𝜉2|∇𝑢|2𝑑𝑥𝑑𝑡 6
∫︁
𝐷𝑇

𝜌𝛾1

(︂
𝜀𝜉2|∇𝑢|2 + 𝑢2𝜉′2

𝜀
𝑑𝑥

)︂
𝑑𝑡.

Taking 𝜀 = 𝛾
2𝛾1
, we obtain the inequality∫︁

Ω

𝜉2𝜇𝑢2𝑑𝑥+
𝛾

2

∫︁
𝐷𝑇

𝜌𝜉2|∇𝑢|2𝑑𝑥𝑑𝑡

6
2𝛾21
𝛾

⎛⎜⎝ 𝑇∫︁
0

∫︁
Ω[𝑟]∖Ω[𝑅0+1]

𝜈2𝜌𝑢2𝜉2̃︀𝜆𝑑𝑥𝑑𝑡+ 𝑇∫︁
0

∫︁
Ω[𝑅0+1]∖Ω[𝑅0]

𝜌𝑢2𝜉2(𝑅0 + 1)𝑑𝑥𝑑𝑡

⎞⎟⎠ .

(32)

Employing the definition of function 𝜉, we rewrite the latter terms:∫︁
Ω[𝑟]∖Ω[𝑅0+1]

𝜈2𝜌𝑢2𝜉2̃︀𝜆𝑑𝑥 =

𝑟∫︁
𝑅0+1

𝜈2𝜉2(𝜏)̃︀𝜆(𝜏)𝑑𝜏 ∫︁
𝑆𝜏

𝜌𝑢2𝑑𝑆

6

𝑟∫︁
𝑅0+1

𝜈2𝜉2(𝜏)𝑑𝜏

∫︁
𝑆𝜏

𝜌|∇𝑢|2𝑑𝑆 = 𝜈2
∫︁

Ω[𝑟]∖Ω[𝑅0+1]

𝜌𝜉2|∇𝑢|2𝑑𝑥.

(33)
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In the same way, ∫︁
Ω[𝑅0+1]∖Ω[𝑅0]

𝜌𝑢2𝑑𝑥 6
1

inf
[𝑅0,𝑅0+1]

̃︀𝜆(𝜏)
∫︁

Ω[𝑅0+1]∖Ω[𝑅0]

𝜌|∇𝑢|2𝑑𝑥. (34)

We let 𝜈 = 𝛾
2𝛾1

. Substituting (33) and (34) into (32) and estimating the right hand side in (34) by

(20), we obtain inequality (29), 𝐶 = 2𝛾21/(𝛾 inf
[𝑅0,𝑅0+1]

̃︀𝜆(𝜏)).
Theorem 2. Let 𝑢(𝑡, 𝑥) be a solution to problem (1), (3), (4) with an initial function 𝜙 vanishing

as |𝑥| > 𝑅0 and let inequality (21) hold true. Then there exists a constant 𝜈2 > 0 depending only on
𝑛, 𝛾1, 𝑅0 such that for all 𝑡 > 0 the inequality∫︁

Ω

𝜇(𝑥)𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶 exp (−𝜈2𝑡𝜆(𝑟(𝑡)))
∫︁
Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥 (35)

holds true, where 𝑟 = 𝑟(𝑡) is an arbitrary function satisfying the inequality 𝑡𝜆(𝑟) 6 𝑡−1(𝑟 − 𝑅0)
2.

Constant 𝐶 depends only on 𝛾, 𝛾1 and 𝑛.

Proof of Theorems 1, 2. Let 𝑇 > 0 be an arbitrary number. We introduce the notation

𝜀 = sup
𝑡∈[0,𝑇 ]

∫︁
Ω∖Ω[𝑟]

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥.

The inequality ∫︁
Ω

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝜀+
∫︁

Ω[𝑟]

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 (36)

holds true. Since for almost each 𝑡 ∈ (0, 𝑇 ) function 𝑢(𝑡, 𝑥) is an element of space 𝐻1(Ω), by (5) we
obtain ∫︁

Ω

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝜀+ 𝜆−1(𝑟)

∫︁
Ω

𝜌|∇𝑢|2𝑑𝑥. (37)

By means of relation
𝑑

𝑑𝑡

∫︁
Ω

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 6 −𝛾
∫︁
Ω

𝜌|∇𝑢|2𝑑𝑥

implied by (20), for the function 𝐸(𝑡) =
∫︀
Ω

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 we get the inequality

𝛾(𝐸(𝑡)− 𝜀)𝜆(𝑟) 6 − 𝑑

𝑑𝑡
𝐸(𝑡).

Solving this inequality, we find

𝐸(𝑇 )− 𝜀 6 𝑒−𝑇𝜆(𝑟)𝛾𝐸(0). (38)

To prove Theorem 2, we make use of estimate (22):

𝜀 6 𝑒 exp
(︁
− ̃︀𝐶𝑇−1(𝑟 −𝑅0)

2
)︁∫︁

Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥.

Then

𝐸(𝑇 ) 6 𝐸(0)
(︁
𝑒 exp

(︁
− ̃︀𝐶𝑇−1(𝑟 −𝑅0)

2
)︁
+ 𝑒−𝑇𝜆(𝑟)𝛾

)︁
. (39)

The latter inequality is valid for all 𝑟 > 𝑅0. It is natural to find the infimum of the right hand side
in 𝑟. But since we can find constructively the point of the infimum, we can take value 𝑟(𝑇 ) > 𝑅0 (as
small as possible) to satisfy the inequality

𝑇−1(𝑟 −𝑅0)
2 > 𝑇𝜆(𝑟).

The possibility of such choice for 𝑟(𝑇 ) follows from the boundedness of function 𝜆(𝑟). Substituting
𝑟 = 𝑟(𝑇 ) into (39), we arrive at the estimate in Theorem 2.
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To prove Theorem 1, we employ estimate (29):

𝜀 6 𝐶 exp

⎛⎝−2𝜈

𝑟∫︁
𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠
⎞⎠∫︁

Ω

𝜇𝜙2(𝑥)𝑑𝑥.

We choose 𝑟 = 𝑟(𝑇 ) (as large as possible) so that

𝑇𝜆(𝑟) >

𝑟∫︁
𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠.
Then (38) implies inequality (7) of Theorem 1.

Let us show that function 𝜆(𝑟) is continuous in a rather general situation. We call domain Ω regular
if there exists a family of diffeomorphisms 𝜙𝑟1,𝑟2 : Ω[𝑟1] → Ω[𝑟2], 0 < 𝑟1 < 𝑟2, such that 𝜙𝑟1,𝑟2(𝑥) → 𝑖𝑑
in 𝐶1(Ω[𝑟1]) both as 𝑟1 → 𝑟2 and as 𝑟2 → 𝑟1.

Let us show for a regular domain function 𝜆(𝑟) is continuous/ For each 𝜀 > 0, 𝑟 > 0 there exists a
function 𝑔𝑟 ∈ 𝐶1

0 (Ω) (depending on 𝜀) such that 𝐹𝑟(𝑔𝑟) < 𝜆(𝑟)+ 𝜀. It is obvious that 𝜆(𝑟1) 6 𝐹𝑟1(𝑔𝑟2).
This is why

lim sup
𝑟1→𝑟2

𝜆(𝑟1) 6 𝜆(𝑟2) + 𝜀.

Then 𝐹𝑟2(𝑔𝑟1(𝜙𝑟1,𝑟2(𝑥))) > 𝜆(𝑟2). Therefore,

𝜆(𝑟2) 6 lim inf
𝑟1→𝑟2

𝐹𝑟2(𝑔𝑟1(𝜙𝑟1,𝑟2(𝑥))) = lim inf
𝑟1→𝑟2

𝐹𝑟1(𝑔𝑟1(𝜙𝑟1,𝑟2(𝑥)))

= lim inf
𝑟1→𝑟2

𝐹𝑟1(𝑔𝑟1(𝑥)) 6 𝜀+ lim inf
𝑟1→𝑟2

𝜆(𝑟1).

Thanks to the arbitrariness of 𝜀 > 0, the obtained relations yield the left continuity of function 𝜆(𝑟).
The right continuity can be proven in the same way.

4. Examples

We restrict ourselves by constructing examples in the case 𝑛 = 2, while similar examples can be
easily adapted for a multi-dimensional situation for the revolution domain

Ω𝑓 = {(𝑥1, 𝑥′)| 𝑥1 > 0; |𝑥′| < 𝑓(𝑥1)}

defined by a positive continuous function 𝑓(𝑥1), 𝑓(𝑥1) > 1, 𝑥1 > 0. We shall obtain some estimates

for functions 𝜆, ̃︀𝜆 in the case of planar domain Ω𝑓 .
For the simplicity we shall refer to the version of Theorem 1, when domains Ω[𝑟], 𝑆𝑟 are replaced

by Ω(𝑟) = {𝑥 ∈ Ω | 𝑥1 < 𝑟} and 𝑆𝑟 = {(𝑥1, 𝑥′) ∈ Ω| 𝑥1 = 𝑟}.
Let us establish an analogue of Steklov-Fridrichs inequality with weights. Let 𝑔(𝑠) ∈ 𝐶1[0, 𝑟] and

𝑔(0) = 0. Squaring the identity

𝑔(𝑠) = 𝑔(𝑠)− 𝑔(0) =

𝑠∫︁
0

𝑔′(𝑡)𝑑𝑡,

it is easy to obtain

𝑔2(𝑠) 6

𝑟∫︁
0

𝜌−1(𝑡)𝑑𝑡

𝑟∫︁
0

𝜌(𝑡)(𝑔′(𝑡))2𝑑𝑡.

Then we multiply by 𝜇(𝑠) and integrate in 𝑠:

𝑟∫︁
0

𝜇(𝑠)𝑔2(𝑠)𝑑𝑠 6

𝑟∫︁
0

𝜇(𝑠)𝑑𝑠

𝑟∫︁
0

𝜌−1(𝑡)𝑑𝑡

𝑟∫︁
0

𝜌(𝑡)(𝑔′(𝑡))2𝑑𝑡.
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Assume that 𝑔(𝑥1, 𝑥2) ∈ 𝐶∞
0 (Ω). Then we have

𝑓(𝑥1)∫︁
0

𝜇(𝑥)𝑔2(𝑥)𝑑𝑥2 6

𝑓(𝑥1)∫︁
0

𝜇(𝑥)𝑑𝑥2

𝑓(𝑥1)∫︁
0

𝜌−1(𝑥)𝑑𝑥2

𝑓(𝑥1)∫︁
0

𝜌(𝑥)(𝑔′𝑥2
(𝑥))2𝑑𝑥2. (40)

We introduce the notation Λ(𝑟) = sup
06𝑥16𝑟

𝑀(𝑥1), where

𝑀(𝑥1) =

𝑓(𝑥1)∫︁
0

𝜇(𝑥)𝑑𝑥2

𝑓(𝑥1)∫︁
0

𝜌−1(𝑥)𝑑𝑥2.

Then

𝑓(𝑥1)∫︁
0

𝜇(𝑥)𝑔2(𝑥)𝑑𝑥2 6 Λ(𝑟)

𝑓(𝑥1)∫︁
0

𝜌(𝑥)(𝑔′𝑥2
(𝑥))2𝑑𝑥2. (41)

or, integrating in 𝑥1, we obtain∫︁
Ω[𝑟]

𝜇(𝑥)𝑔2(𝑥)𝑑𝑥 6 Λ(𝑟)

∫︁
Ω[𝑟]

𝜌(𝑥)(𝑔′𝑥2
(𝑥))2𝑑𝑥. (42)

As 𝜇(𝑥) and 𝜌(𝑥) we consider the functions

𝜌(𝑥1, 𝑥2) =

{︃ ̃︀𝜌(𝑥1)(𝑓(𝑥1)− |𝑥2|)𝛼, |𝑥2| ∈ [𝑓(𝑥1)− 1, 𝑓(𝑥1)]|,̃︀𝜌(𝑥1), |𝑥2| < 𝑓(𝑥1)− 1,

𝜇(𝑥1, 𝑥2) =

{︃ ̃︀𝜇(𝑥1)(𝑓(𝑥1)− |𝑥2|)𝛽, |𝑥2| ∈ [𝑓(𝑥1)− 1, 𝑓(𝑥1)]|,̃︀𝜇(𝑥1), |𝑥2| < 𝑓(𝑥1)− 1,

where |𝛼| < 1, 𝛽 > −1. We shall define function ̃︀𝜇(𝑥1), ̃︀𝜌(𝑥1) later. For simplicity, we shall assume

that 𝑓(𝑟) > |𝛼|
1−|𝛼| and 𝑓(𝑟) >

−𝛽
1+𝛽 as 𝑟 > 𝑅0.

Calculating 𝑀(𝑥1) as 𝜇 = 𝜌, by (41) we find that

̃︀𝜆(𝑟) > [︂(︂
𝑓(𝑟)− 𝛼

1 + 𝛼

)︂(︂
𝑓(𝑟) +

𝛼

1− 𝛼

)︂]︂−1

>
1

2𝑓2(𝑟)
(43)

as 𝑟 > 𝑅0. Substituting this estimate into (29), we obtain∫︁
Ω∖Ω(𝑟)

𝜇𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶 exp

⎛⎝−2𝜈

𝑟∫︁
𝑅0+1

𝑑𝑠

𝑓(𝑠)

⎞⎠∫︁
Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥.

It is easy to see that

Λ(𝑟) = sup
06𝑥16𝑟

̃︀𝜇(𝑥1)̃︀𝜌(𝑥1)
(︂
𝑓(𝑥1)−

𝛽

1 + 𝛽

)︂(︂
𝑓(𝑥1) +

𝛼

1− 𝛼

)︂
6max

(︂
sup

06𝑥16𝑟
4
̃︀𝜇(𝑥1)̃︀𝜌(𝑥1) 𝑓2(𝑥1), sup

06𝑥16𝑅0

4
̃︀𝜇(𝑥1)̃︀𝜌(𝑥1) |𝛽|

1 + 𝛽

|𝛼|
1− 𝛼

)︂
.

For the sake of simplicity we assume that function ̃︀𝜇(𝑥1)̃︀𝜌(𝑥1)
𝑓2(𝑥1) increases and̃︀𝜇(𝑅0)̃︀𝜌(𝑅0)

𝑓2(𝑅0) > sup
06𝑥16𝑅0

̃︀𝜇(𝑥1)̃︀𝜌(𝑥1) |𝛽|
1 + 𝛽

|𝛼|
1− 𝛼

.

Due to (42) we have 𝜆(𝑟) > Λ−1(𝑟) and this is why

𝜆(𝑟) >
̃︀𝜌(𝑟)

4̃︀𝜇(𝑟)𝑓2(𝑟) . (44)
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Roughing a little bit the estimate in Theorem 1 (see its proof), we can choose function 𝑟(𝑡) satisfying

the inequality 𝑡̃︀𝜌(𝑟)̃︀𝜇(𝑟)𝑓2(𝑟)
>

𝑟∫︀
𝑅0+1

𝑑𝑠
𝑓(𝑠) . Then estimate (7) becomes

∫︁
Ω

𝜇(𝑥)𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶 exp

⎛⎜⎝−𝜈2

𝑟(𝑡)∫︁
𝑅0+1

𝑑𝑠

𝑓(𝑠)

⎞⎟⎠∫︁
Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥. (45)

In particular, if 𝑓(𝑠) = 𝑠𝑝, 𝑝 ∈ (0, 1), then

𝑟(𝑡)∫︁
𝑅0+1

𝑑𝑠

𝑓(𝑠)
6

𝑟1−𝑝

1− 𝑝
.

Suppose for simplicity that ̃︀𝜌̃︀𝜇 =
𝑟𝑞

1− 𝑝
, 𝑞 < 1− 𝑝,

then the inequality determining 𝑟(𝑡) casts into the form 𝑡 > 𝑟1−𝑝−𝑞 and we can choose 𝑟(𝑡) = 𝑡(1−𝑝−𝑞)−1
.

In this case estimate (45) becomes∫︁
Ω

𝜇(𝑥)𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶1 exp
(︁
−𝐶2𝑡

1−𝑝
1−𝑝−𝑞

)︁∫︁
Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥.

We observe that in the multi-dimensional case function 𝑓(𝑠) = 𝑠𝑝 generates the revolution paraboloid
and all the above arguments remain true with appropriately changed constants.

In the case 𝑓(𝑠) = 𝑠 we have the interior of an angle in the plane (or of a cone in the multidimensional
case). Then

𝑟(𝑡)∫︁
𝑅0+1

𝑑𝑠

𝑓(𝑠)
6 ln 𝑟.

As an example we choose functions ̃︀𝜌, ̃︀𝜇 so that ̃︀𝜌̃︀𝜇 = ln 𝑟
𝑟𝑞 , 𝑞 > 0. Then the inequality determining 𝑟(𝑡)

becomes 𝑡 > 𝑟𝑞. We choose 𝑟(𝑡) = 𝑡1/𝑞. Then estimate (45) casts into the form∫︁
Ω

𝜇(𝑥)𝑢2(𝑡, 𝑥)𝑑𝑥 6 𝐶3 exp (−𝐶4 ln 𝑡)

∫︁
Ω

𝜇(𝑥)𝜙2(𝑥)𝑑𝑥.

5. Lower bound

We recall Harnack inequality established by J.A. Moser for a uniformly parabolic equation [23]

𝑢𝑡 =
𝑛∑︁

𝑖,𝑗=1

(𝑎𝑖𝑗(𝑡, 𝑥)𝑢𝑥𝑖)𝑥𝑗 . (46)

We formulate it in a convenient for us form: for a nonnegative in a cylinder𝑄 = (0, 9𝐶1𝜌
2]×𝐵(2𝜌,w) ⊂

R𝑛+1, 𝐶1 > 1 solution to equation (46) the inequality

max
𝑄−

𝑢(𝜏, 𝑥) 6 𝐻min
𝑄+

𝑢(𝜏, 𝑥),

holds true, where 𝑄− = [𝜌2, 2𝜌2] × 𝐵(𝜌,w), 𝑄+ = [8𝐶1𝜌
2, 9𝐶1𝜌

2] × 𝐵(𝜌,w), 𝐵(𝜌,w) is the ball of
radius 𝜌 centered at point w ∈ Ω, and constant 𝐻 > 1 depends only on 𝑛, 𝐶1 and the parabolicity
constants of the equation.

We recall the notion of 𝐴2-weight introduced by Muckenhoupt. This is a measurable function 𝜗(𝑥) :
R𝑛 → R+ satisfying the inequality∫︁

𝐾

𝜗(𝑥)𝑑𝑥×
∫︁
𝐾

1

𝜗(𝑥)
𝑑𝑥 < 𝐶0|𝐾|2
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for each cube 𝐾 ⊂ R𝑛. It was proven in work [24] that if the identity 𝜌 = 𝜇 = 𝜗 holds in 𝑄, where 𝜗
is some 𝐴2-weight, then for each nonnegative in 𝑄 solution of equation (1) Harnack inequality holds
true. At that, constant 𝐻 depends only on 𝐶0, 𝐶1, 𝑛, 𝛾 and 𝛾1. Let us show that we can get rid of
the assumption 𝜌 = 𝜇 if 𝜇 = 𝜗 and the inequalities

𝐶−1
1 6

𝜌(𝑥)𝜇(w)

𝜇(𝑥)𝜌(w)
6 𝐶1, 𝑥 ∈ 𝐵(2𝜌,w), (47)

hold true. By the change 𝜏 = 𝜌(w)
𝜇(w) 𝑡 we obtain the equation

div(𝜌(𝑥)𝑎(𝑡, 𝑥)∇𝑢) = 𝜇(𝑥)𝑢𝑡 =
𝜇(𝑥)𝜌(w)

𝜇(w)
𝑢𝜏

or as 𝑥 ∈ 𝐵(2𝜌,w) :

div(𝜗(𝑥)
𝜌(𝑥)𝜇(w)

𝜇(𝑥)𝜌(w)
𝑎(𝜏, 𝑥)∇𝑢) = 𝜗(𝑥)𝑢𝜏 .

The latter equation in 𝑄 is of the form (1) with 𝜌 = 𝜇 = 𝜗 and ̃︀𝑎 = 𝜌(𝑥)𝜇(w)
𝜇(𝑥)𝜌(w)𝑎. If variables (𝜏, 𝑥) ∈ 𝑄,

then (𝑡, 𝑥) ∈ ̃︀𝑄 = (0, 9𝐶1𝜌
2 𝜇(w)
𝜌(w) ]× 𝐵(2𝜌,w). Then 𝑄− → ̃︀𝑄− 𝑄+ → ̃︀𝑄+ change obviously. For these

new cylinders, Harnack inequality is still true.
Thus, if in the neighbourhood of each point w ∈ Ω the inequality (47) holds true and in this

neighborhood function 𝜇(𝑥) coincides with some weight 𝜗 (depending on point w), then a non-negative
solution to equation (1) is either positive everywhere in Ω or vanishes identically. This can be proven
by the standard technique if the radius of the neighbourhood depends continuously on the point.

In what follows we shall consider a positive solution to equation (1).

Theorem 3. Assume that 𝑠 > 𝑝𝑓(𝑠), 𝑝 ∈ (0, 1) as 𝑠 > 𝑧0, Ω𝑓 is a revolution domain and weight
𝜇(𝑥) coincides with some 𝐴2-weight 𝜗 in Ω𝑝𝑓 ∩ {𝑥1 > 𝑧0}. Assume that the inequalities

𝑓(𝑥′1)

𝑓(𝑥′′1)
6 2,

𝜌(𝑥′)𝜇(𝑥′′)

𝜇(𝑥′)𝜌(𝑥′′)
6 𝐶1 (48)

hold true for all 𝑥′, 𝑥′′ ∈ Ω𝑝𝑓 such that 𝑥′1, 𝑥
′′
1 ∈ [𝑠−𝑝𝑓(𝑠), 𝑠+𝑝𝑓(𝑠)] and all 𝑠 > 𝑧0. Then for a positive

solution of equation (1) the inequality

min
𝑥∈𝐵(𝑟′,w)

𝑢(𝑡, 𝑥) > 𝑢(𝑡1, (𝑧0, 0)) exp

⎛⎜⎝−𝐶2

̃︀𝑟(𝑡)∫︁
𝑧0

𝑑𝑠

𝑓(𝑠)

⎞⎟⎠
holds true, where 𝐵(2𝑟′,w) is some ball inscribed in Ω𝑝𝑓 ∩ {𝑧0 < 𝑥1 < ̃︀𝑟(𝑡)}, 𝑡1 > 0 is some fixed
number, ̃︀𝑟(𝑡), 𝑡 > 𝑡1, is introduced as the smallest 𝑟 satisfying the inequality

𝑟∫︁
𝑧0

𝑑𝑠

𝑓(𝑠)
> 𝑡𝐿(𝑟), 𝐿(𝑟) = inf

[𝑧0,𝑟]

4𝜌(𝑧, 0)

𝜇(𝑧, 0)𝑝𝑓2(𝑧)
,

while constant 𝐶2 depends only on 𝑝, 𝐶0, 𝐶1, 𝑛, 𝛾, 𝛾1.

Proof. Let 𝑦0 = 𝑧0 and 𝑟 > 𝑧0 be an arbitrary number. We construct a sequence of balls with radii
𝑟𝑖, 𝑖 = 1, 2, . . ., and touching points v𝑖 = (𝑦𝑖−1 + 2𝑟𝑖, 0) such that the double ball 𝐵(2𝑟𝑖,w𝑖), where
w𝑖 = (𝑧𝑖, 0), 𝑧𝑖 = 𝑦𝑖−1 + 𝑟𝑖, touches the set 𝜕Ω𝑝𝑓 from inside. We note that 𝑟𝑖+1 6 3𝑟𝑖 since otherwise
𝐵(2𝑟𝑖,w𝑖) ⊂ 𝐵(2𝑟𝑖+1,w𝑖+1), i.e.,ball 𝐵(2𝑟𝑖,w𝑖) does not touch the boundary of Ω𝑝𝑓 .

We denote 𝜇𝑖 = 𝜇(w𝑖), 𝜌𝑖 = 𝜌(w𝑖), 𝑡1 = 𝑟21
𝜇1

𝜌1
; 𝑡𝑖+1 = 𝑡𝑖 + (9𝐶1 − 1)𝜇𝑖

𝜌𝑖
𝑟2𝑖 .

If for some 𝑖 the inequality 𝑟𝑖 6 𝑟𝑖+1 holds true, then as 𝑠 = 𝑧𝑖+1 we have 𝑠 − 𝑧𝑖 6 2𝑟𝑖+1 6 𝑝𝑓(𝑠)
and by (48) we obtain the inequality

𝜇𝑖+1𝜌𝑖
𝜌𝑖+1𝜇𝑖

6 𝐶1. (49)
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If 𝑟𝑖 > 𝑟𝑖+1, then letting 𝑠 = 𝑧𝑖, 𝑧𝑖+1 − 𝑠 < 2𝑟𝑖 < 𝑝𝑓(𝑠), by (48) we again obtain (49). Moreover, as
𝑠 = 𝑧𝑖, by (48) we get also an analogue of inequality (47):

𝐶−1
1 6

𝜌(𝑥)𝜇(𝑤𝑖)

𝜇(𝑥)𝜌(𝑤𝑖)
6 𝐶1, 𝑥 ∈ 𝐵(2𝜌𝑖, 𝑤𝑖)

and inequality

𝑓(𝑥′1)

𝑓(𝑥′′1)
6 2, ∀𝑥′, 𝑥′′ ∈ [𝑠− 2𝑟𝑖, 𝑠+ 2𝑟𝑖]. (50)

Consider the cylinders

̃︀𝑄𝑖 =

[︂
𝑡𝑖 −

𝜇𝑖
𝜌𝑖
𝑟2𝑖 , 𝑡𝑖 + (9𝐶1 − 1)

𝜇𝑖
𝜌𝑖
𝑟2𝑖

]︂
×𝐵(2𝑟𝑖,w𝑖),

̃︀𝑄−
𝑖 =

[︂
𝑡𝑖, 𝑡𝑖 +

𝜇𝑖
𝜌𝑖
𝑟2𝑖

]︂
×𝐵(𝑟𝑖,w𝑖),

̃︀𝑄+
𝑖 =

[︂
𝑡𝑖 + (8𝐶1 − 1)

𝜇𝑖
𝜌𝑖
𝑟2𝑖 , 𝑡𝑖 + (9𝐶1 − 1)

𝜇𝑖
𝜌𝑖
𝑟2𝑖

]︂
×𝐵(𝑟𝑖,w𝑖).

Let us show that if 𝑡𝑖+1 6 𝑇 , then ̃︀𝑄𝑖 ⊂ (0, 𝑇 ] × Ω𝑝𝑓 . It is sufficient to establish that 𝑡𝑖 >
𝜇𝑖

𝜌𝑖
𝑟2𝑖 . The

first step of induction is made. Then due to (49)

𝑡𝑖+1 = 𝑡𝑖 + (9𝐶1 − 1)
𝜇𝑖
𝜌𝑖
𝑟2𝑖 > 9𝐶1

𝜇𝑖
𝜌𝑖
𝑟2𝑖 >

𝜇𝑖+1

𝜌𝑖+1
𝑟2𝑖+1

that completes the induction.
Let 𝑘 be the first index such that 𝑦𝑘+1 > 𝑟 or 𝑡𝑘+1 > 𝑇. Then by Harnack inequality

𝑢(𝑡1, (𝑦0, 0)) 6 𝐻𝑢(𝑡2,v1) 6 . . . 6 𝐻
𝑘𝑢(𝑡𝑘+1,v𝑘).

It yields 𝑢(𝑡𝑘+1,v𝑘) > 𝐻−𝑘𝐶3. Let us estimate number 𝑘 from above. Let 𝑠𝑖 be the abscissa for one of
the points, where the ball 𝐵(2𝑟𝑖,w𝑖) touches the boundary of domain Ω𝑝𝑓 . It is clear that |𝑧𝑖−𝑠𝑖| 6 2𝑟𝑖,
𝑝𝑓(𝑠𝑖) 6 2𝑟𝑖 and this is why due to (50), 𝑓(𝑠)/2 6 𝑓(𝑠𝑖) as 𝑠 ∈ [𝑦𝑖−1, 𝑦𝑖], and 𝑟𝑖 > 𝑝𝑓(𝑧𝑖)/4. Then

𝑘 =
𝑘∑︁

𝑖=1

𝑦𝑖 − 𝑦𝑖−1

2𝑟𝑖
6

𝑘∑︁
𝑖=1

𝑦𝑖 − 𝑦𝑖−1

𝑝𝑓(𝑠𝑖)
6

𝑘∑︁
𝑖=1

𝑦𝑖∫︁
𝑦𝑖−1

2𝑑𝑠

𝑝𝑓(𝑠)
6

𝑟∫︁
𝑦0

2𝑑𝑠

𝑝𝑓(𝑠)
.

Let 𝜇𝑚

𝜌𝑚
𝑟2𝑚 = max

𝑗6𝑘

𝜇𝑗

𝜌𝑗
𝑟2𝑗 > max

𝑧∈[𝑧0,𝑟]
𝜇(𝑧,0)

64𝐶1𝜌(𝑧,0)
(𝑝𝑓(𝑧))2. The latter inequality follows from (48). For the

indices 𝑖 = 𝑚 + 1,𝑚 + 2, . . . we replace the balls 𝐵(2𝑟𝑖,w𝑖) by the balls 𝐵(2𝑟𝑚,w𝑚). Cylinders̃︀𝑄𝑖, 𝑖 = 𝑚+1,𝑚+2, . . . change appropriately. Since each cylinder increases 𝑡𝑖 by (9𝐶𝑖 − 1)𝜇𝑚

𝜌𝑚
𝑟2𝑚, then

to reach value 𝑡 we need at most

𝑁 =

[︂
𝑡𝜌𝑚

(9𝐶1 − 1)𝜇𝑚𝑟2𝑚

]︂
6 2𝑡𝐿(𝑟)/𝑝

cylinders. Thus, we obtain the estimate

min
𝑥∈𝐵(𝑟𝑚,w𝑚)

𝑢(𝑡, 𝑥) > 𝐻−(𝑘+𝑁)𝐶3 > exp

⎛⎝−

⎛⎝ 𝑟∫︁
𝑧0

2𝑑𝑠

𝑝𝑓(𝑠)
+ 2𝑡𝐿(𝑟)/𝑝

⎞⎠ ln𝐻

⎞⎠ , (51)

that implies the statement of the theorem.

We apply inequality (51) to the example in Section 4 to obtain

𝐿(𝑟) = inf
[𝑧0,𝑟]

4̃︀𝜌(𝑧)̃︀𝜇(𝑧)𝑝𝑓2(𝑧) =
4̃︀𝜌(𝑟)̃︀𝜇(𝑟)𝑝𝑓2(𝑟) 6 16𝜆(𝑟)/𝑝.

Employing also inequality (43), we have∫︁
Ω(𝑟)

𝜇(𝑥)𝑢2(𝑡, 𝑥)𝑑𝑥 > 𝜋𝑟2𝑚 min
𝑥∈𝐵(𝑟𝑚,𝑣𝑚)

𝜇(𝑥)𝐶3 exp

⎛⎝− 8

𝑝2
ln𝐻

⎛⎝ 𝑟∫︁
𝑧0

𝑝
√︀̃︀𝜆(𝑠)𝑑𝑠

⎞⎠+ 8𝑡𝜆(𝑟)

⎞⎠ .
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Now the choice of 𝑟 = 𝑟(𝑡) as in Introduction (under the assumption f continuity of function 𝜆(𝑟)):

𝑡𝜆(𝑟) =

𝑟∫︁
𝑅0+1

√︁̃︀𝜆(𝑠)𝑑𝑠,
justifies in some sense the sharpness of upper estimate (7) if the factor at the exponential in the latter
inequality is not too small.

The author express a sincere gratitude F.Kh. Mukminov for the discussion of the results and useful
remarks.
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