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ON DECAY OF SOLUTION TO LINEAR PARABOLIC
EQUATION WITH DOUBLE DEGENERACY

V.F. VIL’DANOVA

Abstract. We obtain the upper bound for the decay rate of the solution to the Dirichlet
initial boundary value problem for a linear parabolic second order equation with a double
degeneracy u(z)uy = (p(z)aij(t, )us,)z; in an unbounded domain. For a wide class of
revolution domains we prove a lower bound. We adduce the examples showing that the
upper and lower bounds are in some sense sharp.

We prove the unique solvability of the problem in an unbounded domain by Galerkin’s
approximations method.

Keywords: parabolic equation with a double degeneracy, decay rate of a solution, upper
bound, existence of a solution.
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1. INTRODUCTION

Let Q be an unbounded domain in space R", x = (z1,22,...,2,) € R", n > 2. In a cylindrical
domain D = {t >0 } x Q we consider a linear second order equation
n
pw(z)uy = Z (p(x)aij(tvx)ul‘i)xjv (1)
ij=1
where weights p(x) > 0 and p(x) > 0 are measurable functions integrable over each bounded subset
of Q: pu,p € Llloc(Q). For symmetric coefficients a;; = aj; we impose the condition of the uniform
ellipticity: there exist positive constants v, 1 such that for each vector y € R™ and almost each
(t,z) € D the identities

n

YNyl < it 2)yiy; < nlyl® (2)
ij=1
hold true.
On the lateral boundary of cylinder D we impose Dirichlet boundary condition:
u(t,az)‘r =0, I =(0,00) x . (3)

We shall deal with a generalized solution to problem , subject to the initial condition
u(0,2) = @(x) € La(Q, pdx). (4)

The present work is devoted to the studying the dependence of the decay rate as ¢ — oo of a
solution to problem , , on the geometry of unbounded domain §2 and behavior of weights
[, p as T — 0.

The first studies of the decay rate of the solution to a mixed problem of second order uniformly
parabolic equation (4 = p = 1) on the geometry of the unbounded domain were made by A.K. Guschin
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in works [I, 2]. For a wide class of domains there was established the estimate for the solution to the
second mixed problem:

el @)

t,r)| < ————

utt )] < A,

where v(r) = mes{z €  : |z| < r}. The sharpness of this estimate was proved. In particular, for the
solution of Cauchy problem this estimate becomes

T € €,

||30HL1(]R")
(Vim

More complete studies of the dependence of the behavior at infinity of solution to the second mixed
problem on the geometry of the domain and on the initial function were made by A.V. Lezhnev in
[3]. V.I. Ushakov [4] obtained the results close to that by A.K. Guschin for the third mixed problem
in a non-cylindrical domain. Earlier in work [5] F.Kh. Mukminov proved the estimate for the decay
rate of solution to the first mixed problem for a second order uniformly parabolic equation and its
sharpness in the class of unboundedly monotonically increasing revolution domains was proved. In
work [6] there were obtained sharp estimates for solution to a forth and sixth order parabolic equation
with Rickyies condition on the lateral boundary of an unbounded parabolic domain.

We also mention work [7], where the dependence of the solution on the structure of nonlinearities
in equations was studied.

A more complete survey of results related to the subject of our work can be found in [6]—-[14].

We proceed to formulating our result. We introduce the functions

[ p(x)|Vg|*dz

. Q[r]
Ar)= inf F.(g9), F:(g9)=
(r) e o) (9) (9) T g%
Q[r]

lu(t,z)] < C

where Q[r] ={z € Q| |z| <71}

[ p(x)|Vg|*dS
. S,
Ar)y= inf ————0— 6
i geC@ [ pg*dS ©
Sr

where S, = {z € Q| |z| = r}. It is obvious that function A(r) is bounded on the interval r > rq if set
Q[ro] is non-empty.
In the next statement we discuss a generalized solution to problem (see Section 2).

Theorem 1. Let u(t,x) be a solution to problem , @, with the initial function ¢ vanishing
as |x| > Ro. Then there exists a number v1 > 0 depending only on n, v1, Ry and T and depending

also on functions A, \ such that for all t > T the inequality

r(t

)
/u(w)u2(t,x)dx<Cexp -1 / \/@ds /u(:l:)gpQ(a:)d:U (7)

Q Ro+1 Q

holds true, where r = r(t) is an arbitrary continuous function satisfying the inequality

tA(r) > / \/ﬁds.

Ro+1
Constant C depends on v, v1 and on function .

It is known that in the case of a planar angle Q = {(r,¢)| r > 0,0 < ¢ < a} as p = p = 1, the
decay rate of solution to problem , , is power: u(t,z) = O(t~(*/**+1) (see [5]). For such
situations (i.e., when the decay of solution is power) estimate provides non-adequate result since
the exact value of constant v is not determined (i.e., exponent ¢ is not determined precisely).
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If inequality p(x) < p(z) holds true for almost each z € €, we can obtain an estimate slightly
weaker than 1' without employing function Py (see Theorem 2 in Section 3).
We note that the theorem remains true if we replace domains Q[r], S, by Q(r) = {x € Q| z1 < r}
and S, = {(z1,2") € Q| 1 = r}. At that we assume that domains Q(r) are bounded for all r > 0.
Formally function r(t) = Ry + 1 satisfies the inequality in theorem. But it is clear that inequality
becomes stronger if we choose the largest function r(t) > Rp + 1 among admissible ones. In
the case when function A(r) is continuous and positive at least at one point r > Ro + 1, we define
function r(t) as the largest among the roots of the equation tA(r /A s)ds (for sufficiently
R0+1
large t there exists at least one root). In the end of Section 3 we also provide a condition ensuring
the continuity of function A(r). The same approach is applicable under the presence of the estimate
A(r) = h(r) with replacing A\(r) by a continuous function h(r). In the simplest case p = u = 1
function h(r) can be chosen by employing inequality (5.4) in [2I, CH. II, Sect. 5], which in the case
mes Q[r] < (1 — &) mes B(r), where B(r) is the ball of radius r, is written as

/u2(t,:c)dm < Be 22 / |Vul?(t, z)dz, B> 0. (8)

Qr] Qr]

It implies the inequality A(r) > ,B +. We also observe that inequality applied to the cone with the

vertex at point O and spherlcal basis S, instead of Q[r], gives the estimate A(r) > 62(r)/(8r?), where
1 —6(r) = mes, 187" /w,, w, is the measure on the unit sphere. In particular, when function

d(r) decays fast enough, the inequality f \/ s)ds < oo is possible and then estimate becomes
Ro+1
meaningless.

In Section 4 we also provide examples of functions r(t) for functions p, p not being equal to 1. In
Section 5 we provide Theorem 2 on the lower bound of the non-negative solution in the case when
domain 2 is a revolution one. By the examples we show that inequality of Theorem 1 is in some
sense sharp.

2. EXISTENCE AND UNIQUENESS OF SOLUTION

We introduce the following notations: D% = (a,b) x Q, DT = DI, D = D&°

||uH2DT’u=/uu2dxdt, HVUHDT’p:/pVUFdl’dt.
DT DT

On the set of restrictions of functions in C§°(D™,) on DT we define the norms
luliFgor pry = lullbr , + IVulBe il pry = lulfospry + ludpr,

The completions of these liner normed spaces are denoted by H%(DT) and H(DT). For the unique-
ness of the gradient of the functions in the introduced weighted space we impose the condition in work
[20]:
-1 1
S LlOC(Q)'

We defined space H' () as the completion of space C5°(€2) by the norm HuH%{I(Q) = [(pu?+p|Vul|?)dz
Q

A generalized solution to problem , , in D7 is a function u(t, z) € HO'(DT) satisfying the
integral identity

/ <— puvy + En: Paij(t,$)uxivxj>d$dt = / pep(x)o(0, )dx (9)
Q

or ij=1

for each function v(t,z) € H1(DT).
Functlon u t a:) is a solution to problem . . in D if for each 7" > 0 it is a solution to

problem (| in DT,
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The generalized solution of problem , , in DT exists and is unique. The existence can be
proved by Galerkin method (see, for instance, [21]).
We choose a set of linearly independent functions w;(z) € Cg°(Q2) such that their linear span is

dense in H L(Q2). Without loss of generality we can assume that these functions are orthonormalized
in Lo(Q, pdx).
We seek Galerkin approximations in the form

n
W(t,2) = 3 Cltyw(a). (10)
i=1
We obtain the equations for the sought coefficients by the restriction

/(,u(m)uéws + Z p(x)aij(t,x)uéi(ws)xjdx =0, s=1,1 (11)

Thanks to the orthonormaliaty of functions w;, conditions lead us to the system of ordinary
differential equations

(CH +> bit)Ci =0, i=Tn (12)
j=1

We choose the initial conditions for system of differential equations as
Ci(0) = (¢, wi). (13)
Conditions , determine the unique set of functions C%(t).

Let us prove the boundedness of set u! of Galerkin approximations in space H 0.1(DT). We multiply
identities by C! and sum they up. We obtain

n
/(,uuiul + Z paij(t,x)uéiuéj)dxdt =0. (14)
o ij=1
Integrating over ¢ € (0,T) and employing condition (2)), we get

% / (@) (¢, 2))? — (u(0,2))°] do + / o(2)| Vil Rdadt < 0. (15)
Q DT

It is obvious that
l

Hul(07 x) H%Q(Q,,udx) = Z(S@ wi)2'
i=1
Then can be rewritten as

[y ta)Pis + 2y [ p@)|Val Pdude < e, (16)
Q DT

It implies the boundedness of set u! in subspace H 0’I(DT). This is why we can choose a subsequence
weakly converging in this space to some function u € ﬁﬂvl(DT). In order to avoid cumbersome
superscripts, we assume that the sequence weakly converges itself.

We multiply by function ds(t) € C§°(—1,T) and integrate over ¢t € (0,7). By denoting
v = dswsg, integrating by parts and passing to the limit as [ — co, we obtain

([ run+ 3 pustt s )sydodt | = [ pla)ofo,a)da. (17)
br ij=1 4
We note that is true not only for functions v = dsws, but also for the sums of such functions. It

m
remains to mention that by functions v™ = 3 dsws, we can approximate each function w in C§°(D™)
s=1
in the norm of space H%!(DT).
Let us show the uniqueness of solution to problem , , .
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By vy, (t, ) we denote the Steklov average of function v(t,x):

t+h
it = [ enayr
t

which possesses the following properties:

D(v,u_p) = ('Umu)LQ(IE{”Jrl,;Ldmdt)v where (Uau)Lg(R"+1,udzdt) = f pou dxdt,
Rn+1

2) if v € HOY(DT), then (vn)e, = (ve ),

3) if v,v; € Lo(R™, pdxdt), then (ve)y = (vp)s,

4) if v € Lo(DT, pdadt), then for each § > 0 the convergence vy, — v is true in Lo(DT 0, udadt) as
h—0 (h <9).

We substitute test function v_j into integral identity @, where v belongs to space CSO(DOT *5). It
is possible since v_;, € C§°(D]) as 0 < h < §. Employing the properties of Steklov average, we get

/ [M(Uh)tv +p z": (aiju:ci)hvxj] dzdt = 0. (18)

pr ij=1

By passing to the limit we prove that the latter relation is true not only for v € C§° (Dg_‘s), but also
for v € H*Y (DI 9).
We note that identities are of the form

/ wlup)rvdzdt = 1y (v), (19)
DT
where [j,(v) is a linear functional in space H o1(Df =9,
Let us prove the uniform boundedness of linear functional I (v) as |h| < dp in the unit ball of space
E[O,l (Dgﬂié) )
We consider /5 (v) and in view of the uniform ellipticity we have

n t+h
|l (v)] = /pZ(aijuaci)hvxjdxdt < / ’;zl/ \Vu(r, z)|dr | |Vou(t, x)|dzdt
DT—¢ 3,j=1 DT t
. t+h 2
< / NP | 72 /|Vu(7,ac)\d7 + |Vo(t,z)* | dedt.
DT—6 t

Thus, we obtain that |I;,(v)| < C. The boundedness of linear functional Ij,(v) is proved.
We substitute function v = (up, — up,)x(t1,t2) € H*'(DI?) into identities hl*hga where
X(t1,t2) is the characteristic function of the interval (¢1,t2). We obtain

//M((uhl)t - (uh2>t)(uh1 - uhQ)dxdt = ’(lhl - lh2)(X(uh1 - U’hQ))’ < CH(“M - uhQ)HHovl Se.

The latter inequality for sufficiently small hi, ho is implied by the convergence u;, — wu in space
Ho’l(Dgﬂs). After integration in ¢ we obtain

/M(Uhl — up, ) (ty, x)dx < /,u(uh1 — upy )% (ta, x)da + 2¢.
Q Q

We integrate this inequality in to € [t1,T — ¢ :

(T —6—1t1) /M(uhl — uny) (b1, ) < pal|(uny = )l (prs pany + 26(T = 8 = 1),
Q
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Since up — w in Lo(DT~0, pdx), as t; < T — 26 we have the inequality

/,u(uhl —up, )% (ty, x)dx < %1 + 2¢.
Q

It yields the uniform fundamentality in ¢; of the family of functions wup(t1,z) in Lo(Q, udz). This is
why up(t, ) = u(t, ) in Ly(2, pdx) as h — 0 uniformly in ¢ € [0, 7 — 20] and the limiting function is
continuous in ¢ in the norm of Ly (€2, udz). We substitute function v = uy,x(0,t) into (L8):

/ (wn)ewn + p 3 (asgtta, Jn(un),) dadt = 0.

ij=1
D§

Integrating the first term in ¢ and passing to the limit as h — 0, we obtain

1 - 1
2/,uu2(t,m)d$+/,o Z iUz Uy, ddl = 2/,uu2(0,$)d3:. (20)

Q p; =1 Q

If we prove that u(0,z) = ¢(z), the latter relation coincides with (9). In order to do it, we substitute
a continuous test function v(t, ) = n()y(x) into identity (9), where n(t) = 1—t as t € [0,1] and n(t)
is constant in other intervals (—oo, 0], [1,00). Since v; = —Z9(x), identity @) becomes

3
1
[ [ 2n@wiat vy + 2w = [ p@)p@via,
0 Q Q
where linear functional /(1)) tends to zero as ¢ — 0. Passing to the limit as ¢ — 0, we obtain

[ @) = [ uw)p)ds
Q Q
for each ¢ € C§°(Q2). It proves the intitial condition u(0,z) = ().

3. UPPER BOUND FOR SOLUTION

We first establish two estimates characterising the decay of solution to problem , , as

Proposition 1. Let u(t,z) be a solution to problem , (@, with initial function @ vanishing
outside the ball of radius Ry. Suppose that the inequality
p(x) < Cu(x), C>0, x€Q, (21)
holds true. Then for allt > 0, r > Ry the inequality
/ pu?(t, z)dr < eexp (—5’t_1(r - RO)Q) /u(w)gpQ(:U)d;r (22)
Q\Q[r] Q
holds true, where C is a constant depending on v and ~1.

Proof. Let (7,7, 0) be a continuous nonnegative function vanishing as 7 < r and being one as 7 >
r + 0. In the remaining interval it is linear: g—f = %. We substitute a test function v = n(x;r, o)us,

n(z) = €%(|z|,r, 0) into identity to obtain

1 n
[ 5ttt S plassunntmun)s, it =o, (23)
DT

We passing to the limit as A — 0 in identity :

ij=1

/u(uz(T,x) — ?(2))ndx + 2 / Z paijtg;(Nu)y;drdt = 0.
Q pr L=l
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By the condition supp ¢ C Q[Ry], for each r > Ry and ¢ > 0 we obtain easily the inequality

/,Lmu (T, x)dx + 2/ Z N Uz, Uy, drdl < / Z AU, U 8 dxdt

Q DT 7] 1 DT 7] 1

<2 / py1|uVuVn|dzdt.
DT
Rewriting the latter, we have

/uan(T, x)dx + / yon|Vu2dzdt < 2 / py1|luNVuVn|dzdt.
Q DT DT
Employing the structure of function 7, we obtain easily the inequality
t

/ pu?(t, x da:+/ / py|Vul|?dzdt < / / pu2dazdt.

Q\Qr+g] 0 \Q[r+¢] 0 Qr+0)\Q

We introduce the notation

¢
H.(t) = / (x,1) dx+/ / py|Vul*dxdt
0

O\Q[r] ANQ[r]
and employ condition to establish that

=}

t
C
r+g \ 2/H7’ (25)
0

We apply inequality inductively to sequence r;, ¢ = 0,1,2,...k, 7,41 = 1 + 0, 79 = Rp. Since
implies the inequality

H.(t) < A= /,u(x)gf(x)dw, r>0, t>0,

Q
we get
ACt
HRo (1) R (26)
Let us establish the inequality
ACktF
He (0 < o (27)
by induction in k.
Indeed,
C ! ACk k Ack—l-ltk—l-l
Hypqo(t) < 20/ / 02k k! dr = 02D (k + 1)1
that completes the induction. Employing Stirling’s mequahty, by we obtain easy that
ACFkektk 0’k
H, () ——— < A kln — 28
<0 V 2k o2k Kk P < " Ce t> (28)

We choose k equal to the integer part of the number (r— Ce Qt) If £ = 0, then (Tag‘)t)Q < 1 and

H.(t) < A = eAe”! that implies inequality . If ¥ > 1, then &k > (20}232 . Now we let p =
(r — Ro)/k. Then 1, = r and 0%k = @ > 062t Therefore, % > 1. Hence it follows from

that H,(t) = H,, (t) < Ae™*. It leads us to inequality (2 . O
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Proposition 2. Let u(t,x) be the solution to problem , (@, with an initial function ¢ van-
ishing outside a ball of radius Ry. Then for allt > 0, r > Ry + 1 the inequality

/ pu?(t, z)dz < Cexp | —2v ] \/ﬁds /M(:c)<p2(x)da: (29)

O\QJr] Ro+1 Q
holds true, where C, v are constants depending on vy and 71, while C depends also on function by

Proof. Let £(7,7) be a continuous nonnegative function vanishing as 7 < Ry, being linear as Ry <

T < Rg+ 1 and equalling one as 7 > r. In the remaining interval it satisfies the condition % = uﬁ{ ,
where number v will be fixed later.
It is easy to see that & = {(Ro + 1,7) as 7 € (Rg, Ro + 1), where

E(Ro+1,r)=exp | —v / \/ A(s)ds
Ro+1

We substitute a test function v = n(x;7)un, n(z;r) = €2(|z|,7), into identity to obtain

1 n
[ zmtdme+ 3 e ntnun)s, | dadt =o. (30)

DT

Passing to the limit as h — 0 in identity , we get

ij=1

/u(uQ(T, x) — () ndx + 2 / Z paijug; (M), drdt = 0.
(9] DT ’i,j:l

It implies easily the inequality

n
/,tmuQ(T’ x)dx + 2 / p Z NijUe, Uy, drdt < 2 / py1|uVuVn|dzdt. (31)
9] DT t,j=1 DT

Transforming the latter, we obtain

2¢12
/52,uu2dx+ /7p§2|Vu|2dxdt < /pm <5§2|Vu]2 + 2 3 d:v) dt.
Q

3
DT DT

Taking € = ﬁ, we obtain the inequality
/§2uu2daﬁ+ g/p§2]Vu\2dxdt
Q DT
e T (32)
it / / V2 pul€hdxdt + / / €2 (Ry + 1)dadt
! 0 Q[r\Q[Ro+1] 0 Q[Ro+1]\Q[Ro]

Employing the definition of function &, we rewrite the latter terms:
V2 oulE Nz = / V2§2(T)X(T)d7'/pu2d5
Qr\Q[Ro+1] Ro+1 S,

T

< / V2§2(T)d7'/p|Vu]2dS: v? / pE2|Vul*dz.
Ro+1 Sr Q[T]\Q[Ro-‘rl]

(33)
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In the same way,
1

inf (1)
Q[Ro+1]\Q[Ro] [Ro,Ro+1] Q[Ro+1]\Q[Ro]
We let v = % Substituting and into and estimating the right hand side in by

, we obtain inequality , C = 27%/(7 inf  A(7)). O
[Ro,Ro-+1]

0,110

puldr < p|Vul*da. (34)

Theorem 2. Let u(t,z) be a solution to problem , @, with an initial function ¢ vanishing
as |x| > Ry and let inequality hold true. Then there exists a constant vo > 0 depending only on
n, v1, Ro such that for all t > 0 the inequality

[ @yt a)do < Cexp (-mtAr(®) [ uta)e(@)do (3)
Q Q
holds true, where v = r(t) is an arbitrary function satisfying the inequality tA(r) < t='(r — Ro)2.
Constant C depends only on v, y1 and n.

Proof of Theorems 1, 2. Let T > 0 be an arbitrary number. We introduce the notation

€= sup / pu? (t, z)dx.
t€[0,T]
Q]

The inequality
/,uu2(t, z)dr < e+ / pu? (t, x)dx (36)
Q Q[r]

holds true. Since for almost each ¢ € (0,7 function u(t,z) is an element of space H'(Q), by (5) we
obtain

/uu2(t, z)dr < e+ \"1r) /p|Vu|2d:E. (37)
Q Q
By means of relation

p pu?(t, x)dz < —7/p|Vu2dw
Q Q
implied by , for the function E(t) = [ pu®(t,z)dz we get the inequality
Q

d
VE®) —e)Alr) < - B(t).
Solving this inequality, we find
E(T) —e < e” 7 E(0). (38)

To prove Theorem 2, we make use of estimate :

e < eexp (—éT_l(r - R0)2> /u(x)«pQ(ac)d:C.
Then )
E(T) < E(0) (e exp (—éT—l(r - RO)Q) + e—“(m) : (39)

The latter inequality is valid for all r > Ry. It is natural to find the infimum of the right hand side
in 7. But since we can find constructively the point of the infimum, we can take value r(T") > Ry (as
small as possible) to satisfy the inequality

T Y(r — Ro)*> = TA(r).

The possibility of such choice for r(7T") follows from the boundedness of function A(r). Substituting
r=r(T) into (39), we arrive at the estimate in Theorem 2.
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To prove Theorem 1, we employ estimate :

r

e<Cexp | —2v / \/ﬁds /,ugoQ(x)dx.

Ro+1 Q

We choose r = r(T') (as large as possible) so that

TX(r) > / \/@ds.

Ro+1
Then implies inequality of Theorem 1. O

Let us show that function A(r) is continuous in a rather general situation. We call domain {2 regular
if there exists a family of diffeomorphisms ¢, ,, : Q[r1] = Q[r2], 0 < 71 < 72, such that ¢, ., (x) — id
in C1(Q[r1]) both as 71 — 75 and as ro — 71.

Let us show for a regular domain function A(r) is continuous/ For each € > 0, r > 0 there exists a
function g, € C}(£2) (depending on ¢) such that F,(g,) < A(r) +¢. It is obvious that A(r1) < Fy, (gry)-
This is why

lim sup A(r1) < A(r2) +e.

T1—T2

Then Fp,(gr, (¢rir(2))) = A(r2). Therefore,

A(re) <lim inf F., (g, (#ry o (7)) = lim inf F,. (gr, (907‘177‘2 (z)))
r1—T2 —re

1

=lim inf F,, (gr,(2)) <e+lim inf A(ry).
T1—=T2 T1—T2

Thanks to the arbitrariness of ¢ > 0, the obtained relations yield the left continuity of function A(r).
The right continuity can be proven in the same way.

4. EXAMPLES

We restrict ourselves by constructing examples in the case n = 2, while similar examples can be
easily adapted for a multi-dimensional situation for the revolution domain

Qf = {(z1,2")] 21 > 0; 2] < f(z1)}

defined by a positive continuous function f(x1), f(x1) > 1, 21 > 0. We shall obtain some estimates
for functions A, X in the case of planar domain €.

For the simplicity we shall refer to the version of Theorem 1, when domains §2[r], S, are replaced
by Q(r) ={z € Q| z1 <r}and S, = {(x1,2') € Q| z1 = r}.

Let us establish an analogue of Steklov-Fridrichs inequality with weights. Let g(s) € C[0,r] and
g(0) = 0. Squaring the identity

it is easy to obtain



ON DECAY OF SOLUTION TO LINEAR PARABOLIC EQUATION. 45

Assume that g(x1,z2) € C5°(€2). Then we have
f(z1) flz1) fz1)
(40)

j p(x)g?(x)dms < / p(x)dry / p~ ! (x)dzy / p()(gh, (x))*das.
0 = sup M(xol),where 0

We introduce the notation A(r)
o<z <r
f(z1) f(z1)

M) = [ )z [ 57 @)dae

[e=]

=]
o

Then
f(z1)
(41)

or, integrating in x1, we obtain
/ p(@)g?(x)dz < A(r) / p()(gr, (2))*dz. (42)
Qr] Qr]
As u(z) and p(x) we consider the functions
(o1, 29) = plan)(f(x1) = |22])®,  |wa| € [f(21) = 1, f(21)]],
PR ), 2] < flan) = 1.
A1) (f(x1) = l22])?, Jwal € [f(21) = 1, f(2)]l,
p(@e,w2) = q
fiz1), o] < f(x1) — 1,
where |a| < 1, § > —1. We shall define function u(x1), p(x1) later. For simplicity, we shall assume
that f(r) > 1|—Oﬂa| and f(r) > % as 7 > Ry.
Calculating M (z1) as u = p, by we find that
—1
~ o o 1
Z - > 4
50> (10 - 222) (fo+ 22| = 50 (43)
as r > Ry. Substituting this estimate into , we obtain
9 [ds
pu®(t,x)dr < Cexp | —2v ) w(x)e
s
Q\Q(r) Ro+1 Q
It is easy to see that
fi(x1) B ) ( )
A(r) = al -7
()= 5w =5 <f(x1) 115) \JE0+ o
(1) 4o ) Bl e )
<max | sup 4———=f“(x1), su 4
<0<m1p<r pa)? 1) 0<:U1£R0 pler) 1+ 61—«
For the sake of simplicity we assume that function £ ~(I1) f2(:v1) increases and
[i(Ro) oo (1) |81 e
— Ryp) 2 sup = .
p(Ro) F(Fo) > 0<x1£R plx1) 1+81 -«
Due to we have A(r) > A~1(r) and this is why
p(r)
Ar) 2 ———5—. 44
"2 G ) .
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Roughing a little bit the estimate in Theorem 1 (see its proof), we can choose function r(¢) satisfying

the inequality ﬁ(fgf’;)(r) > [ f‘fz). Then estimate (7)) becomes
Ro+1

r(t)
/u(w)uQ(t,x)daE < Cexp | —1» / fa(li) /,u(x)cpZ(x)dm (45)
Q Ro+1 Q
In particular, if f(s) = sP, p € (0,1), then

r(t)

ds rl=p
fls) “1-p
Ro+1
Suppose for simplicity that
p_
= = , < 1- b,
po l—=p

then the inequality determining r(¢) casts into the form ¢ > r'~?~% and we can choose 7(t) = t=p=)7"
In this case estimate becomes

1—
[ @it )ds < Cresp (~Cat ™77 [ty
Q Q
We observe that in the multi-dimensional case function f(s) = s” generates the revolution paraboloid
and all the above arguments remain true with appropriately changed constants.
In the case f(s) = s we have the interior of an angle in the plane (or of a cone in the multidimensional
case). Then
r(?)
—— < Inr.
fls) =
Ro+1

As an example we choose functions p, iz so that % = 1:}—{, g > 0. Then the inequality determining r(¢)

becomes t > 1. We choose 7(t) = t'/2. Then estimate casts into the form

/,u(az)u2(t, x)dxr < Csexp (C’4lnt)/u(x)902(a:)dx.
Q Q

5. LOWER BOUND

We recall Harnack inequality established by J.A. Moser for a uniformly parabolic equation [23]

n

up = Z (aij(t, v)ug, )z, - (46)

ij=1
We formulate it in a convenient for us form: for a nonnegative in a cylinder Q = (0,9C1p?] x B(2p,w) C
R™+1, C; > 1 solution to equation the inequality

max u(7,z) < Hminu(r, ),
Q- Qt

holds true, where Q= = [p?,2p?] x B(p,w), QT = [8C1p?,9C1p?] x B(p,w), B(p,w) is the ball of
radius p centered at point w € €2, and constant H > 1 depends only on n, C7 and the parabolicity
constants of the equation.

We recall the notion of As-weight introduced by Muckenhoupt. This is a measurable function ¥(x) :
R™ — R4 satisfying the inequality

/ﬂ(x)dw X /19(137)dx < Cy|K?
K K
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for each cube K C R"™. It was proven in work [24] that if the identity p = p = ¥ holds in @, where ¢
is some As-weight, then for each nonnegative in () solution of equation Harnack inequality holds
true. At that, constant H depends only on Cy, C1, n, v and ;. Let us show that we can get rid of
the assumption p = p if 4 = 9 and the inequalities

plz)u(w) < Ci, x€ B(2p,w), (47)

-1
S uw)pw)

hold true. By the change 7 = %t we obtain the equation

div(p(x)a(t,x)Vu) = p(x)uy = ——u,

orasz € B(2p,w) :
div(ﬁ(x)wa(ﬂ z)Vu) = 9(x)u,.

(@) p(w)
The latter equation in @ is of the form with p=pu =19 and a = Z ((?)’; Ezga. If variables (7,z) € Q,
then (t,x) € Q= (0, 901,02%] x B(2p,w). Then Q~ — Q- Qt - QF change obviously. For these

new cylinders, Harnack inequality is still true.

Thus, if in the neighbourhood of each point w € €2 the inequality holds true and in this
neighborhood function u(x) coincides with some weight 9 (depending on point w), then a non-negative
solution to equation is either positive everywhere in €2 or vanishes identically. This can be proven
by the standard technique if the radius of the neighbourhood depends continuously on the point.

In what follows we shall consider a positive solution to equation .

Theorem 3. Assume that s > pf(s), p € (0,1) as s > 2o, Qf is a revolution domain and weight
p(x) coincides with some Ag-weight ¥ in Qpr N {x1 > 20}. Assume that the inequalities

/ / !
f(a) (') p(z")
hold true for all o', 2" € Q¢ such that z, 2 € [s—pf(s),s+pf(s)] and all s > zo. Then for a positive
solution of equation the inequality
7(t)
min  u(t,z) > u(t1, (20,0)) exp | —C: / s
xeB(r/7W) 9 = 1, 0 p 2 f(S)
20
holds true, where B(2r',w) is some ball inscribed in Q¢ N {z0 < x1 < 7(t)}, t1 > 0 is some fived
number, 7(t), t > t1, is introduced as the smallest r satisfying the inequality

[ o b= mp 00
T = ), L) = R

20

while constant Cy depends only on p, Cy, C1, n, v, V1-

Proof. Let yg = 20 and r > zp be an arbitrary number. We construct a sequence of balls with radii
ri, + = 1,2, ..., and touching points v; = (y;—1 + 274, 0) such that the double ball B(2r;, w;), where
w; = (24,0), z; = yi—1 + 14, touches the set 9€,¢ from inside. We note that r;11 < 3r; since otherwise
B(2r;,w;) C B(2ri4+1,Wiy1), i.e.,ball B(2r;, w;) does not touch the boundary of €.

We denote p; = u(wy), pi = p(w;), t1 = r%%; tiv1 =t + (9C] — 1)%7“1-2.

If for some i the inequality r; < 7;41 holds true, then as s = z;11 we have s — z; < 2r;11 < pf(s)
and by we obtain the inequality

Hi+1Pi <Oy (49)
Pi+1Hi
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If r; > 7“1+1, then letting s = z;, zi41 — s < 2r; < pf(s), by (48] . we again obtain . Moreover, as
s = z;, by (48) we get also an analogue of inequality (47] .

Cil < M < 01, x e B(Zpi,wi)

(@) p(w;)

and inequality

<2, Vo' 2" € [s — 21y, s+ 21y (50)
Consider the cylinders

@i: |:Z_/;’LT_2 (901_1)Iu 7"2-:| XB(QT@,Wi),

i Pi
@_ |:t27tl + er?:| X B<Ti7wi)7

i

OF = [ti +(8Cy — 1)%&,@- +(9Cy — 1)“%2] x B(ri, w;).
3 (]
Let us show that if t;41 < T, then @Z C (0,T] x Qp¢. It is sufficient to establish that ¢; > %r?. The
first step of induction is made. Then due to (49))

bt =t + (001 — DP2 > 90y Hip2 5 P2
Pi Pi Pit+1

that completes the induction.
Let k£ be the first index such that yx1q1 = r or tx4+1 > 7. Then by Harnack inequality

’U,(tl, (yo,O)) < HU(tQ,Vl) S e X H u(tkH,vk).

It yields u(tg41,vi) = H k(5. Let us estimate number k from above. Let s; be the abscissa for one of
the points, where the ball B(2r;, w;) touches the boundary of domain €, ¢ It is clear that |zi—si| < 27y,
pf(si) < 2r; and this is why due to (50)), f )/2 < f(s;) as s € [yi—1,vi], and 7; = pf(z;)/4. Then

T

k
Yi — Yi—1 Yi —Yi-1 2ds / 2ds
B S Y Viot / .
DD D Dl Z )

Let £mp2 — max 22 > max %(pf(z)) . The latter inequality follows from (48). For the
m j<k Pj ] ZE[Z(),’I‘] 1p(z7 )

indices ¢ = m 4+ 1,m + 2,... we replace the balls B(2r;,w;) by the balls B(2r,,, w,,). Cylinders
Qi,i=m+1,m+2,... change appropriately. Since each cylinder increases t; by (9C; — 1) “’" 72, then
to reach value ¢t we need at most
tom ]
N = < 2tL(r
o | <o

cylinders. Thus, we obtain the estimate

T

2
min  wu(t,z) > H-F+NC0y > exp | - ds +2tL(r)/p | InH |, (51)
TEB(Tm,Wm) f( )
that implies the statement of the theorem. O
We apply inequality to the example in Section 4 to obtain
4p 4p
L(r) = inf —PC)____2P0)__ 630y,

o] i(2)pf2(2)  p(r)pf(r)
Employing also inequality , we have
2(t,x)de > 72, mi c Swa | [ pVA(s)ds | + 8t
w(x)u(t,z)de > nr;, min  p(x)Csexp 2 n pV A(s)ds | + 8tA(r)

2EB(Tm,vm)
Q(r) 20
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Now the choice of r = r(t) as in Introduction (under the assumption f continuity of function A(r)):

r

tA(r) = / \/ﬁds,

Ro+1

justifies in some sense the sharpness of upper estimate if the factor at the exponential in the latter
inequality is not too small.

The author express a sincere gratitude F.Kh. Mukminov for the discussion of the results and useful
remarks.
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